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Chapter 5

High Contrast Imaging for Python

(HCIPy)

an open-source adaptive optics and

coronagraph simulator

Adapted from
E. H. Por, S. Y. Haffert, V. M. Radhakrishnan, D. S. Doelman,
M. A. M van Kooten and S. P. Bos (2018), Proc. SPIE 10703

Abstract
HCIPy is a package written in Python for simulating the interplay between
wavefront control and coronagraphic systems. By defining an element which
merges values/coefficients with its sampling grid/modal basis into a single
object called Field, this minimizes errors in writing the code and makes it
clearer to read. HCIPy provides a monochromatic Wavefront and defines
a Propagator that acts as the transformation between two wavefronts. In
this way a Propagator acts as any physical part of the optical system, be
it a piece of free space, a thin complex apodizer or a microlens array.

HCIPy contains Fraunhofer and Fresnel propagators through free space.
It includes an implementation of a thin complex apodizer, which can mod-
ify the phase and/or amplitude of a wavefront, and forms the basis for
more complicated optical elements. Included in HCIPy are wavefront er-
rors (modal, power spectra), complex apertures (VLT, Keck or Subaru
pupil), coronagraphs (Lyot, vortex or apodizing phase plate coronagraph),
deformable mirrors, wavefront sensors (Shack-Hartmann, Pyramid, Zernike
or phase-diversity wavefront sensor) and multi-layer atmospheric models in-
cluding scintillation).

HCIPy aims to provide an easy-to-use, modular framework for wave-
front control and coronagraphy on current and future telescopes, enabling
rapid prototyping of the full high-contrast imaging system. Adaptive optics
and coronagraphic systems can be easily extended to include more realistic
physics. The package includes a complete documentation of all classes and
functions, and is available as open-source software.
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5.1 Introduction

During the design process of an astronomical instrument, numerical sim-
ulations of the optical system play an integral role. All components are
tested separately for their functionality, and then often integrated into a
complete end-to-end simulation to verify that all subsystems are able to
operate seamlessly together. The rapid prototyping provided by computer
simulations has sped up the development process of high contrast imag-
ing instruments tremendously. Some examples of simulation packages for
adaptive optics (AO) are: YAO (Rigaut, 2002), OCTOPUS (Le Louarn
et al., 2006), DASP (Basden et al., 2010), COMPASS (Gratadour et al.,
2014) and most recently SOAPY (Reeves, 2016). Some examples of pack-
ages that simulate coronagraphs are PROPER (Krist, 2007) and POPPY
(Perrin et al., 2012). In each of these packages, either the adaptive optics
system or the coronagraph is simulated and and subsystems can only be
optimized one at a time.

More recently, people have started looking into optimizing the full sys-
tem, rather than each element separately. For example, one can optimize
the coronagraph to suppress the aberrations that are common for a specific
AO system. In this method there is little interaction between coronagraph
and the AO system: the AO system can be simulated first, and the re-
sulting data can be used for optimizing the coronagraph. In other cases
the interaction can be stronger. For instance, in the case of optimizing
the AO system to keep a specific region of interest in the focal plane dark,
rather than flattening the wavefront (Radhakrishnan et al., 2018). Another
example in this category is end-to-end simulations of post-coronagraphic
focal-plane wavefront sensing methods including feedback to the AO sys-
tem. For examples, see this excellent review (Jovanovic et al., 2018) and
references therein. These use cases require both accurate and simultaneous
simulation of both the AO system and the downstream coronagraph.

These aforementioned type of simulations place a particular set of re-
quirements on the simulation software. The software needs to give baseline
performance, to allow the user to simulate part of the system that he/she is
not interested in with minimal effort, while still being modular to allow for
inclusion of completely new components. The following guiding principles
were used during the design process of HCIPy:

� Modularity. Components should be written to work independently of
each other. For example, in this way, wavefront sensors can be ex-
changed, coronagraphs replaced and optical elements be made more
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realistic, without having any influence on the operation of the other
systems. This allows for rapid prototyping of new components, such
as coronagraphs or wavefront sensors, and to compare different com-
ponents as equally as possible.

� User friendliness. Components should be written to have extensive
and sensible default parameters. This provides out-of-the-box base-
line performance, meaning that even inexperienced users in one of the
fields can code a working system.

� Error avoidance. Common user errors should be hard to make. That
is, HCIPy is designed to handle many mathematical details, such as
sampling requirements, automatically and in the background, pro-
viding clean and readable code. This allows the user to focus on
system architecture rather than the details. HCIPy allows for access
to these mathematical details if necessary, but their explicit nature
makes mistakes easier to catch.

� Pythonic. HCIPy is written in the Python language, an interpreted
high-level programming language. This programming language em-
phasizes code readability, allows for object-oriented programming,
and is in use by many astrophysical projects (The Astropy Collabo-
ration et al., 2018).

In Section 5.2 we discuss the core functionality of HCIPy. In Sec-
tions 5.3, 5.4, 5.5 and 5.6 we explore the functionality of HCIPy further,
discussing optical systems, adaptive optics, coronagraph and more. We
conclude with Section 8.5, and look towards future work.

5.2 Core functionality

The main mechanism in HCIPy for following these design principles is the
use of Fields throughout the code base. These objects behave like a sam-
pled physical field, sampling the value of a physical quantity in space. A
Field contains a Grid, which is used to define the positions of the points
in space, on which a Field is sampled. A Coords object in turn defines
the values of the coordinates in a Grid object, while not containing any
information on how to interpret these coordinates.

While the concepts of Coords, Grids and Fields might seem esoteric
and cumbersome, in most cases the user doesn’t have to interact with these
classes directly. Instead, the user interacts with functions to create and
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modify them, and only uses the classes explicitly when he/she needs more
control over the sampling for a specific part of their code. The following
subsections present the implementation details of these three objects and
explore the flexibility when programming with these objects.

5.2.1 Coords, Grids and Fields

An object of a Coords class can yield values for each dimension for each
point in a Grid. Indexing is done using a single value, rather than one
for each dimension. This is done to support UnstructuredCoords, which
is a set of points with no internal structure. A SeparatedCoords object
constrains coordinates to be a tensor product of the discretization along
each axis. Some mathematical operations, such as Fourier transforms, can
be performed much quicker when coordinate axes can be separated. Finally,
a RegularCoords object constrains regularly-spaced coordinates on all axes.
Fourier transforms on such a grid can use a Fast Fourier Transform (FFT)
which greatly reduces computation times. Each of these Coords classes
calculates their values on demand, rather than storing them explicitly. This
greatly reduces the amount of required computer memory, especially for
larger regularly-spaced grids.

A Grid object can be thought of as a discretization of some vector
space. It contains a Coords class and applies physical meaning to the co-
ordinate values by introducing a coordinate system. Additionally it can
provide weights to each of the points: the interval, area, volume or hy-
pervolume that a point covers in its vector space. These weights simplify
calculation of integrals and derivatives. HCIPy supports a CartesianGrid
for Cartesian spaces of any dimension, PolarGrid for polar coordinates and
SphericalGrid for spherical coordinates. Conversion between coordinate
systems can be performed by calling the Grid.as_() function with the re-
quired coordinate system. In addition, Grids can be scaled and shifted by
calling their respective functions.

A Field object is the discretized version of a physical field. It contains
a Grid and an array of values. HCIPy supports scalar fields (e.g. an
intensity field), vector fields (e.g. a vector electric field) and tensor fields of
any dimension (e.g. a Jones matrix field, or a Mueller matrix field). Note
that Fields in HCIPy do not have to be particle field, but simply a quantity
that has a value for each point in space. For a scalar Field there is only a
single spatial axis in the value array, independent of the dimension of the
vector space, as is usually done. The dimensionality is hidden by the grid,
rather than the value array. This may seem impractical and unjustified;
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nevertheless this is the only way to consistently handle all types of Coords,
in particular the UnstructuredGrid. Moreover, this strengthens the idea
that a Field can be viewed as a covariant vector. For a vector Field the
value array is two dimensional, the last axis being the spatial axis, and for
tensor Fields the value array is n-dimensional for an (n − 1)-dimensional
tensor, again the last axis being the spatial axis. Special functions exist to
make handing of vector and tensor fields easier, including but not limited to
a field_dot() function, which multiplexes a dot product over the spatial
axis, a field_inv, which takes the inverse of a two-dimensional tensor
field for each point separately, and a field_einsum, which can calculate all
Einstein-summation-convention formulas multiplexed over the spatial axis.

5.2.2 Field generators and visualization

We also use the concept of “field generators”, which is a function that
accepts a Grid as its sole argument and returns a Field on that Grid. This
is in places where an analytical function needs to be evaluated on a Grid
at another position in the code. A prime example is telescope apertures,
which can be evaluated on any Grid, and can be user defined.

To make visualization of Fields easier, HCIPy includes several functions
mimicking, and working in conjunction with, the “Matplotlib” plotting li-
brary (Hunter, 2007). The most versatile function is field_imshow, which
can draw two-dimensional scalar fields. Fields with UnstructuredCoords
are automatically interpolated to be able to draw them. Complex scalar
fields are drawn using a custom two-dimensional color scale, which is ex-
tremely useful to be able to see both phase and amplitude in electric field
plots. Masking of unused parts of the image is supported, and useful for
phase plots on a pupil. Additional functions for contour plots for Fields
are also implemented.

An example script in how to construct and transform Grids, evaluate
Field generators, and display Fields can be found in Listing 1, along with
its output in Figure 5.1.

5.2.3 Fourier transforms

Fourier transform objects act on a Field, and return its Fourier transformed
version, on the correct Grid corresponding to frequency space. HCIPy
implements a NaiveFourierTransform, which naively implements the full
Fourier integral, a FastFourierTransform, which uses the FFT algorithm
and acts on regularly-spaced grids, and a MatrixFourierTransform, which
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1 # Import packages
2 from hcipy import *
3 import matplotlib.pyplot as plt
4 import numpy as np
5

6 # Make a separated polar grid
7 r = np.logspace(-1, 1, 11)
8 theta = np.linspace(0, 2*np.pi, 11)
9 coords = SeparatedCoords((r, theta))

10 polar_grid = PolarGrid(coords)
11 cartesian_grid = polar_grid.as_('cartesian')
12 plt.plot(cartesian_grid.x, cartesian_grid.y, '.')
13 plt.show()
14

15 # Create and plot Field
16 pupil_grid = make_pupil_grid(1024)
17 aperture = make_magellan_aperture(True)
18 evaluated_aperture = evaluate_supersampled(aperture, pupil_grid, 8)
19 imshow_field(evaluated_aperture)
20 plt.show()

Listing 1: An example code showing how to create, manipulate and show
fields. A more detailed guide can be found in the online documentation for
HCIPy.

uses a discrete-time Fourier transform, also known as a matrix Fourier
transform (Soummer et al., 2007), and acts on any separated coordinates,
including regularly-spaced grids. These three classes can be used directly or
HCIPy can automatically choose which type of Fourier transform is fastest
on the required input and output Grids, and use that one.

5.2.4 Mode bases

Similar to field generators, HCIPy implements a wide range of mode bases,
among others the Zernike modes, Fourier modes and disk harmonics. A
ModeBasis is a list of objects, that form a linear mode basis. The modes
of a ModeBasis can be easily put into a matrix, providing easy access to
projection and deprojection of a function onto the mode basis. A code
example for constructing several mode bases can be found in Listing 2
along with its output in Figure 5.2.
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Figure 5.1: The resulting plots from the code in Listing 1. (left) The points
for a separated grid using polar coordinates. (right) The Magellan aperture
evaluated using supersampling on a pupil grid.

5.3 Optical systems

Wavefronts represent a monochromatic optical wavefront and combine an
electric field with a wavelength. To support polarization, the electric field
can be both scalar and vectorial, being a two-dimensional Jones vector or
a full three-dimensional electric field. Wavefronts support many methods
to make visualization easier, such as direct access to the phase, amplitude,
intensity and power of the electric field.

These Wavefronts can be propagated through an optical system using
OpticalElements. An OpticalSystem can represent any physical optical
element, such as Apodizers, SurfaceAberrations, MicrolensArrays and
even DeformableMirrors. All OpticalElements support both forward and
inverse propagation, as well as calculation of their transformation matrix,
ie. the matrix of the linear transformation from input to output planes.
The latter is extremely useful for post-coronagraphic wavefront control cal-
culations and coronagraph optimization.

Propagations through space are also OpticalElements, specifically Propagators.
Currently implemented are a FresnelPropagator, which is a near-field,
paraxial propagator using an angular-spectrum method, and a FraunhoferPropagator,
which is a far-field, paraxial propagator, which can be used to simulate
lenses of specific focal lengths.
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1 grid = make_pupil_grid(256)
2 zernike_modes = make_zernike_basis(num_modes=16, D=1, grid=grid)
3

4 for i, m in enumerate(zernike_modes):
5 plt.subplot(4, 4, i + 1)
6 imshow_field(m, cmap='RdBu')
7 plt.show()
8

9 gaussian_hermite_modes = make_gaussian_hermite_modes(grid, num_modes=16,
mode_field_diameter=0.3)↪→

10 gaussian_laguerre_modes = make_gaussian_laguerre_modes(grid, pmax=5, lmax=2,
mode_field_diameter=0.3)↪→

Listing 2: An example code demonstrate the implementation of mode bases
in HCIPy. A more detailed guide can be found in the online documentation.

Light can be detected by Detectors, which can simulate camera defects
and noise. A NoisyDetector simulates simple, empirical noise on the de-
tector images, consisting of a flat field, dark current, photon noise and read
noise. More complicated noise models are under consideration. An image
from a detector can be processed using a FrameCorrector. This object
performs dark and flat field corrections to any incoming image.

To support changing optics, a DynamicOpticalSystem class is avail-
able. This class allows for sub-sampled temporal integrations to allow for
a fractional number of frames lag in extreme adaptive optics simulations.
Updates to the optical system are scheduled and the light is internally
propagated through the system. These updates are for example a chang-
ing atmosphere, a change in actuator positions for a deformable mirror, or
readout of a detector. This class forms the basis for an AO system class.

5.4 Adaptive optics

5.4.1 Atmospheric modeling

To simulate the atmosphere above the telescope, HCIPy uses infinitely-thin
phase screens, implemented as AtmosphericLayer objects. These phase
screens can move over the telescope aperture, according to the “Frozen
Flow” approximation (Taylor, 1938). The phase pattern can be gener-
ated in two different ways, extendable by the user. Subharmonics (Lane
et al., ????) can be added by using a multi-scale Fourier transform method
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Zernike modes Gaussian Hermite modes Gaussian Laguerre modes

Figure 5.2: Some of the supported mode bases in HCIPy. This is the result
of Listing 2.

by FiniteAtmosphericLayer. This yields excellent results for short-time
simulations, where the phase screen doesn’t move that much. For longer
simulations, a InfiniteAtmosphericLayer is used, which extrudes a long
ribbon of phase screen by adding rows sequentially, based on previous sam-
ples (Assémat et al., 2006). This method can also simulate non-stationary
turbulence.

These single layers can be combined into a MultiLayerAtmosphere ob-
ject. This object simulated the propagation between individual layers using
Fresnel propagation, which can simulate scintillation. An example script
introducing how to construct and use atmospheric layers and models can
be found in Listing 3, along with an example output in Figure 5.3.

5.4.2 Wavefront sensing

Wavefront sensing is done using four operations from different classes.
A WavefrontSensorOptics class simulates the optics in front of the de-
tector for a certain wavefront sensor. Afterwards, a Detector class is
used to get the wavefront sensor image. This image can be corrected
for flat-field and dark effects using a FrameCorrector object. Finally, a
WavefrontSensorEstimator is used to reduce the corrected detector image
into an estimate of the wavefront. This can be either slopes, or actual
wavefront, or anything that varies with wavefront. A WavefrontSensor ob-
ject is available for folding all the different steps into a single object. This
separation into optics and estimator makes it possible to play back and
estimate wavefronts from real wavefront sensor images. An example script
on how to construct and use a Pyramid wavefront sensor is presented in
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1 # Create an atmospheric layer
2 layer = InfiniteAtmosphericLayer(pupil_grid, Cn_squared, L0, velocity,

height)↪→

3

4 # Propagate a wavefront through the layer
5 wf = layer(wf)
6

7 imshow_field(wf.phase, cmap='RdBu')
8 plt.show()
9

10 # Make a multi-layer atmosphere
11 layer = make_standard_atmospheric_layers(pupil_grid, L0)
12 atmos = MultiLayerAtmosphere(layers, scintillation=True)
13

14 wf = atmos(wf)
15 imshow_field(wf.intensity)
16 plt.show()

Listing 3: An example code showing the creation of an atmospheric model
including scintillation. A more detailed guide can be found in the online
documentation for HCIPy.

Listing 4.
HCIpy supports several wavefront sensors: among others, a Shack-

Hartmann, Pyramid (Ragazzoni, 1996; Ragazzoni et al., 2002) (only un-
modulated), Zernike (Bloemhof & Wallace, 2003; Zernike, 1935) and (gen-
eralized) optical-differentiation wavefront sensor (Haffert, 2016; Sprague &
Thompson, 1972). Example detector images are shown for each of these
wavefront sensors in Figure 5.4.

5.4.3 Wavefront control

All wavefront controllers are derived from a base Controller class. This
class can transform measured wavefront sensor estimates from one or more
WavefrontSensorEstimators into actuator voltages for one or more DeformableMirrors.
We will implement an integral controller, which uses a (leaky) integrator,
and a full PID controller.

The wavefront sensor estimates can be optionally filtered by an Observer,
which allows for separation of estimation and control. We will implement
a modal reconstructor, which reconstructs modes using a linear transfor-
mation matrix, a Kalman filter and a linear minimum mean squared error

134



5.4. Adaptive optics

5

1 # Create the optics for the WFS
2 wfso = PyramidWavefrontSensorOptics(pupil_grid, pupil_separation=1.5,

num_pupil_pixels=64, refractive_index=1.5)↪→

3

4 # Create detector model
5 detector = NoisyDetector(input_grid=wfso.output_grid, flat_field=0.01)
6

7 # Create the frame corrector
8 frame_corrector = BasicFrameCorrector(flat_field=detector.flat_field)
9

10 # Create the WFS estimator
11 wfse = PyramidWavefrontSensorEstimator(aperture=circular_aperture(1),

output_grid=wfso.output_grid)↪→

12

13 # Combine all into a single object
14 wfs = WavefrontSensor(wfso, detector, frame_corrector, wfse)
15

16 # Measure an incoming wavefront using a 1sec exposure
17 wfs.integrate(incoming_wavefront, 1)
18 slopes = wfs.read_out()

Listing 4: An example code showing the setup and reading out of an un-
modulated Pyramid wavefront sensor. A more detailed guide can be found
in the online documentation for HCIPy.
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Figure 5.3: The simulated images from Listing 3. These images show a sim-
ulated phase screen that can be extruded infinitely in any direction (left),
and the scintillation from a series of phase screens with Fresnel propagation
between layers (right).

(LMMSE) estimator. All observers are designed to be used outside of wave-
front control as well.

5.5 Coronagraphy

Coronagraphs are implemented as optical elements, most of them taking a
pupil-plane Wavefront as input and outputting a post-coronagraphic pupil-
plane Wavefront. A LyotCoronagraph and OccultedLyotCoronagraph im-
plement both cases of Lyot coronagraphs. The first implements a Lyot
coronagraph with a small occulting mask size, and assumes that the part
outside of the focal-plane mask is transmitted. The second case assumes
that the part outside of the focal-plane mask is occulted. Both of these are
in use by, for example, the shaped-pupil Lyot coronagraph. The focal-plane
and Lyot-stop masks can be replaced by realistic OpticalElements to more
accurately describe a specific implementation of a Lyot-style coronagraph.

The VortexCoronagraph class implements a propagation through an
optical vortex (Foo et al., 2005; Mawet et al., 2005). It uses a multi-scale
optical propagation scheme to resolve the vortex singularity. Functions for
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generating pupil and Lyot-stop masks for the ring-apodized vortex coron-
agraph (Mawet et al., 2013) are implemented.

The ApodizingPhasePlateCoronagraph implements an APP corona-
graph (Codona & Angel, 2004; Kenworthy et al., 2007; Snik et al., 2012).
Several functions for optimizing this coronagraph, ie. calculating a phase
pattern that creates a dark zone in a region of interest in the focal plane, are
implemented. These methods include a quick-and-versatile method based
on a modified Gerchberg-Saxton algorithm by Christoph Keller (in prep.),
and a globally optimal linear optimization method (Por, 2017). The latter
of these requires the installation of Gurobi (Gurobi Optimization, 2016)
including its Python interface.

A ShapedPupilCoronagraph is also available, including methods for op-
timizing those, based on global linear optimization (Carlotti et al., 2011).
The same function can optimize shaped-pupil Lyot coronagraphs (Zimmer-
man et al., 2016) as well, for fixed focal-plane and Lyot-stop masks.

A PerfectCoronagraph is also implemented. The implementation is
based on fitting and subsequent subtraction of the electric field of an un-
aberrated PSF (Cavarroc et al., 2006). Higher-order perfect coronagraphs
are implemented as well using a similar method (Guyon et al., 2006). These
coronagraphs are highly computationally efficient and can be used for quick
comparisons with other coronagraphs, or if a specific coronagraph model is
not needed.

5.6 Miscellaneous

5.6.1 Polarization

Polarization is supported in HCIPy using Jones calculus. This includes
the implementation of polarizers and waveplates with (spatially) varying
fast-axis orientation, retardance and circularity. This has allowed for re-
search into broadband vector Apodizing Phase Plates for polarimetry and
polarization aberrations, see Figure 5.6.

5.6.2 Performance

While computational performance is not the main goal of HCIPy, care
has been taken to retain as much performance as possible. Algorithmic
improvements are always preferred in cases where they don’t compromise
on readability and/or generality. This can be seen in the judicious us-
age of the Matrix Fourier transform, wherever possible. When performing
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generalized
optical-differentiationZernikePyramidShack-Hartmann

Figure 5.4: Simulated images for different wavefront sensors using HCIPy.
All wavefront sensors see the same phase aberration. The amplitude of the
aberration was scaled to approximately the linear range of the wavefront
sensor, for visualization purposes.

1 # Create the pupil
2 pupil_grid = make_pupil_grid(2048, 4)
3 pup = circular_aperture(1)(pupil_grid)
4

5 # Create a vortex coronagraph
6 coro = VortexCoronagraph(pupil_grid, charge=4)
7

8 # Create some aberrations
9 aber = SurfaceAberration(pupil_grid, ptp=1/8, diameter=1)

10

11 # Create a Lyot stop mask
12 lyot = lambda grid: circular_aperture(0.95)(grid) +
13 circular_aperture(0.05, [1.8, 0])(grid)
14 lyot = Apodizer(lyot(pupil_grid))
15

16 # Create post-coronagraphic image
17 img = prop(lyot(coro(aber(Wavefront(pup)))))

Listing 5: An example code showing the simulation of an image for a self-
coherent camera (SCC; Baudoz et al., 2005) behind a charge 4 vortex coro-
nagraph. A more detailed guide can be found in the online documentation.
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Figure 5.5: A series of simulated coronagraphic images with HCIPy. (top
left) The Lyot-plane field for a charge 4 vortex coronagraph. (bottom left)
The focal-plane image of the vortex coronagraph, with a self-coherent cam-
era (Baudoz et al., 2005) Lyot-stop mask. The code for generating this
image can be found in Listing 5. (top right) An example apodizing phase
plate design optimized using HCIPy. (bottom right) The broadband point
spread function for this APP design.
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difference detection scheme is simulated. This figure is adapted from Bos
et al. (2018). (right) The effect of polarization due to reflection off a tilted
aluminum-coated mirror. This figure is courtesy of Rob van Holstein, work
to appear in Van Holstein et al. in prep..

a Fourier transform, HCIPy automatically determines whether a Matrix
Fourier transform or a zero-padded Fast Fourier transform would yield the
shortest computation time.

Care has been taken with the numerical efficiency as well. The library
“NumPy” is used for arrays and simple linear algebra operations (Walt
et al., 2011). The library “SciPy” is used for more intricate linear algebra
(Jones et al., 2014). The library “PyFFTW” is used to calculate FFTs using
the well-known FFTW library (Frigo & Johnson, 2005). HCIPy does not
internally use multiprocessing or multithreading yet, apart from the par-
allelization by linear algebra packages and FFTW. This seemingly strange
design decision has its basis in the level at which to parallelize. It is much
easier and computationally efficient to parallelize at the highest level pos-
sible, as in most cases the workload is embarrassingly parallel. Think for
instance at multiplexing different wavelengths for a broadband simulation,
or the different parameter sets in a parameter study. It is much harder to
efficiently parallelize the Fast Fourier transform. The task of parallelizing
is therefore left to the user: he/she now has to write the code for paral-
lelization. GPU support is under development.
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5.7 Conclusions

5.7.1 Overview

HCIPy is an object-oriented framework written in Python for performing
end-to-end simulations of high-contrast imaging instruments. It is built
around the concept of Fields, a sampled version of physical fields. This
union allows the user to focus on the high-level structure of their own code,
rather than worry about sampling details.

HCIPy defines wavefronts, optical elements and optical systems. Prop-
agators are optical elements that are used for propagation through free
space; HCIPy implements both Fraunhofer and Fresnel diffraction propa-
gators. Jones calculus is used for polarization calculations, with polarizers
and waveplates supported out of the box. Atmospheric turbulence is sim-
ulated using thin infinitely-long phase screens. Scintillation is modeled us-
ing Fresnel propagation between individual layers. Implemented wavefront
sensors include the Shack-Hartmann and Pyramid wavefront sensors. For
coronagraphy the vortex, Lyot and APP coronagraphs are implemented,
with methods for globally optimizing pupil-planes, both in phase and am-
plitude, based on linear optimization.

As the AO and coronagraphy can be used in series in the same software
package, HCIPy allows for end-to-end simulations of post-coronagraphic
focal-plane wavefront sensing including feedback and implementation of
AO control algorithms specifically designed for high-contrast imaging ap-
plications. HCIPy is available as open-source software on GitHub, licensed
under the MIT license, at https://github.com/ehpor/hcipy.

5.7.2 Future plans

The following subjects are actively considered or in development:

� GPGPU support. With the advances in the processing power con-
tained in Graphics Processing Units (GPUs) and the almost universal
support for General Purpose computations on GPUs (Nickolls et al.,
2008; Stone et al., 2010), support for GPGPU cannot be neglected in
any major simulation package. Especially the GPUs affinity for linear
algebra operations cannot be ignored. GPGPU support is currently
under development for HCIPy. As most heavy numerical calculations
are performed on Fields, it makes sense to seamlessly do calculations
on Fields in the background on the GPU.
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� Data reduction. With ground-based observations post-processing tech-
niques play an important role. This cannot be neglected in simula-
tions: we would want to optimize our AO system and coronagraph
for post-processed contrast rather than pre-processed contrast. Data-
reduction techniques will preferably be included in HCIPy with wrap-
pers to more advanced and mature data-reduction packages such as
pyKLIP (Wang et al., 2015) and VIP (Gonzalez et al., 2017).

� Improved detector modeling. Noise behavior of detectors have a sig-
nificant influence on the AO system performance, especially at low
flux levels. Improved detector models, such as an (empirical) CCD
and CMOS (Konnik & Welsh, 2014), or EMCCD (Hirsch et al., 2013)
noise model would be helpful in characterizing these effects.

� Non-paraxial vector diffraction. Taking into account the vector na-
ture of light goes further than just supporting polarization-sensitive
optical elements: the propagation of light needs to be changed as well,
especially in low F-number beams where non-paraxial effects play a
much larger role (Bos et al., 2017).

� More wavefront sensors. Support for more wavefront sensors is always
valued. Currently the coronagraphic Modal Wavefront Sensor (Wilby
et al., 2017) and phase diversity (Gonsalves, 1982) are planned.

Community input and extensions are warmly appreciated.
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