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Chapter 2

Optimal design of apodizing phase plate

coronagraphs

Adapted from
E. H. Por (2017), Proc. SPIE 10400

Abstract
Direct observations of exoplanets require a stellar coronagraph to suppress
the diffracted starlight. An Apodizing Phase Plate (APP) coronagraph
consists of a carefully designed phase-only mask in the pupil plane of the
telescope. This mask alters the point spread function in such a way that it
contains a dark zone at some off-axis region of interest, while still retaining
a high Strehl ratio (and therefore high planet throughput).

Although many methods for designing such a phase mask exist, none of
them provide a guarantee of global optimality. Here we present a method
based on generalization of the phase-only mask to a complex amplitude
mask. Maximizing the Strehl ratio while simultaneously constraining the
stellar intensity in the dark zone turns out to be a quadratically constrained
linear algorithm, for which a global optimum can be found using large-scale
numerical optimizers. This generalized problem yields phase-only solutions.
These solutions are therefore also solutions of the original problem.

Using this optimizer we perform parameter studies on the inner and
outer working angle, the contrast and the size of the secondary obscuration
of the telescope aperture for both one-sided and annular dark zones. We
reach Strehl ratios of > 65% for a 10−5 contrast from 1.8 to 10λ/D with
a one-sided dark zone for a VLT-like secondary obscuration. This study
provides guidelines for designing APPs for more realistic apertures.
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2.1 Introduction

For detecting Earth-like exoplanets, we need to overcome the huge contrast
between planet and its host star. A coronagraph allows for separation of
starlight and the light from its companion by suppressing the former and
transmitting the latter. This suppression can be achieved by various types
of optical systems (Guyon et al., 2006; Mawet et al., 2012). One of these
coronagraphic systems is known as the apodizing phase plate (APP), which
consists of a single phase-only pupil-plane optic (Codona et al., 2006). In
this type of coronagraph, the starlight itself is not absorbed, but rather
suppressed in a certain region of interest in the focal-plane known as the
dark zone. The phase pattern on the pupil-plane element must therefore be
designed to yield a point-spread function (PSF) that has extremely little
light inside this dark zone.

Of course, the phase plate reduces the Strehl ratio of the star, as light
is scattered out of the Airy core. Although we do not care about the Strehl
ratio of the star, as the planet light is also incident on the same phase plate,
its PSF is altered in the same way and its Strehl ratio is diminished by the
same factor. We therefore need to simultaneously have a high Strehl ratio
of the phase plate, while having the transmission inside the dark zone be
extremely small.

We can therefore conclude that finding the phase pattern requires solv-
ing the following optimization problem:

maximize
φ(x)

|E(0)|2 (2.1)

subject to |E(k)|2 ≤ |E(0)|2 · 10−c ∀ k ∈ D (2.2)

where E(k) is the electric field in the focal plane, defined by

E(k) = F{A(x) exp iφ(x)} (2.3)

and c is the contrast in the dark zone that we want to reach, A(x) the
telescope aperture, φ(x) the phase pattern in the pupil plane, x a position
in the pupil plane, k a position in the focal plane, and D the dark zone
in the focal plane. Note that there are many phase patterns that satisfy
the constraint of contrast in the dark zone, however we want to select the
phase pattern that simultaneously yields the highest planet throughput.

Solving this optimization problem is quite hard due to the non-linearity
in the complex phase exponential. Previous methods have therefore not at-
tempted to solve the full optimization problem, but rather to find a phase
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solution that is close to the global optimum. These algorithms often lin-
earize the problem around a certain phase pattern and take small steps
towards maximization of some merit function that includes both the planet
throughput and contrast in the dark zone. This includes phase iteration
techniques (Codona et al., 2006; Codona & Angel, 2004), which were one of
the first proposed methods for APP optimization, and modified Gerchberg-
Saxton algorithms (Ruane et al., 2015). Due to the linearization involved
in these optimization techniques, they will often get stuck in local optima
and give no guarantee that they converge to a solution close to the optimal
one. Additionally these algorithms do not constrain the intensity in the
dark zone, but rather minimize that intensity without any regard for the
set contrast limit.

Finding the global optimum has been previously attempted using gen-
eral non-linear optimization methods such as simulated annealing. While
these methods in theory provide the global optimum, they require vast
amounts of computation time and only provide a guarantee of global opti-
mality if given an infinite amount of computation time. Global optimization
of shaped pupil coronagraphs (Carlotti et al., 2011) has been modified to op-
timize APPs (Carlotti et al., 2013), however the resulting APPs contained
only several discrete phase transitions, and were not globally optimal, as
will be shown in this work. In this paper we slightly modify the approach of
Carlotti et al. (2013) and provide several improvements, both in speed and
correctness at small inner working angles. We then present the fundamen-
tal limits of pupil-plane-only coronagraph designs, using parameter studies
on simplified apertures using both one-sided and two-sided dark zones.

2.2 Linearization, discretization and correction

2.2.1 Linearization

The linearization of the general optimization problem follows closely the
work by Carlotti et al. (2013), but differs in a few key points. These will
be indicated in the following derivation.

We first change the complex phase exponential to a complex function
X(x)+iY (x) where we require X2(x)+Y 2(x) = 1 and change optimization
variables to finding the functions X(x) and Y (x). Note that this linearizes
the calculation of E(k) but does not change anything in the optimization
problem: the non-linearity is now hidden in the constraints. The optimiza-
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tion problem now reads

maximize
X(x),Y (x)

|E(0)|2 (2.4)

subject to |E(k)|2 ≤ |E(0)|2 · 10−c ∀ k ∈ D (2.5)

E(k) = F{A(x)(X(x) + iY (x))} (2.6)

X2(x) + Y 2(x) = 1∀x. (2.7)

To make the objective function linear, we can simply maximize the real
value of E(0) instead of its absolute value. While this may seem like an
oversimplification, it only fixes the average phase of the pupil-plane phase
pattern. Any other chosen phase (ie. optimizing for the imaginary part
of E(0) instead) can be obtained by multiplying the pupil-plane complex
amplitude pattern by a constant complex phase exponential (ie. exp (iπ/2)
for the case mentioned above). This is possible as all constraints depend on
the amplitude of some complex amplitude in the pupil or focal plane only
and have no dependence on the phase of that quantity. The optimization
problem now reads

maximize
X(x),Y (x)

R {E(0)} (2.8)

subject to |E(k)|2 ≤ |E(0)|2 · 10−c ∀ k ∈ D (2.9)

E(k) = F{A(x)(X(x) + iY (x))} (2.10)

X2(x) + Y 2(x) = 1∀x. (2.11)

The objective is now linear, and all constraints are convex and quadratic
except for the constraint on the absolute value of the complex amplitude
in the pupil-plane. To make this convex, we generalize the optimization
problem to finding an optimal complex amplitude mask, instead of a phase-
only mask. The new optimization problem does not guarantee phase-only
solutions, however empirically this generalized optimization problem does
yield phase-only solutions for all dark zone shapes, contrast limits and
aperture geometries. Various examples of APP solutions for one-sided and
two-sided dark zones, both for simple and complex aperture geometries,
can be found in Figures 2.3 and 2.6. The optimization problem now reads

maximize
X(x),Y (x)

R {E(0)} (2.12)

subject to |E(k)|2 ≤ |E(0)|2 · 10−c ∀ k ∈ D (2.13)

E(k) = F{A(x)(X(x) + iY (x))} (2.14)

X2(x) + Y 2(x) ≤ 1∀x. (2.15)
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This optimization problem is now convex and linear, and therefore has a
unique global optimum which can be found using standard optimization
techniques.

2.2.2 Discretization

To numerically optimize this optimization problem we have to discretize
all functions. For simplicity, we discretize the focal and pupil plane into
discrete set of points, {ki} and {xi} respectively. In this way calculation of
the focal-plane electric field at those points can be done by a vector-matrix
multiplication as

Efoc = MEpup, (2.16)

where Efoc is the focal-plane electric field at points {ki}, Epup the pupil-
plane electric field at points {xi}, andM the transformation matrix between
pupil and focal plane.

The choice of the positions of discretization points in the focal plane
is critical for correct performance. We always have discretization error: in
between two points in the focal plane the PSF might actually exceed the
contrast limit, while at the same time the PSF at the discretization points
is within the limit. Due to computational time limitations we always want
as little points in the focal plane as possible, while still covering the entire
dark zone. In practice this works out to > 2 points per λ/D, corresponding
to the Nyquist limit for the used aperture. For APPs with a high contrast
(typically deeper than 10−6) this is not enough, and we need ∼ 3 points per
λ/D. This is due to superoscillations (Aharonov et al., 1990; Ferreira &
Kempf, 2006) that occur in this regime: the electric field oscillates locally
faster than the Nyquist rate of the aperture. This means that even if we
constraint the electric field at > 2 points per Nyquist-limited period, the
electric field will still vary within those points at an apparent spatial fre-
quency higher than the Nyquist frequency itself. Constraining the electric
field on more points bounds the strength of these superoscillations (Ferreira
& Kempf, 2006).

2.2.3 Speed improvements

While a direct implementation of the above discretized optimization prob-
lem yields correct APPs, there are some changes that can be made to
improve runtime and performance. In practice excluding the Strehl ra-
tio from the dark zone constraint yields more than an order of magnitude
shorter computation times. The reason for this can be attributed to the
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Figure 2.1: Rewriting square constraints to linear constraints can help com-
putation times, while only having a small influence on the final Strehl ratio.
a) A quadratic constraint contains all phase space but is computationally
expensive. b) A box-shaped constraint consists of four linear constraints
and balances coverage of the phase space, while keeping computation times
in check. c) Higher-order regular polygons, such as this hexagon, require
more linear constraints and therefore more computational resources, while
yielding no significant improvement in the resulting Strehl ratios.

inner workings of the optimizer that was used (Gurobi Optimization, 2016).
Other optimizers may react differently. We replace actual Strehl ratio with
the expected Strehl ratio of the optimization Sexpected. The optimization
problem now reads

maximize
X(x),Y (x)

R {E(0)} (2.17)

subject to |E(k)|2 ≤ Sexpected · 10−c ∀ k ∈ D (2.18)

E(k) = F{A(x)(X(x) + iY (x))} (2.19)

X2(x) + Y 2(x) ≤ 1∀x. (2.20)

Note that to get a correct value for the Strehl ratio, we need to iterate this

optimization multiple times, starting with S
(0)
expected = 1 and update the

expected Strehl ratio after each optimization. In practice the Strehl ratio
converges after ∼ 3 − 4 iterations, except for extremely low Strehl ratios,
in which we are not interested anyway.

Another improvement is the removal of quadratic constraints. These
type of constraints are notoriously difficult for numerical optimizers and
linear constraints are preferred. We can approximate the circle by an in-
scribed box as shown in Figure 2.1. Although this reduces the phase space

54



2.2. Linearization, discretization and correction

2

of the optimization, in practice this doesn’t reduce the Strehl ratio of the fi-
nal APPs by much. Orienting the diagonal of the box in the direction of the
unaltered electric field at that point in the focal plane increases the Strehl
slightly and tends to reduce artifacts. The result of using a box-shaped con-
straint instead of a circular one is that the optimizer now prefers to put the
final electric field in the direction of the diagonals. This also means that we
cannot replace the pupil-plane quadratic constraints with box-shaped linear
constraints: the optimized APP would consist of discrete phases (namely
0, π/2, π, 3π/2). The discretized phases are precisely what Carlotti et al.
(2013) found. In the focal plane we do not care as much about the phase
of the residual speckles and we can safely apply the box-shaped linear con-
straints. Using higher order regular convex polygons, such as the hexagon
or octagon was found to yield a negligible improvement while significantly
increasing computation time. The optimization problem now reads

maximize
X(x),Y (x)

R {E(0)} (2.21)

subject to R {E(k)}+ I {E(k)} <
√
Sexpected · 10−c (2.22)

R {E(k)} − I {E(k)} <
√
Sexpected · 10−c (2.23)

−R {E(k)}+ I {E(k)} <
√
Sexpected · 10−c (2.24)

−R {E(k)} − I {E(k)} <
√
Sexpected · 10−c (2.25)

E(k) = F{A(x)(X(x) + iY (x))} (2.26)

X2(x) + Y 2(x) ≤ 1∀x. (2.27)

2.2.4 Tilt correction

When optimizing for small inner-working angle dark zones, we can often
see that the core of the PSF is pushed away from the dark zone, effectively
increasing the inner-working angle by that same amount: the core of the
planet PSF is moved towards the star. This effect is commonly found in
other APP optimization algorithms: introducing a tilt in the pupil-plane
phase pattern and dealing with the reduced throughput of the core at (0, 0)
is advantageous compared to suppressing the starlight that close to the PSF
core. This is of course not desirable and we have to suppress this behavior
in some way. Other optimizers deal with this by removing the introduced
tilt each iterations (as in the case of the modified Gerchberg-Saxton algo-
rithm) or by removing tip-tilt from the mode basis used for optimization.
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As we optimize electric field and have no access to the optimization algo-
rithm directly, we instead have to introduce a constraint in the optimization
problem to counteract this behavior.

The simplest and most effective way is to enforce that the PSF reaches
its maximum at (0, 0). In this way moving the PSF is not allowed. This
constraint can be approximated as a linear constraint by enforcing that the
absolute value of both the real and imaginary part of the electric field may
not be larger than its value at (0, 0). A quadratic constraint on the PSF
itself would be best, but takes more computation time. Typically the PSF
moves perpendicular to the dark zone shape, so we only need to enforce
this in the direction opposite to the dark zone, starting at (0, 0) itself. The
optimization problem now reads

maximize
X(x),Y (x)

R {E(0)} (2.28)

subject to R {E(k)}+ I {E(k)} <
√
Sexpected · 10−c (2.29)

R {E(k)} − I {E(k)} <
√
Sexpected · 10−c (2.30)

−R {E(k)}+ I {E(k)} <
√
Sexpected · 10−c (2.31)

−R {E(k)} − I {E(k)} <
√
Sexpected · 10−c (2.32)

E(k) = F{A(x)(X(x) + iY (x))} (2.33)

X2(x) + Y 2(x) ≤ 1∀x (2.34)

R {E(k)} ≤ R {E(0)} ∀k (2.35)

−R {E(k)} ≤ R {E(0)} ∀k (2.36)

I {E(k)} ≤ R {E(0)} ∀k (2.37)

− I {E(k)} ≤ R {E(0)} ∀k. (2.38)

We use this final optimization problem for the rest of this paper.

2.3 Case studies

2.3.1 D-shaped dark zones

In this section we consider a D-shaped dark zone. This dark zone is parame-
terized by their inner-working angle, outer-working angle and contrast. For
the aperture we take a circular aperture with a central obscuration. This
geometry is shown graphically in Figure 2.2. In the following sections we
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IWA

OWA

IWA

OWA

DCO

Dpup

CO=DCO/Dpup

Figure 2.2: The pupil-plane and focal-plane geometry considered in this
work. Any spiders holding up the central obscuration are neglected. Left
The pupil of the telescope. Middle A D-shaped dark zone. Right An
annular dark zone.

vary the dark-zone parameters and use the Strehl ratio as a metric. In
Figure 2.3 we show some solutions with their parameters along with the
resulting PSF.

Outer-working angle

We fix the inner-working angle at IWA = 2λ/D, the contrast at 10−5 and
vary the outer-working angle and central obscuration. The Strehl ratio for
these optimizations are shown in Figure 2.4. We can see that the Strehl
ratio asymptotically converges to a fixed Strehl ratio for increasing outer-
working angles. This suggests that designing infinite outer-working angle
solutions might be feasible, and other optimization algorithms yield similar
results.

Inner-working angle and contrast

The relation between the Strehl ratio S, inner-working angle and contrast
paints a more complicated picture. We fix the outer-working angle at 8λ/D
and vary the contrast and inner-working angle for various values of the cen-
tral obscuration. The results of these optimization are shown in Figure 2.5.
For an unobstructed aperture, the iso-Strehl lines generally have a constant
gradient: if an APP is desired with a contrast 10 times deeper, the inner-
working angle must be increased by∼ 0.2λ/D to yield the same Strehl ratio.
For the S = 0.8 line however, the gradient changes at IWA = 1.6λ/D and
a contrast of 10−4 to ∼ 0.5λ/D per decade in contrast. Introducing a 10%
central obscuration, we can see that this turn-off point moves towards shal-
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Pupil-plane
phase

Pupil-plane
phase

Point spread
function

Point spread
function

IWA = 2.2 λ/D
OWA = 8 λ/D
contrast = 10-4

CO = 0%

IWA = 2.2 λ/D
OWA = 8 λ/D
contrast = 10-5

CO = 10%

IWA = 2.2 λ/D
OWA = 8 λ/D
contrast = 10-5

CO = 20%

IWA = 2.2 λ/D
OWA = 8 λ/D
contrast = 10-5

CO = 40%

IWA = 2.2 λ/D
OWA = 8 λ/D
contrast = 10-5

CO = 0%

IWA = 2.2 λ/D
OWA = 8 λ/D
contrast = 10-6

CO = 0%

Figure 2.3: Some examples for optimization with D-shaped dark zones.
For each set of input parameters, we show the final phase pattern and its
corresponding point spread function.

5 6 7 8 9 10 11 12 13 14
Outer-working angle ( /D)
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CO = 0%
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CO = 20%

CO = 30%
CO = 40%

Figure 2.4: The Strehl ratio for a fixed inner-working angle (2λ/D) and
contrast (10−5) but varying outer-working angle for various values of the
central obscuration CO. As the outer-working angle becomes larger, the
Strehl ratio changes less and less. Outer-working angle is in these simula-
tions limited by computation resources, both in memory and time.
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lower contrasts. If we increase the central obscuration further, this trend
continues and other iso-Strehls start to follow the same behavior.

Note that in these graphs, the increase in Strehl ratios at extremely
low inner-working angles and high contrasts should not be trusted. These
solutions tend to circumvent the tilt correction method described in Sec-
tion 2.2.4 by producing a second peak beyond the range the tilt correction
can protect against. This second peak is then the major contribution to
Strehl ratio, while the peak at the origin (0, 0) still decreases.

2.3.2 Annular dark zones

Annular dark zones are generally easier to optimize, due to the symmetry
that they provide. While symmetric optimization problems do not nec-
essarily have symmetric solutions, see for example the excellent paper by
Waterhouse (Waterhouse, 1983), in this case they do. The reasoning for
this is simple. If a global optimum x has been found, the transformed solu-
tion x′ = T (x), where T is the transformation corresponding to a symmetry
in the optimization problem, must also be a global optimum. In the case
of a convex optimization problem where the objective function is strictly
convex, the global optimum is unique. Therefore x′ = x and x must be a
symmetric solution. As our optimization problem is convex with a strictly
convex objective function, all symmetries in the system provide a symmetry
of the solution.

This result can be applied to many symmetries. For example: when all
focal-plane constraints are situated in points-symmetric positions around
the origin (ie. a two-sided dark zone), the transformation Y (x)→ −Y (x) is
a symmetry of the optimization problem, as its corresponding focal-plane
transformation is E(k) → E(−k). Therefore, a global optimal solution
for such a dark zone geometry must satisfy Y (x) = −Y (x) = 0, so the
pupil-plane phase is real. Empirically we again find that the absolute value
of the pupil-plane apodizer is maximized, so that X(x) ∈ {1,−1}. This
simplification reduces all quadratic constraints to linear constraints, which
makes the optimization problem a simple linear problem. This means that
the APPs found by Carlotti et al. (2013) were indeed globally optimal. An
example of such an APP is shown in Figure 2.6.

Additionally, if the optimization problem is rotationally symmetric (ie.
a rotationally symmetric pupil and dark zone), the solution must consist of
rings of 0 or π in phase. Exploiting this symmetry leads to a significantly
reduced computation time, and allows for extensive parameter studies.
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Figure 2.5: The Strehl ratio as a function of inner working angle, contrast
and central obscuration size for a D-shaped dark zone. The outer working
angle was fixed at 8λ/D. See the text for a qualitative description of all
features visible in this figure. These graphs can be used as a starting point
for designing an APP for more complicated apertures.
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Apodizing
phase plate

Point spread
function

Shaped pupil

Transmission: 32% Transmission: 10%

Figure 2.6: An example of a 360 APP for a complicated aperture. This
aperture, based on the Subaru pupil, contains a large central obscuration,
spiders, and masked dead deformable mirror actuators. A shaped pupil
design for the same dark-zone geometry is also shown. As the phase space
for shaped pupils is completely contained in the phase space allows in the
APP optimizations, the transmission of the shaped pupil will always be
lower than the optimized APP.

Inner-working angle and contrast

We consider the case of a annular dark zone, parameterized by their inner
working angle, outer working angle and contrast. As the aperture shape,
we again use a circular aperture with a varying central obscuration size.
This geometry is shown graphically in Figure 2.2. In Figure 2.7 we fix the
contrast at 10−4 and vary the inner working angle, outer working angle and
central obscuration. We show the Strehl ratio of the corresponding APP
pattern. The most prominent feature of these graphs are the plateaus of
almost equal Strehl ratio: for a wide range (∼ 1λ/D) in both inner and
outer working angles, the Strehl does not vary significantly. This is not an
artifact of the optimization method but rather is related to the structure
of the Airy rings of the unaltered telescope PSF. The Strehl depends on
the number of Airy rings that need to be suppressed, rather than the total
area of the dark zone.

The transitions between the plateaus do not correspond directly to the
center of an Airy ring, but the plateaus are slightly broader. This can
be attributed to the Airy ring being ‘compressed’ more easily than being
suppressed entirely. Also note that the transition from good Strehl (&
50%) to bad Strehl (. 10%) is extremely steep in inner working angle, and
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Figure 2.7: A parameter study on inner and outer working angle and central
obscuration for annular dark zones. The contrast was fixed at 10−4. The
most prominent features are the existence of plateaus of equal Strehl ratio.
These are determined by the positions of the original position of the Airy
rings. A qualitative discussion can be found in the text.
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Figure 2.8: Identical to Figure 2.7 except for the changed contrast to 10−5.

becomes steeper when the central obscuration is larger. The reason for this
is the relative strength of the first Airy ring compared to the Airy core,
which rises when the central obscuration is enlarged. In addition, the Airy
ring also moves outwards with larger central obscurations. This means that
more Strehl needs to be expended to suppress that Airy ring, as the Strehl
is correlated with the amount of light that needs to be suppressed, rather
than the suppressed area.

In Figure 2.8 we show the same results as in Figure 2.7, but fix the
contrast to 10−5. The general behavior is similar to Figure 2.7. All effects
mentioned above are however much more visible due to the deeper contrast
requirements. For example, for a 30% central obscuration, the transition
between good and bad Strehl even extends towards the third Airy ring.

Large outer-working angles

While the case for large outer working angles for D-shaped APPs was lim-
ited to ∼ 14λ/D due to computer memory limitations, for the circularly
symmetric case we can go much further than that. In Figure 2.9 we show an
example solution for a 100λ/D outer working angle. In this example, the
inner-working angle was 3.5λ/D, the contrast 10−5 and the central obscura-
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Figure 2.9: An example of an APP with a annular dark zone and an ex-
tremely large outer working angle of 100λ/D. Other parameters were an
inner working angle of 3.5λ/D, a contrast of 10−5 and a central obscuration
of 10%. The Strehl ratio was 40%.

tion 10%. The optimized APP had a Strehl ratio of S = 40%. The solution
again consists of many rings of 0 or π phase. We can see that the width of
the rings changes smoothly over the aperture, being wide at the edge and
at the center of the aperture, while vanishing in between. This suggests,
and this is confirmed by other 360 APP optimizations, that the size of the
rings, and therefore their spacing, is dependent on the outer working angle,
and their width is modulated by a spatial frequency determined by the
inner working angle.

In the PSF we can see that the APP pushes the light into a ring just
outside of the outer working angle. In the dark zone, many rings are visible,
each with a maximum contrast of 10−5. We can therefore see that if we
keep increasing the outer working angle, this ring of light will be evenly
distributed over the dark zone and eventually we will run out of light.
At that point the contrast outside of the outer working angle will also be
smaller than the required contrast and we will have obtained an infinite
outer working angle APP with an annular dark zone.
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2

2.4 Conclusions

We have shown a new method for optimizing apodizing phase plate coro-
nagraphs. This method, based on the work by Carlotti et al. (2013), uses
a convex linearized version of the full optimization problem, which can be
globally optimized using large-scale linear optimizers. While this optimiza-
tion problem in theory allows for amplitude apodization, in practice all
solutions turn out to have unit amplitude, making them phase-only pupil-
plane apodizers. We performed parameter studies for one-sided D-shaped
and two-sided annular dark zones. These simulations serve as a starting
point for a parameter study for realistic, more complicated apertures. Ad-
ditionally, we showed that globally optimized two-sided APPs contain only
0 or π phase.

Future research will apply this optimizer to the optimization of pre-
apodizers for phase-mask coronagraphs, such as the vortex (Carlotti et al.,
2014; Ruane et al., 2015) or the four-quadrant phase-mask coronagraph
(Carlotti et al., 2014). Similar pre-apodizers can most likely be found for
apodized Lyot coronagraphs (N’Diaye et al., 2016; Zimmerman et al., 2016).
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