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1
Introduction

Mechanical metamaterials are man-made materials which derive their un-
usual properties from their structure rather than their composition. Their
spatial structure, or architecture, often consists of periodically arranged build-
ing blocks whose mutual interactions realize unusual properties, such as zero
or negative elastic parameters [1].

Anyone playing with a piece of rubber will have noticed that its sides
expand when squeezing it. This is because rubber is essentially incom-
pressible: Volume changes are energetically much more expensive than
volume-preserving deformations. This example demonstrates material
behaviour which is characterized by a positive Poisson’s ratio (defined
as the negative ratio of the transverse to axial strain [2]): Compressing
(stretching) the material in one direction leads to the expansion (contrac-
tion) in directions transverse to the applied force [Fig. 1.1(a)]. Although
a positive Poisson’s ratio is a material property shared among the vast
majority of conventional materials, the recent development of mechanical
metamaterials realized the practical design of negative Poisson’s ratio ma-
terials [3, 4]. These are counter-intuitive materials that either contract or
expand in all directions when a force is applied [Fig. 1.1(b)], and are also
known as auxetic materials or simply auxetics. Auxetics are widely stud-
ied because they feature enhanced properties in comparison to traditional
materials, such as a higher indentation [5, 6] and fracture resistance [7],
improved energy absorption [8] and the ability to perfectly wrap around
objects such as spheres or domes [9–11]. The latter characteristic is for
example exploited in industry to optimize the fit of footwear and pros-
thetics [12], but also for the design of curved aircraft wings and helicopter
rotor blades [10, 13, 14].

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Initial and deformed shapes for the uniaxial compression of (a) con-
ventional and (b) auxetic materials. Dashed lines plotted on top of the deformed
shapes indicate initial material geometry.

The first development of an artificial auxetic metamaterial was re-
ported in 1987 by Lakes [3]. His famous work outlines how auxetic foams
can be produced from conventional foams by designing a structure con-
sisting of three-dimensional, re-entrant unit cells (unit cells with inward
deflected sides), and thus demonstrates how structure rather than com-
position determines the properties of the metamaterial. The regular, two-
dimensional equivalent of the underlying re-entrant unit cell is shown
in Fig. 1.2(a), which illustrates how a lattice of inverted honeycomb cells
obtains its negative macroscopic Poisson’s ratio. Followed by the work
of Lakes, several other structures have been presented to architect auxet-
ics [15–19]. Auxetic behaviour is particularly pronounced for the hinging
motion of a collection of rigid squares [20] linked at their tips by flexible
hinges [Fig. 1.2(b)]. This freely hinging, zero-energy motion, known as
a mechanism, is characterized by the counter-rotations of squares (as in-
dicated by circle-shaped arrows) that leads to a uniform contraction or
expansion of the structure.

The key aspect that facilitates the auxetic behaviour for the model
of hinged squares, are the sharp tips which connect adjacent squares
[zoomed area in Fig. 1.2(b)]. These tips introduce strongly localized de-
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Figure 1.2: Auxetic metamaterials. (a) Structure with inverted honeycomb
cells, which expands (shrinks) in the lateral direction when stretched (com-
pressed) [21]. (b) A collection of squares linked at their tips exhibits a free
hinging motion (indicated by the coloured arrows), which allows the structure
to uniformly contract or expand [20]. Zoomed areas: The sharp tips localize
bending and approximate ideal hinges (left). Finite-width tips can be regarded
as beams (right).

formations, in contrast to the uniform deformation of a homogeneous
sample of rubber. As a result deformations are non-affine [22, 23] and the
macroscopic response becomes qualitatively different from its constituent
material. Put simply, sharp tips approximate ideal hinges that allow for
zero-energy rotational motion of the squares [1]. Moving away from the
limit of sharp-tips, finite-width tips [Fig. 1.2(b)] lead to a finite-energy
motion which closely resembles the underlying mechanism. Nonetheless,
finite-width tips, which can effectively be seen as beams, add complexity
to the mechanical properties of the metamaterial. Whereas deformations
in sharp tips are entirely bending dominated, the beams in finite-width
tips also undergo compressive deformations when excited by an exter-
nal axial force. The mechanical complexity then arises from the ener-
getic competition between compressive and bending deformations, and
can lead to spontaneous symmetry breaking from straight to bent beams.
This phenomenon is known as the buckling instability [24], which is as-
sociated with a strongly nonlinear relation between macroscopic stresses
and strains. Metamaterials that encompass such a buckling instability are
known as buckling-based metamaterials [1].
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Figure 1.3: Buckling-based auxetic metamaterial. (a-c) Subsequent snapshots for
the uniaxial compression of an elastic sheet patterned by circular holes. Under a
sufficient load the beam elements undergo a collective buckling instability which
induces a pattern transformation from holes to orthogonal ellipses. This pattern
switch underlies the mechanism of rotating squares and results in an auxetic
response (note how the sides move inwards). (d) Corresponding (experimental)
force-strain relation with the (relative) forces and strains associated with panels
(a-c) indicated by filled circles. Reproduced from reference [28] with permission
from The Royal Society of Chemistry.

The simplest example of a buckling-based metamaterial is an elastic
sheet patterned by a square array of circular holes [4, 25–28] as displayed
in Fig. 1.3(a), which effectively resembles a structure of rigid squares con-
nected by beams. When uniaxially compressed, the structure undergoes
a pattern transformation, as shown in Fig. 1.3(a-c), which is triggered by
a collective beam buckling instability. The scenario of collective beam
buckling is reflected by the kink (at the maximum force) in the force-
strain curve shown in panel (d), which is typical for a buckling instabil-
ity [24]. Importantly, the characteristics of this pattern transformation are
determined by the underlying mechanism. Hence, the properties of this
metamaterial are determined by the interplay between the mechanical
functionality of the beam elements, and the shape-changing properties
of the underlying mechanism [29]. Both of these ingredients play a cen-
tral role in this thesis, and in the sections hereafter we will discuss their
properties in more detail.

1.1 Structural elastic instabilities

The loss of mechanical stability in elastic structures is widely studied and
traditionally driven by the desire to design workarounds that can pre-
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Figure 1.4: Snapping of a jumping popper toy. In order to jump, the shell like-
structure first needs to be turned inside out to store elastic energy. Subsequently,
the snap-through instability can be triggered by dropping it from a small height.
The associated rapid change in curvature converts elastic energy into kinetic
energy with an audible pop and causes the toy to jump. Image courtesy of
D. Holmes, Boston University; the image has been published in reference [35].

vent structural failure [30]. Objects of focus have mainly been slender
structural elements which are prone to buckling and snap-through in-
stabilities, such as beams, plates, shells and frames [30]. More recently,
structural instabilities of slender structures are recognized as an opportu-
nity to generate new modes of functionalities in advanced materials [31].
In fact, biological systems make use of instabilities to obtain their func-
tionality. Examples include the Venus fly trap [32] and the waterwheel
plant [33], which exploit the rapid dynamics of a snap-through instabil-
ity to catch their prey. Moreover, snapping lies at the basis of jumping
bimetallic disks [34] and rubber popper toys [35] (Fig 1.4), which snap
back towards their stable state after being turned inside-out.

Metamaterials that utilize structural instabilities for their function-
ality are known as instability-based metamaterials [1]. Buckling-based
metamaterials [4, 25–28, 36–38] constitute a subclass of instability-based
metamaterials that rely specifically on Euler buckling — known as the
phenomenon where an elastic beam buckles under a sufficiently large
compressive axial load [24], which is perhaps the simplest and most
widespread instability. This type of metamaterials exhibit post-instabilities
when subjected to compression, due to the collective buckling of beam
ligaments which connect adjacent building blocks (e.g. as in Fig. 1.3).
Although the pre-buckling regime and the onset of buckling is well un-
derstood, their post-buckling behaviour, which usually occurs far from
equilibrium accompanied by large beam deformations, is not well devel-
oped yet [39]. In particular, the negative post-buckling stiffness, char-
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Figure 1.5: Force-displacement curves for the buckling of (a) slender beams,
(b) wide beams and (c) metabeams. The post-buckling stiffness is quantified by
the slope after buckling, S. For plain beams the post-buckling slope is a function
of the beam width. The post-buckling slope of metabeams, however, can be
tuned independently of beam width by changing their elliptical pore shapes.
Other than utilizing instabilities, metamaterials can thus also be leveraged to
change elastic instabilities. Image adapted from [40].

acterized by a decreasing force after buckling [Fig. 1.3(d)], is not well
understood. Recently, we showed that the simplest possible setting in
which the negative stiffness can be reproduced is on the level of a single
beam ligament [40]. Fig. 1.5(a-b) shows how beam width crucially in-
fluences the post-buckling stiffness of beams: Slender beams display an
increasing force after buckling (positive stiffness), but for wide beams the
force after buckling decreases (negative stiffness). Metabeams [Fig. 1.5(c)],
which are beams patterned with elliptical holes, can even be used to ra-
tionally design any post-buckling stiffness [40]. To our surprise negative
post-buckling stiffness in the context of beams is not captured by existing
models [41–43] and needless to say, a full understanding of the post-
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buckling behaviour of beams is necessary to take full advantage of the
buckling instability in the design of buckling-based metamaterials.

In conclusion, sufficiently wide beams exhibit a negative post-buckling
stiffness. This intriguing post-buckling behaviour is accompanied by
large deformations, a combination which is theoretically not well de-
scribed. Motivated by the role of (wide) beam ligaments in buckling-
induced metamaterials, analysis of the post-buckling properties of beams
plays a central role in this thesis. In chapter 2, we first identify the phys-
ical ingredient that induces negative post-buckling stiffness, followed by
the development of a 1D model that accurately predicts the experimen-
tally and numerically observed negative stiffness without adjustable pa-
rameters.

1.2 Role of geometry

In this section we zoom in on the role of geometry in the micro structure
of mechanical metamaterials. We focus on the micro structure consisting
of hinged square tiles [Fig. 1.2(b)], which composes the backbone of a
range of 2D auxetic metamaterials [4, 20, 25–28] and which has inspired
the design of programmable [44] and 3D mechanical metamaterials [36,
38]. Owing to its geometric design, the model of hinged squares pro-
vides a single zero-energy motion when connected by flexible linkers,
also known as a mechanism or zero mode [1]. Consequently, metama-
terials underlying the micro structure of hinged squares feature a single
predefined mode of deformation. The natural question that arises is then
whether new metamaterials can be constructed which are able to morph
into multiple predefined shapes when excited by external forces.

To answer this question, we enlarge the design space and study me-
chanical metamaterials composed of aperiodic, rather than periodic micro
structures. Recently, aperiodicity originating from unit cell orientations
was applied to 3D mechanical metamaterials for the rational design of ar-
bitrary pre-programmable shape changes [38] — featuring a single mode
of deformation per chosen geometry. In this thesis, we construct 2D ape-
riodic micro structures by diluting (removing squares) the mechanism
of hinged squares in order to pre-program multiple shape changes per
geometry. Obviously, aperiodicity opens up pathways for the possible
design of such structures, since the design space is greatly increased as a
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(a) (b)

Figure 1.6: Symmetric versus generic systems. (a) The symmetric system (left)
allows for a global hinging zero mode in which quads collectively counter ro-
tate (indicated by the coloured arrows), but the generic system (right) is rigid.
(b) Removing a quad from the top row allows the remaining quad on top to
freely hinge (indicated by the green arrow), introducing an extra zero mode in
both the symmetric and generic system.

result of square removal: For full filling, there exists only one way to tile
space, but this number grows rapidly when squares are removed.

The resulting diluted systems comprise a two-fold problem. First,
as mentioned, the diluted systems are interesting from the metamaterials
perspective. Second, the non-generic nature of the square building blocks
provides potential to unravel the rigidity of (randomly) diluted symmet-
ric systems. The work presented in this thesis studies both of these as-
pects and will build a bridge between them. The rigidity of random
spring networks has been widely studied [45–50], and is known as rigid-
ity percolation. So far, the focus has been on generic disordered systems,
in order to avoid degeneracies arising when symmetries are present. In
this thesis however, we study the differences that arise between the rigid-
ity of symmetric and generic systems.

Fig. 1.6 demonstrates two geometries for which the rigidity of sys-
tems composed by symmetric squares behave differently from systems
composed by generic quads. First, panel (a) shows that sufficiently large
generic systems are rigid, in contrast to symmetric systems that always
exhibit a hinging mechanism, independently of system size. Using Max-
well counting [51], as will be discussed in chapter 3, it can readily be
shown that the minimum system size to ensure rigidity of generic sys-
tems is 3× 3. Next, panel (b) shows that removing a quad from the
top row introduces an additional zero mode in both the symmetric and
generic system. Thus, panel (a-b) show two examples in which symmet-
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ric systems exhibit one excess zero mode in comparison with its generic
counterpart. It is conceivable, however, that the number of excess zero
modes is not bounded to one, but can become larger for more complex
geometries — examples will be discussed in chapter 3.

The above examples demonstrate some of the complexity occurring in
the rigidity of symmetric systems and several open questions arise. Can
the number of excess zero modes become arbitrary large? What are the
necessary ingredients that facilitate the excess zero modes? How can we
count the number of excess zero modes given a random dilution pattern?
A comprehensive treatise on these questions, and more, are devoted to
chapters 3 and 4 of this thesis.

1.3 In this thesis

In this thesis we investigate two aspects of mechanical metamaterials:
The role of beam ligaments and the role of symmetries. As motivated
above, both aspects play an important role in mechanical metamaterials,
and give rise to several open questions.

We first elucidate the negative post-buckling stiffness of wide neo-
Hookean beams in chapter 2. We show that the negative stiffness occurs
in experiments, 3D simulations and simplified 2D simulations, demon-
strating that negative post-buckling stiffness is a robust phenomenon that
does not originate from boundary-induced singularities or 3D effects. Us-
ing the simplified 2D simulations we then identify the missing physical
ingredient — which we will show to be a material nonlinearity — that un-
derlies the negative post-buckling stiffness. Finally, we use this material
nonlinearity to build a 1D nonlinear beam model that, without adjustable
parameters, successfully captures the intriguing post-buckling behaviour
of wide neo-Hookean beams.

In the remainder of this thesis we turn to collections of hinging quadri-
laterals in order to probe the role of symmetries. In chapter 3 we investi-
gate randomly diluted lattices of hinging squares, and compare these di-
rectly to generic systems featuring irregular quads, when using the same
dilution pattern for both. We then demonstrate that symmetric systems
exhibit excess zero modes as compared to the generic systems, with their
multitude satisfying simple scaling relations with mean field exponents.

Finally, in chapter 4 we develop an approximate, yet accurate method
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to count the number of excess zero modes in diluted systems of hing-
ing squares. We note that these modes are driven by densely connected
patches of quads — clusters — and develop a procedure to separate any
system into clusters, connectors and remaining quads. Using the topol-
ogy of the clusters and their connectors we then iteratively estimate the
number of (excess) zero modes, which allows us to obtain a tight lower
bound on the exact, numerical results for their multitude.



2
A nonlinear beam model to describe the

post-buckling of wide neo-Hookean beams

Wide beams can exhibit subcritical buckling, i.e. the slope of the force-
displacement curve can become negative in the post-buckling regime. In
this chapter, we capture this intriguing behaviour by constructing a 1D
nonlinear beam model, where the central ingredient is the nonlinearity
in the stress-strain relation of the beam’s constitutive material. First, we
present experimental and numerical evidence of a transition to subcriti-
cal buckling for wide neo-Hookean [52] hyperelastic beams, when their
width-to-length ratio exceeds a critical value of 12%. Second, we con-
struct an effective 1D energy density by combining the Mindlin-Reissner
kinematics [41] with a nonlinearity in the stress-strain relation. Finally,
we establish and solve the governing beam equations to analytically de-
termine the slope of the force-displacement curve in the post-buckling
regime. We find, without any adjustable parameters, excellent agreement
between the 1D theory, experiments and simulations. Our work extends
the understanding of the post-buckling of structures made of wide elastic
beams and opens up avenues for the reverse-engineering of instabilities
in soft and metamaterials.

The work presented in this chapter has been published as:

C. Coulais, J.T.B. Overvelde, L.A. Lubbers, K. Bertoldi and M. van Hecke, Discontinuous
buckling of wide beams and metabeams, Phys. Rev. Lett. 115, 044301 (2015).

L.A. Lubbers, M. van Hecke and C. Coulais, A nonlinear beam model to describe the post-
buckling of wide neo-Hookean beams, J. Phys. Mech. Solids 106, 191-206 (2017).

11



12 CHAPTER 2. NONLINEAR BEAM MODEL FOR WIDE BEAMS

Guide through this chapter: Readers interested in the main findings can
safely skip sections 2.3 to 2.5. These sections are very technical, but
provide essential background information to unambiguously construct
the energy density which forms the basis of our nonlinear beam model.

2.1 Introduction

Recent years have seen an upsurge of interest in the instabilities and post-
instability behaviour of flexible structures. Rather than seeing instabilities
as failure, they recently have been leveraged to achieve novel functional
(meta)materials and structures [31, 53]. As such, materials and structures
featuring snapping [44, 54], wrinkling [55, 56], fingering [57] or buck-
ling [4, 36, 40] have been created. Collectively they constitute a promis-
ing route to develop mechanical devices for sensing [38, 58], actuation [55,
59–61] or soft robotics [62, 63].

These structures harness post-instabilities and their constituents un-
dergo large deformations. A theoretical description of this regime, where
as we will show nonlinearities are key, is not well developed yet. On the
one hand, the description of post-buckling behaviour has been widely in-
vestigated, but for models in which the constitutive material is assumed
to be linearly elastic under small deformations [30, 42, 43, 64–68]. On the
other hand, much attention has been devoted to characterizing the insta-
bilities of nonlinear elastic cellular materials [69–72] or structures [73], but
only for the onset of instability, and not for the post-instability regime.

Euler buckling, known as the phenomenon where an elastic beam
will buckle under a sufficiently large compressive axial load, is perhaps
the simplest and the most widespread instability [24]. Much theoretical
attention has been devoted to describing it using the classical [74, 75],
extensible and shearable [76] elastica problem. Further in-depth studies
have focused on the onset of buckling, the structure of buckled states [77,
78], closed form solutions [79–81], large deformations [82–84] and three-
dimensional [85–88] deformations. In this chapter we investigate the
post-buckling regime of wide beams, where strains are necessarily large.
A salient feature of buckling of slender beams is that the post-buckling
compliance increases tremendously after buckling, yet remains positive.
However, as discussed in the general introduction of this thesis, wide
beams that buckle and undergo large deformations can exhibit a negative
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post-buckling compliance [40]. Although negative compliance is com-
monly observed in buckling of shells [30], pipes [64] and the wrinkling
of membranes [89–91], it has not been reported for Euler beam buckling,
and to the best of our knowledge is not predicted by existing beam mod-
els.

Here we develop a 1D nonlinear beam model based on a nonlinear
constitutive equation, that without adjustable parameters, describes the
post-buckling compliance of wide neo-Hookean beams. In particular,
this model allows to analytically capture the onset of subcritical buck-
ling (post-buckling slope < 0) for widths larger than approximately 15%,
in good agreement with experiments and FEM simulations. First, in sec-
tion 2.2 we present experimental and numerical evidence to show that
for neo-Hookean beams, the post-buckling compliance becomes nega-
tive when the beam width-to-length ratio t exceeds approximately 12%.
Second, in sections 2.3-2.5 we discuss the fundamental ingredients for
our 1D model. We review mathematical beam descriptions based on
Mindlin-Reissner kinematics [41], pinpoint and quantify the role of ma-
terial nonlinearity using extensive 2D simulations, and construct a 1D
energy density that encompasses such nonlinearity by combining the
Mindlin-Reissner kinematics with a nonlinearity in the stress-strain re-
lation. Third, in section 2.6 we establish the governing equations of our
nonlinear 1D beam model that are based on this energy density including
nonlinearity. We then solve the beam equations to obtain the variation
of the post-buckling slope with t and find that, without any adjustable
parameters, our model is in excellent agreement with experiments and
simulations. Our work thus unambiguously unravels the link between
stress-strain nonlinearity and post-buckling behaviour. While we focus
on the buckling of wide neo-Hookean beams, we note that we only need
to include quadratic corrections to the stress-strain relation to correctly
capture the physics. Hence, for materials with other nonlinear consti-
tutive laws, including metamaterials as explored in [40] and [92], our
description is also valid. Our analytical description can be used to ratio-
nally design the post-buckling behaviour of beams, and we hope that it
can inspire work to capture and describe post-instability behaviours of
other elastic systems. More widely, our work may impact the design of
compliant devices, which harness instabilities (e.g. buckling, snapping,
wrinkling) to convey mechanical functionalities that are of use in soft
robotics [62, 63], sensors [38, 58] and actuators [55, 59–61].



14 CHAPTER 2. NONLINEAR BEAM MODEL FOR WIDE BEAMS

2.2 Phenomenology: Subcritical buckling

In this section, we present and expand the findings from our previous
work on subcritical buckling of wide beams [40]. First, we discuss both
the experimental and numerical protocols to study buckling of rectangu-
lar beams to determine the force-displacement relation. We consider both
the numerical protocol for 3D FEM simulations with boundary condi-
tions that closely model the experimental conditions, and 2D simulations
with simplified boundary conditions. Second, we analyse the onset of
buckling and the post-buckling compliance of beams of varying width-
to-length ratio t. We then show that for both experiments and numerics
the post-buckling compliance varies systematically with t, and becomes
negative for t & 0.12.

2.2.1 Experiments and FEM simulations

In the analysis below, we consider beams of the width-to-length ratio t =
w/` and depth d, under load F and corresponding uniaxial displacement
u, where u, F > 0 correspond to a compressive deformation [Fig. 2.1(a-b)].

Experiments

To perform buckling experiments, we mold 12 solid rectangular beams
of rest length ` = 45 mm, depth d = 35 mm and widths ranging from
w = 1.55 mm to w = 12.85 mm [Fig. 2.1(a)] out of a well-characterized
silicon rubber (Zhermarck, Polyvinyl Siloxane double elite 8, density
1.15×103 kg/m3, Young’s modulus E = 250 kPa, Poisson’s ratio ν ≈ 0.5).
The extremities of the beams are glued on plexiglass plates that are at-
tached to the uniaxial testing device (Instron 5965) in order to approxi-
mate clamped-clamped boundary conditions, and we perform the exper-
iments in a water bath in order to limit the effects of gravity.

3D simulations

We simultaneously carry out a nonlinear analysis using the commercial
finite element package Abaqus/Standard on beams with the exact same
geometry as in the experiments. We determine the buckling point using a
specific algorithm in our finite element code that does not require seeding
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the initial geometry with imperfections (see appendix 2.A and reference
[40]), allowing to obtain a 0.1% accuracy on the buckling onset.

Material model — The rubbers used in our experiments are well de-
scribed by the incompressible neo-Hookean formulation of nonlinear elas-
ticity [93]. We therefore use a neo-Hookean strain energy density [52] of
the form

W =
G
2

(
det(F)−2/3tr(FFT)− 3

)
+

K
2
(det(F)− 1)2, (2.1)

where G is the shear modulus, K the bulk modulus and F≡ ∂x/∂X is the
deformation gradient tensor from the undeformed coordinates X to the
deformed coordinates x. In the numerical analysis, we use the moduli
G = 83 kPa and K = 42 GPa, which models accurately the E = 250 kPa
nearly-incompressible rubber used in the experiments. We note that our
results do not sensitively depend on the precise choice of G and K, as
long as G/K� 1. The overall stiffness, given by the Young’s modulus
E = 9KG/(3K + G), only sets a trivial scale, and to obtain dimensionless
results, we scale the stresses by E for the results presented below.

Boundary conditions. — We numerically impose clamped-clamped
boundary conditions to resemble the experiments where the endpoints
of the beam are glued on plexiglass plates.

Simplified 2D FEM simulations

In addition, we carry out 2D plane stress simulations (Abaqus element
type CPS4) using the same material model, yet with simplified slip bound-
ary conditions at both endpoints of the beam, which allows for free lat-
eral expansion at the clamped-clamped endpoints to avoid barrelling ef-
fects [94]. The choice for plane stress over plane strain conditions is a pri-
ory not obvious because our beams are intermediate between the plane
stress limit (w� d), and plane strain limit (w� d). We therefore used
our 3D simulations to investigate the 3D stresses and strains for beam
thicknesses where the post-buckling slope changes sign (t ≈ 0.1). We
found that in this case there are significant out of plane strains, but that
the out of plane stresses are small (ratio between the lateral and uniax-
ial stresses < 0.1) — this motivates us to focus on the plane stress case.
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Figure 2.1: Buckling of wide neo-Hookean beams. (a) Sketch of a beam in its
initial undeformed state, for which the beam has a rest length `, width w and
depth d. (b) Applying a compressive displacement u, leads to compression and
eventually buckling of the beam. (c-d) Front-view snapshots of (c) the experi-
ment and (d) the simulation for a beam of length ` = 45 mm, depth d = 35 mm
and width w = 11.95 mm, at compressive displacements (from left to right) u = 0,
u = 0.5 uc, u = 0.99 uc, u = 1.1 uc and u = 1.2 uc. (e-f) Scaled compressive force
F/(Ewd) vs. compressive displacement u/` for beams of different width for (e)
the experiments (dashed lines) and 3D simulations (solid lines) and (f) the sim-
plified 2D simulations. As the effects of gravity are negligible in the experiments
and absent in simulations, the choice of the Young’s modulus E is irrelevant and
we scale the forces by E.
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The plane stress condition, which is nontrivial in finite-strain elasticity,
is implemented by requiring that the yy-component [Fig. 2.1(a)] of the
true (Cauchy) stress is zero, which necessitates the iterative computation
of the deformation gradient component Fyy to satisfy this condition [95].
Altogether, these assumptions ensure that more complex 3D and bound-
ary effects can be neglected and allow us to carry out the analysis in
the simplest setting where subcritical buckling can be observed, and will
be used later to pinpoint the physical mechanism at stake in the post-
buckling behaviour of wide beams.

2.2.2 Buckling and Subcritical Buckling

In Fig. 2.1(c-d) we simultaneously display 5 front-view snapshots of ex-
periments and 3D simulations for a beam with t = 0.23 (w = 10.20 mm) at
different compressive displacements, which are in very good qualitative
agreement. Moreover, we plot the obtained force-displacement curves for
the complete range of beam widths in Fig. 2.1(e), which illustrates that
3D simulations and experiments are also in very good quantitative agree-
ment. Hence, the neo-Hookean material model describes the buckling
of wide beams well. For all curves, we observe a near-linear increase
until the onset of buckling, at which the slope abruptly changes. For
thin beams, the force increases after buckling, while for thick beams, the
force decreases. For buckling experiments under controlled force of a
sufficiently wide beam, the post-buckling branch would thus be unstable
and the pitchfork instability would be subcritical. Therefore, we refer to
this type of instability as Subcritical Buckling. The 2D simulations, albeit
considerably simpler, display qualitatively similar behaviour [Fig. 2.1(f)],
which demonstrates that subcritical buckling does originate neither from
boundary-induced singularities nor from 3D effects. To the best of our
knowledge, although subcritical buckling is fairly common in other set-
tings such as the wrinkling instability [96–98] and the wrinkle-to-fold
transition [89–91], such sign change is not predicted by any theory as
of now for the Euler buckling of wide beams for realistic aspect ratios.
Note that Magnusson et al. [42] predicted such transition from supercrit-
ical to subcritical post-buckling, yet for overly large aspect ratios (t=0.24),
and for which the validity of the extensible, non-shearable elastica is not
guaranteed.

We now retrieve the onset of buckling uc and the post-buckling slope
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Figure 2.2: Critical compressive displacement and post-buckling slope as func-
tion of the beam width-to-length ratio, for Euler’s elastica (solid blue), exper-
iments (orange diamonds), 3D FEM simulations (black crosses) and 2D plane
stress FEM simulations (solid black). (a) The onset of buckling, uc, in ex-
periments and simulations qualitatively follows Euler’s elastica. (b) The post-
buckling slope S in experiments and simulations progressively deviates from
the Euler limit S = 1/2 for large t. The transition to subcritical buckling (S < 0)
occurs for t & 0.12, as indicated by the shaded region.

S, using the relation between the load F and the compressive displace-
ment u in the post-buckling regime:

F− Fc

Fc
= S

(u− uc)

`
+O

(
(u− uc)

2
)

, (2.2)

with Fc the critical buckling force. In Fig. 2.2(a) we display the onset
of buckling as a function of the beam width-to-length ratio t, for the
experiments, 3D FEM simulations and the 2D FEM simulations, and ob-
serve quantitative agreement with the prediction of Euler’s elastica for
clamped-clamped boundary conditions, ueuler

c /`= t2π2/3 [30]. While the
onset shows quantitative agreement with Euler’s prediction, the results in
Fig. 2.2(b) show that the post-buckling slope S strongly deviates from Eu-
ler’s prediction S = 1/2 as t increases, and becomes negative for t & 0.12.
Importantly, Fig. 2.2(b) illustrates that subcritical buckling of wide beams
is a robust phenomena: Even with the simplifications made in the 2D
simulations, the differences in the post-buckling slope between 2D and
3D simulations are modest.
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The emergence of subcritical Euler buckling is, as we will show, read-
ily related to nonlinearity in the stress-strain relation [40]. In the fol-
lowing, we will rationalize this behaviour of wide beams—which are 3D
structures undergoing large deformations—by constructing a 1D beam
model that encompasses such a stress-strain nonlinearity. The behaviour
of such a 1D model is more easily tractable than a full tensorial descrip-
tion needed in 3D, and is therefore of significant interest for the design of
post-instabilities.

In conclusion, we have shown in this section that, in experiments, in
fully 3D numerical simulations, and in 2D simulations, the post-buckling
compliance of wide beams varies systematically with the beams aspect
ratio t, and becomes negative for t & 0.12.

Sections 2.3-2.5 provide technical information about the ingredients
of our nonlinear 1D beam model. In subsequent order, we review
mathematical descriptions of beams, pinpoint and quantify material
nonlinearity using extensive 2D simulations and construct a 1D energy
density encompassing such nonlinearity. As mentioned before, the
reader interested in the main findings of this chapter can continue to
section 2.6.

2.3 Mathematical description of beams

In this section we review the basic ingredients and assumptions for 1D
beam models of varying degree of sophistication [24, 42, 43]. First, we
discuss how 2D deformations of (wide) beams can be mapped onto the
deformations of a 1D central beam axis, using the Mindlin-Reissner kine-
matics [41], which captures the extension, shear and bending of wide
beams. Second, we review the governing beam equations that follow
from the combination of Mindlin-Reissner kinematics and a linear con-
stitutive law. Third, we numerically solve the most sophisticated linear
beam model and compare its outcome to our 2D FEM results in the post-
buckling regime. We find that for wide beams, this linear model does not
accurately capture the beam shape. These deviations imply that nonlinear
corrections to the constitutive law must be taken into account.
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2.3.1 Mindlin-Reissner kinematics and strains

We now introduce the Mindlin-Reissner beam kinematics and associated
strains that form the basis of our 1D beam description, presented later in
this chapter.

The buckling regime of slender beams (elastic lines, t→ 0) is bending
dominated. Therefore, their shape can be described by a single kinematic
field, denoted θ(s) [Fig. 2.3(a)], which is the rotation angle with respect to
the z-axis as a function of the curvilinear coordinate s along the beam [99].
Wide beams, however, have additional modes of deformation, which are
dominantly compressive and shear deformations. Following [41, 43, 100],
the shape of such beams can be captured by a central beam axis described
by a deflection and shear angle, respectively defined as θ(s) and χ(s),
along with the stretch λ(s) [Fig. 2.3(c)]. We refer to this kinematic de-
scription as Mindlin-Reissner kinematics. The stretch along the central axis
is defined as the elongation of a beam element of length ds in the un-
deformed state, with respect to the same element in the deformed state
of length ds′, that is, λ(s) = ds′/ds. Furthermore, the sum of the rota-
tion angle and shear angle, θ(s) + χ(s), is defined as the angle enclosed
by the vertical vector ez and the tangent to the central axis, t. The shear
angle can be regarded as the angle enclosed within the normal of the cen-
tral axis, n, and the tangent to the deformed cross-section in the vicinity
of the central axis, n′ [zoomed area in Fig. 2.3(c)]. The rotation angle can
then readily follows from the difference between the sum θ(s)+ χ(s), and
χ(s) itself. Following [41], the Mindlin-Reissner kinematics can be used
to introduce a set of compressive, bending, and shear strains, respectively
denoted ε̃0, ε1 and γ0, and defined as

ε̃0 = λcos(χ)− 1, (2.3)
ε1 = θs, (2.4)
γ0 = λsin(χ). (2.5)

In the reminder of this chapter, we refer to this set of strain-displacement
relations as the Mindlin-Reissner strains. In order to obtain a set of closed
beam equations, these strains should be related to stresses via constitutive
relations. In the following section we review prior (wide) beam models
that are constructed from a combination of Mindlin-Reissner strains and
linear elasticity.
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Figure 2.3: Kinematic description of a slender (t = 0+) and wide beam (here,
t = 0.15). Both beams are compressed equally by a displacement u. (a) The shape
of an undeformed (left) and buckled (right) slender beam. We obtain the buckled
state by solving Euler’s elastica [Eq. (2.6)] for clamped boundary conditions at
both ends. The kinematic description of a slender beam is governed by the rota-
tion angle θ(s). (b) Snapshot from a 2D simulation of a wide neo-Hookean beam
in its undeformed state, where each square represents a simulation element. We
impose clamped boundary conditions at both ends of the beam, but allow free
lateral expansion along the x-direction at top and bottom boundaries. The su-
perimposed, red, solid line depicts the central axis of the beam as obtained from
FEM simulations accordingly. (c) Snapshot from the same simulation as in (b),
depicting the beam in its deformed state. The deflection of the central axis un-
der a compressive displacement u is described by a combination of the rotation
angle, θ(s), and shear angle, χ(s) along the curvilinear coordinate of the beam
as indicated. For a precise definition of θ(s) and χ(s) as well as the vectors n(s),
n′(s) and t(s), see the main text.

2.3.2 Linear beam models

Here we present a number of existing models that combine the Mindlin-
Reissner strains with conventional linear elasticity. We start with a brief
review of the bending of elastic lines (Euler’s elastica), followed by more
complete models that include extensibility and shear effects [42, 43].
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Euler’s limit— Slender beams can be described through a single Mind-
lin-Reissner strain, θs. The governing beam equation to be satisfied by the
bending strain then reads [30]:

EIθss + F sinθ = 0, (2.6)

where I is the second moment of area, which equals I = 1
12 w3d in case of

the rectangular cross-section of width w and depth d considered here.
The above equation is formally known as Euler’s elastica and can be
solved analytically to provide an exact prediction for the critical buck-
ling force [99].

Euler’s elastica rests on two assumptions, which are of importance
as they help us to understand where wide beams start to deviate from
slender beams. First, within the reference frame defined in Fig. 2.3(b), the
elastica tacitly assumes that the axial nominal strain εzz across the beam
is given by

εzz(x) = ε1x, (2.7)

where x is the horizontal coordinate across the beam section and ε1 is the
curvature of the central axis of the beam, as defined by Eq. (2.4). Second,
it assumes a linear constitutive relation between the axial nominal stress
σzz and axial nominal strain, that is,

σzz = Eεzz. (2.8)

This assumption of linear elasticity is common regarding slender beams
and provides an excellent description of their buckling properties, be-
cause the typical strains involved in slender beam buckling are much
smaller than unity, uc/`� 1.

Shearable and extensible beams — Wide beams necessitate the use
of all three Mindlin-Reissner strains due to additional compressive and
shear deformations. Consequently, the governing beam equations now
constitute a set of three coupled equations, rather than a single equation
in the case of slender beams. Since the strains involved in wide beam
buckling can be substantial (e.g. ∼ 10% for a beam with t = 0.17), nonlin-
earities in the stress-strain relation induced by large deformations become
significant. Nonetheless, as a first step, recent work [43] has combined all
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three Mindlin-Reissner strains with linear elasticity,

EIθss + F ((1 + ε̃0)sinθ + γcosθ) = 0, (2.9a)
EAε̃0 + F cosθ = 0, (2.9b)
GAγ + F sinθ = 0, (2.9c)

where, A = wd is the cross-sectional area. In the remainder of this manu-
script we refer to the above set of equations as the linear beam model. Note
that previous work also considered beam models that take into account
exclusively bending and shear [100, 101] deformations, known as Timo-
shenko beams, or solely bending and extensibility [42].

As we will show later in section 2.6, the linear beam model somewhat
improves the post-buckling description in comparison to Euler’s elas-
tica (S = 1/2), but fails to predict the experimentally and numerically
observed subcritical buckling. Specifically, in the following section we
illustrate that the strains predicted by the linear elastic beam model sig-
nificantly deviate from the strains obtained by the 2D FEM simulations,
already for a beam of width-to-length ratio t = 0.1. This evidences that
the Mindlin-Reissner strains given by Eqs. (2.3-2.5) —which remain valid
for large strains [85]— cannot be accurately determined from a closed set
of beam equations based on linear elasticity. Instead, to accurately predict
the post-buckling slope and Mindlin-Reissner strains from a set of beam
equations, one needs to develop a model that takes into account a non-
linear stress-strain relation, which is the main objective of this chapter.

2.3.3 Linear wide beam model compared to 2D FEM simula-
tions

We now compare the Mindlin-Reissner strains predicted by the linear
beam model [Eqs. (2.9)] to our results obtained from the 2D FEM sim-
ulations (Fig. 2.4). Using a shooting method in Mathematica, we solve
numerically the linear beam model, with boundary conditions θ(0) = 0
and θs(0) = θs(1) = C, where C is a constant directly set by the amount
of uniaxial displacement u. Comparing the results from FEM simulations
(solid black lines) in Fig. 2.4(a-c) with those of the linear beam model,
we observe a qualitative agreement for bending and shear deformations.
However, there is a very striking difference between the model predic-
tions and numerical results for the compressive deformations [Fig. 2.4(a)]:
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Figure 2.4: Mindlin-Reissner strains and corresponding beam shapes for a beam
(t = 0.1) which is uniaxially compressed to a displacement of u/uc = 1.3. (a-
c) The solid black curves depict data for the Mindlin-Reissner strains obtained
from FEM simulations, and the blue dashed curves are numerical solutions of
the linear elastic wide beam model [Eqs. (2.9)]. As a function of the curvilinear
coordinate s, we show (a) the compressive strain, (b) the bending strain, and
(c) the shear strain. (d) Shape of the central axis as predicted by the linear beam
model. We have obtained this shape by the integration of the horizontal and
vertical component of the displacement gradient with respect to s, respectively
given by λcos(θ +χ) and λsin(θ +χ) [41]. (e) Beam shape and associated central
axis (solid red) obtained from 2D FEM simulations.

the actual (numerical) modulations of the stretch are much stronger, and
incidentally are opposite, to those predicted by the model. Subtle as this
deviation may be, the linear beam model cannot predict the experimen-
tally and numerically subcritical buckling (see section 2.6). This suggests
that this subtle deviation points to a more fundamental flaw of the linear
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model, which arises due to the large deformations that are unavoidable
in wide-beam buckling. In the following sections we will uncover, clar-
ify and model the role of nonlinearity in the constitutive equation as the
crucial ingredient to describe the post-buckling regime of wide beams.

2.4 Quantifying the role of material nonlinearity

In this section we use FEM simulations to disentangle nonlinearities in
the relation between nominal stress and strain. We focus on a transversal
slice across the middle of the beam, obtain the stress and strain pro-
files for slender and for wide beams, both close to and deep into the
post-buckling regime. These profiles unambiguously show that, for thick
beams, axial stresses and strains are no longer linearly related, but that
rather a neo-Hookean description, where the stress is a nonlinear function
of strain, describes the data with high accuracy, for beam aspect ratios up
to t ≈ 0.2 and for compressions up to 115% of the critical compression
where buckling takes place. We then quantify these axial nonlinearities
by a systematic powerlaw expansion of the nominal strain and stress as
function of the lateral coordinate, thickness and compression. The lead-
ing order terms in this expansion are consistent with Euler’s Elastica, but
it is not a-priori clear what the structure of the higher order terms is.
We therefore use our FEM data to determine the leading order terms in
this expansion. This numerical input circumvents the need for heuris-
tics to guess the important terms, and leads to a greatly simplified model
where the dominant next order terms in t are properly taken into account.
As we will show, these next order terms evidence a nonlinearity in the
stress-strain relation which is consistent with the material nonlinearity
of neo-Hookean materials [52]. Finally, we repeat the above analysis for
the nominal shear strain and stress and show that shear strain and stress
can be related linearly. Hence, the crucial main missing ingredient in the
linear elastic wide beam model is nonlinearity in the axial nominal strain
and stress relation.

2.4.1 Nonlinear uniaxial transverse stress and strain profiles

We start by considering the shape of the transverse profiles of the axial
nominal strain, εzz, and stress, σzz. We restrict our attention to the cross-
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section at the middle of the beam, depicted by the horizontal red lines in
Fig. 2.5(a-b). We found (not shown) that the discrepancy between the ob-
served and predicted sinusoidal modulation of ε̃0, identified in Fig. 2.4(a),
is maximal at the middle of the beam in the immediate post-buckling
regime. We then consider ε(x)≡ εzz(x, s = `/2) and σ(x)≡ σzz(x, s = `/2)
to measure the spatial shape of the axial nominal strain and stress as a
function of the transverse coordinate, x, of the deformed geometry.

In the pre-buckling regime, the uniaxial nominal stresses and strains
are simply constants as function of x as the beam undergoes uniform
uniaxial compression. Under uniaxial uniform compression the neo-
Hookean relation predicts the following nominal stress-strain relation
(see appendix 2.B.1)

σnH(x) =
E
3

(
1 + ε− 1

(1 + ε)2

)
. (2.10a)

The nonlinearity of this stress-strain relation stems from the combination
of large deformations and incompressibility. This nonlinearity can qual-
itatively be understood from the fact that upon compression (tension)
the cross-sectional area increases (decreases) and the stress-strain curve
is therefore effectively stiffening (softening). The above equation can be
expanded for small strain, ε, as

σnH(x) = E
(
ε− ε2)+O(ε3). (2.10b)

Hence, the linear term is consistent with Hookean elasticity and the lead-
ing nonlinear term is quadratic.

In contrast to the uniform uniaxial deformations considered above,
buckled beams experience non-uniform deformations, and spatially vary-
ing stress and strain fields. Therefore we focus in the following on the
evolution of the stress and strain profiles as the excess displacement ∆u
in the post-buckling regime is increased. In Fig. 2.5 we have plotted
the nominal stress rescaled by the Young’s modulus (solid black) and
nominal strain profiles (dashed red) as function of x in the post-buckling
regime, for a slender (t = 0.01) and wide (t = 0.15) beam.

For slender beams, the strains remain sufficiently small for the linear
stress-strain relation to be valid. First, in Fig. 2.5(c) we demonstrate that
the slender beam at small excess displacement has linear nominal stress
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Figure 2.5: Beam shapes, stress-strain relation and stress and strain profiles. (a-
b) Beam shapes for (a) a slender (t = 0.01) and (b) wide (t = 0.15) beam at excess
strains of ∆u = 1×10−4 and ∆u = 0.1. We track the nominal stress and strain
profiles as a function of the transverse coordinate x at the central cross section of
the beam, depicted by the horizontal red lines. (c-d) Rescaled uniaxial nominal
stress (solid black) and strain (dashed red) profiles for a slender beam (t = 0.01)
at an excess strain of (c) ∆u = 1×10−4 and (d) ∆u = 0.1. (e-f) Rescaled uniaxial
nominal stress and strain profiles for a wide beam (t = 0.15) at an excess strain
of (e) ∆u = 1×10−4 and (f) ∆u = 0.1. The green dash-dotted lines correspond
to σnH (ε)/E, obtained by applying the neo-Hookean stress-strain relation in
Eq. (2.10a) to the strain profile obtained from FEM simulations.
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and strain profiles across the beam, and that σ/E = ε is a very good
approximation. In panel (d) we show data for ∆u = 0.1, which results
in a larger average nominal strain and a larger range of nominal strains
across the beam, but the profiles remain linear and σ/E≈ ε. Both panel (c)
and (d) show that the nominal strains involved in slender beam buckling
remain sufficiently small for the nominal stress and strain to be simply
proportional, as σ = Eε. Hence, the stress-strain nonlinearity is negligible
for slender beams, both at small (panel c) and larger (panel d) excess
displacement.

In contrast to slender beams, nonlinearities become important for
thick beams. In Fig. 2.5(e-f) we have plotted the nominal stress and strain
profiles for a wide beam (t = 0.15) at ∆u = 1×10−4 and ∆u = 0.1. For
small excess displacement, ∆u = 1×10−4, the nominal stress and strain
profiles are both linear, but σ/E 6= ε. This is because the strains involved
are sufficiently large for the neo-Hookean nonlinearity to become impor-
tant. Indeed, when calculating σnH (ε) from Eq. (2.10a), using the numer-
ically obtained strain profile, we find that this stress describes the data
extremely well (green dash-dotted curve). For larger excess displacement
(∆u = 0.1), the effect of the nonlinearity is even more pronounced. We
note that here a large range of strain occurs, and that the stress profile
becomes strongly nonlinear in x. Again, using the nonlinear stress-strain
relation in Eq. (2.10a), σnH (ε) describes the numerical stress data very ac-
curately. Taken together, our FEM data provides strong evidence that to
correctly describe the stresses in thick beams in the post-buckling regime,
including the neo-Hookean correction is necessary and sufficient.

2.4.2 Series expansion of the axial nominal stress and strain

In this section we perform a systematic polynomial expansion of the nom-
inal stress and strain profiles in x/w, t and ∆u, and determine all pref-
actors and scaling exponents using our FEM results. Our findings are
consistent with the Euler limit at lowest order in t (quadratic) and con-
firm that stress and strain are nonlinearly related for higher order in t
(quartic and higher).
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Polynomial expansion and asymptotic analysis

As described above, the data in Fig. 2.5 suggests that the nominal stress
and strain profiles are linear in x for (i) small t or (ii) small ∆u, but be-
come nonlinear when t and ∆u are large. It is then natural to expand the
nominal strain and stress around the buckling strain and stress, respec-
tively denoted εb and σb, as function of the (scaled) transverse coordinate
x/w:

ε
(

t,∆u,
x
w

)
− εb = ∑

n=0
Cn (t,∆u)

( x
w

)n
, (2.11a)

and

σ− σb

E

(
t,∆u,

x
w

)
= ∑

n=0
Dn (t,∆u)

( x
w

)n
, (2.11b)

where Cn and Dn are the coefficients of the expansion in x/w of order n.
In the remainder of this manuscript, we will refer to these coefficients as
the post-buckling profile coefficients. At buckling (∆u = 0), Cn = Dn = 0, so it
is natural to assume that the post-buckling profile coefficients Cn and Dn
grow as power laws in t and ∆u in the post-buckling regime. Therefore,
we postulate:

Cn (t,∆u) = C̄ntαn ∆uβn , (2.12a)

and

Dn (t,∆u) = D̄ntρn ∆uτn . (2.12b)

Here, αn, βn, ρn and τn are post-buckling profile scaling exponents and C̄n and
D̄n are the post-buckling profile prefactors which we will now determine up
to the order n = 5 from our numerical simulations. Because of the nature
of the Euler buckling instability, we expect that the exponents βn and
τn for all value of n will be half integers. Furthermore, as nominal stress
and strain are linearly related in lowest order, stress and strain expansions
should have the same post-buckling profile scaling exponents with t and
∆u for every order, that is αn = ρn and βn = τn. We also notice that the
order n = 1 corresponds to the post-buckling stress and strain profiles of
Euler’s elastica, for which the post-buckling profile coefficients C1 and D1
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Figure 2.6: Expansion of the nominal strain and stress profiles obtained by FEM
simulations, according to Eqs. (2.11-2.12). We plot the post-buckling profile coef-
ficients Cn and Dn in each order as a function of ∆u and t. In black, blue, green
and red we have plotted Cn (solid lines) and Dn (dashed lines), corresponding
to the order n = 0, n = 1, n = 2 and n = 3 respectively. (a-b) We have plotted |Cn|
and |Dn| as function of ∆u for a (a) slender beam (t = 0.02) and (b) thick beam
(t = 0.15). (c) Dependence of Cn and Dn on the beam’s aspect ratio t.

can be calculated analytically; below we find that the numerical results
for C1 and D1 are consistent with their analytical predictions.

To determine all the constants, we use the numerical protocol de-
scribed in section 2.2.1 and perform N = 102 simulations for beams with a
logarithmically spaced width-to-length ratio in the range from t = 0.01 up
to t = 0.25, and with an excess strain that is increased from ∆u = 10−3 up
to ∆u = 1 in 3×102 subsequent steps. For each simulation we extract the
spatial shape of the nominal stress and strain as function of x/w across
the middle of the beam at s = `/2 and fit ε(x) and σ(x)/E to polynomials
of order n = 5, by which we obtain the post-buckling profile coefficients
Cn(t,∆u) and Dn(t,∆u) for each specific set of parameter values t and ∆u.

One subtle point is that such powerlaw fits are very sensitive to the
determination of the point ∆u = 0. To accurately determine ∆u, we need
an accurate measurement of the critical displacement uc, as ∆u and uc are
related through ∆u = u/uc− 1. The numerical estimation, un

c , determined
in FEM simulations through the nonlinear buckling analysis, typically
has a relative error of 10−3 which is not sufficient when considering the
scaling near the critical point. Therefore, we correct uc = un

c − 1+ δ, where
the correction δ ensures an increased accuracy for ∆u. For each beam we
have determined δ from fitting Eq. (2.13a) to our numerical data for C1.
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We choose n = 1 to determine ∆u, because the linear order is the most
pronounced (Fig. 2.6) and therefore gives the most accurate measurement
of δ. Having determined δ for n = 1, we subsequently fix δ to the same
value for n = 0,2,3,4,5.

Scaling of the coefficients Cn and Dn with ∆u

In this section we describe the scaling of the post-buckling profile coeffi-
cients Cn and Dn with ∆u for fixed t, i.e., we determine the post-buckling
profile exponents βn and τn. In Fig. 2.6(a-b) we plot the coefficients Cn
and Dn as function of ∆u, for fixed t. In panel (a) and (b) we show results
for a slender (t = 0.02) and wide (t = 0.15) beam, respectively. To uncover
power law behaviour for ∆u in Cn and Dn we use a log-log scale and
then plot |Cn (∆u)| (solid lines) and |Dn (∆u) | (dashed lines). Note that
both panels show results up to n = 3 — for higher order terms the scal-
ing exponents and prefactors are provided in Tables (2.1-2.2)). From the
straight lines on the log-log scale in Fig. 2.6(a-b) it becomes apparent that
Cn and Dn show power law behaviour in ∆u as was postulated already in
Eqs. (2.12).

Fitting protocol — To determine the post-buckling profile scaling expo-
nents, βn and τn, we first take the absolute sign and log on both sides of
Eqs. (2.12) which yields

log (|Cn|) = βn log (∆u) + log
[∣∣C̄n

∣∣ tαn
]

, (2.13a)

and

log (|Dn|) = τn log (∆u) + log [|D̄n| tρn ] , (2.13b)

and then fit our numerical data for the post-buckling profile coefficients
Cn and Dn to their respective equations as given directly above. We have
tabulated the scaling exponents βn and τn in Table 2.1 up to n = 5.

Results — With a fitting range for ∆u in [10−3,10−1] at fixed t, we mea-
sure identical exponents for nominal stress and strain within their error
bars: β0 = τ0 ≈ 1.0 [black lines in Fig. 2.6(a-b)], β1 = τ1 ≈ 0.5 (blue lines),
β2 = τ2 ≈ 1.0 (red lines), and β3 = τ3 ≈ 0.5 (green lines). This is con-
sistent with our earlier assertion that these exponents can be expected
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∆u t
n βn τn αn ρn

0 1.03 ± 0.1 1.05 ± 0.1 4.06 ± 0.4 4.09 ± 0.4
1 0.51 ± 0.03

[ 1
2

]
0.51 ± 0.03

[ 1
2

]
2.00 ± 0.1 [2] 1.99 ± 0.1 [2]

2 1.03 ± 0.1 1.02 ± 0.1 4.02 ± 0.4 4.00 ± 0.4
3 0.51 ± 0.05 0.51 ± 0.05 4.00 ± 0.4 3.99 ± 0.4
4 1.0 ± 0.15 1.01 ± 0.15 6.05 ± 0.9 6.00 ± 0.9
5 0.51 ± 0.15 0.52 ± 0.16 6.20 ± 1.9 5.82 ± 1.7

Table 2.1: Post-buckling profile scaling exponents of ∆u and t, for the expansion
of the nominal strain and stress profiles as defined in Eqs. (2.11-2.12). Each
row corresponds to a different order of n and values within the square brackets
represent analytical results as predicted by Euler’s elastica. The error in the
relevant scaling exponents is an estimation which we assign to a combination of
uncertainties: (i) The error in ∆u, which is particularly important for the scaling
near the critical point; (ii) The finite range of ∆u and t over which the scaling
holds is at most 2 decades; (iii) The quantities C̄ntαn and D̄ntαn , necessary to
determine the scaling exponents for t, are obtained by extrapolating Cn and Dn
to ∆u = 1 [Eqs. (2.13)], hence this error propagates when determining the scaling
exponents for t. Taking all effects into account, we estimate an fitting error of
5% for n = 1, 10% for n = 0,2,3, 15% for n = 4 and 30% for n = 5.

to be half-integers, and we will now assume they are. As we will fur-
ther discuss in the following, while the n = 1 term dominates for slender
beams [Fig. 2.6(a)] and corresponds to Euler’s elastica, other orders n 6= 1
become significant for wider beams [Fig. 2.6(b)].

Scaling of the coefficients Cn and Dn with t

The next step is to determine how the post-buckling profile coefficients
Cn and Dn scale with the beam’s aspect ratio t, hence determining the
post-buckling profile exponents αn and ρn.

Fitting protocol — The first step is to refine the fit of Eqs. (2.13) to our
numerical data for Cn and Dn. To do so, we fix the post-buckling profile
exponents βn and τn to their nearest half integer values, which results in
alternating exponents 1 or 1/2: β0 = τ0 = 1, β1 = τ1 = 1/2, β2 = τ2 = 1,
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and so on. This procedure reduces the number of fitting parameters and
thus provides a more accurate measure of the constants log [C̄ntαn ] and
log [D̄ntρn ], where t is held fixed in this fitting procedure. By repeating
this analysis for t in the range [10−2,0.25], we determine the constants
C̄ntαn and D̄ntρn for each t and plot them versus t on a log-log scale in
Fig. 2.6(c). Obviously, the straight lines in Fig. 2.6(c) on the log-log scale
suggest that Cn and Dn show power law behaviour in t as well. Fitting
this data to

log
(∣∣C̄n

∣∣ tαn
)
= log

(∣∣C̄n
∣∣)+ αn log(t), (2.14a)

and

log (|D̄n| tρn) = log (|D̄n|) + ρn log(t), (2.14b)

with t in the range [10−2,10−1]. An overview of the scaling exponents αn
and τn up to order n = 5 is provided in Table 2.1.

Results — We measure identical post-buckling profile exponents for
stress and strain within their error bars: α0 = ρ0 ≈ 4.0 (black lines), α1 =
ρ1 ≈ 2.0 (blue lines), α2 = ρ2 ≈ 4.0 (red lines), α3 = ρ3 ≈ 4.0 (green lines).
Similarly to the exponents of ∆u, we find correspondence for the expo-
nents of t with Euler’s elastica for n = 1, and identical exponents for
stress and strain, i.e., αn = ρn—moreover, all numerical values for the
exponents are consistent with half integers. In the remainder of this
manuscript, we will fix the exponents αn and ρn to their nearest integer
values: α1 = ρ1 = 4, α1 = ρ1 = 2, α2 = ρ2 = 4, and so on.

So far, we have determined the scaling exponents βn, τn, αn and ρn,
but the post-buckling profile prefactors C̄n and D̄n remain to be deter-
mined. In fact, they simply follow from the fit of the data in Fig. 2.6(c) to
Eqs. (2.14). For the most accurate determination of the prefactors, how-
ever, we refine our fit by using the fixed exponents αn and ρn, and sub-
sequently redo the fit. In Table 2.2 a summary of the prefactors C̄n and
D̄n, as well as their ratios are given. Note that for the order n = 1, such
values are in good agreement with those predicted by Euler’s elastica for
clamped-clamped boundary conditions.
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n C̄n D̄n C̄n/D̄n

0 72.0 ± 25 38.3 ± 13 1.88 ± 0.9

1 21.3 ± 3.2
[

4π2√
3
≈ 22.8

]
21.1 ± 3.2

[
4π2√

3
≈ 22.8

]
1.01 ± 0.2 [1]

2 −116 ± 41 −553 ± 194 0.21 ± 0.1
3 320 ± 112 254.9 ± 89 1.26 ± 0.6
4 −6.1 · 103 ± 2.4 · 103 −1.4 · 104 ± 5.6 · 103 0.42 ± 0.2
5 1.1 · 104 ± 5.5 · 103 1.2 · 104 ± 6 · 103 0.99 ± 0.7

Table 2.2: Post-buckling profile prefactors C̄n and D̄n and their ratio, for the
expansion of the nominal strain and stress profiles as defined by Eq. (2.11-2.12).
Each row corresponds to a different order of n and values within the square
brackets represent analytical results, predicted by Euler’s elastica for clamped-
clamped boundary conditions. The errors in the prefactors are an estimation,
similar to the estimate made in Table 2.1. Here, however, the errors are larger
than for the post-buckling profile exponents, because Cn and Dn follow from
extrapolating our data up to t = 1 [Eqs. (2.14)]. Therefore, we estimate an error
of 15% for n = 1, 35% for n = 0,2,3, 40% for n = 4 and 50% for n = 5.

Discussion

We have quantified how the nominal stress and strain profiles arise be-
yond buckling and observed intricate powerlaw scaling with the transver-
sal coordinate x/w, beam width-to-length ratio t and post-buckling strain
∆u:

ε
(

t,∆u,
x
w

)
− εb = ∑

n=0
C̄ntαn ∆uβn

( x
w

)n
, (2.15a)

and

σ− σb

E

(
t,∆u,

x
w

)
= ∑

n=0
D̄ntρn ∆uτn

( x
w

)n
. (2.15b)

Our results in Table 2.1 indeed confirm that stress and strain share
the same exponents in every order n, both in ∆u and t. On the one hand,
the scaling exponents for ∆u of the nominal stress and strain equal 1 for
even n, and 1/2 for odd n. On the other hand, the scaling exponents for t
show that the linear order (n = 1) carries the lowest exponent in t, namely
α1 = τ1 = 2, while the zeroth, quadratic and cubic order (n = 0,2,3) carry
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a scaling exponent in t which equals 4 and the quartic and quintic orders
(n = 4,5) carry a higher scaling exponent in t of 6. We discuss further
below how our results establish in detail the nonlinear corrections of the
stress and strain profiles beyond the Euler limit.

Euler’s limit, O(t2) — The dominant term of the asymptotic expansion
given by Eqs. (2.15) is quadratic in t and corresponds to linear stress
and strain profiles (n = 1, see Table 2.1), whereby the Euler’s limit in-
troduced in section 2.3.2 is recovered. This is further confirmed by the
quantitative agreement between the measured and theoretical values of
the post-buckling profile exponents and prefactors, that is, β1 ≈ τ1 ≈ 1/2,
α1 ≈ ρ1 ≈ 1/2 [30] and C̄1 ≈ D̄1 ≈ 4π2/

√
3. Note that as C̄1/D̄1 ≈ 1, stress

and strain are linearly related for n = 1, which confirms that linear elas-
ticity is a correct approximation within Euler’s limit.

Leading order nonlinear correction, O(t4) — The next contribution to
Eqs. (2.15) is quartic in t and contains the zeroth, quadratic and cubic
corrections in x/w to the stress and strain profiles (n = 0,2,3). A closer
inspection of Table 2.2 reveals that, in contrast to n = 1, the post-buckling
profile prefactors C̄n and D̄n are different. Because a linear constitutive
relation would imply that Eq. (2.15a) and Eq. (2.15b) are equal, hence
would have equal prefactors C̄n and D̄n, such a difference between the
prefactors again evidences a nonlinear relation between stress and strain.

Next orders and convergence of the series expansion, O(t6) — Finally,
we have carried out the fitting procedure up to sixth order in t and find
that it involves the order n = 4 and n = 5 corrections in the stress and
strain profiles. We have checked that for realistic values of beam width-
to-length ratio (t = 0.15), these corrections are of relative magnitude . 2%
and thus can be neglected. Therefore, in the remainder of the analysis we
will neglect the orders n ≥ 4, in other words, assume that the stress and
strain profiles are accurately described by cubic polynomials.

2.4.3 Effective stress-strain law for the axial component

Above we argued that the difference between C̄n and D̄n evidences non-
linearity in the stress-strain relation. In this section we set up the appro-
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priate nonlinear stress-strain relation. Because the post-buckling slope
[Eq. (2.2)] is defined in the vicinity of the buckling point, the starting
point is to write a Taylor series for the normal stress around the buckling
strain εb up to quadratic order, which yields

σ = σb +
∂σ

∂ε

∣∣∣∣
ε=εb

(ε− εb) +
1
2

∂2σ

∂ε2

∣∣∣∣
ε=εb

(ε− εb)
2 +O (ε− εb)

3 . (2.16)

Defining the slope of the stress-strain curve at εb as an effective Young’s
modulus Eb, and the nonlinearity η as 1

2

(
∂2σ/∂ε2), Eq. (2.16) can be writ-

ten more compactly as

σ− σb

Eb
= (ε− εb) + η (ε− εb)

2 +O (ε− εb)
3 . (2.17)

We can calculate Eb and η analytically by evaluating the expansion in
Eq. (2.16) using the stress-strain relation for uniaxially compressed neo-
Hookean materials [Eq. (2.10a)]. This yields:

Eb (εb) =
E
3

(
1 +

2

(1 + εb)
3

)
, (2.18a)

and

η (εb) = −
3

2 (1 + εb) + (1 + εb)
4 . (2.18b)

Eqs. (2.18) show that as εb becomes increasingly negative, both the effec-
tive stiffness Eb and the magnitude of nonlinearity parameter η increase.
In particular, we find, by expanding Eqs. (2.18) for small εb, that the lead-
ing order corrections to Eb and η are linear in εb:

Eb/E = 1− 2εb +O
(
ε2

b
)

, (2.19a)

η = −1 + 2εb +O
(
ε2

b
)

. (2.19b)

Furthermore, note that as εb → 0, we retrieve Eb/E = 1 and η = −1,
in agreement with the small strain limit of uniaxally compressed neo-
Hookean materials given by Eq. (2.10b). In the following, we will take the
first order corrections to η and E for finite εb into account. However, we
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will show in section 2.6.2 that these εb corrections are subdominant for
our theoretical prediction of the post-buckling slope.

Our previous expansion of the strain and stress profiles, and our de-
termination of the post-buckling profile prefactors C̄n and D̄n, provide
a self-consistency check on the nonlinearity parameter η, detailed in the
following. Using the scaling expressions given by Eq. (2.15), we can write
the series expansion for the nominal strain, Eq. (2.15a), as:

ε(x)− εb = C̄0t4∆u + C̄1t2∆u
1
2

( x
w

)
+ C̄2t4∆u

( x
w

)2

+ C̄3t4∆u
1
2

( x
w

)3
+O

(( x
w

)4
)

.
(2.20a)

Similarly, we can write the series expansion for the nominal stress [Eq.
(2.15b)] as:

σ(x)− σb

E
= D̄0t4∆u + D̄1t2∆u

1
2

( x
w

)
+ D̄2t4∆u

( x
w

)2

+ D̄3t4∆u
1
2

( x
w

)3
+O

(( x
w

)4
)

.
(2.20b)

Substituting Eq. (2.20a) into Eq. (2.17) and comparing the post-buckling
profile coefficients in each order of x with those of the proposed stress
expansion of Eq. (2.20b), yields the following equalities in lowest order in
∆u and t:

D̄0 = C̄0, (2.21a)
D̄1 = C̄1, (2.21b)

D̄2 = C̄2 + ηC̄2
1 , (2.21c)

D̄3 = C̄3. (2.21d)

The above equalities for the order n = 0,2,3 are consistent with the values
of C̄1 and D̄1 in Table 2.2, within error bars, thus showing consistency
with Eq. (2.17). Furthermore, the equality for n = 2, Eq. (2.21c), provides
us with the following relation between Cn, Dn and η:

η =
D2 − C2

C2
1

, (2.22)
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from which we then estimate, using Table 2.2, that η≈−1.0± 0.6. Though
the deformations are not homogeneous in a buckled beam, we thus find
that this indirect determination of η is consistent with the expected non-
linearity parameter for homogeneous uniaxial compression of neo-Hook-
ean materials, raising further hope that our expansion scheme is consis-
tent and correct.

2.4.4 Series expansion of the nominal shear stress and strain

As we had seen earlier (Fig. 2.4), shear effects become substantial for wide
beams—the nominal shear and compressive strains have the same mag-
nitude for a beam of t = 0.1. In this section we therefore analyse in detail
how the nominal shear strain and stress profiles evolve with (i) the beam’s
width-to-length ratio t, and (ii) the post-buckling displacement, ∆u. We
find that the nominal shear strain and stress profile evolve similarly with
∆u and t, which implies a linear stress-strain relation for the shear.

We consider the shear profile at an inflection point of the beam (x, s =
`/4), where the shear is maximal [see Fig. 2.4(c)]. We consider then the
profiles γ(x) ≡ εxz(x, s = `/4) and τ(x) ≡ σxz(x, s = `/4) to measure the
spatial shape of the nominal strain and stress as a function of the scaled
transverse coordinate x/w.

Polynomial expansion and asymptotic analysis

Following a similar series expansion as in Eqs. (2.11-2.12), we expand the
nominal shear strain and stress profiles as:

γ
(

t,∆u,
x
w

)
= ∑

n=0
Jn (t,∆u)

( x
w

)n
, (2.23a)

and

τ

G

(
t,∆u,

x
w

)
= ∑

n=0
Kn (t,∆u)

( x
w

)n
, (2.23b)

where Jn and Kn are the post-buckling profile coefficients of the expan-
sion at order n. Note that prior to buckling, the beam simply undergoes
uniform uniaxial compression and has not developed any curvature yet.
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Figure 2.7: Dependence of the spatial nominal shear strain and stress profiles on
∆u and t, obtained by FEM simulations. In black, blue and green we have plot-
ted the post-buckling profile coefficients Jn (solid lines) and Kn (dashed lines),
corresponding to order n = 0, n = 1 and n = 2 respectively. (a-b) We have plotted
|Jn| and |Kn| as function of ∆u for (a) a slender beam (t = 0.02) and (b) a thick
beam (t = 0.15). (c) Dependence of Jn and Kn on the beam’s aspect ratio t.

Therefore, unlike the uniaxial nominal strain and stress which are con-
stant across the beam in the prebuckling regime, the shear stress and
strain are strictly zero for ∆u ≤ 0.

Similarly to the post-buckling profile coefficients Cn and Dn [Eqs.
(2.12)], we use that Jn = Kn = 0 at buckling, and we assume that the
post-buckling profile coefficients Jn and Kn grow as power laws in t and
∆u in the post-buckling regime:

Jn (t,∆u) = J̄ntξn ∆uΞn , (2.24a)

and

Kn (t,∆u) = K̄ntυn ∆uΥn . (2.24b)

Here, ξn, Ξn, υn and Υn are the post-buckling profile scaling exponents,
and J̄n and K̄n are the post-buckling profile prefactors which are yet to be
determined from numerical simulations.

To determine all the constants, we use the same set of N = 102 FEM
simulations as before, from which we now extract the spatial shape of the
nominal shear stress and strain as function of x/w along a cross section at
one quarter of the beam, s = `/4, and fit γ(x) and τ(x)/G to polynomials
of order n = 3. From the resulting fits we then obtain the post-buckling
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∆u t
n Ξn Υn ξn υn

0 0.49 ± 0.02 0.49 ± 0.02 3.02 ± 0.15 3.01 ± 0.15
1 1.03 ± 0.05 1.06 ± 0.05 3.98 ± 0.20 3.98 ± 0.20
2 0.50 ± 0.03 0.50 ± 0.03 3.02 ± 0.15 3.01 ± 0.15
3 1.02 ± 0.26 0.93 ± 0.23 5.93 ± 1.48 5.70 ± 1.43

Table 2.3: Post-buckling profile scaling exponents of ∆u and t, for the expansion
of the nominal shear strain and stress profiles as defined by Eqs. (2.23-2.24). Each
row corresponds to a different order of n and results are provided up to cubic
order (n = 3). We estimate the errors using the same arguments as in Table 2.1,
and estimate an error of 5% for n ≤ 2 and 25% for n = 3.

profile coefficients Jn and Kn for a specific set of parameter values t and
∆u. From these quantities we subsequently deduce the post-buckling
profile scaling exponents and prefactors up to order n = 3.

Fitting protocol — In Fig. 2.7 we plot |Jn| (solid lines) and |Kn| (dashed
lines) as function of ∆u and t, from which we observe power law be-
haviour in ∆u and t. To determine the post-buckling profile scaling ex-
ponents and prefactors we perform the same fitting procedure as in the
previous section and provide the results in Tables (2.3-2.4), up to n = 3.
Note that Fig. 2.7 shows results up to n = 2 for clarity.

Results — First, note from Fig. 2.7 that the curves for the shear stress
and strain coincide. Similarly, J̄n/K̄n ≈ 1, and we conclude that a lin-
ear relation governs the leading order relation between nominal shear
stress and strain. Second, we find that the post-buckling profile scaling
exponents for ∆u equal 1 for even n, and 1/2 for odd n which is pre-
cisely opposite to the situation for the uniaxial nominal stress and strain
exponents. Third, the scaling exponents for t show that the zeroth and
quadratic order (n = 0,2) together carry the lowest exponent in t, namely
ξ0 = ξ2 = υ0 = υ2 = 3, followed by the linear order (n = 1) which scales
as t4, and the cubic order (n = 3) which scales as t6.
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n J̄n K̄n J̄n/K̄n

0 −18.9 ± 1.9 −18.8 ± 1.9 1.0 ± 0.14
1 −45.3 ± 4.5 −45.3 ± 4.5 1.0 ± 0.14
2 205.9 ± 20.6 204.3 ± 20.4 1.0 ± 0.14
3 −4.4 · 103 ± 1.8 · 103 −3.7 · 103 ± 1.5 · 103 1.2 ± 0.68

Table 2.4: Post-buckling profile prefactors J̄n and K̄n and their ratio, for the
expansion of the nominal shear strain and stress profiles as defined by Eqs. (2.23-
2.24). Each row corresponds to a different order of n and results are provided
up to cubic order (n = 3). Using the same arguments as in Table 2.2 we estimate
an error of 10% for n ≤ 2 and 40% for n = 3.

Discussion

We have quantified how the nominal shear stress and strain profiles
arise beyond buckling and observed intricate powerlaw scaling with the
transversal coordinate x/w, beam width-to-length ratio t and post-buck-
ling strain ∆u:

γ
(

t,∆u,
x
w

)
= ∑

n=0
J̄ntξn ∆uΞn

( x
w

)n
, (2.25a)

and

τ

G

(
t,∆u,

x
w

)
= ∑

n=0
K̄ntυn ∆uΥn

( x
w

)n
. (2.25b)

First, we observe that the post-buckling profile exponents and prefactors
of the expansions given by Eqs. (2.25) are equal (Table 2.4). Therefore, the
nominal shear strain and stress are linearly related, hence we can assume

τ(x) = Gγ(x), (2.26)

which is the result as predicted by [52] in the case of simple shear for
neo-Hookean materials. We will use this linear constitutive equation for
the shear in the remainder of this chapter.

Upon further inspection of the exponents in Table 2.4 we notice that
the zeroth and quadratic order (∼ t3) are dominant at small t. The linear
order (∼ t4) then serves as a first order correction to the shear profile,
while the cubic order (∼ t6) represents a higher order correction.
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Timoshenko’s limit, O(t3) — The dominant terms within the expan-
sions given by Eqs. (2.25) encompass both the polynomial order n = 0 and
n = 2, which show the same scaling with t and ∆u. The quadratic (n = 2)
contribution to the nominal shear strain and stress is the strongest (Table
4). As a matter of fact, such a quadratic shear profile is in agreement with
the textbook approach for the bending of linear elastic bars [100]. We will
show later that this agreement is also quantitative.

Higher order corrections O(t4) and convergence — The next contribu-
tion to Eqs. (2.25) is quartic in t and contains the linear correction to the
shear stress and strain profiles (n = 1). We will take this term into account
throughout the remainder of this manuscript. Lastly, to ensure the con-
vergence of the asymptotic approach, we also carried out the expansion
up to sixth order in t, and showed that it results in a cubic, negligible cor-
rection to the shear stress and strain profiles — for a beam with t = 0.15
and an ∆u = 0.1, its relative magnitude is . 1%.

In conclusion, we have developed a systematic expansion of the stress
and strain profiles that allow us to capture the leading order effect of finite
beam width for the post-buckling regime. This expansion involves terms
of the form tp∆uq(x/w)n, and we use our FEM simulations to determine
the exponents p and q for the uniaxial and shear components of the strain
and stress at each power n. This procedure circumvents the need for
heuristics to guess the important terms, and leads to a greatly simplified
model where the dominant next order terms in t are properly taken into
account.

2.5 Energy density including material nonlinearity

In this section, we construct the 1D energy density which includes mate-
rial nonlinearities, which come in two flavours. We first present the sim-
plest version of the energy density, which has zero free parameters and
does not need numerical input, and which is based on the combination of
stress-strain nonlinearity and Mindlin-Reissner strains. The second ver-
sion of the model takes corrections to the Mindlin-Reissner strains, such
as Timoshenko’s shear correction factor, into account, and it is this version
that needs numerical input. Finally, this section ends with a discussion
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of the physical interpretation of these corrections and a clear overview of
the dominant next order terms in t and ∆u to the energy density.

We start by expressing the total increase of the elastic energy beyond
buckling. This increase follows from an integral of the respective prod-
ucts of stress and strain, integrated over the surface area of the beam, that
is,

E/d =
∫

ds dx
(∫ εxx

0
dε′xxσxx +

∫ εyy

0
dε′yyσyy +

∫ εzz

εb

dε′zzσzz

+
∫ εxy

0
dε′xyσxy +

∫ εyz

0
dε′yzσyz +

∫ εxz

0
dε′xzσxz

)
.

(2.27)

Even though we consider 2D beams, we keep a factor d (the depth) here to
facilitate comparison to 3D beam results. For 2D beams, the ‘yy’, ‘xy’ and
‘yz’ contributions are zero. Moreover, since the beam can freely expand
along the x direction without any barrelling effects near the boundaries,
we expect that σxx ≈ 0 at each point of the beam, which we have verified
numerically. As a result, we are left with the ‘zz’ and ‘xz’ terms, which
correspond to the uniaxial and shear deformations, respectively.

Our aim is to set up an energy functional using the Mind-lin-Reissner
strains — 1D fields describing the shape of the beam along the curvilinear
coordinate s. Therefore we define a linear energy density ε(s) as follows:

E =
∫ `

0
ds ε(s), (2.28a)

where

ε(s)
d

=
∫ w

2

− w
2

dx
∫ εzz(x)

εb

σ
(
ε′zz
)

dε′zz +
∫ w

2

− w
2

dx
∫ γ(x)

εb

τ
(
γ′
)

dγ′. (2.28b)

Here, ε(s) represents the linear energy density that captures the amount
of energy in a cross sectional area of the beam per unit length of the
curvilinear coordinate s.

2.5.1 1D energy density without distortions

Here we present the energy density constructed from the Mindlin-Reissner
strains without additional distortions. In that case, the nominal axial
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and shear strain profiles across the beam equal εzz(x) = εb + ε0 + ε1x and
εxz(x) = γ0. We then evaluate the energy density in Eq. (2.28b) using
these strain profiles in combination with the nonlinear axial stress-strain
relation given by Eq. (2.17) and the linear shear stress-strain relation given
by Eq. (2.26), and find that

ε

Eb
= Aεb ε0 +

1
2

Aε2
0 + I

(
1
2
+ η ε0

)
ε2

1 +
GA
2Eb

γ2
0. (2.29)

As can be seen from the above expression, the nonlinearity η introduces
a coupling between the compressive strain ε0 and the bending strain ε1,
and such coupling is absent in previous, linear, beam models [42, 43].
The energy density given by Eq. (2.29) forms the basis of our nonlinear
beam model we will derive in section 2.6, and, as mentioned above, this
energy density has zero free parameters and therefore does not rely on
numerical input.

2.5.2 1D energy density including distortions

We now present the energy density comprising distortions from the Mind-
lin-Reissner strains and built with the aid of numerical results. To this
end, we substitute the respective stress-strain relations [Eq. (2.17) and
Eq. (2.26)] in Eq. (2.28b) and carry out the integration with respect to the
nominal strains εzz and γ. Second, we integrate with respect to x by using
the expansions of the uniaxial and shear strain profiles up to cubic order
[Eq. (2.15a) and Eq. (2.25a)]. This yields:

ε

Eb A
=

{
C̄2

1
24

}
∆u t4

+

{
C̄1C̄3

80
+ C̄0C̄B +

C̄2C̄B
12

+
G
Eb

(
1
2

J̄2
0 +

1
12

J̄0 J̄2 +
1

160
J̄2
2

)}
∆u t6

+

{
C̄2

3
896

+

(
C̄2

0
2

+
C̄0C̄2

12
+

C̄2
2

160
+ η

C̄0C̄2
1

12
+ η

C̄2
1C̄2

80
+

G
24Eb

J̄2
1

)
∆u

}
∆u t8

+O
(

∆u2t10
)

.

(2.30)

We have now carefully established the beam’s energy density up to sec-
ond order in excess strain and eighth order in the beam’s width-to-length



2.5. ENERGY DENSITY INCLUDING MATERIAL NONLINEARITY 45

ratio, O
(
∆u2t8). The above analysis identifies and quantifies precisely

how nonlinearity in the stress-strain laws and distortions to the Mindlin-
Reissner kinematics alter the 1D energy density formulation. While the
order O

(
∆ut4) corresponds exactly to Euler’s elastica, the order O

(
∆ut6)

comprises the classical Timoshenko beam contribution as well as distor-
tions from the linear bending profile. The order O

(
∆u2t8) contains the

nonlinearity η as well as further distortions for bending and shear.
After a few manipulations which we explain hereafter, it can be shown

that Eq. (2.30) can be converted in terms of the Mindlin-Reissner strains
as:

ε

Eb
= Aεb ε0 +

1
2

Aζ2(η)ε
2
0+I

(
1
2

ζ1(t) + η ε0

)
ε2

1

+
GA
2Eb

γ2
0
(
k1 + k2γ2

0
)

,
(2.31a)

where the coefficients ζ1(t) and ζ2(η) are given by

ζ1(t) = 1 + 2
(

C̄2C̄B

C̄2
1

+
3
20

C̄3

C̄1

)
t2 +

3
112

(
C̄3

C̄1

)2

t4, (2.31b)

ζ2(η) = 1 +
1
6

C̄2

C̄0

(
1 +

3
40

C̄2

C̄0
+

3
20

η
C̄2

1
C̄0

)
, (2.31c)

and where k1 and k2 are given by

k1 = 1 +
1
6

J̄2

J̄0
+

1
80

(
J̄2

J̄0

)2

, (2.31d)

and

k2(t) =
1
12

J̄2
1

J̄4
0

t−4. (2.31e)

To obtain the above results we have used the fact that there is a clear
pattern in the scaling exponents of the higher order corrections of the
uniaxial and shear strain profiles with the excess displacement ∆u, which
alternate between 1/2 or 1 (see Tables 2.1 and 2.3). Consequently, we can
factorize the ∆u dependence and express the higher order corrections in
terms of the Mindlin-Reissner strains. For example, the quadratic post-
buckling profile coefficient of the axial strain profile, C2 = C̄2∆u t4, can be
expressed in terms of ε0 ≡ C0 = C̄0∆u t4 as C2 = (C̄2/C̄0) ε0.
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2.5.3 Discussion

Here we discuss the physical interpretation of the corrections to the Mind-
lin-Reissner strains, and provide a clear overview of the dominant next
order terms in t and ∆u to the energy density.

Shear correction factors— Using Table 2.4, k1 and k2 can be evaluated
as k1 = 0.67 ± 0.15 and k2(t) ≈ 0.0013 t−4. The constant k1 is formally
known as Timoshenko’s shear correction factor and our numerical value
is in agreement with the value known in literature for beams with a rect-
angular cross section [102–104]. The shear correction factor accounts for
the strongly quadratic, rather than uniform, shape of the shear profile
across the beam [100]. This strong quadratic shape is also directly re-
flected by the data shown in Fig. 2.7, where the quadratic component is
dominant over the zeroth and linear order component.

The quantity k2(t) corrects for the linear component of the shear strain
profile and represents a higher order correction to the shear profile. Note
that even though k2(t) is singular for t→ 0, k2(t) appears only within the
product k2γ4

0 in Eq. (2.31a) (with γ0 ∼ t4), such that the product k2γ4
0 is

regularized for t→ 0.

Bending correction factors— Using Table 2.2, ζ1(t) and ζ2(η) can be
evaluated as ζ1(t) ≈ 1 + 6

(
t2 + t4) and ζ2(η) ≈ 0.8− 0.15η. These quan-

tities, which we refer to as bending corrections factors, describe the dis-
tortion of the linear strain profile, and thus take an analogous role as the
shear correction factors described above, yet for bending. The mapping
of energy contributions that arise from distortions of the linear strain pro-
file onto the Mindlin-Reissner strains is one of the crucial aspects of this
section.

Summary— We summarize our findings in Table 2.5: This clear analysis
of the leading order terms and their relation to Timoshenko (O(∆u t6))
and Mindlin-Reissner (O(∆u2 t8)) beam formulations is one of the key
results of this work.
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Model Euler’s
Elastica

Timoshenko w/
bending correction

This work

Order O(∆u t4) O(∆u t6) O(∆u2 t8)

Terms 1/2 Iε2
1

1/2 I (ζ1(t)− 1− ζ ′1(t)) ε2
1

+ Aεbε0 + 1/2 GAk1γ2
0/Eb

I (ηε0 + 1/2 I ζ ′1(t)) ε2
1

+ 1/2 Aζ2(η)ε2
0

+ 1/2 GAk2γ4
0/Eb

Table 2.5: Summary of the leading order terms in the expression of the (rescaled)
linear energy density ε/Eb, extracted from Eqs. (2.30-2.31). We have defined

ζ ′1(t) ≡ 3
112

(
C̄3
C̄1

)2
t4 for convenience. While we recover exactly Euler’s elastica

at the order O(∆u t4), our results suggest that Timoshenko’s approximation re-
quires a correction from the nonlinear bending profile at order O(∆u t6). More-
over, this demonstrates that our work encompasses a higher order correction for
the shear and a nonlinear correction for the stress-strain nonlinearity.

2.6 1D nonlinear beam model

In this section we formulate a 1D nonlinear model to describe the post-
buckling of wide beams. Our model assumes (i) that the kinematics of
the 1D model are captured by the Mindlin-Reissner strains, namely axial
strain, curvature and shear [41]; (ii) that axial stress and strain are related
nonlinearly. Based on these assumptions, we derive an expression for the
1D energy density as well as the governing equations for the mechani-
cal equilibrium of wide beams. We then analytically solve the govern-
ing equations and find excellent agreement with 2D simulations for the
post-buckling behaviour, without any adjustable parameters. Finally, we
refine our beam model using extensive 2D simulations and show that dis-
tortions from Mindlin-Reissner kinematics have a negligible effect on the
predictions by the model.

2.6.1 Mindlin-Reissner beam with a nonlinear stress-strain re-
lation

Mindlin-Reissner kinematics describe beams that can be compressed, bent
and sheared. These three deformation modes are quantified by a com-
pressive ε̃0(s), curvature ε1(s) ≡ θs(s) and shear strain γ0(s), as function
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of the curvilinear coordinate s along the beam’s central axis, with θ the
deflection angle of the beam’s axis with respect to the vertical. Therefore
the total elastic energy of these beams is a functional of the form

E [ε̃0(s),θ(s), ε1(s),γ0(s)] =
∫ `

0
ds ε [s, ε̃0(s),θ(s), ε1(s),γ0(s)] , (2.32)

where the 1D energy density of the beam ε [s, ε̃0(s),θ(s), ε1(s),γ0(s)] ex-
clusively depends on these strains.

The second key assumption is that stress and strain are related nonlin-
early. To describe the vicinity of post-buckling, we set up an expansion of
the nominal stress σ around the buckling strain εb up to quadratic order.
This expansion, as derived already in section 2.4.3, yields

σ− σb

Eb
= (ε− εb) + η (ε− εb)

2 +O (ε− εb)
3 , (2.17)

where Eb and σb are the effective Young’s modulus and nominal stress
at buckling. In the case of neo-Hookean materials under plane stress
conditions, the coefficients of this expansion can be determined analyt-
ically and read η = −1 + O (εb) and Eb = E + O (εb) (see section 2.4.3
for a demonstration). In the case of plane strain conditions, not consid-
ered here, it can be shown that η = −3/2 +O (εb) (see appendix 2.B.2).
The nonlinearity of the above stress-strain relation stems from the combi-
nation of large deformations and incompressibility and can qualitatively
be understood from the fact that upon compression (tension) the cross-
sectional area increases (decreases) and the stress-strain curve is therefore
effectively stiffening (softening). In addition, we assume a linear relation
between the nominal shear stress τ and shear strain γ, τ = Gγ in agree-
ment with the elasticity of neo-Hookean materials [52].

Based on these two assumptions, we find that the 1D energy density
describing post-buckling reads (see section 2.5):

ε [ε0(s), ε1(s),γ0(s)] =Eb A εb ε0 +
1
2

Eb Aε2
0

+ Eb I
(

1
2
+ η ε0

)
ε2

1

+
GA

2
γ2

0,

(2.33)
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with ε0(s) = ε̃0(s)− εb, A = wd (the cross-sectional area) and G is the shear
modulus. Note that the nonlinear correction proportional to η introduces
a coupling between the compressive and bending strain, given by ε0ε2

1,
and such coupling is absent in previous linear beam models [42, 43].

To establish the governing beam equations, the total elastic energy E
has to be minimized under the geometrical constraint set by the boundary
conditions. In the case of Euler buckling, a uniaxial displacement is ap-
plied along the vertical axis of the beam and is associated to the following
geometrical constraint:

Π = F
(

u−
(
`−

∫ `

0
ds ((1 + εb + ε0)cosθ − γ0 sinθ)

))
, (2.34)

where F is the Lagrange parameter associated with the axial displacement
u that corresponds to the external axial force applied on the beam. We
use the fact that ε1 ≡ θs to apply the Euler-Lagrange formulation [105] on
the energy functional including the constraint:

Ẽ [ε0(s),θ(s), ε1(s),γ0(s)] =
∫ `

0
ds ε−Π, (2.35)

which yields the governing equations of the beam:

Eb Iθss + F{(1 + εb + ε0)sinθ + γ0 cosθ}+ 2ηEb I (θsε0)s = 0, (2.36a)

F cosθ + Eb A (εb + ε0) + ηEb Iθ2
s = 0, (2.36b)

GAγ0 − F sinθ = 0. (2.36c)

This set of three coupled equations determine the beam’s central axis in
the post-buckling regime of wide beams. We will refer to this set of equa-
tions as the 1D nonlinear beam model, since it includes the nonlinearity
η.

Please note that in the limit of linear materials (η = 0 and Eb = E),
Eqs. (2.36) correspond to the equations for a shearable and extensible
beam derived by [43]. If additionally the beam is assumed non-shearable,
γ0(s) = 0 and Eq. (2.36c) drops out, leaving us with a simpler model
derived by [42]. Finally, for inextensible beams ε0(s) = εb = 0, Eq. (2.36b)
drops out, and we recover Euler’s elastica EIθss + F sinθ = 0 [24]. Our
beam model thus correctly captures all these linear models.
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2.6.2 Solutions to the 1D nonlinear beam model

In this section we solve the 1D nonlinear beam model given by Eqs. (2.36)
and show that the post-buckling slope is dramatically changed and the
compressive Mindlin-Reissner strain significantly improved, when incor-
porating a nonlinearity η.

Dimensionless form

The results below will be presented in dimensionless form and we intro-
duce the following dimensionless quantities:

s̄ =
s
`

; F̄ =
F`2

Eb I
; Λ−2 =

I
A`2 . (2.37)

The quantities s̄ and F̄ represent the dimensionless curvilinear coordinate
and force respectively, and Λ∼ `/w can be recognized as the slenderness
ratio [30]. Using the dimensionless quantities, the set of scaled beam
equations that follows from Eqs. (2.36) reads:

θs̄s̄ + F̄{(1 + εb + ε0)sinθ + γ0 cosθ}+ 2η(θs̄ ε0)s̄ = 0, (2.38a)

ε0 = −
(

F̄Λ−2 cosθ + ηΛ−2θ2
s̄ − εb

)
, (2.38b)

γ0 = F̄Λ−2 Eb

G
sin(θ). (2.38c)

In the remainder of this chapter we drop the over-bars, unless if noted
otherwise. For convenience, we additionally define:

r ≡ Eb

G
= 2 (1 + ν) +O (εb(t)) , (2.39)

where ν is the Poisson’s ratio.
In Eqs. (2.38) we use Euler’s prediction for εb that accurately describes

the onset of buckling, even for wide beams [Fig. 2.2(a)]. Furthermore, all
the parameters Eb, r and η can be determined theoretically to leading
order in the beam width-to-length ratio t. In what follows we use these
predictions as input parameters and solve Eqs. (2.38) to obtain a closed-
form expression for the post-buckling slope as function of and to leading
order in t.
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Closed-form expression for the post-buckling slope as a function of t.

Here we derive our main result, namely the post-buckling slope as a func-
tion of beam width-to-length ratio t. In deriving the post-buckling slope,
we are interested only in the mechanical response of the beam infinites-
imally beyond buckling. Therefore, we only need to solve Eqs. (2.38)
for small (θ(s)� 1), yet nonlinear beam deflections. As a first step, we
expand the governing beam equations up to the cubic order in θ, and
substitute Eqs. (2.38b-2.38c) into Eq. (2.38a) to obtain:

0 = θss

(
1− 2η

(
FΛ−2 + εb

)
− 6θ2

s Λ−2η2
)
+ θ

(
F + (r− 1)F2Λ−2

)

− θ3
(

1
6

F +
2
3
(r− 1)F2Λ−2

)
+ θ5

(
1

12
F2Λ−2 (r− 1)

)

+

(
θ2θss + θθ2

s +
1
6

θ3θ2
s

)
FΛ−2η.

(2.40)

We now solve this expanded equation using a perturbative expansion that
is consistent with the symmetry of Eq. (2.40), which only contains odd
powers in θ, and that matches the imposed clamped-clamped boundary
conditions, θ(0) = θ(1) = 0:

θ(s) = αsin2πs + βsin6πs. (2.41)

Here, α and β physically correspond to the maximum deflection angle of
the first and third harmonic of the Fourier series which describe the beam
shape θ(s). To see how α and β are coupled, we substitute the perturba-
tive expansion for θ(s) in Eq. (2.40). By collecting all terms proportional
to sin(6πs), and setting the sum of their coefficients to zero, we found
that β is coupled to a higher power of α, specifically β ∼ α3. Therefore,
since α� 1, β� α, and in the following we set β = 0.

Under the assumption β = 0, Eq. (2.40) leads to an explicit equation re-
lating the force F to the deflection α. Expanding F(α) for small deflection
α, yields the shape of the pitchfork bifurcation [106]:

F (α,Λ,η,r) = Fc + κα2 +O(α4), (2.42)

where κ is the curvature of the pitchfork. To connect this excess force to
the axial displacement u, we establish the relation between the deflection
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Figure 2.8: Post-buckling slope S as function of the beam width-to-length ratio
t, for five different models. In the Euler limit S = 1/2, while in 2D simulations
(open circles) S varies with t. Solutions to our model, given by Eq. (2.44), are
shown for η = 0 (dashed blue) and η =−1 (solid red). Finally, we also show data
for an extension of our model discussed in section 2.6.3 (dash-dotted red). (a-b)
Panel (a) shows a close-up for 0 < t < 0.10 and panel (b) shows a wider range of
width-to-length ratio (0 < t < 0.25). The shaded region indicates the cross-over
to subcritical buckling (S < 0) for the 2D simulations.

angle α and the axial displacement using the geometrical relation

u/` = 1−
∫ 1

0
ds{(1 + εb + ε0)cosθ − γ0 sinθ} , (2.43)

which upon small deflections, can be expanded to obtain the desired
relation u(α, F,Λ,η,r). We then invert this relation to α(u, F,Λ,η,r) and
substitute it in Eq. (2.42), resulting in an equation that needs to be solved
for F(u,Λ,η,r). The final step is then to expand the solution for F in the
limit u→ u+

c , which leads to an equation of the form as in Eq. (2.2), with
the post-buckling slope S equal to:

S =
1
2
−
(

1
12

+ 2η2
)

π2 t2 +O(t4). (2.44)

This result confirms that Euler’s elastica prediction (S = 1/2) is recov-
ered in the limit of slender beams (t→ 0) and shows that the leading
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order correction to the post-buckling slope S is quadratic in t. Notice
that such correction comprises the stress-strain nonlinearity η. Does this
correction bring an improvement for the prediction of the post-buckling
slope? To check this, we compare the value of the post-buckling slope S
obtained from 2D simulations to the prediction of Eq. (2.44), where the
value of η is independently determined using the neo-Hookean model
under the simplifying assumption that the neo-Hookan material is uni-
axially compressed (see section 2.4.3). The comparison shown in Fig. 2.8
shows excellent agreement between the simulations and our prediction
in Eq. (2.44), namely the quadratic correction matches the data very well
for small t and remains accurate up to t ≈ 0.1 [Fig. 2.8(a)]. Although we
should not expect our prediction to be accurate for wider beams, it re-
mains in qualitatively agreement with the simulations and succeeds in
predicting subcritical buckling at a critical width-to-length ratio t ≈ 0.15
[Fig. 2.8(b)].

Beyond the success of our asymptotic approach, a closer inspection of
the quadratic correction to the post-buckling slope S [Eq. (2.44)] allows
us to infer three important conclusions. First, the quadratic correction
is independent of the ratio of moduli r, given by Eq. (2.39). Since r sets
the magnitude of shear deformations with respect to uniaxial compres-
sion, we conclude that shear is subdominant in the lowest order terms
of S(t). Second, the coefficient of the quadratic correction is quadratic
in η [Eq. (2.44)], suggesting the sign of the nonlinearity does not play
a role. This finding is consistent with earlier simulations and experi-
ments on metabeams characterized by a positive nonlinearity (η > 0) [40],
which similar to plain neo-Hookean beams (η < 0) were found to dis-
play a decreasing post-buckling slope as function of beam width. Third,
the coefficient of the quadratic correction confirms our initial hypothesis
that the stress-strain nonlinearity is the crucial ingredient to capture S(t)
correctly: The magnitude of this coefficient is entirely determined by the
nonlinearity parameter η. In the absence of η the magnitude of the coef-
ficient is much smaller, and S(t) would be only weakly decreasing with
t (see Fig. 2.8). We thus conclude that the nonlinearity η ensures that
our theoretical prediction in Eq. (2.44) is able to capture the subcritical
buckling at realistic aspect ratios, in contrast to earlier linear theories [41–
43].
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Figure 2.9: Mindlin-Reissner strains as a function of s, for four different models.
We consider a wide (t = 0.1) beam which is compressed to an axial displacement
of u/uc = 1.06. We show results for 2D simulations (solid black), and compare
them to numerical solutions to our beam model in Eqs. (2.38) for η = 0 (dashed
blue) and η = −1 (solid red). Finally, we also show numerical solutions to an
extension of our beam model in Eqs. (2.48) discussed in section 2.6.3 (dash-
dotted red). (a-c) We have respectively plotted the compressive, bending and
shear Mindlin-Reissner strain along the beam.

Mindlin-Reissner strains in the nonlinear beam model

We will now illustrate that the prediction for the compressive Mindlin-
Reissner strain ε0(s) is significantly improved by the nonlinearity η. In
Fig. 2.9(a-c) we plot the compressive, bending and shear Mindlin-Reissner
strain for the 2D simulations and the beam model in Eqs. (2.38). First,
panel (a) shows a significant qualitative difference in the Mindlin-Reissner
strain ε0(s) between the linear and nonlinear beam model. In contrast to
the linear beam model, the nonlinear beam model is in good qualitative
agreement with the FEM simulations and the prefactors of the sinusoidal
modulations all carry the same sign, albeit with a slightly smaller am-
plitude. This confirms our earlier assertion that the nonlinearity η is
the crucial factor to capture correctly the large deformations of wide neo-
Hookean beams. Finally, panel (b) and (c) show that the Mindlin-Reissner
strains ε1(s) and γ0(s) remain essentially unchanged due to the nonlin-
earity and the model shows excellent agreement with the 2D simulations.



2.6. 1D NONLINEAR BEAM MODEL 55

2.6.3 Distortions from Mindlin-Reissner kinematics with non-
linear stress-strain relation

The previous derivation of the 1D nonlinear beam model in Eqs. (2.38)
is simple and directly follows from the use of two basic assumptions. In
particular, using Mindlin-Reissner kinematics is a customary yet not con-
trolled assumption. In this section, we investigate the validity of such a
choice by using extensive numerical simulations and demonstrate that
distortions from the Mindlin-Reissner kinematics systematically occur,
modifying the 1D energy density and governing equations, albeit with
a subdominant effect.

To explore deviations from Mindlin-Reissner strains, we have system-
atically investigated the stress and strain profiles in section 2.4. In partic-
ular, we find that the axial strain profile at the centre of the beam takes
the form

ε(x) = ε̃0 + ε1x + ε2x2 + ε3x3 + · · · , (2.45)

where x ∈ [−w
2 , w

2 ] is the transverse coordinate across the beam width.
Furthermore, ε̃0 = εb + ε0 and ε1 are Mindlin-Reissner strains introduced
in section 2.3, and ε i (with i ≥ 2) correspond to distortions from a lin-
ear axial strain profile. In section 2.4 we have also performed a similar
systematic analysis for the shear profile.

Based on the extensive simulations and thorough asymptotic analysis
procedure in sections (2.4-2.5), we found that the 1D energy density takes
the form:

ε [ε0(s), ε1(s),γ0(s)] =Eb A εb ε0 +
1
2

Eb A (1 + ζ2(η)) ε2
0

+ Eb I
(

1
2
(1 + ζ1(t)) + η ε0

)
ε2

1

+
GA

2
γ2

0
(
k1 + k2γ2

0
)

,

(2.46)

where the coefficients Eb, η, ζ1(t), ζ2(η), G, k1 and k2 can be determined
numerically. Note that in the limit when ζ1,ζ2 and k2 are zero, we re-
cover Eq. (2.33). Eq. (2.46) is very similar to Eq. (2.33) and the numerical
values of the coefficients Eb, η, and G match the values that come from
the neo-Hookean material model [52] (see section 2.4). In addition we see
that the differences associated to distortions from the Mindlin-Reissner
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kinematics can be captured by the coefficients ζ1(t), ζ2(η), k1 and k2.
While k1 = 0.67± 0.15 is a classical coefficient known as the shear correc-
tion factor [100, 102] whose value quantitatively matches Timoshenko’s
prediction [103, 104], ζ1(t), ζ2(η), and k2 are undocumented and corre-
spond to higher order distortions of the strain profiles. They have been
determined in section 2.4 as:

ζ1 (t) = 6
(

t2 + t4
)

, (2.47a)

ζ2 (η) = −0.2− 0.15η, (2.47b)

k2 (t) = 0.0013t−4. (2.47c)

Note that even though k2(t) is singular for t→ 0, γ0 scales as t4, such
that the product k2γ4

0 that arises in Eq. (2.46) is regularized for t→ 0.
Nonetheless, we see that the distortions in Eqs. (2.47) introduce minor
modifications to the prefactors in Eq. (2.46) and in what follows we show
that they do not play a major role in the model.

We now carry out the same Euler-Lagrange approach as previously
and find the refined governing equations:

ζ1(t)Eb Iθss + F{(1 + εb + ε0)sinθ + γ0 cosθ}+ 2ηEb I (θsε0)s = 0, (2.48a)

F cosθ + Eb A (εb + ζ2(η)ε0) + ηEb Iθ2
s = 0, (2.48b)

GAγ0
(
k1 + 2k2γ2

0
)
− F sinθ = 0. (2.48c)

This set of equations is the equivalent of the previously established beam
equations [Eqs. (2.38)] and has been determined through a well defined
and rigorous set of assumptions. Unfortunately, the coefficients ζ1(t),
ζ2(η) and k2 have to be determined numerically. Following the procedure
in section 2.6.2 we linearise and solve Eqs. (2.48) and find that

S =
1
2
+

(
−3 + 2 (1 + ζ2(η))− 24η2)π2

12 (1 + ζ2(η))
t2 +O(t4), (2.49)

which reduces to Eq. (2.44) by setting ζ2 = 1. We have plotted Eq. (2.49)
in Fig. 2.8 and see that the corrections ζ1,ζ2 and k2 result in a minor im-
provement to the post-buckling prediction for S. Finally, we numerically
solved Eqs. (2.48) to obtain the Mindlin-Reissner strains and plotted the
result for η =−1 in Fig. 2.9. Again, we find that the corrections result in a
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minor improvement to the post-buckling prediction, now for the Mindlin-
Reissner strains. Altogether, this illustrates that the corrections ζ1,ζ2 and
k2 have a subdominant contribution to the post-buckling behaviour.

2.7 Conclusions and discussion

We have presented a thorough investigation of the post-buckling of non-
linear elastic beams, using experiments, finite element simulations and
theory. In particular we have focussed on subcritical buckling, where, for
neo-Hookean beams, the slope of the force-displacement curve becomes
negative beyond buckling when the beam width-to-length ratio exceeds
12%. The main result of this chapter is a 1D nonlinear beam model that
includes a material nonlinearity η. We constructed the model by build-
ing the beam’s energy density using Mindlin-Reissner kinematics with a
nonlinearity in the stress-strain relation, and demonstrated that this non-
linearity is crucial to accurately capture the post-buckling behaviour of
wide beams and in particular to predict subcritical buckling. In contrast
with previous works that have reported a significant effect of the ratio
E/G on the flexure response [80] and the critical buckling force [43] of
extensible and shearable beams, we found that E/G has a subdominant
effect on the post-buckling slope.

Though our model has been established in the case of neo-Hookean
material nonlinearity (η < 0), our findings could be generalized to a
wider class of nonlinear elastic materials, such as cellular materials with
nonlinear effective properties [21, 92, 107]. We expect this generaliza-
tion to hold provided that the leading nonlinearity of the elastic material
is quadratic in nature and that the material strains do not significantly
deviate from the Mindlin-Reissner strain decomposition (as is shown in
section 2.6.3 for 2D plane stress beams). For example, in recent work by
[40], beams patterned with a periodic 2D pattern of pores were shown to
exhibit positive, geometrically induced nonlinearity (η > 0). They found
that a sufficiently strong nonlinearity leads to subcritical buckling, even
when the beam width-to-length ratio is small. Such a transition to sub-
critical buckling for η > 0 is in qualitative agreement with our theory
that predicts that the post-buckling slope essentially decreases quadrat-
ically in η with its maximum at η = 0 (Fig. 2.10). The present work ra-
tionalizes those findings and provide strong guidelines for the design of
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Figure 2.10: Post-buckling slope as a function of the nonlinearity η. Using
Eq. (2.44) we have plotted S(η) for t = 0.01, t = 0.1 and t = 0.15. The curves
show that the post-buckling slope is quadratic in η and that the post-buckling
slope does not exceed S = 1/2.

post-instability regimes in soft structures and metamaterials [108], where
arbitrary values of η can be achieved [92]. We envision in particular that
our description could be of interest for the design of compliant hierar-
chical cellular materials, which often rely on the buckling instability for
their functionality [109, 110].

In addition, we note that other types of material nonlinearities could
be explored and addressed within our framework, for instance, plasticity,
stress-relaxation, swelling [111–115] or even growth and activity, which
are ubiquitous in biological solids [116, 117]

Finally, while our work could be of great use for the engineering of
systems that draw on Euler buckling for their functionality [36, 118], a
plethora of compliant metamaterials harness the snapping instability [36,
44, 54, 58, 61, 119–122]. In order to understand the role of material nonlin-
earities on such instabilities and to devise mechanical design guidelines,
our present framework should be generalized to pre-curved geometries,
such as curved beams and shells.



Appendix

2.A Numerical protocol for nonlinear buckling analysis

To determine the numerical force-displacement curve, we develop a two-
step protocol. First, we perform a step-wise nonlinear stability analysis to
approach the buckling displacement, uc, with a relative accuracy of 10−3.
Such a step-wise nonlinear stability analysis consists of successive linear
buckling analysis steps to take into account the change in beam geome-
try for large deformations. Subsequently, we perform an eigenfrequency
analysis to determine numerically the proximity of the critical point.

Second, we probe the (stable) post-buckling branch for axial displace-
ments u > uc. One problem that arises in the FEM simulations, however,
is that the beam will not automatically jump to one of the two new sta-
ble branches that occur once the compression of the initial configuration
exceeds uc: The beam’s symmetry is retained even for u > uc and the
beam remains on the unstable branch. One possibility to circumvent this
problem would be to seed the initial configuration with imperfections
that ensure that the beam selects one of the two stable post-buckling
branches. A major drawback of this approach is that it destroys sym-
metry, hence unfolding the pitchfork bifurcation that underlies buckling,
and consequently makes it impossible to study the post-buckling branch
in the vicinity of the critical point. In this chapter we crucially need to
be able to probe the post-buckling branch in the vicinity of the critical
point; we investigate the buckling properties of beams down to a relative
post-buckling displacement as small as 10−3. To probe the post-buckling
branch with high accuracy, we make use of a temporary transverse per-
turbation at the centre of the beam: Having obtained uc from the nonlin-
ear stability analysis, we compress the initial configuration up to 0.95uc.
Next, we force the beam in the bifurcated, buckled state by subsequently
applying the transverse pertubation, increasing the compression up to
1.05uc and releasing the transverse pertubation again. We then further
probe this particular post-buckling branch by the increase of the com-
pressive displacement up to u = 2uc. Finally, we smoothly decrease the
axial displacement from u = 2uc back to u = 0.95uc from which we can
precisely backtrack the post-buckling branch. Altogether, this protocol
allows to determine the location of the instability and the post-buckling
behavior with high accuracy.

59
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2.B Nonlinear stiffening of hyper-elastic beams

In this appendix we demonstrate for a neo-Hookean material model how
the leading nominal stress-strain nonlinearity, η, manifests itself in the
pre-buckling regime for beams under (i) plane stress and (ii) plane strain
conditions. The focus of our work presented in this chapter lies on
plane stress conditions, but we also determine η for the plane strain case
which could be used as a further generalization to our model given by
Eqs. (2.38).

In the derivation below we consider a beam under unaxial loading in
the z-direction with its depth parallel to the y-axis [e.g. as in Fig. 2.1(a)],
and allow for free lateral expansion at the boundaries unless noted oth-
erwise. We then determine the leading nonlinearity η by expanding the
axial nominal stress-strain relation σzz (εzz) for small strains as

σzz/E = εzz + ηε2
zz +O(ε3

zz), (2.50)

where εzz and σzz are the vertical nominal strain and stress. Since the
rubbers used in our experiments are well described by the incompress-
ible formulation of nonlinear elasticity [93], we employ the strain energy
density for an incompressible neo-Hookean material [52]

W =
E
6
(
λ2

1 + λ2
2 + λ2

3 − 3
)

, (2.51)

with E Young’s modulus and λi the stretch in the principal direction êi.
The stretch λ is defined as the length ratio given by the length of a de-
formed line element to the length of the corresponding undeformed line
element. Hence, λi < 1 expresses compression and λi > 1 extension of
an element oriented along direction êi. For an incompressible material
the volume must remain unchanged under any deformation, which in
terms of the principal stretches translates into the constraint λ1λ2λ3 = 1.
Enforcing the constraint with the aid of a Lagrange multiplier Π, the
stress-stretch relation for an incompressible, isotropic neo-Hookean ma-
terial may be expressed concisely in terms of the Cauchy stresses as [52]

σc
i = λi

∂W
∂λi
−Π, (2.52)

with σc
i the Cauchy stress and Π the Lagrange multiplier. The principal

Cauchy stresses are readily related to the principal nominal stresses σi
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through
σi = σc

i /λi. (2.53)

Now, in the pre-buckling regime deformations are spatially homoge-
neous, hence λi is constant and the principal directions (ê1, ê2, ê3) coin-
cide with the main axes (êx, êy, êz) for each material point in the beam. In
that case, adopting (êx, êy, êz) as the new principal directions, λz simply
relates to the vertical nominal strain εzz by

λz = 1 + εzz, (2.54)

whereas Eq. (2.53) can be equally written as [52]

σzz = σc
z /λz. (2.55)

Using these simplifications, the desired relation σzz (εzz) is readily ob-
tained by calculating σc

z . Below we determine σc
z and distinguish between

plane stress and plane strain conditions.

2.B.1 Plane stress

For plane stress conditions and free lateral expansion at the boundaries,
the transverse stresses σc

x and σc
y must be zero. Therefore, evaluating

Eq. (2.52) for the x and y component of the Cauchy stress provides us the
constraint

Π =
E
3

λ2
x =

E
3

λ2
y. (2.56)

The above relation implies that λx = λy, as anticipated, and we proceed
using λx as the independent stretch parameter. Having identified the
constraint, the z component of the Cauchy stress follows as

σc
z = λz

∂W
∂λz
−Π

=
E
3
(
λ2

z − λ2
x
) (2.57)

To express σc
z solely in terms of λz we combine the incompressibility con-

dition λxλyλz = 1 with the relation λx = λy, and obtain λ2
x = λ−1

z , so that

σc
z =

E
3

(
λ2

z − λ−1
z

)
. (2.58)
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Finally, using the relations in Eqs. (2.54-2.55), we can write

σzz =
E
3

(
1 + εzz −

1

(1 + εzz)
2

)
, (2.59)

which is the result as given by Eq. (2.10a). Expansion of the above equa-
tion for small εzz yields

σzz/E = εzz − ε2
zz +O

(
ε3

zz
)

, (2.60)

hence we conclude that η = −1 in the pre-buckling regime of beams un-
der plane stress conditions.

2.B.2 Plane strain

In the plane stress case a beam has no deformations in the y-direction and
no stresses in the x-direction, owing to the confinement in y-direction.
Summarizing these conditions as σc

x = 0 and λy = 1, we identify the con-
straint as

Π = λx
∂W
∂λx

. (2.61)

Therefore, the z component of the Cauchy stress equals

σc
z = λz

∂W
∂λz
− λx

∂W
∂λx

=
E
3
(
λ2

z − λ2
x
) (2.62)

To express σc
z solely in terms of λz we combine the incompressibility con-

dition λxλyλz = 1 with the condition λy = 1, and obtain λx = λ−1
z , so

that
σc

z =
E
3
(
λ2

z − λ−2
z
)

. (2.63)

Following section 2.B.1, the above equation can be converted in terms of
nominal stress and strain as

σzz =
E
3

(
1 + εzz −

1

(1 + εzz)
3

)
. (2.64)
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Note that the only difference with the result for plane stress in Eq. (2.59)
is the exponent of the most right term. This exponent equals 3 for plane
strain, but 2 for plane stress. Finally, expansion of Eq. (2.64) for small εzz
yields

σzz/E =
4
3

εzz − 2ε2
zz +O

(
ε3

zz
)

, (2.65)

where the factor of 4/3 in front of εzz is introduced by the plane strain
assumption — a beam supported on both sides is stiffer by a factor 1/(1−
ν2) [2]. Defining an effective Young’s modulus E′ = E/(1− ν2), the result
in Eq. (2.66) can be rewritten as

σzz/E′ = εzz −
3
2

ε2
zz +O

(
ε3

zz
)

, (2.66)

from which we conclude that η = −3/2 in the pre-buckling regime of
beams under plane strain conditions.





3
Excess zero modes in metamaterials with

symmetries

We study the excess zero modes that arise for randomly diluted collec-
tions of rigid quadrilaterals, linked by flexible hinges at their tips. For
full filling (no quads removed), large systems built from generic quads
are rigid. In contrast, large symmetric systems featuring regular, identical
squares possess one zero mode [1, 20], irrespective of size. Here we re-
veal the surprising finding that the number of such excess zero modes can
become larger than one in systems where quads are randomly removed,
demonstrating the existence of excess zero modes beyond a global hing-
ing mode. Specifically, we show that the average number of excess modes
for a large ensemble of randomly diluted systems, 〈∆〉, exceeds one and
displays a peak with the fraction of removed quads, ρ, which consistently
grows with the system size N. Interestingly, 〈∆〉 (ρ, N) exhibits finite size
scaling with simple mean field exponents, suggesting the number of ex-
cess modes is an intrinsic quantity, and we obtain similar results for ran-
dom bond (hinge) removal. Finally, we study the distribution of excess
zero modes near the peak and design extreme geometries whose density
of zero modes is six times larger than the peak average.

A paper based on the work presented in this chapter is in preparation for submission to
Phys. Rev. Lett. as:

L.A. Lubbers and M. van Hecke, Excess floppy modes in metamaterials with symmetries.
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3.1 Introduction

Collections of stiff elements connected by flexible hinges form a basis
model for a wide range of systems, including engineering structures,
complex materials and mechanical metamaterials. Depending on the
multitude and geometry of links between the elements, such structures
can be either floppy or rigid. Here we introduce counting arguments,
that, by comparing the number of degrees of freedom and the number of
constraints, determine the rigidity of such systems. We start by introduc-
ing Maxwell counting, and then show that this simple approach is not
sufficient to determine the number of zero modes, due to the potential
presence of states of self-stress.

3.1.1 Maxwell counting

In 1864 Maxwell laid the foundation for determining the rigidity of frames
[51]. He geometrically described a frame as a system consisting of sites
(points) that are connected by bonds (lines). When the sites are connected
by a sufficient amount of bonds, the frame becomes rigid and no site(s)
can be displaced without stretching or compression of bonds. When the
sites are connected by too few bonds, however, the structure features zero
modes, which are zero energy deformations that do not stretch bonds. A
simple estimate of the relation between the number of sites Ns, bonds Nb
and zero modes nm in d dimensions, is given by the Maxwell count, and

Figure 3.1: Sites, bonds and zero modes. (a) A square frame built from sites
(filled circles) and bonds (black lines) has 4 zero modes (nm = 4). (b-c) Triv-
ial zero modes. Panel (b) shows global translation and panel (c) shows global
rotation. (d) Internal zero mode.
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reads
dNs − Nb = nm. (3.1)

Here, the term dNs represents the total number of degrees of freedom
of the (unconnected) sites, tantamount to d independent translational de-
grees of freedom per site. The second term equals the number of con-
straints and is simply equal to Nb. Hence, the Maxwell count can phys-
ically be interpreted as a balance between the total number of degrees
of freedom and constraints in the system, whose difference yields the
number of zero modes.

We now exemplify the Maxwell count for the two-dimensional frame
depicted in Fig. 3.1(a), which consists of Nb = 4 bonds and Ns = 4 sites.
Applying Eq. (3.1) using d = 2 we find that the frame attains nm = 2×4−
4 = 4 zero modes. Of these, three are trivial zero modes associated with
global translations and rotations [Fig. 3.1(b-c)]. The remaining zero mode
is shown in Fig. 3.1(d), and involves internal displacements of the sites.
Hence, when focusing on internal zero modes, we exclude the d(d + 1)/2
global zero modes, and rewrite the Maxwell criterium as

dNs − Nb = ni
m +

d (d + 1)
2

, (3.2)

where ni
m are the internal zero modes. A frame is called stiff when ni

m = 0.
Internal zero modes that allow for finite-amplitude displacements of the
sites are also called mechanisms, in contrast to infinitesmall zero modes
where changes in the energy are at most quartic in the displacement am-
plitude.

We now present examples that show that Maxwell counting is not
exact. To do so, we add diagonal bonds to the square frame, as shown
in Fig. 3.2. First, for a single diagonal bond [panel (a)] the frame be-
comes stiff and we anticipate ni

m = 0. Indeed, Eq. (3.2) confirms that
ni

m = 2×4− 5− 3 = 0, and Maxwell’s rule applies. For a second diag-
onal bond [panel (b)], we still anticipate ni

m = 0, but the Maxwell count
would predict ni

m = −1. This inconsistency is caused by the second di-
agonal bond, which is redundant, and not needed for the rigidity of the
square frame. Redundant bonds introduce so called states of self-stress
in the system, which are combinations of tensions and compressions on
the bonds that result in a zero net force on all sites. The combination of
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Figure 3.2: States of self-stress. (a) A square frame with a single diagonal bond
is isostatic (ni

m = nss = 0). (b) For two diagonal bonds, the square frame exhibits
a single state of self-stress (ni

m = 0,nss = 1), as indicated by the arrowheads.
(c) Frame with one state of self-stress and one internal zero mode (ni

m = 1,nss =
1).

such tensions and compressions that compose the (single) state of self-
stress for the frame in panel (b), is visualized by the black arrows. In this
state of self-stress, side bonds are placed under compression and diag-
onal bonds under tension. In order to accurately predict ni

m for frames
holding redundant bonds, or rather holding nss self-stresses, a modified
criterium that takes into account these self-stresses is necessary. This
modified criterium is known as the generalized Maxwell equation, and is
given by

dNs − Nb = ni
m +

d (d + 1)
2

− nss. (3.3)

Note that Eq. (3.3) indeed predicts ni
m = 0 for the frame in panel (b) for

nss = 1. Frames that neither attain internal zero modes nor have any
states of self-stress are called isostatic (ni

m = nss = 0). Hence, a square
frame with a single diagonal is isostatic, but a square frame with two di-
agonals is not. Finally, we illustrate the generalized Maxwell relation for
a more complicated frame, which is shown in Fig. 3.2(c). This frame can
be regarded as a combination of an over-constrained region (left square
frame) and a floppy region (right square frame), and consequently has
ni

m = 1 and nss = 1. Based on the global number of sites and bonds,
Eq. (3.3) predicts ni

m − nss = 0, which demonstrates that the generalized
Maxwell equation holds.
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3.1.2 This chapter

In this chapter, we study systems that consist of quadrilaterals (quads)
linked by flexible hinges at their tips. We will consider and compare
generic systems, consisting of irregular quads, to symmetric systems,
consisting of identical squares (regular quads). A special property of
symmetric systems —which plays a central role in this chapter— is that
these systems always feature a hinging zero mode, even for full filling (no
squares removed), and independent of the system size. This is not neces-
sarily true for generic systems, as we will demonstrate now by applying
the generalized Maxwell count to Nx×Ny lattices of quads.

To set up the counting argument we need the following two ingredi-
ents. First, a single quad has 3 degrees of freedom, namely two transla-
tional and one rotational. Second, every hinge, or bond, is equivalent to
two constraints. This is most easily understood by considering two sep-
arate quads: Their translational degrees of freedom couple when joining
any pair of tips, effectively reducing the degrees of freedom by two. Tak-
ing these considerations into account, a system of Nx×Ny squares has a
total of 3Nx Ny degrees of freedom and Nx

(
Ny − 1

)
+ Ny (Nx − 1) bonds,

equivalent to 4Nx Ny− 2
(

Nx + Ny
)

constraints. Adapting the generalized
Maxwell count as given in Eq. (3.3) to the context of quads, we obtain

ni
m − nss = −Nx Ny + 2

(
Nx + Ny

)
− 3, (3.4)

where we note that the above equation holds for generic and symmet-
ric systems. Now, if the balance ni

m − nss exceeds zero the system must
have internal zero modes. If ni

m − nss ≤ 0, the system might attain zero
modes, depending on the number of states of self-stress. Using Ny as the
control parameter, we have evaluated Eq. (3.4) for several values of Ny
and tabulated the results in Table 3.1. We now discuss the implications of

Ny ni
m − nss

1 Nx − 1
2 1
3 3− Nx

Table 3.1: Eq. (3.4) evaluated for Ny = 1,2,3.
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(a)

(b)

(c)
Ny

Nx
i ii

Figure 3.3: Rigidity of strips, 3×3 clusters and looped-strips. (a-c) In each
panel, we compare symmetric (left) and generic (right) systems. The coloured
arrows indicate a global hinging mode, in which quads collectively counter ro-
tate. (a) Strips always attain a global hinging mode, both in the generic and
symmetric case (ns = ng = 1). (b-c) In contrast, 3×3 clusters (b) or looped-
strips (c) only attain a global hinging zero mode when the system is symmetric
(ns = 1,ng = 0). Note that one recovers an ordinary strip (ns = ng = 1) by the
removal of quads i and ii (illustrated by their lower opacity).

this table for the rigidity of the three basic geometries shown in Fig. 3.3,
which will be encountered frequently throughout this chapter.

In the remainder of this thesis, we make a clear distinction between ni
m

for symmetric and generic systems. We will denote ni
m associated with

symmetric systems as ns, and ni
m associated with generic systems as

ng.

Strips [Fig. 3.3(a)]. — From Table 3.1 we infer that 1×Nx and 2×Nx
strips are always floppy, as the balance ni

m − nss is positive. Moreover,
since these strips have no states of self-stress, the number of zero modes
for generic and symmetric strips are equal. For Ny = 1, the number of zero
modes increases with Nx as ns = ng = Nx − 1. Interestingly, for Ny = 2,
strips exhibit a single zero mode (ns = ng = 1), independently of Nx. This
internal zero mode is characterized by the hinging motion of quads, as
depicted by the coloured arrows in Fig. 3.3(a). This hinging mode will be
described in more detail in section 3.2.2.

Clusters of size 3×3 or larger [Fig. 3.3(b)]. — For Ny = 3 and Nx ≥ 3,
the balance ni

m − nss becomes less than or equal to 0. The system then
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only can attain zero modes if a sufficient number of states of self-stress
are present. Let us first inspect Nx = 3. Here, ni

m − nss = 0, and for
generic clusters both ng and nss are zero — the system is isostatic. In
contrast, for symmetric clusters, there is always one hinging mode, and
ns equals one, implying that the system also has a state of self-stress. For
generic clusters, with Nx > 3 and Ny = 3, we have ng = 0, nss = Nx− 3; for
symmetric clusters of the same size, ns = 1, nss = Nx − 2. More generally,
the outcome ns = 1 and ng = 0 persists irrespective of the cluster size,
provided Nx, Ny ≥ 3. This suggests that symmetric clusters attain extra
states of self-stress in comparison to generic clusters in order to maintain
the balance ni

m − nss for a given system.

Looped strips [Fig. 3.3(c)]. — As a third geometry, we consider looped-
strips. Their rigidity is most easily understood by regarding it as a strip
whose head and tail are connected by two extra bonds. Let us first con-
sider the case before quadrilaterals i and ii are present; then, ns = ng = 1
and nss = 0.

When we add quad i in the symmetric case, we add 3 degrees of
freedom, as well as 4 constraints; since ns remains 1, this implies we
create one state of self-stress. Adding quad ii then adds 3 degrees of
freedom and 6 constraints; ns remains one, and nss becomes 4. In the
generic case, the solution is different. Consider the two corners of the
quads that would connect to quad i. In the generic case, their motions
are not correlated, and their distance will be variable. Hence, connecting
these corners with quad i, the system becomes rigid — ng = 0 and the
counting then specifies that nss = 0 as well. Adding quad ii then yields
ng = 0 and nss = 3.

The 3×3 (or larger) clusters and the looped-strips discussed above
illustrate a general observation. For the generic case, strip-like configu-
rations have ng = 1 and nss = 0; think of the looped-strip without quads
i and ii, but also of a 3×3 cluster with one corner removed. Once there
is a loop, generic systems become rigid (ng = 0), but symmetric systems
maintain their hinging mode (ns = 1), implying that these always fea-
ture additional states of self-stress. Moreover, loops and sufficiently large
clusters thus induce differences between ns of symmetric systems and ng
of generic systems.
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3.2 System and methods

In this section we set up the mathematical description for (diluted) col-
lections of rigid quads that are connected by flexible hinges, and review
the basic ingredients of zero mode counting. In section 3.2.1 we present
the mathematical framework which covers both symmetric systems fea-
turing regular, identical squares, and generic systems featuring irregular
quads. Furthermore, we discuss the procedure to construct stress-free
generic systems by the application of small geometric perturbations to
symmetric systems. In section 3.2.2 we distinguish two types of zero
modes; mechanisms and quartic modes. Section 3.2.3 briefly reviews the
standard technique used to count the number of zero modes of symmet-
ric and generic systems. Finally, section 3.2.4 discusses how we choose
the magnitude of the perturbations to properly count excess zero modes
from numerical simulations.

Figure 3.4: System definitions. (a) Generic and (b) symmetric systems of size
Nx×Ny. The opening angle between adjacent squares in symmetric systems is
denoted φ0. (c-d) Connectivity and quad description; these are shown for a sym-
metric system, but equally apply to generic systems. (c) Hinges are modelled by
linear springs of zero rest length which connect the corners of adjacent quads.
Upon relaxation of the springs, the quads’ corners coincide. (d) The coordinate
system used to describe the shape, position and orientation of individual quads
(see main text).
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3.2.1 Mathematical description

To study collections of rigid quads connected by flexible hinges, we model
these systems as Nx×Ny lattices of rigid quads connected by springs of
unit stiffness and zero rest length [Fig. 3.4]. Unless noted otherwise, we
use open boundary conditions, motivated by the goal to obtain designs
for finite-sized metamaterials. For full filling, our systems contain a to-
tal of Nt = Nx Ny quads and Nb = 2Nx Ny − (Nx + Ny) springs (bonds),
where the non-extensive correction term Nx + Ny stems from the missing
bonds of the quads located at the boundaries. For very large systems, the
number of bonds approaches 2Nx Ny

[
1− (Nx + Ny)/(2Nx Ny)

]
≈ 2Nx Ny,

indicating that each quad is connected to 4 neighbouring quads. Note
that the terms hinges, springs and bonds are used synonymously in this
thesis — these terms should all be interpreted similarly.

Quad description and state vector. — To mathematically describe our
systems, we assign each of the Nx Ny quads a label, n, along with a centre
location rn = (xn,yn), a rotation angle ϕn, and the centre-to-corner vectors
en,i (i = 0,1,2,3,4) [see Fig. 3.4(d)]. Note that en,i therefore specifies the
shape of each quad.

Quads are modelled as rigid objects, implying that their shape re-
mains fixed when the system is deformed. In contrast, rn and φn might
change for a given deformation. Having prescribed the shape of the
quads, we can therefore fully characterize our systems by the state vector

X = (x1,y1, ϕ1, x2,y2, ϕ2, ....xN ,yN , ϕN)
T , (3.5)

which is a 3N×1 vector providing the centre location and rotation angle
of each quad.

To build symmetric systems, we use squares of side length 1, which
are described by perpendicular centre-to-corner vectors (en,i ⊥ en,i+1) of
magnitude

√
2/2. The centres of the squares are then stacked on a square-

like, two-dimensional grid, such that the corners of adjacent squares co-
incide, as in Fig. 3.4(b). Note that the grid spacing controls the opening
angle φ0 between adjacent squares, which is related to the rotation angle
of a single square as ϕn =±φ0/2. Here, the sign of ϕn depends on the al-
ternating counter or clockwise rotation of quad n. The procedure to build
generic systems is different. In these disordered systems, the shape and
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(a) (b)

Figure 3.5: Procedure to construct stress-free, generic systems. (a) Starting from
a symmetric system, we randomly displace connected corners by a random vec-
tor ∆en,i, as visualized by the red arrows. Here we have used ε = 0.3 and to
enhance visualization the magnitude of the resulting vectors is shown at 200%.
(b) The resulting generic system (red), superimposed on the symmetric system.

orientation of quads is arbitrary and the corners of adjacent quads gen-
erally do not coincide. In the paragraph hereafter we will motivate and
discuss the procedure to construct arbitrary generic systems for which
the corners of adjacent quads exactly coincide [e.g. as in Fig. 3.4(d)].

Generic, stress-free systems. — We now discuss the procedure to con-
struct stress-free generic systems. In such systems, the corners of adjacent
quads coincide and the springs are not pre-stressed. The design of such
systems is motivated by the significant simplification of the mode count-
ing analysis described in section 3.2.3. Stress-free systems allow for the
random removal of quads while retaining equilibrium, but if pre-stresses
would be present, quad removal could initiate the relaxation to a lower
energy state. This would require the calculation of intermediate equi-
librium configurations with the aid of computationally time-consuming
conjugate gradient techniques — stress-free systems circumvent the need
for such techniques. Note that, as mentioned already, symmetric systems
are automatically stress-free due to the non-generic nature of the squares.

To construct the stress-free, generic systems we systematically perturb
symmetric systems by randomly displacing connected corners, as is illus-
trated in Fig. 3.5. This procedure stretches no springs and thus ensures
no pre-stresses develop when changing the squares to irregular quads.
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0 π/5 π/2 4π/5 φ0

0

0.3

ε

Figure 3.6: Stress-free, generic systems obtained by perturbing symmetric sys-
tems with magnitude ε, for a range of symmetric opening angles. Note that the
top systems do not feature zero modes.

To quantify the magnitude and direction of the random displacements,
we use the random vectors ∆en,i =

(
εx,εy

)T ‖en,i‖ (red arrows in Fig. 3.5).
The centre-to-corner vectors of the perturbed generic quads then readily
follow from the vectorial sum e′n,i = en,i + ∆en,i, where we note that en,i
is associated with the initial symmetric system. Furthermore, εx and εy
represent random numbers sampled from a uniform probability distribu-
tion that lie within the interval [−ε,ε]. In the following section we will
demonstrate that ε = 0.1 is a suitable choice to detect excess zero modes
(the modes that only occur in symmetric systems). Finally, Fig. 3.6 shows
some more examples of generic systems, obtained by perturbing sym-
metric systems of different opening angles. In the remainder of this work
we utilize the technique as described here to construct stress-free, generic
systems.

The energy of the system, E. — The systems introduced in Fig. 3.4
contain Nb springs of unit stiffness and rest length zero. This yields the
following expression for the total energy of a system

E (X) =
1
2

Nb

∑
s=1

`s (X)
2 , (3.6)
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with `s the length of spring s. As mentioned before, for fully filled
systems (no quads removed), Nb = 2Nx Ny − (Nx + Ny), but this num-
ber will be lower in diluted systems. More importantly, it should be
noted that the springs lengths are a function of the state vector X; for the
undeformed symmetric and (stress-free) generic systems no springs are
stretched, hence E(X) = 0. When applying a deformation X changes and
E might change as well. For deformations associated with a zero mode,
E(X) remains unchanged up to quadratic order. In contrast, applying de-
formations that are not associated with zero modes lead to a quadratic
increase of E(X). The actual `s that correspond to a given X are calculated
numerically by subtracting the corner positions of adjacent quads, which
are easily calculated by combining en,i with X. In section 3.2.3 we will use
E(X) to construct the Hessian matrix, which forms the basis of counting
zero modes.

3.2.2 Finite amplitude and quartic modes

The zero modes we encounter in this work can be subdivided in two
types of zero modes: Finite amplitude mechanisms and quartic modes.
A mechanism is a ’finite’ zero mode in which finite-amplitude displace-
ments of quadrilaterals stretch no springs. A quartic mode is an infinites-
imal zero mode in which spring lengths do not change to first order in
the magnitude of quadrilateral displacements, ∆X, but do so to second
order. In the latter case, the energy changes with the quadrilateral dis-
placements as ∆X4, hence the name quartic mode. Below we provide
examples of a mechanism and quartic mode.

Global hinging. — The mechanism we focus on in this paragraph –
global hinging– occurs for arbitrary large symmetric systems with open
boundary conditions. For symmetric systems, the centre coordinates of
the squares compose a square lattice, thereby allowing for a collective
counter rotating motion of the squares without stretching bonds. This
collective motion is illustrated in Fig. 3.7(a), using φ0 ∈ [0,π] as the control
parameter. From these snapshots we observe a non-monotonic unfolding
of the tiling for increasing φ0: Starting from a nearly closed system (φ0 =
π/20), the system unfolds to maximum opening (φ0 = π/2), and then
shrinks again towards the nearly closed system (φ0 = 19π/20). Since this
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Figure 3.7: Global hinging mode in a symmetric 3×3 system. In this mode the
opening angle φ0 can be varied over a finite amplitude without stretching the
bonds. (a) Subsequent snapshots of the tiling when varying φ0 from π/20 to
19π/20. Note that the hinging behaviour for φ0 < π/2 and φ0 > π/2 is related
by symmetry. (b) The numerically obtained energy as function of the opening
angle φ0.

collective motion of squares relies on hinging and involves a global shape
change, we refer to this mode as global hinging.

To confirm that no springs are stretched during the global hinging,
we have plotted the energy as function of φ0 in Fig. 3.7(b). The energy
remains zero (within numerical precision) over the complete range of φ0,
and thus reflects that global hinging of symmetric systems is a mecha-
nism.

Finally, we anticipate that the global hinging mode ceases to exist for
generic systems, as the underlying square lattice becomes distorted for
finite ε. This will be confirmed in section 3.2.4, in which we reveal the
energy increase of the global hinging mode with ε.

Quartic and finite energy modes. — In Fig. 3.8(a) we display an ex-
ample of spurious quartic modes that occur in symmetric systems with
opening angle φ0 = π/2. Due to the symmetry that arises at this open-
ing angle, the two centre squares can undergo a counter rotating motion
while the vertical distance yq is preserved to leading order in the side-
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Figure 3.8: Quartic modes in symmetric systems. (a) For φ0 = π/2 the two centre
squares can deflect to the right (coloured red), or equally to the left (not shown),
while yq is preserved to leading order in the sidewards deflection dq. (b) The
energy change of this mode as function dq shows clear powerlaw behaviour with
exponent 4 for φ0 = π/2 (solid line), and exponent 2 for φ0 = π/3 (dashed line).

wards deflection dq. The energy change associated with dq is plotted in
Fig. 3.8(b) (solid line) and shows clear powerlaw behaviour with exponent
4, confirming the zero mode is quartic in nature.

To suppress the spurious quartic modes, we set φ0 = π/3 in the re-
mainder of this work. This (arbitrary) choice destroys the symmetry that
arises in symmetric systems for φ0 = π/2 and kills the quartic modes
related to this symmetry. This is verified by plotting the energy change
associated with dq for φ0 = π/3 in Fig. 3.8(b) (dashed line), which now
shows powerlaw behaviour with exponent 2 rather than exponent 4. The
exponent 2 demonstrates that the springs lengths are changing to first or-
der in the magnitude of the quadrilateral displacements (here expressed
as dq) and this exponent is common for finite energy modes. Even though
we kill quartic modes related to the opening angle φ0 by setting φ0 = π/3,
quartic modes originating from more complex symmetries, although rare,
can still appear in diluted symmetric systems (see chapter 4 for exam-
ples). The appearance of these quartic modes is inevitable and in the
remainder of this thesis we do not distinguish between mechanisms and
quartic modes, unless explicitly noted otherwise.
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3.2.3 Mode counting

We now discuss the technique to detect the number of zero modes and
their spatial structure. For a given tiling in some reference state X [Eq.
(3.5)], deformations associated with zero modes, ∆X, leave the energy E
unchanged up to quadratic order in ∆X. To find all ∆X that satisfy this
criterium, the approach is to analytically expand the energy around state
X, which yields a matrix equation that can be numerically diagonalized.

Starting with the expansion of the energy in Eq. (3.6) about X up to
quadratic order, we obtain

E (X + ∆X) = E (X) + ∆XT∇E (X) +
1
2

∆XTH (X)∆X, (3.7)

with ∇E (X) the gradient and H(X) the Hessian matrix of the energy
evaluated at X. The gradient ∇E = ∂E/∂X is a 3Nx Ny×1 vector that
contains all first derivatives of the energy with respect to the quadrilateral
positions and orientations,

∇E =

[
∂E
∂x1

,
∂E
∂y1

,
∂E
∂ϕ1

, . . . ,
∂E

∂ϕNt

]T

. (3.8)

The Hessian is a 3Nx Ny×3Nx Ny matrix that contains the second deriva-
tives of the energy with respect to the entries of X, which yields

H =




∂2E
∂x2

1

∂2E
∂x1∂y1

∂2E
∂x1∂ϕ1

. . .
∂2E

∂x1∂ϕNt

∂2E
∂y1x1

∂2E
∂2y1

∂2E
∂y1∂ϕ1

. . .
∂2E

∂y1∂ϕNt

∂2E
∂ϕ1∂x1

∂2E
∂ϕ1∂y1

∂2E
∂2ϕ1

. . .
∂2E

∂ϕ1∂ϕNt

...
...

...
. . .

...

∂2E
∂xNt ∂x1

∂2E
∂xNt ∂y1

∂2E
∂xNt ∂ϕ1

. . .
∂2E

∂xNt ∂ϕNt




. (3.9)
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The entries of the gradient and Hessian matrix are complicated functions
of the quadrilateral corner coordinates (xn,i,yn,i) and the rotation angle
ϕn, but can be fully determined analytically. For a detailed analytical
derivation of the gradient and Hessian matrix for the systems considered
in this work, we refer to appendices 3.A and 3.B.

The expansion of the energy in Eq. (3.7) can be simplified as follows.
First, we focus on systems in the absence of external forces for which X is
an equilibrium configuration satisfying ∇E(X) = 0. As such, the second
term on the right hand side of Eq. (3.7) drops out. Second, due to the
procedure described in section 3.2.1 systems are free of internal stresses,
hence E(X) = 0 and the first term on the right hand side drops out as well.
Note that this stress-free condition also ensures the gradient ∇E(X) re-
mains zero when quadrilaterals are removed. Taking both simplifications
into account, the expansion [Eq. (3.7)] turns into

E (X + ∆X) =
1
2

∆XTH (X)∆X. (3.10)

Then, to find all non-trivial ∆X for which the right hand side of Eq. (3.10)
is zero, we consider the eigenvectors and associated eigenvalues of the
matrix H. Any of such eigenvectors ∆Xλλλ has the special property to
preserve direction when multiplied by H, but to be multiplied by a scalar
λ, the associated eigenvalue [123]. More formally, H (X)∆Xλλλ = λ∆Xλλλ,
and substitution in Eq. (3.10) yields

E (X + ∆Xλλλ) =
1
2

λ‖∆Xλλλ‖2, (3.11)

which demonstrates that for λ = 0 the energy is unaltered under a de-
formation ∆Xλλλ. Hence, eigenvectors with associated eigenvalue λ = 0 are
zero modes. While the Hessian can be determined analytically, the 3Nx Ny
eigenvalues and eigenvectors need to be determined numerically. In our
numerics (double precision) a zero mode typically has λ = O(10−16),
which is sufficient to distinguish zero modes from finite-energy modes.
We will elaborate in more detail on this aspect in the following section.

3.2.4 Magnitude of ε and numerical zero modes

For systems consisting of perfect squares, there is a global hinging zero
mode (section 3.2.2) — in generic systems consisting of perturbed quadri-
laterals, this mode attains a finite energy, and should not be counted as
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a zero mode. Once we dilute these systems, new zero modes can arise.
In this section we describe how we numerically distinguish zero modes
from finite energy modes. In particular we motivate our choice for the
magnitude of the perturbations in generic systems and the criterium we
use to distinguish zero from non-zero eigenvalues. We show that pertur-
bations with magnitude ε = 0.1 and a cut-off criterium for the eigenval-
ues λc = 10−10 suffice to unambiguously detect the zero modes of both
generic and symmetric systems. In the remainder of this section we use
Nx = Ny = 10 to exemplify our choices.

We now first elaborate on our choice for the magnitude of ε. To this
end, we determine the eigenvalues of fully-filled, generic systems when
varying ε over 8 orders of magnitude. We present results using a single
simulation per value of ε, because we found (from comparison of multiple
simulations per ε) that their outcome exhibits only very minor scatter (not
shown here). Using single simulations for each ε, we have visualized the
eigenvalues as function of ε in Fig. 3.9(a). From this plot we observe that
for each value of ε, there exists a cluster of eigenvalues with λ of order
1, there are 3 eigenvalues of order 10−15, and in between there is a single
eigenvalue, λh, whose value exhibits power law behaviour: λh ∼ ε2. The
scaling exponent 2 is very robust and does not depend on the particular
value φ0 = π/3 chosen here, but holds for any opening angle within the
accessible range.

In terms of eigenmodes, the clusters of eigenvalues at the top are asso-
ciated with finite energy eigenmodes, while the eigenvalues at the bottom
are associated with the three trivial, global eigenmodes of the systems:
x-translation, y-translation and rotation. The eigenvalue λh arises from
the global hinging mode and becomes increasingly smaller as the per-
turbations decrease. Note that this is what one would expect, since the
centre locations of the quadrilaterals converge towards a perfect square
lattice for decreasing ε. Therefore, the global hinging motion becomes
increasingly ’softer’ and eventually λh becomes of the same order as the
eigenvalues associated with the three trivial eigenmodes. Furthermore,
the scaling between λh and ε with exponent 2 can quantitatively be un-
derstood by noticing that quadrilateral rotations in generic systems, that
arise due to global hinging, involve changes in spring length of order ε.
Hence, the corresponding change in energy scales as ε2, implying that
λh ∼ ε2 by Eq. (3.11).
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Figure 3.9: Eigenvalues of the Hessian for Nx = Ny = 10 and φ0 = π/3. (a) For
a fully-filled, generic system, we plot the eigenvalues for varying ε. Each color
shows the distribution of the 3Nx Ny eigenvalues that belong to a given ε. (b-
c) Eigenvalues for diluted systems as function of the cutting fraction ρ. Here,
each colour is associated with the eigenvalues that belong to a given ρ. We
consider eigenvalues smaller than λc < 10−10 as zero modes, indicated by the
shaded regions. In (b) we show results for generic systems (ε = 0.1) and in (c)
for symmetric systems (ε = 0).

The trivial eigenmodes —global translations or rotation— involve no
energy penalty, allowing us to infer from Fig. 3.9(a) that our numerical
precision for a zero mode is of order 10−15. Hence, to ensure that the hing-
ing mode attains a finite energy in generic systems, and is not counted as
a zero mode, we pick ε such that λh in generic systems remains orders of
magnitude separated from the order 10−15. Therefore, we set ε = 0.1 in
the remainder of this work. The resulting clear separation in eigenvalues
of zero modes versus finite-energy modes occurring for ε = 0.1 allows us
to define a critical eigenvalue λc in order to count the number of zero
modes. Using λc as a cut-off criterium, we count eigenvalues below λc as
zero modes, but eigenvalues above λc as finite energy modes. Fig. 3.9(a)
illustrates that λc = 10−10 is suitable for systems of full filling.

We conclude this section by showing that this cut-off approach re-
mains valid for diluted systems. To study the distribution of eigenvalues
in diluted systems, we randomly remove Nr = ρN quadrilaterals and de-
termine the eigenvalues of the remaining system. We use a single sim-
ulation per value of ρ, because we found that, similar to the eigenvalue
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study for varying ε, eigenvalues exhibit only minor scatter for random
dilution (not shown here). In Fig. 3.9(b-c) we have plotted the eigenval-
ues as function of the cutting fraction ρ using a single simulation per
value of ρ, both for generic (panel b) and non-generic systems (panel c).
This demonstrates that for increasing ρ new zero modes start to appear,
and more importantly, that the clear separation in eigenvalues of zero and
finite-energy modes persists over the range of ρ. Hence, λc = 10−10 is also
a valid cut-off criterium for diluted systems. In summary, we have moti-
vated the choices ε = 0.1 and λc = 10−10 to distinguish true zero modes
from finite energy modes, and in the remainder of this work we will use
these values.

3.3 Random quad removal

In this section we determine the number of zero modes in generic (ng)
and symmetric (ns) systems for random quad removal. In section 3.3.1
we present the phenomenology of random quad removal, demonstrate
that ns can exceed ng, and present the spatial structure of such excess
zero modes. In section 3.3.2 we fully characterize the number of excess
zero modes as function of system size and the fraction of removed quads,
and show that the mean number of excess zero modes exhibits finite size
scaling with mean field exponents.

In what follows we consider systems of square periphery and initial
full-filling, that is Nx = Ny = N with a total number of N2 quads. Fur-
thermore, we use the parameter values φ0 = π/3, ε = 0.1 and λc = 10−10,
as motivated in section 3.2.

3.3.1 Phenomenology

This section presents the phenomenology of random quad removal. To
dilute symmetric and generic systems, we randomly remove Nr = ρN2

quads, where ρ denotes the fraction of removed quads.
Starting with fully filled systems of size N = 10, we track the num-

ber of zero modes in generic (ng) and symmetric (ns) systems for the
subsequent removal of quads, when using the same ensemble of dilution
patterns for both. In Fig. 3.10(a-b) we show the outcome of ns and ng, and
their ensembles averages 〈ns〉 and 〈ng〉, as function of the cutting fraction
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Figure 3.10: Random quad removal in 10×10 systems. (a-b) The number of
zero modes in symmetric (ns) and generic (ng) systems as function of the cut-
ting fraction ρ. Each panel displays the outcome of 103 independent cutting
sequences (curves of low brightness) along with the ensemble averages 〈ns〉 and
〈ng〉 (red curves of high brightness). (c) Subtracting 〈ng〉 from 〈ns〉 yields the
average number of excess zero modes, 〈∆〉.

ρ, for 103 independent cutting sequences. As can be observed, ns and
ng generally increase with ρ, but might incidentally decrease [see lower
curves in Fig. 3.10(a-b)] when a quad associated with a given zero mode
is removed — a simple example being a quad that is only connected at
one corner. The growth of the ensemble averages 〈ns〉 and 〈ng〉 [solid red
curves in Fig. 3.10(a-b)] appear nearly identical, and to reveal differences
between symmetric and generic systems we introduce

〈∆〉 = 〈ns − ng〉. (3.12)

This quantity corresponds to the number of extra zero modes that exist
in symmetric, but not in generic systems, due to the non-generic nature
of the squares. Therefore, we refer to ∆ as the number of excess zero
modes. Interestingly, 〈∆〉 (ρ) [Fig. 3.10(c)], reveals subtle but important
differences between symmetric and generic systems. Whereas 〈∆〉= 1 for
nearly fully filled systems (ρ≈ 0), due to the global hinging mode that is
present in symmetric but absent in generic systems, 〈∆〉 = 0 for strongly
diluted systems (ρ→ 1). The latter limit will be clarified in chapter 4,
where we show this to be due to an absence of sufficiently large clusters
of connected quads. Surprisingly, for intermediate cutting fractions, 〈∆〉
exhibits a peak and exceeds 1, showing that there exist dilution patterns
for which ns − ng ≥ 2.
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∆ = 3

1 2 3

Figure 3.11: Spatial structure of excess zero modes. The randomly diluted 10×10
system (ρ = 0.16) shown at the top row has ns = 3 and ng = 0. The bottom row
visualizes the spatial motions of the excess zero modes by superimposing the
deformed geometry in red. To exclude additional displacements from global
translations and/or rotations to these excess modes, the (x,y) position of the
upper left square and the y position of the square directly next to it are held
fixed (as might be noticed from mode 1).

We now illustrate the spatial structure of some excess zero modes. The
particular cutting pattern shown in Fig. 3.11 features three excess zero
modes, each of which has been visualized by extracting the associated
displacement vector (∆X) from the eigenmode analysis. Mode (1) can
be recognized as the global hinging mode, whereas (2) and (3) are more
complex and rely on the (oblique) sub-hinging of the individual clusters
coloured in red. The observed sub-hinging of clusters plays, as we will
show, a central role for excess zero modes.
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Figure 3.12: Statistics of the excess zero modes. For increasing system size N we
have determined the multitude of excess zero modes as function of the cutting
fraction. The maximum of each curve is marked by a filled circle.

3.3.2 The multitude of excess zero modes

We now reveal the multitude of excess zero modes 〈∆〉 as function of sys-
tem size and cutting fraction. In Fig. 3.12 we show 〈∆ (ρ, N)〉 for system
sizes N = 10,20,30, . . . ,90,100, where we indicate the maximum of each
curve by a filled circle. The number of runs needed to obtain reason-
ably well statistically converged curves decreases with N. To quantify
the statistical convergence, we use the relative variance of ∆ at the max-
imum as a criterium and demand σ < 0.01%. The number of runs that
follows from this criterium is subsequently also used for other values of
ρ (at fixed N). In particular, using σ2 < 0.01%, we have found that an
ensemble of typically 1100 simulations is required for N = 20, while an
ensemble of only 100 simulations is sufficient for N = 100. The lower
number of runs required for larger system sizes presumably is a result
of spatial self-averaging, in which large systems can be regarded as a
collection of smaller subsystems that are sufficiently uncorrelated.

Upon close inspection of the maxima in Fig. 3.12, we can make two
observations. First, the location of the maximum, ρmax, increases with the
system size and eventually converges to ρ ≈ 0.3. Second, the value of the
maximum, 〈∆〉max, grows with the system size, and becomes as large as
〈∆〉max ≈ 100 for the largest system size considered. To characterize the
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Figure 3.13: Peak behaviour of 〈∆〉 (ρ). For the data shown in Fig. 3.12, we have
determined the value and location of the peak with system size. (a) The value
of peak grows linearly with N2 for large N (log scale, slope 1), implying that
〈∆〉max ∼ N2. Inset (linear scale): For small N, the scaling 〈∆〉max ∼ N2 exhibits
finite size corrections proportional to 1/N2. (b) The peak location tends to a
constant as 1/N. Inset: Unit cell to understand the value of ρ∞ (see main text).

behaviour of the maximum in detail, we measured ρmax and 〈∆〉max for
each system size, where we refined our 〈∆〉(ρ) data by a quadratic fit in
the vicinity of the maximum. In Fig. 3.13 we show the obtained results
for the value and position of the peak, from which we infer that

〈∆〉max ≈ 〈∆〉? := β
(
1 + α/N2)N2, (3.13a)

and

ρmax ≈ ρ? := ρ∞ − γ/N, (3.13b)

where α ≈ 51, β ≈ 0.01 and γ ≈ 0.99 denote proportionality constants,
and ρ∞ ≈ 0.31± 0.01 the peak location in the N→ ∞ limit. We have de-
termined the values of these constants by fitting Eqs. (3.13) to our data.
The terms proportional to α and γ should be interpreted as finite size cor-
rections to the large N asymptotics captured by 〈∆〉? = βN2 and ρ? = ρ∞;
the values of α and γ describe the convergence towards these large N
asymptotics. Note that the asymptotic scaling 〈∆〉? = βN2 implies that
the mean number of excess zero modes in the peak regime is an intrin-
sic quantity, indicating roughly one extra excess zero mode for each 100
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Figure 3.14: Scaling collapses for the 〈∆〉 (ρ) curves in Fig. 3.12. (a) Col-
lapses obtained by rescaling the axes with ρ? and ∆? (see main text), using
α = 0.55, β = 0.01, ρ∞ = 0.31 and γ =−0.97. (b) The asymptotic evolution of the
curves 〈∆〉(ρ)/N2 for large N illustrate that, in leading order, 〈∆〉 scales as N2

and ρ tends to a constant.

quads. The fact that there is a peak, its location, and the correspond-
ing spatial structures can be understood by considering periodic samples
with many small clusters. First, the smallest clusters that yield excess
zero modes are of size 3×3. We now assume that the maximum num-
ber of excess zero modes is obtained by filling the system of given size
N with a large number of 3×3 clusters, connected in such a way that
all (symmetric) clusters retain their internal hinging mode. The simplest
and most intuitive topology that satisfies these conditions consists of 3×3
clusters separated by one column and row each, with a few quads placed
on the otherwise empty rows and columns to (weakly) connect adjacent
clusters. To make sure the generic system remains rigid, with the sym-
metric system having many hinging modes, we suggest to connect each
cluster pair by two quads. The resulting unit cell of this dilution geome-
try [see inset of Fig. 3.13(b)] has a cutting fraction ρ = 5/16 ≈ 0.31. This
value shows a surprisingly good agreement with the peak location for
random dilution in the N→∞ limit.

Finally, the relations for peak value and location in Eqs. (3.13) suggest
that the mean number of excess zero modes exhibits finite size scaling, as
〈∆〉/〈∆〉? = f (ρ/ρ?). To demonstrate this, we rescale our 〈∆〉(ρ, N) data
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according to Eqs. (3.13), and plot the result in Fig. 3.14(a). We observe
that the peak positions and values collapse, as expected, but we moreover
observe that the tails of 〈∆〉/〈∆〉? also display a scaling collapse as N→
∞, demonstrating that the mean number of excess zero modes exhibits
finite sizing scaling. For completeness, Fig. 3.14(b) shows the leading
order scaling collapse, 〈∆〉/N2, confirming that 〈∆〉 scales as N2 and ρ
goes to a constant for large N.

3.3.3 Distribution of excess zero modes in the peak regime

Having presented the ensemble averages 〈∆〉 (ρ, N), we now focus on
the ensemble distribution of excess zero modes in the peak regime of
〈∆〉 (ρ, N). To visualize these distributions with system size, we have de-
termined the cumulative distribution functions (CDFs) for the ensembles
of cutting sequences that correspond to ρ = ρ? (Fig. 3.15).

The CDFs in Fig. 3.15(a) display the probability P to encounter a given
∆ which is less than or equal to k times the mean 〈∆〉?. This reveals
that the excess modes in the peak regime are symmetrically distributed
around their mean for system sizes

√
N & 30. In contrast, these appear

asymmetrically distributed for smaller N due to the low number of pos-
sible excess zero modes in small systems. We furthermore observe that
deviations from the mean decrease with system size; the probability to
randomly encounter cutting patterns that strongly deviate from the mean
is much higher in small systems as compared to large systems, due to
the rapid increase of the number of possible cutting patterns with N. In
Fig. 3.15(b) we have re-plotted the data in panel (a) as function of (k− 1)N
and observe a scaling collapse for large N. According to the central limit
theorem [124], the collapse demonstrates that the distribution of excess
zero modes in the peak regime appears Gaussian, with standard devia-
tion σ ∼ 1/N. Note that this standard deviation implies that the number
of independent measures on ∆ scales with N2, confirming our earlier hy-
pothesis that large systems are self-averaging and may be regarded as to
consist of sufficiently uncorrelated subsystems.

The findings presented here naturally raise the question how to ob-
tain extreme designs that have significantly more excess zero modes than
typical, and in section 3.4 we will develop a procedure that allows us to
design geometries featuring ∆/〈∆〉? ≈ 6, even for system sizes as large as
N = 100.
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Figure 3.15: CDFs for ∆(ρ, N) in the peak regime (ρ = ρmax), for the data shown
in Fig. 3.12. (a) The excess zero modes are symmetrically distributed around the
mean 〈∆〉? (k = 1) for sufficiently large system sizes. (b) Re-plotting the data
shown in panel (a) as function of (k− 1)N results in a collapse of the curves.

3.4 Extreme systems

In this section we design systems with a large number of excess zero
modes, where ∆ is significantly larger than the average maximum for
random cutting, 〈∆〉?. To design such systems one could follow two dis-
tinct routes. The first one consists of the brute force calculation of all
possible configurations given a system size. This method is not feasi-
ble, however, as the design space is enormous: The maximum number
of configurations grows exponentially with the system size and already
becomes 2N2

= 2100 for 10×10 systems. This number can be reduced to
(100

21 ) ≈ 1021 by taking into account configurations at the maximum cut-
ting fraction ρ? = 0.21 only, but the number remains enormous. Based on
benchmarks of our Python based code (∼ 200 iterations/s for a 10×10
system) it would take up to 1011 years to examine all configurations. Al-
ternatively (the second route), one can determine the maximum ∆ for a
smaller, feasible system size and utilize it as an unit cell to tile the larger
system — which is the approach we will use in this section.

To minimize finite size effects on the tiled system we apply periodic
boundary conditions on the unit cell and consider a unit cell whose size
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Figure 3.16: Random dilution of a 6× 6 unit cell with periodic boundaries.
(a) Fully filled unit cell where a fixed box size d ensures periodicity. (b) Average
number of excess zero modes as function of the number of randomly removed
quads for 106 realizations. The curve displays a maximum at Nr = N?

r = 10 as
indicated by the grey line.

is as large as possible, while being computationally feasible. Based on
these criteria we use a unit cell of size 6×6 (Nu = 6) confined within a
box of size d, as depicted in Fig. 3.16(a). Here the box size d naturally
arises for periodic boundary conditions as connecting the left/right and
lower/upper boundaries of the unit cell leads to a fixed opening angle
φ0 with corresponding box size d = Nu [cos(φ0) + sin(φ0)]. An important
consequence of periodic boundary conditions with fixed d is that sym-
metric systems lose their global hinging mode, in contrast to systems
with open boundaries which always have ns = 1 for full filling. In or-
der to hinge, symmetric systems need to be able to contract/expand [see
Fig. 3.7(a)], which is not possible at fixed d. Indeed, Fig. 3.16(b) demon-
strates that the number of excess zero modes starts growing from 〈∆〉= 0,
rather than 〈∆〉= 1, as in Fig. 3.10(c). Furthermore, Fig. 3.16(b) shows that
〈∆〉 is maximum when the number of removed quads is Nr = 10. Denot-
ing this maximum by N?

r , our goal is to determine ∆ for all possible unit
cell geometries at Nr = N?

r .
The number of possible unit cell geometries at Nr = N?

r can be reduced
by the consistent removal of the upper left quad (or any other quad) in
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Figure 3.17: Discrete joint probability distribution as a function of ns and ng.
The data comprises all possible geometries in a 6×6 periodic unit cell when 10
quads are removed. The black lines have constant ∆ and its value is indicated by
the arrows. Inset graph: Discrete probability distribution of ∆ for the same data.
Inset dilution geometry: An unit cell featuring ∆ = 3, for periodic boundaries.

each geometry we consider. Without loss of generality, this breaks the
symmetry that comes with periodic boundaries. This leaves us with a
total of (

N2
u − 1

N?
r − 1

)
=

(
35
9

)
≈ 7.1×107 (3.14)

geometries to consider, which takes approximately 4 days for our Python
based code. For each geometry we have tracked ns and ng and their
outcome is graphically displayed by a joint probability distribution in
Fig. 3.17. For discrete variables this is also known as a joint probability
mass function. In Fig. 3.17 black lines of slope unity represent contours
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of constant ∆, with the main diagonal equivalent to ∆ = 0. We thus find
that a periodic 6×6 system comprises maximally 3 excess zero modes,
whereas the probability mass function of ∆ (inset graph of Fig. 3.17) ex-
poses that the appearance of ∆ = 3 constitutes a fraction ∼ 10−4 of the
design space—tantamount to ∼ 7.1×103 unique cutting geometries, of
which the particular unit cell depicted at the right bottom of Fig. 3.17 will
be used to tile larger systems in section 3.4.1. The remaining part of the
design space is mostly occupied by ∆ = 0, since bins of high probabil-
ity are mainly located along the major diagonal of the joint probability
distribution.

Surprisingly, however, Fig. 3.17 reveals that ∆ can also become smaller
than zero, although its appearance is rare, P (∆ = −1) ≈ 10−6. In these
cases generic systems, rather than symmetric systems, attain an extra
near-zero mode that arises due to a special, coincidental combination
of random quad distortions — we have verified these modes disappear
when a different random quad distortion is imposed to the same cutting
geometry. In particular, we found that near-zero modes typically exhibit
λ ≈ 10−12, which is a few orders of magnitude larger than true numer-
ical zero modes (Fig 3.9). Here we note that near-zero modes span a
small part of the design space; their detailed consideration lies outside
the scope of this thesis.

3.4.1 Tiling the unit cell

We now periodically tile the Nu×Nu unit cell to built larger nNu×nNu
systems (n = 2,3, . . . ) [see Fig. 3.18(a) for n = 2], and determine their
number of excess zero modes accordingly. Importantly, note that we use
open boundary conditions for the tiled systems.

In Fig. 3.18(b) we display the number of excess zero modes of the tiled
systems with n, which shows that the tiled systems (open circles, solid
line) exhibit a significantly larger number of excess zero modes as com-
pared to randomly diluted, non-tiled systems of identical size (dashed
blue). Here, the dashed blue line describes the asymptotic growth of the
average number of zero modes according to βN2, with associated den-
sity β = 0.01 (see section 3.3.2). As can furthermore be observed, ∆ of
the tiled systems grows proportionally to (nNu)2, implying these systems
are characterized by a constant density of zero modes. In particular, we
have determined ∆/(nNu)2 ≈ 0.06 — which exceeds the density of zero
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Figure 3.18: Excess modes in nNu×nNu systems built by the periodic tiling of
a Nu×Nu unit cell (n = 1,2,3, . . . ). (a) System corresponding to n = 2, resulting
in ∆ = 8. The quads enclosed within the dashed red region display the unit cell.
(b) The number of excess zero modes grows proportionally with (nNu)2 (open
circles, solid line). We display data up to n = 16 (nNu = 96). The blue dashed
line represents the asymptotic growth of excess zero modes in randomly diluted
systems as function of system size.

modes for random cutting by a factor 6. Hence, this procedure allows us
to construct geometries for which ∆ is 6 times larger as compared to the
average maximum for random cutting (∆/∆? ≈ 6), at a given system size.

3.5 Random bond removal

In this section we characterize the number of excess zero modes, ∆b, for
random bond removal, as function of the fraction of removed bonds, ρb,
and system size N, and discuss differences and similarities with random
quad removal.

In Fig. 3.19(a) we display 〈∆b〉 (ρb, N) for system sizes N = 10,20, . . . 80,
which are obtained using a similar procedure as devised for quad re-
moval in section 3.3, now removing bonds rather than quads. Interest-
ingly, these curves are qualitatively similar to results for quad removal
(Fig. 3.12) and demonstrate that the number of excess zero modes may
equally exceed one in systems where bonds are cut: Analogously to
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Figure 3.19: Statistics of the excess zero modes for random bond removal.
(a) The average number of excess zero modes as function of the cutting frac-
tion for a range of system sizes, using the same ensemble size as for random
quad removal. Filled circles mark the maximum of each curve. Inset figure:
Zoom in of 〈∆b〉 (ρb) for N = 10. (b) The peak value grows linearly with N2 for
large N (log scale, slope 1), implying that 〈∆b〉max ∼ N2. For small N, the scaling
〈∆b〉max ∼ N2 exhibits finite size corrections proportional to 1/N2 (not shown).
(c) The peak location tends to a constant as 1/N2.

quad removal, 〈∆b〉 = 1 for ρ ≈ 0 and 〈∆b〉 = 0 for ρb → 0 [see inset of
Fig. 3.19(a)], whereas 〈∆b〉 > 1 for intermediate cutting fractions, albeit
with an amplitude which is roughly 1.5 times smaller than for quad re-
moval at given N. In the low cutting fraction limit (ρ ≈ 0) systems are
over-constrained and retain their rigidity in the generic case, even when
some bonds are missing, leading to 〈∆b〉 = 1. In contrast, systems in the
high cutting fraction limit (ρb → 1) consist of many loosely connected
quads that fail to constitute a rigid system in the generic case, hence
〈∆b〉 = 0.

To quantify differences and similarities between quad and bond re-
moval, we follow section 3.3.2 and determine the peak value and location
of 〈∆b〉, which we denote ρmax

b and 〈∆b〉max, as function of the system
size. The obtained results are shown in Fig. 3.19(b-c), and suggest the
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Figure 3.20: Scaling collapse for the 〈∆b〉 curves in Fig. 3.19(a), obtained by
rescaling the axes according to the relations given in Eqs. (3.15).

following asymptotic scaling relations:

〈∆b〉max ≈ 〈∆b〉? := βb

(
1 +

αb

N2

)
N2, (3.15a)

and

ρmax
b ≈ ρ?b := ρ∞,b − γb/N2, (3.15b)

where αb ≈ 75, βb ≈ 0.007, γb ≈ 8.37 and ρ∞,b ≈ 0.3± 0.01 are constants
with an interpretation similar to their analogues for quad removal in sec-
tion 3.3. The asymptotic scaling relations and the values of their associ-
ated constants as obtained here reveal some contrasts between quad and
bond removal.

First, similar to quad removal [Eq. (3.13a)], the peak value for bond re-
moval grows proportionally to N2, such that βb can again be interpreted
as the intrinsic spatial density of excess zero modes. Interestingly, we
find that the intrinsic spatial density of zero modes for quad removal ex-
ceeds that of random bond removal by a factor β/βb ≈ 1.5, in agreement
with the observation 〈∆〉max > 〈∆b〉max. Apparently, the more correlated
removal of bonds that occurs in quad removal (4 per removed quad) pro-
motes the development of excess zero modes.

Second, the peak locations for bond and quad removal converge dif-
ferently as function of N, but their peak locations in the N→ ∞ are the
same within error bars: Whereas the peak location for quad removal
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tends to the constant ρ∞ ≈ 0.31± 0.01, the peak location for bond removal
tends to the constant ρ∞,b≈ 0.30± 0.01. We note that rescaling 〈∆b〉 (ρb, N)
according to Eqs. (3.15) yields a scaling collapse for large N (Fig. 3.20),
demonstrating that 〈∆b〉, similar to random quad removal, exhibits finite
size scaling with simple mean field exponents.

In short, we have demonstrated that random bond removal qualita-
tively displays the same features as random quad removal. In both cases,
the large N asymptotics prescribe that the peak tends to a constant loca-
tion and that the number of excess zero modes grows proportionally to
N2. Quantitatively, we have found that the asymptotic peak peak loca-
tion for quad and bond removal agrees within error bars, although the
peak locations converge with different exponents. Furthermore, we have
shown that the absolute number of excess zero modes is roughly 1.5 times
larger for quad removal than for bond removal.

3.6 Conclusions

In this chapter we compared the number of zero modes in generic and
symmetric collections of flexibly linked, rigid quads. We showed that
symmetric systems featuring identical squares can possess excess zero
modes that do not exist in generic systems consisting of irregular quads.

We have determined the average number of excess zero modes, 〈∆〉,
for a large ensemble of independent, diluted systems, in which a fraction
ρ of the total number of quads has been randomly removed. By using the
same dilution pattern for symmetric and generic systems, we determined
the ensemble averages 〈∆〉(ρ, N) and revealed subtle but important dif-
ferences between symmetric and generic systems. We found that 〈∆〉 → 1
for small cutting fractions (ρ→ 0), and 〈∆〉 → 0 for large cutting fractions
(ρ→ 1). Interestingly, the number of excess zero modes at intermediate
cutting fractions was shown to exhibit a maximum for which 〈∆〉 > 1.

Subsequently, we determined 〈∆〉(ρ, N) for a range of system sizes
and showed that the peak value and location of 〈∆〉 exhibits simple scal-
ing relations with N. By rescaling 〈∆〉(ρ, N) using the relations for the
peak value and location we obtained a scaling collapse, demonstrating
that the average number of excess zero modes is an intrinsic quantity
which exhibits finite size scaling with mean field exponents. By period-
ically tiling a 6×6 unit cell — with the maximum number of 3 excess
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modes for periodic boundaries — we have also been able to design dilu-
tion geometries with a density of zero modes that is six times higher than
the average for random cutting, independently of system size. Finally, for
random bond removal, we have a found a very similar scaling collapse
and peak location, with a density of zero modes that is roughly 1.5 times
smaller than for random quad removal.



Appendix

3.A Constructing the gradient

The goal of this appendix is to analytically construct the energy gradient
∇E (X) = ∂E/∂X, which we will do by expressing the components of the
gradient exclusively as functions of the corner coordinates of the quads.
This procedure circumvents the need to determine derivatives using finite
differences and leads to a significantly faster and more precise calculation
of the gradient.

To calculate the gradient we use the energy as given in Eq. (3.6), which
yields that

∂E
∂X

=
1
2

∂

∂X

(
Nb

∑
s=0

`s (X)
2

)
. (3.16)

Here `s(X) is some complicated function that describes the spring lengths
as function of X. Since springs are connected the corners of quads, we
can express their square length as

`2
s (X) =

[
xn,i (X)− xm,j (X)

]2
+
[
yn,i (X)− ym,j (X)

]2 , (3.17)

where (xn,i,yn,i) and (xm,j,ym,j) describe the positions of the corners (i =
0,1,2,3) of quad n and the corners (j = 0,1,2,3) of quad m respectively.
Following section 3.2, these corners can be calculated according to

(
xn,i
yn,i

)
=

(
xn
yn

)
+ ‖en,i‖

(
cos (θn,i + ϕn)
sin (θn,i + ϕn)

)
, (3.18)

with θn,i = arg(en,i) the centre-to-corners angles of the quad, and where
Eq. (3.18) similarly applies to quad m. Using the above relations, we now
express the gradient components ∂E/∂xn, ∂E/∂yn and ∂E/∂ϕn in terms
of the corner coordinates xn,i and yn,i. Note that we do not evaluate the
obtained derivatives as function of the corner coordinates; although these
can analytically calculated using Eq. (3.17), this would require specific
knowledge about the dilution pattern as entitled in the adjacency matrix.
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Derivatives with respect to xn

Any change in the quad’s coordinate xn involves the x-displacement of
the four corners. Therefore, the associated energy change is

∂E
∂xn

=
∂E

∂xn,1

∂xn,1

∂xn
+

∂E
∂xn,2

∂xn,2

∂xn
+

∂E
∂xn,3

∂xn,3

∂xn
+

∂E
∂xn,4

∂xn,4

∂xn

=
4

∑
i=1

∂E
∂xn,i

∂xn,i

∂xn

=
4

∑
i=1

∂E
∂xn,i

,

(3.19)

where we have used that ∂xn,i/∂xn = 1, by Eq. (3.18).

Derivatives with respect to yn

Similarly, the derivative of the energy with respect to yn can be written as

∂E
∂yn

=
4

∑
i=1

∂E
∂yn,i

∂yn,i

∂yn

=
4

∑
i=1

∂E
∂yn,i

.

(3.20)

Derivatives with respect to ϕn

Last, any change in the rotational angle ϕn introduces changes in both the
x and y corner coordinates of quad n, yielding the following derivative
for ϕn

∂E
∂ϕn

=
4

∑
i=1

[
∂E

∂xn,i

∂xn,i

∂ϕn
+

∂E
∂yn,i

∂yn,i

∂ϕn

]

=
4

∑
i=1

[
‖en,i‖

(
cos (θi + ϕn)

∂E
∂yn,i

− sin (θi + ϕn)
∂E

∂xn,i

)]
,

(3.21)

where we have substituted ∂xn,i/∂ϕn =−‖en,i‖sin (θi + ϕn) and ∂yn,i/∂ϕn =
‖en,i‖cos (θi + ϕn), as obtained from Eq. (3.18).
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3.B Constructing the Hessian matrix

Following the approach of appendix 3.A we now analytically determine
the Hessian by expressing all second order derivatives of the energy in
terms of the quads’ corner coordinates. We therefore consider all pos-
sible second order partial derivatives of the energy with respect to the
degrees of freedom of quad m and n, respectively given by (xn,yn, ϕn)
and (xm,ym, ϕm). Below we determine the derivatives for the cases m = n
and m 6= n, which comprise a total of 12 independent types of partial
derivatives.

Second derivatives with respect to xm and xn

∂

∂xm

(
∂E
∂xn

)
=

∂

∂xm

4

∑
i=1

∂E
∂xn,i

=
4

∑
i=1

∂

∂xn,i

∂E
∂xm

=
4

∑
i=1

[
∂

∂xn,i

4

∑
j=1

∂E
∂xm,j

]
(3.22)

For m = n, this yields:

∂2E
∂x2

n
=

4

∑
i=1

∂2E
∂x2

n,i
, (3.23)

For m 6= n and under the assumption that corner i of quad n is connected
to corner j of quad m, we obtain:

∂2E
∂xn∂xm

=
∂2E

∂xn,i∂xm,j
, (3.24)

Second derivatives with respect to ym and yn.

Following the approach to calculate the second derivatives with respect
to x, we obtain

∂2E
∂y2

n
=

4

∑
i=1

∂2E
∂y2

n,i
, (3.25)
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Under the assumption that corner i of quad n is connected to corner j of
quad m, we obtain:

∂2E
∂yn∂ym

=
∂2E

∂yn,i∂ym,j
. (3.26)

Second derivatives with respect to ϕm and ϕn.

∂

∂ϕm

(
∂E
∂ϕn

)
=

∂

∂ϕm

4

∑
i=1

[
∂E

∂xn,i

∂xn,i

∂ϕn
+

∂E
∂yn,i

∂yi,n

∂ϕn

]
(3.27)

On the right hand side of the above equation, the first term within the
summation represents the x contribution and the second term the y con-
tribution for the derivative of E with respect to ϕn. For clarity we will
first calculate the above derivative leaving out the second term, because
the results for the first and second term will take an identical functional
form. Therefore, we start with:

∂

∂ϕm

4

∑
i=1

∂E
∂xn,i

∂xn,i

∂ϕn

=
4

∑
i=1

[
∂2E

∂ϕm∂xn,i

∂xn,i

∂ϕn
+

∂E
∂xn,i

∂2xn,i

∂ϕm∂ϕn

]

=
4

∑
i=1

[
∂

∂xn,i

(
4

∑
j=1

[
∂E

∂xm,j

∂xm,j

∂ϕm
+

∂E
∂ym,j

∂ym,j

∂ϕm

])
∂xn,i

∂ϕn
+

∂E
∂xn,i

∂2xn,i

∂ϕm∂ϕn

]

=
4

∑
i=1

[
4

∑
j=1

[
∂2E

∂xn,i∂xm,j

∂xm,j

∂ϕm

]
∂xn,i

∂ϕn
+

∂E
∂xn,i

∂2xn,i

∂ϕm∂ϕn

]
.

(3.28)
For m = n, this yields

∂

∂ϕm

4

∑
i=1

∂E
∂xn,i

∂xn,i

∂ϕn
=

4

∑
i=1

[
∂2E
∂x2

n,i

∂2xn,i

∂ϕ2
n

+
∂E

∂xn,i

∂2xn,i

∂ϕ2
n

]
. (3.29)

For m 6= n, and assuming that corner i of quad n is connected to corner j
of quad m, we obtain from Eq. (3.28):

∂

∂ϕm

4

∑
i=1

∂E
∂xn,i

∂xn,i

∂ϕn
=

∂2E
∂xn,i∂xm,j

∂xm,j

∂ϕm

∂xn,i

∂ϕn
. (3.30)
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We have now calculated the outcome of Eq. (3.27) taking into account the
x-contribution only. Because the y-contribution takes the same form as
Eqs. (3.29-3.30), we obtain (m = n):

∂2E
∂ϕ2

n
=

4

∑
i=1

[
∂2E
∂x2

n,i

∂2xn,i

∂ϕ2
n

+
∂E

∂xn,i

∂2xn,i

∂ϕ2
n

+
∂2E
∂y2

n,i

∂2yn,i

∂ϕ2
n

+
∂E

∂yn,i

∂2yn,i

∂ϕ2
n

]
(3.31)

where ∂2xn,i/∂ϕ2
n =−‖en,i‖cos (θi + ϕn) and ∂2yn,i/∂ϕ2

n =−‖en,i‖sin(θi +
ϕn), by Eq. (3.18). For m 6= n we obtain:

∂2E
∂ϕm∂ϕn

=
∂2E

∂xn,i∂xm,j

∂xm,j

∂ϕm

∂xn,i

∂ϕn
+

∂2E
∂yn,i∂ym,j

∂ym,j

∂ϕm

∂yn,i

∂ϕn
. (3.32)

Cross derivatives with respect to xm, xn, ym and yn.

∂

∂ym

(
∂E
∂xn

)
=

∂

∂ym

4

∑
i=1

∂E
∂xn,i

= 0,

(3.33)

for both m = n and m 6= n, because ∂E/∂xn,i does not depend on ym.
Hence,

∂2E
∂x2

n
= 0, (3.34)

and

∂2E
∂xm∂xn

= 0. (3.35)
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Cross derivatives with respect to xm, xn, ϕm and ϕn.

∂

∂xm

(
∂E
∂ϕn

)
=

∂

∂xm

4

∑
i=1

[
∂E

∂xn,i

∂xn,i

∂ϕn
+

∂E
∂yn,i

∂yi,n

∂ϕn

]

=
4

∑
i=1

[
∂2E

∂xm∂xn,i

∂xn,i

∂ϕn
+

∂E
∂xn,i

∂x2
n,i

∂xm ϕn

]

=
4

∑
i=1

[
∂

∂xn,i

(
4

∑
j=1

∂E
∂xm,j

)
∂xn,i

∂ϕn

]

=
4

∑
i=1

[
4

∑
j=1

[
∂2E

∂xn,i∂xm,j

]
∂xn,i

∂ϕn

]
.

(3.36)

For m = n, this yields

∂2E
∂xn∂ϕn

=
4

∑
i=1

∂2E
∂x2

n,i

∂xn,i

∂ϕn
. (3.37)

And for m 6= n, assuming that corner i of quad m is connected to corner j
of quad n, we obtain

∂2E
∂xm∂ϕn

=
∂2E

∂xn,i∂xm,j

∂xn,i

∂ϕn
. (3.38)

Cross derivatives with respect to ym, yn, ϕm and ϕn.

The derivation is identical to the cross derivatives with respect to x and
ϕ. For m = n, the result therefore is

∂2E
∂yn∂ϕn

=
4

∑
i=1

∂2E
∂y2

n,i

∂yn,i

∂ϕn
. (3.39)

And for m 6= n, assuming that corner i of quad m is connected to corner j
of quad n, we obtain

∂2E
∂ym∂ϕn

=
∂2E

∂yn,i∂ym,j

∂yn,i

∂ϕn
. (3.40)



4
Topology based counting of excess zero

modes

For disordered systems in 2D, the number of zero modes can be deter-
mined exactly from the connection topology [47, 48], but for symmetric
systems we are not aware of general techniques to do so. Here we de-
velop an approximate counting method for the number of zero modes
in diluted symmetric systems consisting of hinging squares. We describe
these systems as a collection of clusters coupled by connectors and use
their topology to iteratively estimate the number of zero modes. We com-
pare the iterative results of our topology based counting method to exact
calculations based on the Hessian matrix, and show that we obtain a tight
lower bound on the number of excess zero modes.

A paper based on the work presented in this chapter is in preparation for submission to
Phys. Rev. Lett. as:

L.A. Lubbers and M. van Hecke, Excess floppy modes in metamaterials with symmetries.
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4.1 Introduction

The aim of this chapter is to gain insight into the nature and multiplicity
of the excess zero modes that we numerically characterized in chapter
3. First, for the generic case the number of zero modes and states of
self stresses can be determined by the pebble game [47, 48], a discrete
algorithm that is exact in two dimensions and for generic quads. For
symmetric quads however, this algorithm is not suitable. We therefore fo-
cus on gaining an approximate, yet accurate, understanding of the num-
ber of (excess) zero modes in diluted symmetric systems, which will be
topology-based.

We start from the observation that the occurrence of excess modes is
driven by densely connected patches, which are rigid in the generic case
but, irrespective of size, feature a hinging mode in symmetric systems.
Hence, we would like to consider our systems as connected groups of
quads, that we will refer to as clusters, and in section 4.2 we give precise
definitions that allow us to separate any system in a collection of clusters,
connectors and remaining quads. We show examples of this partition,
and point out that the remaining quads do not significantly contribute
to ∆, as they almost equally contribute to ns and ng. We therefore de-
fine so-called pruned systems, where the remaining quads are removed,
and that solely consist of clusters and connectors — we show that ∆ for
the full system and ∆′ for the pruned systems are extremely close in sec-
tion 4.3. In section 4.4 we consider the three distinct type of connectors
that arise between two clusters, and show how they constrain the number
of (excess) zero modes. We find that clusters with a sufficient number of
connectors should be seen as a single cluster, and develop an iterative
cluster merging algorithm. Finally, in section 4.5 we apply this topology-
based iterative algorithm to determine n′s and ∆′ for the pruned systems,
and show very close correspondence to the numerically obtained ∆′.

4.2 Clusters on the square and dual grid

In this section we introduce the notion of 4-blocks, that, once detected,
can be used to unambiguously detect clusters, connectors and remaining
quads. A 4-block consist of four quads connected in a loop [Fig. 4.1(a)]
and has one internal degree of freedom. A quad can belong to one or
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(a) (b) (c)
(i)

Figure 4.1: Detection of 4-blocks. Systems are initialized with grey quads, which
are marked blue if they belong to a 4-block. The square and dual grid associated
with the 4-blocks are respectively shown in black and red. (a-b) The top rows
show unmarked quads of (a) a single 4-block and (b) a strip with one dangling
quad, quad (i). The bottom rows display the associated square and dual grid,
and the marked quads. (c) (Square grid not shown) As an additional example
we show the dual grid of a large system that is not strip-like.

more 4-blocks, as is for example the case for the strips and loops (linearly
connected 4-blocks) described in section 3.1; a quad can also belong to
zero 4-blocks, such as quad (i) of the system shown in Fig. 4.1(b).

Formally, the presence of a quad in a diluted system can be expressed
as the filling of a node on a square-like grid* (Fig. 4.1). Similarly, the pres-
ence of a 4-block can be expressed by filling a node on a dual, square-like
grid, whose nodes lie in the center of each 4-block (Fig. 4.1). In a first
step, we detect all 4-blocks, and track the quads of all 4-blocks [Figs. (4.1-
4.2)]. After detecting all 4-blocks and filling the dual grid accordingly,
we note that adjacent nodes on the dual grid correspond to 4-blocks that
are connected and are part of the same cluster, and we thus connect these
dual nodes [red lines in Figs. (4.1-4.2)]. Subsequently, we assign the same
colour to all quads that belong to these connected 4-blocks, and use differ-
ent colours for 4-blocks that are disconnected on the dual grid (Fig. 4.2).
This procedure yields an unambiguous detection of clusters: As illus-
trated for the systems in Fig. 4.2, we have identified and coloured all
connected 4-blocks, and find that each quad belongs to either zero (grey),
one (colour) or in some cases, two clusters (bi-colour).

*For the generic quads, there is no regular underlying lattice. Nonetheless, the con-
nectivity and topology of such networks are equivalent to that on a square lattice.
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(a) ρ = 0.4, ∆ = 0

1

2

2 2

(b) ρ = 0.3, ∆ = 1

1 1

1

2

2

2

3

3

(c) ρ = 0.2, ∆ = 2 (d) ρ = 0.1, ∆ = 1

Figure 4.2: Clusters on the dual grid. Distinct clusters are indicated by different
colours; the red nodes and lines display the dual grid. (a-d) Four independent
randomly diluted systems of varying cutting fraction, shown from high to low ρ.
The actual quads of different clusters can connect in three different manners, as
indicated by the numbers 1, 2 and 3: Via a grey quad (type 1), direct connection
(type 2, marked by small circles) or an shared quad (type 3 and bi-coloured). All
grey quads that are not type-1 are remaining quads.
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Distinct clusters can be connected in three different manners, as indi-
cated by the numbers in Fig. 4.2, of which a more detailed overview is
provided in Fig. 4.8. First, a grey quad may connect to two clusters and
we will call this a type-1 connector [Fig. 4.8(a)]. Second, two clusters may
directly be connected, leading to a type-2 connector [Fig. 4.8(b)]. Third,
two clusters may share a quad, leading to a type-3 connector [Fig. 4.8(c)].
These names are not arbitrary — in what follows we will show that these
lead to one, two or three constraints.

Finally, grey quads that are not type-1 connectors are classified as
remaining quads. In the following section we will discuss the relevance
of the remaining quads and show that most of these are not relevant for
∆. Altogether, in this section we have developed the notion of 4-blocks
which allows us to partition any randomly diluted system into clusters,
connectors and remaining quads.

4.3 Pruned systems

We now define pruned systems, where most of the remaining quads are
removed, motivated by the aim to study the nature and multiplicity of the
excess zero modes in the simplest possible setting. We therefore demon-
strate that remaining quads contribute almost equally to ns and ng, and
can thus be pruned without significantly altering ∆. The only remaining
quads that easily can be detected and understood to have the potential
to change ∆, are self-connectors — isolated quads that are connected to
the same cluster [examples are shown in Fig. 4.2(d) and Fig. 4.6(a)]. These
never modify ns, but they may rigidify an otherwise hinging generic clus-
ter, and we have therefore kept these self-connectors in our pruned sys-
tems. All other remaining quads are removed. In the following we de-
scribe the average number of excess zero modes in the pruned systems
by 〈∆′〉(ρ, N), with ρ the cutting fraction of the full systems, to facilitate
comparison with ∆.

In Fig. 4.3 we have visualized the pruned systems that correspond to
the full systems shown in Fig. 4.2. For each of these examples we find
that the number of excess zero modes before and after pruning is the
same (∆ = ∆′). One can understand this intuitively by noting that the re-
maining quads form dangling and floppy groups that equally contribute
to ns and ng. Nonetheless, a quantitative comparison of the ensemble
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(a) ∆′ = 0

1
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(b) ∆′ = 1
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(c) ∆′ = 2 (d) ∆′ = 1

Figure 4.3: Pruned versions of the systems show in Fig. 4.2. Note that ∆′ = ∆ for
each of these examples.

averages 〈∆〉 and 〈∆′〉 as function of ρ and N, as obtained from another
series of independent simulations, shows slight differences in the number
of excess modes of pruned and full systems can occur (Fig. 4.4). As can be
observed from panel (a), the curves 〈∆〉(ρ, N) (solid lines) and 〈∆′〉(ρ, N)
(dashed lines) are essentially indistinguishable, but [〈∆′〉 − 〈∆〉]/〈∆〉?, as
plotted in panel (b), reveals differences that are most pronounced for in-
termediate cutting fractions. Here, 〈∆〉? denotes the peak value of 〈∆〉.
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Figure 4.4: Excess zero modes in full and pruned systems, for a range of system
sizes. (a) The average number of excess modes as function of ρ for full (〈∆〉,
solid lines) and pruned (〈∆′〉, dashed lines) systems for a range of system sizes.
(b) Deviations as compared to the peak value of the full systems, 〈∆〉?, show that
relative deviations are maximally 5% for the system sizes considered. (c) The
peak value of 〈∆′〉 − 〈∆′〉 as function of N. (d) Deviations rescaled by N2.

As can be seen, these relative differences never exceed 5% for the sys-
tem sizes considered. In panel (c) we show the peak value of the devi-
ations, [〈∆′〉 − 〈∆〉]?, as function of N. This shows that the deviations
grow rapidly for small N, but for larger N, our data is consistent with a
crossover to N2 scaling — to accurately measure the asymptotic scaling
exponent much larger system sizes are required. For completeness, in
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Figure 4.5: CDFs for the number of internal zero modes (ni
m) in full and pruned

systems, in the peak regime of 〈∆〉. The solid curves display data for the number
of zero modes in the full symmetric (ns) and generic systems (ng); the dashed
curves display data for the pruned symmetric (n′s) and generic systems (n′g). We
show data for system sizes (a) N = 20 and (b) N = 30.

panel (d) we show the deviations rescaled by N2, which leads to a rea-
sonable collapse for large N. Our data thus suggests that the difference
between 〈∆〉 and 〈∆′〉 is extensive. Altogether, these findings demonstrate
that pruned systems accurately capture the excess zero modes of full sys-
tems, which allows us to study the nature and multiplicity of the excess
zero modes in the simpler pruned systems.

To further show that pruned systems well describe the full systems,
we also display some ensemble distributions of ∆ and ∆′ as CDFs in
Fig. 4.5, for ρ that corresponds to the peak location of 〈∆〉. For both sys-
tem sizes that are shown in Fig. 4.5, we observe a very similar translation
of ns and ng as a result of pruning. These findings therefore further sup-
port that the number of excess zero modes in the full and pruned system
are very close.

Finally, to gain insight in the cause of deviations between ∆ and ∆′,
and the role of self-connectors, consider the three examples shown in
Fig. 4.6. First, the strip-like cluster in panel (a) displays a typical ex-
ample illustrating why we do not prune self-connectors; by keeping this
self-connector, we find that ∆ = ∆′ = 1. In contrast, where we to prune
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(a)

∆ = 1, ∆′ = 1, ∆′′ = 0

3

(b)

∆ = 1, ∆′ = 2, ∆′′ = 2,

1

3

(c)

∆ = 1, ∆′ = 0, ∆′′ = 0

Figure 4.6: Cutting patterns that illustrate the role of self-connectors and devia-
tions between ∆ and ∆′. (a) Pruning this system while keeping the self-connector
yields ∆ = ∆′, whereas we would find ∆′′ = 0 if we additionally prune the self-
connector. This illustrates that self-connectors rigidify hinging generic strips.
(b-c) Cutting patterns for which pruning of remaining grey quads changes the
number of excess zero modes (∆ 6= ∆′). Note that these examples do not contain
self-connectors, such that ∆′ = ∆′′.

all remaining quads, we would find that ∆′′ = 0. The second and third
example [panel (b-c)] display cutting geometries that do not contain self-
connectors, but for which ∆ 6= ∆′. These have to do with more com-
plex clusters of remaining quads that, in general, will be hard to detect.
Nonetheless, as we have shown in Fig. 4.4, deviations such as as displayed
in Fig. 4.6(b-c) are rare and ∆ and ∆′ are very close.

4.4 Topology based counting argument

We now explain how we develop a counting argument to estimate n′s from
the topology of the clusters and their connectors. To establish this count-
ing argument we will utilize the generalized Maxwell count [Eq. (3.3)],
which can be adapted to the context of clusters (explicitly indicated by
the superscript c) as:

Nc
dof − Nc

con = ni
m + 3− nc

ss. (4.1)

In the above equation, Nc
dof represents the number of internal and ro-

tational/translational degrees of freedom of the clusters and Nc
con the
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number of constraints of their associated connectors†. We note that large
clusters feature a significant number of internal states of self-stress, but
these we will ignore. However, when clusters are coupled, new states of
self-stress may arise and we count these by nc

ss. Hence, we see the clusters
as ’black boxes’ that can rotate, translate, and hinge — all internal states
of self-stress are ignored. Thus, nc

ss describes the number of redundant
inter-cluster constraints given by the type 1,2 and 3 connectors. Lastly,
recall that ni

m expresses the number of internal zero modes, with ni
m = n′s

for symmetric systems. We furthermore note that Eq. (4.1) also applies to
generic systems with ni

m = n′g, but as motivated already, our main focus
is to count the number of zero modes in symmetric systems, rather than
the zero modes in generic systems where exact algorithms to count these
already exist [47, 48].

Below we first discuss how the number of (excess) zero modes can
be determined in the simplest scenario in which connectors are absent
(Nc

con = nc
ss = 0). Subsequently, we consider systems in which connectors

are present and explain how to correctly take the Nc
con constraints and

nc
ss self-stresses into account. Finally, we present a step-wise analysis of

a (randomly diluted) system that exemplifies how our methodology can
be applied to successfully count n′s.

4.4.1 Counting without connectors

In the simplest scenario, there are no connectors between clusters and
inter-cluster self-stresses are absent (nc

ss = 0) — this typically occurs at
either low [Fig. 4.3(d)] or high cutting fractions [Fig. 4.3(a)]. We now
show that — in the absence of connectors — we can estimate the number
of (excess) zero modes from a simple argument based on the multitude
of clusters.

Using Eq. (4.1) we first note that ni
m = Nc

dof − 3 in the absence of con-
nectors. For symmetric systems, all clusters are hinging, and each cluster
contributes 4 degrees of freedom. For a randomly diluted system that
contains nc clusters, we therefore immediately obtain n′s = 4nc − 3. To
determine the number of excess zero modes we also need to obtain n′g. In
principle, our goal is not to develop a counting argument for n′g, since

†The constraints introduced by the connectors should not be confused with the inter-
nal constraints of an individual cluster. The internal constraints constitute clusters, but
do not constrain the motion between adjacent clusters.
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this is already captured by the pebble game [47, 48]. However, in the
very special case where constraints and inter-cluster self-stresses are ab-
sent, we can approximate the outcome of the pebble game using a simple
argument — which helps us to gain insight into the nature and multi-
plicity of the excess zero modes. We therefore proceed by providing an
approximate counting method for n′g.

To determine n′g we need to distinguish hinging clusters and rigid
clusters. For generic systems we have discussed before that while strips
have one hinging mode, larger clusters are rigid; generic clusters can
therefore either contribute 3 (rigid clusters) or 4 (hinging clusters) degrees
of freedom. Assuming that of the nc clusters, nr are rigid and nh are
hinging, we obtain n′g = 4nh + 3nr − 3. Combining the expressions for
n′s and n′g, this yields the rigid-cluster-based estimate ∆r = n′s − n′g = nr,
demonstrating that the number of excess zero modes is tantamount to
the number of rigid clusters in the absence of connectors. Hence, excess
modes are induced as a result of sufficiently large clusters that are rigid
in the generic case, but retain their hinging mode in the symmetric case.

Comparison of ∆r and exact results — We now systematically compare
the rigid-cluster-based prediction 〈∆r〉(ρ, N) (dashed lines) and the exact
results 〈∆〉(ρ, N) (solid lines) based on the Hessian matrix, as obtained
from a large number of independent simulations. These simulations are
based on two assumptions: First, we did not prune these systems to re-
duce numerical computation time, as this circumvents the need to detect
remaining quads and connectors. This does not affect the outcome for the
number of rigid clusters. Second, counting of the number of rigid clus-
ters is approximate. A sufficient condition for rigidity is that somewhere
in the cluster dual nodes are connected in a loop. We detect the most
common loop that occurs in dense clusters, where one or more primitive
loops of length four occur [Fig. 4.1(c)]. In principle, the smallest loop on
the dual grid can be longer than four [e.g. as in Fig. 3.3(c)]. However,
these cases are rare and yield a negligible overestimation of nr, which
therefore does not affect the main findings we will discuss now.

In Fig. 4.7 we display 〈∆r〉(ρ, N) (dashed lines) and the exact results
〈∆〉(ρ, N) (solid lines). As can be observed from Fig. 4.7(a), 〈∆r〉 quali-
tatively captures the peak behaviour of 〈∆〉 and yields, as expected, an
excellent approximation for large cutting fractions; in this regime the sys-
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Figure 4.7: Comparison of the average number of excess zero modes predicted
by exact calculations 〈∆〉(ρ) (solid lines) and the simultaneous rigid-cluster-
based approximation 〈∆r〉(ρ) (dashed lines), for a range of system sizes. We
have used the same ensemble size for each N as in Fig. 3.12 for the data shown.
(a) 〈∆r〉 shows excellent agreement with 〈∆〉 for cutting fractions beyond the
peak location of 〈∆〉. (b) Scaling collapse of 〈∆〉 and 〈∆r〉 in the N→∞ limit for
the data shown in panel (a).

tems contain a few rigid clusters as well as numerous isolated hinging
clusters and floppy groups of loosely connected quads — only the rigid
clusters contribute to ∆. In contrast, 〈∆r〉 displays significant deviations
from 〈∆〉 for intermediate ρ. Comparison of the large N asymptotics of
〈∆r〉 —which similar to 〈∆〉 scale as N2— with the asymptotics of 〈∆〉
shows that these deviations are characterized by a peak value which is
consistently overestimated, and a peak location with a slight offset to the
left [Fig. 4.7(b)].

The observed deviations expose the effect of connectors. For interme-
diate ρ the clusters are strongly entangled by connectors of type 1,2 and
3 and consideration of their associated self-stresses is necessary to accu-
rately estimate n′s and n′g. As discussed before, in the generic case there
exists an exact algorithm to determine n′g and the self-stresses. However,
in the symmetric case this algorithm is not suitable and our main goal
therefore is to develop an approximate counting argument for the num-
ber of (excess) zero modes and self-stresses in these systems.
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Figure 4.8: Cluster connector types. There exist three distinct manners in which
clusters A and B may be connected, namely via a type-1 (left), type-2 (middle) or
type-3 (right) connector. These connectors, according to their names, introduce
precisely 1, 2 or 3 constraints, as is indicated at the bottom of the figure. In the
main text we provide a derivation for the number of constraints associated with
each connection type.
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Figure 4.9: Step-wise explanation of connection type-3. In step 1, the upper right
quad of the green cluster is removed and two associated bonds are cut. In step 2
both clusters are connected and two bonds are restored, leading to no net change
in the number of bonds and the net removal of 3 degrees of freedom. Hence, the
number of zero modes as a result of the type-3 connection is lowered by 3.

4.4.2 Connectors, constraints and inter-cluster self-stresses

Before presenting a counting argument that takes into account connec-
tors, we now first show that connectors of type 1,2 and 3, conform to
their names, introduce precisely 1, 2 and 3 constraints when connecting
a pair of clusters. Moreover, we explain the appearance of inter-cluster
self-stresses as a result of these connectors.

Connectors and constraints. — To evidence the mentioned number of
constraints associated with each connection type, we consider a system
that consists of two clusters, A and B, and determine how ns of this two-
cluster system is lowered for each connection type. In Fig. 4.8 we display
a detailed graphical representation of the three distinct manners in which
cluster A and B can be connected. Before the clusters are connected
ns = Nc

dof − 3 = 5, where each cluster contributes 4 degrees of freedom.
These 5 zero modes should be interpreted as the independent hinging of
both clusters (2 zero modes) and relative translations or rotations of the
clusters (3 zero modes). After the clusters are connected by a type 1, or 2
or 3 connector, some of their relative motions become constrained, and ns
will respectively be lowered by one, two or three — which is equivalent
to the presence of one, two or three constraints. To understand these
connectors add one, two or three constraints, consider the zoomed areas
in Fig. 4.8. First, for a type-1 connection the grey quad adds 3 degrees
of freedom and 2 extra bonds, hence we lose one zero mode. Second, a
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type-2 connection introduces a single additional bond, hence we lose two
zero modes. Third, a connection type-3 is more subtle and can be seen
as removing a single quad (three degrees of freedom), without adding
new bonds, thereby lowering the number of zero modes by three. This is
illustrated in more detail in Fig. 4.9.

Inter-cluster self-stresses. — Above we have illustrated the lowering
of ns as a result of a single type-1, or type-2, or type-3 connector. To un-
derstand the role of self-stresses we now consider the same two-cluster
in the presence of multiple connectors and note that the lowering of ns
is bound to the minimum ns = 1; coupled symmetric clusters always at-
tain a global hinging mode, regardless of the number of constraints these
share. As an example, consider the two-cluster system shown in Fig. 4.10

that contains two type-3 connectors (6 constraints). For this system one
can readily envision that the connectors constrain all relative motions of
the green cluster with respect to the blue cluster (and vice versa); the sys-
tem only allows for a single dependent internal zero mode in which the
motions of both clusters are coupled — global hinging. The cluster pair is
dependent, acts as a single cluster with ns = 1, and from Eq. (4.1) we ac-
cordingly find that the clusters share 2 inter-cluster self-stresses (nc

ss = 2).
Hence, the system contains 2 degenerate (redundant) constraints.

The example discussed above illustrates a general observation which
is most easily understood by the consideration of Table 4.1. Here we tab-
ulated ns and nc

ss as function of the number of constraints (Nc
con), where

Figure 4.10: The clusters in this system exhibit no relative motions (ns = 1) due
to two type-3 connectors and effectively thus behave as a single cluster.



120 CHAPTER 4. TOPOLOGY BASED COUNTING OF EZMS

two-cluster system

Nc
con ns nc

ss

0 5 0
1 4 0
2 3 0
3 2 0

↓ ns constant ↓
4 1 0
5 1 1
6 1 2

Table 4.1: Number of zero modes (ns) and inter-cluster states of self-stress (nc
ss),

as function of the number of constraints (Nc
con) for a two-cluster system. For

Nc
con ≥ 4 the number of internal zero modes becomes constant, as indicated by

the shaded region.

we note that Nc
con is related to the number of type-1,2 and 3 connectors

via
Nc

con = n1 + 2n2 + 3n3, (4.2)

with n1,n2 and n3 the number of type 1,2 and 3 connectors. Starting
from two unconnected clusters (n1 = n2 = n3 = 0), Table 4.1 clearly shows
that for each constraint added, ns is lowered by one. The lowering of
ns persists until all relative motions of the clusters become constrained
(ns = 1), which requires precisely 4 constraints. From this point, the
presence of any additional constraints does no longer affect ns, but leads
to the development of inter-cluster self-stresses instead.

4.4.3 Counting including connectors

In this section we present a counting argument which is suitable for sym-
metric systems and that takes into account the presence of connectors.
The challenge in counting n′s is that that the number of inter-cluster self-
stresses generally is non-zero: Whereas the left hand side of Eq. (4.1) is
easily calculated based on the number of clusters and constraints of the
connectors, we need to know nc

ss in order to calculate n′s. In what fol-
lows we therefore develop a counting method that iteratively eliminates
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the inter-cluster self-stresses, yielding an hierarchy of predictions for n′s,
based on the following methodology:

(i) Given a randomly diluted system, we first partition the system into
clusters, connectors and remaining quads, and subsequently prune
the system.

(ii) We merge clusters that share four or more constraints. This cluster
coarsening eliminates (some of the) the inter-cluster self-stresses.

(iii) After the merging of clusters, we may find that new clusters have
formed that again share four or more constraints — we iterate until
no more clusters can be merged.

(iv) In each iteration step, we calculate the estimate for n′s from the topol-
ogy of the clusters and their connectors, according to

ns,i = 4nc,i − Nc
con,i − 3, (4.3)

where nc,i and Nc
con,i are the number of clusters and constraints as-

sociated with iteration step i.

We will now first clearly motivate this methodology, and then provide
a worked-out example. Step (i) is straightforward and already explained
in Sections (4.2-4.3). The merging of cluster pairs as described in steps (ii)
and (iii) ensures inter-cluster states of self-stress become internal and do
no longer contribute to nc

ss, which circumvents the need to explicitly count
these. For example, we could treat the system in Fig. 4.10 as two distinct
clusters with 8 degrees of freedom, 6 constraints, 4 zero modes and 2 self-
stresses, but the simpler approach is to merge the clusters into a single
(unconstrained) cluster that features 4 degrees of freedom and zero inter-
cluster self-stresses. A sufficient condition for merging is that two clusters
share 4 (or more constraints); this condition is based on Table 4.1, which
we used previously to motivate that clusters with four or more constraints
are dependent and develop inter-cluster self-stresses. Finally, Eq. (4.3) as
given in step (iv) is based on Eq. (4.1), where we note that the number
of inter-cluster self-stresses does not appear in Eq. (4.3) as we tentatively
assume nc

ss = 0 after the cluster merging in each iteration step.
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(a) dilution geometry

nc,0 = 6, Nc
con,0 = 18

1↔ 4 : 5 constraints

(b) partioned + pruned

cluster labels

1 2 3 4 5 6

nc,1 = 5, Nc
con,1 = 13

1↔ 6 : 4 constraints

(c) Iteration 1

nc,2 = 4, Nc
con,2 = 9

(d) Iteration 2

Figure 4.11: Visualization of the iterative merging of clusters to estimate n′s (see
main text). At the bottom of each of the respective panels we provide the number
of clusters nc,i and constraints Nc

con,i. The text ’A↔B’ additionally indicates the
labels of cluster pairs AB that share sufficient constraints for merging. (a) Initial
random dilution geometry. (b) Partitioned and pruned system. (c-d) Subsequent
merging of clusters. For simplicity, the dual grid is only shown in panel (b).
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Worked-out example. — To gain intuition for the iterative counting
argument, we finalize this section by calculating the hierarchy of predic-
tions ns,i for the system shown in Fig. 4.11(a). We will show that this
system requires two merging iterations and that the result as obtained
from the final iterated topology of the clusters and their connectors is in
agreement with exact results based on the Hessian matrix, namely n′s = 4.

initial estimate (no iterations) (ns,0). — To obtain the initial estimate
for n′s we partition the randomly diluted system and prune the remain-
ing quads [Fig. 4.11(b)]. From the resulting topology of the clusters and
their connectors, we note that there are nc,0 = 6 clusters and Nc

con,0 = 18
constraints, tantamount to 1 type-1 connector, 7 type-2 connectors and 1
type-3 connector, and determine accordingly that ns,0 = 4×6− 18− 3 = 3.

estimate for one iteration (ns,1). — By inspection of the clusters and
their connectors in Fig. 4.11(b) we find that clusters 1 and 4 are quali-
fied for merging; these share 5 constraints (one type-2 and 3 connector),
whereas all other cluster pairs share less than 4 constraints. We therefore
merge cluster 1 and 4 by assigning these the same colour, which leads to
the (new) topology of the clusters and their connectors as displayed in
Fig. 4.11(c). Due to the cluster merging we lose 1 cluster, 1 type-2 con-
nector and 1 type-3 connector, such that we now obtain that nc,1 = 5 and
Nc

con,1 = 13. The new estimate therefore yields ns,1 = 4×5− 13− 3 = 4.

estimate for two iterations (ns,2). — Due to the formation of new clus-
ters in the previous iteration [Fig. 4.11(c)], we now also find that clusters
1 and 6 qualify for merging. We therefore also merge these clusters to ob-
tain the topology as shown in Fig. 4.11(d), for which we accordingly find
that nc,2 = 4 and Nc

con,2 = 9. This yields the estimate ns,2 = 4×4− 9− 3= 4,
which is also the final estimate since Fig. 4.11(d) contains no more clus-
ters that satisfy the merging rule. We thus find that our result as obtained
via counting is in agreement with the exact result based on the Hessian
matrix, demonstrating that we can count n′s from the topology of the clus-
ters and their connectors. In the next section we test the general accuracy
of this approach.
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4.5 Counting of (excess) zero modes

In this section we compare exact results for the number of (excess) zero
modes in symmetric systems, based on the Hessian matrix, against the
topology based estimates that have been developed above. We in particu-
lar focus on the sequence of predictions for ∆′, rather than n′s itself, since
the main goal of this chapter is to gain insight in the nature and multiplic-
ity of the excess zero modes. We therefore define ∆i = ns,i − n′g, where ns,i
follows from the iterative counting argument and n′g from exact Hessian
based calculations, and show that ∆∞ (final iterated result) yields a tight
lower bound on the exact ∆′. Finally, to understand deviations between
∆∞ and ∆′, we compare ns,∞ to n′s and discuss a number of examples for
which our iterative counting method is inaccurate.

4.5.1 Results

Here we test the accuracy of ∆i as function of system size N and cutting
fraction ρ, by comparing the average estimates 〈∆i〉(ρ, N) to the exact
results 〈∆′〉(ρ, N). In order to obtain 〈∆i〉, we have numerically imple-
mented the iterative counting method. This Python-based code automat-
ically partitions each randomly diluted systems into clusters, connectors‡

and remaining quads, and subsequently iteratively merges clusters that
satisfies the merging rule. In this way we acquire ∆i for a large number of
independent randomly diluted systems, allowing us to obtain reasonably
well statistically converged data for 〈∆i〉 (we used the same ensemble
sizes as described in section 3.3.2). Recall that i = 0 corresponds to the
initial system for which no clusters have been merged yet. For i = 1 we
have merged the clusters once, for i = 2 twice, etc. The final topology,
which contains no more clusters that satisfy the merging rule, is denoted
by i = ∞.

In Fig. 4.12 we show the average iterative predictions 〈∆0〉(ρ), 〈∆1〉(ρ),
〈∆2〉(ρ) and 〈∆∞〉(ρ) and the exact result 〈∆′〉(ρ) for two system sizes,
N = 10 and N = 90. For clarity we do not display the estimates that fall
in between i = 2 and i = ∞. As can be observed, the most naive approx-
imation that neglects inter-cluster self-stresses, 〈∆0〉, accurately captures

‡In appendix 4.A we explain how each connection type is numerically detected using
the adjacency matrix of the system and of individual clusters.
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Figure 4.12: Iterative topology based estimates 〈∆0〉, 〈∆1〉, 〈∆2〉 and ∆∞ com-
pared against the exact Hessian-based result 〈∆′〉. We show results for (a) N = 10
and (b) N = 90.

〈∆′〉 for large cutting fractions, but displays significant deviations for in-
termediate cutting fractions. This finding is fully consistent with the ex-
pectation that inter-cluster self-stresses are present for strongly connected
clusters (intermediate ρ), but absent for clusters that share few to none
connectors (large ρ). The estimate after one merging iteration, 〈∆1〉, al-
ready leads to a significantly improved estimate for the number of excess
zero modes for each of the system sizes shown; the cluster merging elim-
inates a large number of self-stresses such that 〈∆1〉 appears much closer
to 〈∆′〉 than 〈∆0〉. However, the new topologies of the clusters and con-
nectors as obtained after one iteration again contain self-stresses such that
〈∆1〉 still deviates from 〈∆′〉. The second merging iteration again elimi-
nates these self-stresses, and as can be seen, 〈∆2〉 yields an improved
estimate for 〈∆′〉. The described improvement persists for the iterations
thereafter (i = 3,4..) (not shown) up to the point where all of the clusters
are merged, yielding the final estimate 〈∆∞〉. Fig. 4.12 demonstrates that
we find very close correspondence of 〈∆′〉 and 〈∆∞〉 (which we will show
to be a lower bound below) for each of the system sizes shown. Nonethe-
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Figure 4.13: Comparison of 〈∆′〉 and 〈∆∞〉 for a range of system sizes. (a) The
final deviations, 〈∆′〉− 〈∆∞〉 as a function of ρ. (b) Deviations as compared to the
peak value of 〈∆′〉, 〈∆′〉?, show that relative deviations are maximally 15% for
the largest system size considered (N = 90). (c) The peak value of 〈∆′〉 − 〈∆∞〉
as function of N. (d) Deviations rescaled by N3.

less, we observe small deviations between 〈∆∞〉 and 〈∆′〉, which implies
the final iterated topologies contain remaining inter-cluster self-stresses.

In Fig. 4.13 we systematically compare 〈∆′〉 and 〈∆∞〉 for system sizes
N = 10,20, . . . ,80,90. Panel (a) shows that the final difference between our
iterative counting method and the exact number of excess zero modes,
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Figure 4.14: Discrete joint probability distributions as function of n′s and ns,∞, for
N = 10 and an ensemble size of 105 independent simulations. The solid black
lines describe n′s = ns,∞ and the shaded areas indicate the regions n′s > ns,∞.
(a) For ρ = 0.24 our counting method is exact for 99% of the simulations and
yields a lower bound on n′s. (b) For ρ = 0.5 our counting argument is exact for
all simulations. Inset graphs: Discrete probability distribution of n′s − ns,∞.

〈∆′〉 − 〈∆∞〉, grows with system size and is strongest for ρ ≈ 0.2 (signifi-
cantly below the peak location at ρ≈ 0.3). As can be seen in panel (b), we
find that the relative deviations [〈∆′〉 − 〈∆∞〉]/〈∆′〉?, with 〈∆′〉? the peak
average of 〈∆′〉, are maximally 15% for the largest system size considered.
Panel (c) shows that the peak value of the deviations, [〈∆′〉 − 〈∆∞〉]?, ini-
tially grows faster than N3, and then slowly crosses over to a smaller
effective exponent; our data shows that this exponent is smaller than 3
[see panel (d)], and it is conceivable that ultimately deviations grow as
N2, i.e., are extensive, similar to the data in, e.g., Fig. 4.4.

Comparison of n′s and ns,∞. — To understand the deviations between
〈∆∞〉 and 〈∆′〉 we now consider the discrete probability distributions as
function of n′s and ns,∞ in Fig. 4.14. Panel (a) demonstrates a general
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and important feature of our iterative counting argument: ns,∞ yields a
strict lower bound on n′s. Deviations are rare, and occur when one or
more connectors are degenerate (examples are discussed below), result-
ing in complex inter-cluster self-stresses that are not eliminated by our
iterative merging method. According to Eq. (4.1) these remaining self-
stresses yield an estimate for n′s which is too low. Therefore, ns,∞ yields
a lower bound on n′s, and accordingly, ∆∞ yields a lower bound on 〈∆′〉.
Nonetheless, our counting method provides an excellent approximation
to n′s — for N = 10 and ρ = 0.24 we find that our counting method is accu-
rate in 99% of the cases [Fig. 4.14(a)]. Note that strongly diluted systems
typically do not contain remaining self-stresses such that our counting
method is exact for all simulations in that case [Fig. 4.14(b)].

We finally discuss two dilution patterns to illustrate the role of de-
generate connectors that lead to complex inter-cluster self-stresses that
are not eliminated by the iterative merging procedure (Fig. 4.15). In
panel (a) we show 3 clusters that are connected in a loop and in this
system none of the clusters satisfies the merging rule. Therefore, we
estimate ns,∞ = 12 − 9 − 3 = 0 (we count 4 clusters and 9 constraints).
However, the correct answer is n′s = 1; the system attains a global hing-

(a) (b)

Figure 4.15: Dilution examples that contain special cases of degenerate con-
nectors. (a) In this example the upper left type-1 connector is degenerate, but
not eliminated by the iterative merging. This system has one excess zero mode
(n′s = 1,n′g = 0). (b) The two clusters shown satisfy the merging rule in principle,
but can nonetheless be sheared with respect to each other. This system has three
excess zero modes (n′s = 3,n′g = 0).
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ing mode. Apparently, the system contains one redundant constraint,
and we have numerically confirmed the upper left type-1 connector (con-
nector between the blue and orange cluster) is redundant; its removal
does not change the numerically obtained value for n′s. In panel (b) we
show two clusters that share 4 type-1 connectors on row 1,3,5 and 7. In
principle, these two clusters satisfy the merging rule, but one can readily
understand that the connectors for this special geometry do not constrain
all of the relative motions — the clusters can always shear with respect to
each other. Therefore, the estimate ns,∞ = 1 is incorrect, and we numer-
ically confirmed that n′s = 3 (global hinging + shear + a quartic mode).
We moreover numerically found that one can add an infinite amount of
type-1 connectors on every odd row (e.g. 1,3,5,7,9, . . . ) without reducing
the number of zero modes; the minimum number of type-1 connectors
for n′s = 3 is two, every connector added thereafter is degenerate. Both
of the discussed geometries show examples of complex inter-cluster self-
stresses that are not correctly taken into account by the iterative merging.
Nonetheless, as we have shown in Fig. 4.13, deviations introduced by
such special dilution geometries are relatively small.

4.6 Conclusions

We developed an approximate counting method for the number of (ex-
cess) zero modes in systems of hinging squares. We therefore first pre-
sented a procedure to partition any randomly diluted system into clus-
ters, connectors and remaining quads. We then showed that pruning of
the remaining quads does not significantly affect the number of excess
zero modes, which allowed us study the nature and multiplicity of the
excess zero modes in the simplest possible setting, where quads that are
irrelevant for ∆ are removed. To develop the counting argument we sub-
sequently treated the clusters as ’black boxes’ that can rotate, translate
and hinge, showed how each of the three types of connectors constrains
the number of zero modes and developed an iterative cluster algorithm to
take into account the inter-cluster self-stresses that appear between suffi-
ciently strongly connected clusters. Finally, we compared the predictions
of our iterative counting argument against exact Hessian-based results for
a large number of independent randomly diluted systems, and showed
that we obtain a tight lower bound on 〈∆′〉.



Appendix

4.A Detecting cluster-constraints

In this appendix we explain the algorithms devised to detect type 1,2
and 3 constraints [Figs. (4.16-4.18)]. To demonstrate these algorithms we
will use a simple system that consists of two clusters, denoted A and B.
Quads that belong to cluster A are coloured blue, quads that belong to
cluster B green, and quads that belong to neither of those are coloured
grey.

4.A.1 Type 3 constraint

Type 3 constraints are fairly easy to detect in comparison to type 2 and
1 constraints. This is because two clusters connected through a type 3
constraint share a quad, as depicted in Fig. 4.16. Therefore, it suffices
to find the intersections of the set of quads that belong to cluster A and
B. For the example shown, the set of quads for both clusters are A =
{0,1,2,3} and B = {3,4,5,6}, such that the intersection equals A ∩ B =
{3}. The number of elements in the intersection then equals the number
of type 3 constraints. When A and B are disjoint (no quads in common),
the clusters encompass no type 3 constraints.

0 1

2 3 4

5 6

Figure 4.16: Type 3 constraint. Quad number 3 is shared between the blue and
green cluster, as indicated by the bi-coloured quad.

4.A.2 Type 2 constraint

To detect type 2 constraints, we use the adjacency matrix of the system,
C. This matrix indicates whether pairs of quads are adjacent: Element Cij
is set to one when quad i is adjacent to quad j, and zero otherwise. For
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0 1

2 3 4 5

6 7

Figure 4.17: Type 2 constraint. The blue cluster (A) and the green cluster (B)
are connected via quads 3 and 4.

the system shown in Fig. 4.17, the adjacency matrix is

C =




label 0 1 2 3 4 5 6 7

0 7 1 1 0 0 0 0 0
1 7 0 1 0 0 0 0
2 7 1 0 0 0 0
3 7 1 0 0 0
4 7 1 1 0
5 7 0 1
6 7 1
7 7




, (4.4)

where we only provide the upper triangular part of the symmetric matrix
for clarity. Furthermore, the crosses on the main diagonal indicate that
quads cannot be connected to themselves.

The goal then is to extract all elements from the adjacency matrix
that connect cluster A to B, which, in this case, is C34. In order to find
such elements, we define the adjacency sub-matrices CA en CB that are
constructed from C as follows. We define a sub-matrix A for which we
retain only the rows and columns of C that belong to A, and we follow a
similar procedure to construct B. We then find that

CA =




7 1 1 0 0 0 0 0
7 0 1 0 0 0 0

7 1 0 0 0 0
7 1 0 0 0

7 0 0 0
7 0 0

7 0
7




and CB =




7 0 0 0 0 0 0 0
7 0 0 0 0 0 0

7 0 0 0 0 0
7 1 0 0 0

7 1 1 0
7 0 1

7 1
7




. (4.5)
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0 1

2 3 4 5 6

7 8

Figure 4.18: Type 1 constraint. The blue cluster (A) and the green cluster (B)
are connected via a single quad (4), that is neither a member of A nor of B.

Finally, two clusters share a type 2 constraint for all ij that satisfy CAij =

CBij 6= 0.

4.A.3 Type 1 constraint

We now discuss type 1 constraints [Fig. 4.18], which are most difficult
to detect. To find this constraint type, we first determine the system’s
adjacency matrix, yielding

C =




label 0 1 2 3 4 5 6 7 8

0 7 1 1 0 0 0 0 0 0
1 1 7 0 1 0 0 0 0 0
2 1 0 7 1 0 0 0 0 0
3 0 1 1 7 1 0 0 0 0
4 0 0 0 1 7 1 0 0 0
5 0 0 0 0 1 7 1 1 0
6 0 0 0 0 0 1 7 0 1
7 0 0 0 0 0 1 0 7 1
8 0 0 0 0 0 0 1 1 7




. (4.6)

Subsequently, we eliminate all internal bonds of cluster A and B. Put
differently, we cut all bonds between quads that constitute cluster A and
B. This is equivalent to setting all columns of C associated with quads
in A and B to zero. The resulting reduced matrix then leaves us with
all connections to quads that neither are in A nor in B. Performing this
procedure on C reveals that only elements C34 and C54 would persist.
Since quad 4 is connected to quad 3, which is in A, and quad 5, which is
in B, these clusters must be connected through a type 1 constraint.



Summary

Mechanical metamaterials are man-made materials which derive their un-
usual properties from their structure rather than their composition. Their
structure, or architecture, often consists of periodically arranged building
blocks whose mutual interactions realize unusual properties. In this the-
sis, we study the role of two aspects of mechanical metamaterials: (i) the
beam ligaments and (ii) the microstructures of hinging squares. Both pro-
vide functionality to a wide variety of mechanical metamaterials [4, 20,
25–29, 36–38, 40, 44]. However, as we motivate in the introductory chapter
of this thesis, several open problems arise on both aspects. First, although
the mechanical behaviour of slender beam ligaments is well understood,
the finite-width ligaments that often occur in mechanical metamaterials
lead to new physics; wide beams exhibit a negative post-buckling stiff-
ness, characterized by a decreasing force after buckling, which is not well
understood. Second, fully filled microstructures of hinging squares con-
stitute an auxetic mechanism [1, 20], but possible new zero modes derived
from (diluted) microstructures with missing squares remain largely un-
explored. How do the number of zero modes increase in diluted systems
of hinging squares, can we count these, and what is the spatial structure
of such modes? In this thesis, we address these open problems, thereby
providing the necessary understanding to fully leverage the characteris-
tics of wide beam ligaments and diluted collections of hinging squares
for the design of novel mechanical functionalities.

In chapter 2 we focus on beams and develop a 1D nonlinear model
to describe the negative post-buckling stiffness, or subcritical buckling, of
wide neo-Hookean [52] beams. We start by demonstrating that subcritical
buckling is a robust phenomenon that does not originate from boundary-
induced singularities nor from 3D effects. To this end, we compare experi-
ments and fully realistic 3D numerical simulations against 2D simulations
with idealized boundary conditions. In all cases, we find that the post-
buckling stiffness of wide beams varies systematically with the beams
aspect ratio t, and becomes negative for t & 0.12. This allows us to focus
on the simpler 2D setting to pinpoint the physical mechanism at stake
in subcritical buckling. Specifically, we show that the missing crucial in-
gredient to account for subcritical buckling is the material nonlinearity
in the axial stress-strain relation, which is due to the large deformations
involved in wide beam buckling. We then construct an 1D energy density
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functional by combining the Mindlin-Reissner beam description [41] with
a nonlinearity in the axial stress-strain relation, and derive a closed set of
beam equations by minimizing the beam’s elastic energy. We have solved
these equations analytically to determine the post-buckling stiffness in
this model, and find excellent agreement between theory, experiments
and simulations, without adjustable parameters. Altogether, the work
presented in this chapter extends the understanding of the post-buckling
of structures featuring wide elastic beams and opens up avenues for the
design of post-instabilities in metamaterials.

In chapter 3 we study the anomalous excess zero modes that arise in
randomly diluted collections of rigid quadrilaterals, linked at their tips.
The most basic example of an excess zero mode occurs for systems of
full filling (no quads removed). Whereas large systems of generic quads
are rigid, in contrast, large symmetric systems featuring regular, identi-
cal squares posses one global hinging zero mode [1, 20], irrespective of
size. Here we focus on the number of excess zero modes, defined as the
difference between the number of zero modes in symmetric and generic
systems with identical dilution patterns. We perform a large number
of independent simulations and show that the average number of ex-
cess zero modes as function of the number of removed quads exhibits a
peak that exceeds one; this indicates there exist dilution patterns featur-
ing more than one excess zero mode. By quantifying this (average) max-
imum as function of system size and the fraction of removed quads, we
demonstrate that the number of excess zero modes is an intrinsic quan-
tity, which exhibits finite size scaling with simple mean field exponents.
Furthermore, we periodically tile a 6×6 unit cell to design dilution ge-
ometries with a density of zero modes that is six times higher than the
peak value for random cutting, independent of system size. Lastly, we
study the occurrence of excess zero modes for random bond removal and
find strong similarities with the scaling behaviour for quad removal. In
summary, this chapter demonstrates the existence of an arbitrary number
of excess zero modes in randomly diluted systems of hinging squares.

In chapter 4, the final chapter of this thesis, we develop an approx-
imate method to count the number of (excess) zero modes in systems
of hinging squares. Starting from the observation that the occurrence of
excess modes is driven by densely connected patches of quads (which
have one zero mode in the symmetric case, but no zero modes in the
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generic case), we develop a procedure to partition a given system into
clusters, connectors and remaining quads. We demonstrate that the re-
maining quads contribute very similarly to the number of zero modes in
the generic and symmetric case, and are thus irrelevant for the number
of excess zero modes. This allows us to focus on the simplified, pruned
systems, which solely consist of clusters and connectors. To estimate
the number of (excess) zero modes in the pruned systems we treat the
clusters as ’black boxes’ with four degrees of freedom (translation, rota-
tion and hinging), and demonstrate how their motions are constrained by
the presence of three type of connectors. One subtle feature of strongly
connected clusters is that these exhibit inter-cluster self-stresses due to
redundant connectors, and we eliminate most of these self-stresses by the
iterative merging of clusters. This procedure yields an iterative discrete
algorithm that estimates the number of zero modes. We finally compare
these predictions against exact Hessian-based results, and find that our
estimate is a tight lower bound on the number of (excess) zero modes of
the pruned systems. Hence, we are able to predictively understand the
number of (excess) zero modes in diluted systems of hinging squares.





Samenvatting

Mechanische metamaterialen zijn kunstmatige materialen die hun bijzon-
dere eigenschappen danken aan hun structuur en niet zozeer aan de
eigenschappen van het materiaal waaruit deze gefabriceerd zijn. Deze
structuur, of architectuur, bestaat vaak uit periodiek geordende bouw-
stenen, waarvan het collectief gedrag leidt tot bijzondere (macroscopi-
sche) eigenschappen. In dit proefschrift beschouwen we twee aspecten
van mechanische metamaterialen: (i) flexibele staafverbindingen en (ii)
microstructuren bestaande uit scharnierende vierkantjes. Beide aspec-
ten spelen een belangrijke rol in een breed scala aan metamaterialen [4,
20, 25–29, 36–38, 40, 44]. Echter roept de toepassing van beide aspecten
ook nieuwe, ontbeantwoorde vragen op, zoals we motiveren in het intro-
ductiehoofdstuk van dit proefschrift. Ten eerste, alhoewel het mechani-
sche gedrag van dunne staven goed begrepen is, introduceren staven met
een eindige dikte, zoals die veelal voorkomen in mechanische metama-
terialen, nieuwe fysica die nog niet goed begrepen wordt; brede staven
vertonen een negatieve stijfheid, gekarakteriseerd door een afnemende
kracht voor toenemende compressie, na het optreden van de knikinsta-
bliteit. Ten tweede, volledig gevulde microstructuren van scharnierende
vierkantjes bezitten precies één (globale) vrije beweging die wordt ge-
kenmerkt door het collectief, tegenovergesteld roteren van vierkantjes [1,
20], maar potentiële vrije bewegingen die voortkomen uit (uitgedunde)
microstructuren met missende vierkantjes zijn volledig onverkend geble-
ven. Hoe groeit het aantal vrije bewegingen in systemen met missende
vierkantjes, kunnen we deze tellen, en wat is de ruimtelijke structuur van
deze nieuwe vrije bewegingen? In dit proefschrift beantwoorden we de
bovengenoemde open vragen. Hiermee verschaffen we de nodige inzich-
ten om de eigenschappen van dikke staven en uitgedunde verzamelingen
van scharnierende vierkantjes volledig te begrijpen, alvorens deze met
volle potentie kunnen worden ingezet voor het ontwerp van nieuwe me-
chanische functionaliteiten.

In hoofdstuk 2 focussen we op staven en ontwikkelen we een niet-
linear 1D model om de negatieve stijfheid na de knikinstabiliteit, ook
wel subkritisch knikken genoemd, van dikke ’neo-Hookean’ [52] staven
te beschrijven. Om dit model te ontwikkelen laten we eerst zien dat sub-
kritisch knikgedrag een robuust verschijnsel is dat niet wordt veroorzaakt
door 3D effecten of singulariteiten als gevolg van randeffecten. We doen
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dit door experimenten en volledig realistische 3D simulaties te vergelij-
ken met 2D simulaties met sterk versimpelde randcondities. Voor alle
drie de gevallen vinden we dat de stijfheid na de knikinstabiliteit syste-
matisch varieert met de breedte-lengte verhouding, t, en dat deze negatief
wordt voor t & 0.12. Om het fysische mechanisme dat verantwoordelijk
is voor het subkritische knikgedrag te achterhalen, richten we ons op
de meest simpele, 2D situatie. We laten in het bijzonder zien dat het
cruciale, missende ingredient om het subkritische knikgedrag correct te
beschrijven de niet-lineariteit in de axiale spanning-rek relatie is, als ge-
volg van de grote deformaties die verbonden zijn met het knikken van
dikke staven. Vervolgens gebruiken we dit inzicht om een niet-lineare
1D energiedichtheids-functionaal op te stellen door de Mindlin-Reissner
beschrijving voor staven [41] te combineren met een niet-lineariteit in de
axiale spanning-rek relatie; minimalisatie van de totale elastische energie
van de staaf op basis van deze energiedichtheid resulteert in een geslo-
ten set van staafvergelijkingen. We hebben deze vergelijkingen analytisch
opgelost voor de stijfheid na de knikinstabiliteit, en we vinden een uit-
stekende overeenkomst tussen theorie, experimenten en simulaties, zon-
der het gebruik van vrije parameters. Het werk in dit hoofdstuk leidt
hiermee tot een beter begrip van het mechanisch gedrag van structuren
waarin dikke staven functionaliteit leveren, en het biedt tevens handvat-
ten om mechanisch gedrag na het optreden van (knik)instabiliteiten goed
doordacht te ontwerpen.

In hoofdstuk 3 bestuderen we buitengewone vrije bewegingen die
verschijnen in willekeurig uitgedunde verzamelingen van rigide vier-
hoekjes, die verbonden zijn aan hun hoekpunten. Het simpelste voor-
beeld van een buitengewone vrije beweging treedt op in volledig gevulde
systemen, waarin (nog) geen vierhoekjes zijn verwijderd. Grote syste-
men bestaande uit generieke vierhoekjes zijn rigide, maar grote symme-
trische systemen die bestaan uit identieke vierkantjes bezitten precies één
vrije beweging [1, 20], onafhankelijk van de systeemgrootte. In dit hoofd-
stuk richten we ons op het aantal buitengewone vrije bewegingen in uit-
gedunde systemen, gedefinieerd als het verschil tussen het aantal vrije
bewegingen in symmetrische en generieke systemen, met een identiek
patroon van verwijderde vierhoekjes. Door een groot aantal onafhanke-
lijke simulaties uit te voeren, laten we zien dat het gemiddelde aantal
buitengewone vrije bewegingen als functie van het aantal verwijderde
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vierhoekjes een maximum heeft dat groter is dan één; dit toont aan dat
er uitgedunde systemen van vierhoekjes bestaan met meer dan één bui-
tengewone vrije beweging. Vervolgens quantificeren we dit (gemiddelde)
maximum als functie van de systeemgrootte en de fractie van het aantal
verwijderde vierhoekjes, en demonstreren we dat het aantal buitenge-
wone vrije bewegingen een intrinsieke grootheid is die beschreven wordt
door schalingsrelaties met simpele, gemiddelde exponenten. Daarnaast
ontwerpen we een periodieke bouwsteen bestaande uit 6×6 vierhoekjes,
waaruit we grotere systemen opbouwen met een dichtheid aan buiten-
gewone vrije bewegingen die zes keer hoger is dan de piekwaarde van
willekeurig uitgedunde systemen, onafhankelijk van de systeemgrootte.
Als laatste bestuderen we het optreden van buitengewone vrije bewe-
gingen voor het verwijderen van de verbindingen tussen de hoekpunten
van vierhoekjes, en hiervoor vinden we sterke overeenkomsten met het
beschreven schalingsgedrag voor verwijderde vierkantjes. In conclusie,
dit hoofdstuk toont aan dat er een arbitrair aantal buitengewone vrije
bewegingen bestaat in willekeurig uitgedunde verzamelingen van schar-
nierende vierkantjes.

In hoofdstuk 4, het laatste hoofdstuk van dit proefschrift, ontwikke-
len we een telmethode om het aantal (buitengewone) vrije bewegingen
voor systemen van scharnierende vierkantjes te benaderen. Beginnend
met de observatie dat het verschijnen van buitengewone vrije bewegin-
gen wordt veroorzaakt door verbonden gebiedjes van vierhoekjes (die één
vrije beweging hebben in het symmetrische geval, maar geen vrije bewe-
ging in het generieke geval), ontwikkelen we een procedure om een gege-
ven systeem onder te verdelen in clusters, connectoren en overblijvende
vierhoekjes. We laten zien dat de overblijvende vierhoekjes vrijwel altijd
gelijkwaardig bijdragen aan het aantal vrije bewegingen in het generieke
en symmetrische geval, zodat deze irrelevant zijn voor het aantal buiten-
gewone vrije bewegingen. We vestigen onze aandacht daarom op de ver-
simpelde, gereduceerde systemen, die uitsluitend bestaan uit clusters en
connectoren. Om het aantal (buitengewone) vrije bewegingen in de gere-
duceerde systemen te benaderen, beschouwen we de clusters als ’zwarte
dozen’ met vier vrijheidsgraden (translatie, rotatie en scharnieren), en la-
ten we zien hoe de bewegingingen tussen clusters worden beperkt door
de aanwezigheid voor ieder van de drie verschillende typen connecto-
ren die optreden. Een subtiele eigenschap van sterk verbonden clusters
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is dat deze zogenaamde zelf-spanningen bezitten als gevolg van overtol-
lige connectoren. Om het aantal vrije bewegingen correct te benaderen,
elimineren we de meeste van deze zelf-spanningen door het iteratief sa-
menvoegen van sterk verbonden clusters. Deze procedure resulteert in
een discreet algoritme dat het aantal vrije bewegingen stapsgewijs bena-
dert. Uiteindelijk vergelijken we de voorspellingen die volgen uit ons
algoritme met exacte berekeningen gebaseerd op de Hessiaan, waarmee
we demonstreren dat ons algoritme een nauwkeurige ondergrens ople-
vert voor het aantal (buitengewone) vrije bewegingen in de gereduceerde
systemen. We zijn daarmee dus in staat om het aantal (buitengewone)
vrije bewegingen in uitgedunde systemen van scharnierende vierkantjes
te voorspellen.
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