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3
T W O - O P I N I O N S - D Y N A M I C S G E N E R AT E D B Y I N F L E X IBLES
AND NON-CONTRARIAN AND CONTRARIAN FLOATERS

This chapter is based on:

F. Jacobs and S. Galam, Two-opinion-dynamics generated by inflexibles and
non-contrarian and contrarian floaters, Advances in Complex Systems, Volume 22 No. 04,
1950008, 2019

abstract

We assume a community whose members adopt one of two opinions A or B. Each

member appears as an inflexible, or as a non-contrarian or contrarian floater. An

inflexible sticks to its opinion, whereas a floater may change into a floater of the

alternative opinion. The occurrence of this change is governed by the local

majority rule: members meet in groups of a fixed size, and a floater then changes

its opinion provided it is a minority in the group. Subsequently, a non-contrarian

floater keeps the opinion as adopted under the local majority rule, whereas a

contrarian floater adopts the alternative opinion. Whereas the effects of on the one

hand inflexibles and on the other hand non-contrarians and contrarians have

previously been studied separately, the current approach allows us to gain insight

in the effect of their combined presence in a community. Given fixed proportions

of inflexibles (αA, αB) for the two opinions, and fixed fractions of contrarians

(γA, γB) among the A and B floaters, we derive the update equation pt+1 for the

overall support for opinion A at time t + 1, given pt. The update equation is

derived respectively for local group sizes 1, 2 and 3. The associated dynamics

generated by repeated local updates is then determined to identify its asymptotic

steady configuration. The full opinion flow diagram is thus obtained, showing

conditions in terms of the parameters for each opinion to eventually win the

competing dynamics. Various dynamical scenarios are thus exhibited, and it is

derived that relatively small densities of inflexibles allow for more variation in the
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qualitative outcome of the dynamics than higher densities of inflexibles.

Keywords: Sociomathematics, sociophysics, opinion dynamics, local majority rule,

contrarian behaviour, floating behaviour

PACS Classification: 05.70.Jk; 89.65.Cd; 89.65.Ef

3.1 introduction

Within the growing field of sociophysics (see [31] for the defining paper and [30],

[80], [88] for an impression of the state of the art), a great deal of work has been

devoted to opinion dynamics [10]. The seminal Galam models of opinion

dynamics [21, 24] and their unification [26] play a guiding role in analysing the

process of opinion spreading in communities and in providing possible

explanations for the outcome of elections. These models are centred around the

local majority rule (l.m.r.), which is applied either in a deterministic or a

probabilistic way. In the basic deterministic case, supporters of the two opinions

present in a community are randomly distributed over groups of a fixed size L.

Within each group members adopt the opinion that has the majority in that group,

after which all group members are recollected again. In case there is no majority

in a group, its members stick to their own opinion (i.e., neutral treatment; the

probabilistic treatment in case of a tie assigns opinions to the group members

according to a certain probability distribution). Repeated application of this

principle generates what is called randomly localised dynamics with a local majority

rule. In the basic probabilistic case, the community members are divided among

groups of various sizes according to some probability distribution, and within

each group all members adopt one of the possible opinions with either certainty

(majority rule) or probability (at a tie in even-sized groups) [21] .

In the basic deterministic two states opinion model, fast dynamics occurs in

which the opinion that originally has the majority eventually will obtain complete

presence at the cost of the alternative opinion. In the probabilistic two states

opinion model, the final outcome depends on the probability distributions for

group sizes and local adaptation. Eventually the state of the community can be
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either one in which only the opinion with initial majority or minority remains,

or one with a perfect consensus on both opinions (see [26], which unifies basic

probabilistic two states opinion models).

In [37] a three states opinion model is introduced in which the community members

are randomly distributed over groups of size 3. Within each group the l.m.r. is

applied, with the additional rule that in case of a tie all members of the group

adopt one of the three opinions according to some probability distribution. It is

shown that the dynamics quickly converges to a state in which only one of the three

opinions is present, which may be an opinion that initially has a minor presence in

the community. In addition, the effect of non-voting persons (abstention, sickness,

apathy) was shown to have drastic effect on the asymmetry of the threshold value

to power [33].

As a next step to gain a better insight into opinion dynamics, in [23] the basic

deterministic two states Galam opinion model is extended by the introduction

of so-called contrarians. A contrarian is a community member who, instead of

keeping the opinion it adopted under the l.m.r., switches to the alternative opinion.

Contrarian behaviour can manifest itself in various ways, e.g. in adolescents as

a strive for individualisation, especially in an environment of inflexible opinion

supporters (see below), as an expression of conformity with the minority, and

as negative voting in order to diminish the support for a majority. Depending

on the density1 of contrarians as well as on group size, their presence either

leads to a stabilisation of the opinion dynamics in which one opinion (the one

with the lower density of contrarians) dominates the other, to an equilibrium

in which neither opinion dominates (in case both opinions have equal densities

of contrarians), or (in case of relatively large densities of contrarians for both

opinions) to a dynamics in which the dominating opinion constantly alternates

between the two opinions. The incorporation of contrarians in opinion dynamics

models was a step towards a possible explanation of the “hung elections” outcome

in the U.S. presidential elections in 2000. Although introducing contrarians to

explain “hung elections” at the time may have been a bit speculative (and being

1 All opinion dynamics models considered in this article are understood to refer to large communities
and sub-communities (e.g. contrarians) in which the size of a sub-community can effectively be
described by its density (the part of the sub-community’s size with respect to the whole community)
instead of by discrete whole numbers.
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aware that possible other influences such as finite population sizes and exogenous

factors influencing opinion dynamics have not been considered), it was concluded

that if the assumption was sound, under similar conditions the phenomenon

should repeat itself in the following years in democratic countries. And indeed,

“hung elections’ occurred again several times as with the German elections in

2002 and 2005 as well as the 2006 Italian elections [28]. The origin of contrarian

behaviour as well as its implications have been the focus of numerous studies

[7, 12, 20, 36, 65–67, 76–78, 87, 93, 95, 97, 100, 101].

In addition to the incorporation of contrarian behaviour, the basic deterministic

two states Galam model has been modified introducing opinion supporters that

express what in politics (and other games) is called inflexible behaviour [32, 34]. An

inflexible community member is a supporter that under all conditions sticks to

its opinion. Under this terminology supporters that switch opinion when in the

minority then classify as floaters, and we shall use this distinction in what follows.

In [34] the effect of inflexible behaviour on opinion dynamics is studied for the case

that opinion supporters repeatedly meet in groups of fixed size 3. It is shown that a

small density of inflexibles for only one of the two opinions allows for the existence

of two local attractors. One of these local attractors is a mixed one, on which both

opinions are present and on which the opinion that is supported by inflexibles is a

minority. The other attractor is a single state attractor, on which the opinion that is

supported by inflexibles has complete majority, i.e., its density equals 1, the other

opinion being absent. Due to the presence of these two attractors, the outcome of

the opinion dynamics thus depends on the initial condition, the basin of attraction

for the mixed local attractor being relatively small compared to that for the single

state attractor. If the density of inflexibles is sufficiently large (approximately 17%),

the mixed attractor disappears and the single state attractor becomes global. In

case both opinions have small and equal densities of inflexibles there are two

mixed local attractors. These two attractors are symmetrically situated with regard

to a separator on which both opinions are present with density 0.5.

A change in the density of inflexibles for one of the opinions breaks this symmetry,

and a sufficiently large increase may lead to a global attractor on which the opinion

with the larger density of inflexibles has the majority [34]. The inflexible effect

could provide for some counter-intuitive explanation to real paradoxical situations
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[29]. The effect of inflexibles and floaters on opinion dynamics has also been

studied extensively in recent years, as seen in [3, 5, 9, 42, 55, 63, 64, 74, 81–83, 90].

In this paper we combine the approaches presented in [23] and [34], by allowing

for groups composed of inflexibles as well as contrarian and non-contrarian

opinion supporters. For clarity we restrict ourselves to groups of fixed size 1, 2

and 3. For both opinions we assume fixed densities for the inflexibles. Also, we

consider the contrarians to be part of the floaters, i.e., in a given group the

contrarians first determine their opinion according to the l.m.r., and subsequently

change to become a floater (not necessarily a contrarian) for the alternative

opinion (which thus may be the opinion that the contrarian initially was

supporting). The presence of contrarians for each opinion is quantitatively

expressed as a fixed fraction of the density of floaters of the respective opinion. In

case of a tie in groups of size 2 we apply the neutral treatment. After an opinion

update, all supporters for both opinions are recollected and then are redistributed

again, either as an inflexible or as a non-contrarian or contrarian floater, according

to the fixed densities for inflexibles and the fixed fractions of contrarians for the

two opinions. We study qualitative characteristics of the opinion dynamics

generated by repeated updates. In particular we study changes in the number of

equilibria, and changes from monotone to alternating dynamics, due to changes in

parameter combinations. The opinion dynamics thus obtained reflects the

behaviour of the support for opinions as it is influenced by individuals that for

various (e.g. psychological, political) reasons go against the grain as they find

themselves in a background consisting of individuals with a clear conviction. A

detailed mathematical extension to groups of size 4 will be given in a forthcoming

paper [35].

Notation

We denote the two opinions by A and B. The densities of inflexibles for the A and

B opinion are denoted by αA and αB respectively, with 0 ≤ αA ≤ 1 as well as

0 ≤ αB ≤ 1, and in addition 0 ≤ αA + αB ≤ 1. Since the roles of the A and B

opinion are interchangeable in deriving the opinion dynamics, we may without

loss of generality assume that 0 ≤ αA ≤ 0.5, and we shall do so in what follows.
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The fraction of contrarians among the A floaters is denoted by γA, and γB denotes

the fraction of contrarians among the B floaters, with both 0 ≤ γA ≤ 1 and

0 ≤ γB ≤ 1. The size of the groups in which opinion supporters meet is denoted

by L. The density of the A opinion at time t = 0, 1, 2, · · · (or after t updates) shall

be denoted as pt. Note that for given αA and αB the density pt necessarily lies in

the interval [αA, 1 − αB] (independent of L, γA or γB). With fL;αA,αB;γA,γB we

denote the function that determines the density of the A opinion after application

of the l.m.r. followed by the switch of the contrarians. Thus,

pt+1 = fL;αA,αB;γA,γB(pt). Setting γA = γB = 0, pt+1 = fL;αA,αB;0,0(pt) then gives the

density obtained from pt when the l.m.r. is applied without being followed by the

switch of the contrarians. In the Appendix tables are given, presenting all possible

group compositions in terms of inflexibles and non-contrarian and contrarian

floaters for group sizes L = 1 to 3, together with the effects of the l.m.r. and the

opinion changes of contrarians. It is assumed that the community is sufficiently

large and well-mixed to allow for the derivation of the density of each possible

group composition in the ensemble of all groups of a fixed size from the densities

in the community of the constituents of a group. From these tables the expressions

for fL;αA,αB;γA,γB are obtained.

With
−−−−−−−→
fL;αA,αB;γA,γB we denote the dynamics generated by repeated application of

fL;αA,αB;γA,γB in subsequent timesteps. Furthermore, p̂L;αA,αB;γA,γB denotes an

asymptotically stable equilibrium for
−−−−−−−→
fL;αA,αB;γA,γB , and p∗L;αA,αB;γA,γB

refers to an

asymptotically stable periodic point.

We now turn to the treatment of the opinion dynamics for group sizes L = 1, 2

and 3.

3.2 group size 1

The case L = 1 resembles a community in which each member is unaffected

by other community members in determining its opinion, and the only changes

in opinion come from the contrarians. The contributions to the A density after

application of the local majority rule is obtained from the second column in Table 1

in Appendix 3.6.1. This column obviously is equal to the first one, since in groups
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of size 1 local majority is automatically obtained, but is without effect on the

opinion densities. These contributions are: αA for the A inflexibles, and p− αA for

the (non-contrarian and contrarian) A floaters. Their sum is p, and we obtain for

the update rule of the local majority rule that

pt+1 = f1;αA,αB;0,0(pt) = pt; (3.1)

consequently, each p ∈ [αA, 1− αB] is a neutrally stable equilibrium for the opinion

dynamics generated by the l.m.r..

In case only (non-contrarian and contrarian) floaters are involved both αA and

αB are equal to 0, and we restrict ourselves to the contributions from the second,

third, fifth and sixth line in the table. Since the l.m.r. leaves each group of size

1 unaffected, a switch by a contrarian in this case necessarily implies a change

to the opinion it initially does not support. Thus, here also a contribution to the

A density comes from the group that initially consists of only B contrarians, as

these will turn into A floaters. In this case we obtain for the contribution to the A

density:

pt+1 = f1;0,0;γA,γB(pt) = (1− γA)pt + γB(1− pt) = γB +
(

1− (γA + γB)
)

pt. (3.2)

The effect of both inflexibles and non-contrarian as well as contrarian floaters is

obtained by adding all the expressions in the last column: the contributions αA due

to the invariant density of A inflexibles, (1− γA)(pt− αA) from the non-contrarian

A floaters, and γB(1− αB − pt) from the contrarian B floaters. This yields:

pt+1 = f1;αA,αB;γA,γB(pt) = αA + (1− γA)(pt − αA) + γB(1− αB − pt) =

αAγA + (1− αB)γB +
(

1− (γA + γB)
)

pt. (3.3)

It follows that if γA + γB > 0, then

p̂ =
αAγA + (1− αB)γB

γA + γB
(3.4)

is the unique equilibrium for the opinion dynamics
−−−−−−−→
f1;αA,αB;γA,γB . Due to its linearity

as a function of pt, expression (3.3) implies that the dynamical characteristics

of this equilibrium are governed solely by the frequencies of the contrarians.
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The equilibrium is asymptotically stable if and only if 0 < γA + γB < 2. For

0 < γA + γB < 1 the equilibrium is approached monotonically, with an increase in

the A density if and only if its initial value is less than the equilibrium value. For

γA + γB = 1, the function f1;αA,αB;γA,γB is constant and equals αAγA + (1− αB)γB;

the opinion dynamics then reaches its equilibrium in one iteration. For 1 <

γA + γB < 2, the equilibrium is approached alternately. For γA + γB = 2, i.e., both

γA = 1 and γB = 1, the equilibrium equals 0.5(1+ αA− αB) and is neutrally stable;

each p ∈ [αA, 1− αB] different from 0.5(1 + αA − αB) generates a neutrally stable

cycle of length 2.

On the equilibrium, the A opinion has the majority if and only if the inequality

(0.5− αA)γA < (0.5− αB)γB (3.5)

holds. Thus, for an opinion to achieve the majority it is required that it is being

supported by a sufficiently large density of inflexibles, and/or a sufficiently small

frequency of contrarians among the floaters.

Given densities αA and αB of inflexibles for the two opinions, a change in the

frequencies of contrarians from 0 into small values γA and γB causes the

bifurcation from a collection of neutrally stable equilibria for
−−−−−→
f1;αA,αB;0,0 into a

unique stable equilibrium for
−−−−−−−→
f1;αA,αB;γA,γB . The opinion which has the majority on

this equilibrium is determined by inequality (3.5). In case αA = αB = α, the

opinion with the smaller frequency of contrarians obtains the majority. Conversely,

given different frequencies γA and γB of contrarian floaters for the two opinions,

in the absence of inflexibles the dynamics
−−−−−−→
f1;0,0;γA,γB has p̂ = γB

γA+γB
as its unique

stable equilibrium, on which the opinion with the smaller frequency of contrarians

has the majority. Fixing sufficiently small densities αA and αB of both opinions as

inflexibles, this equilibrium slightly shifts but leaves the majority unaltered. In

case γA = γB, in the absence of inflexibles the equilibrium p̂ equals 0.5, and the

introduction of small densities of inflexibles for both opinions changes this

equilibrium into one on which the opinion with the larger density of inflexibles

takes the majority. Figure 3.1 illustrates these conclusions.

Figure 3.2 gives a qualitative overview of the outcomes of the possible opinion

dynamics
−−−−−−−→
f1;αA,αB;γA,γB .
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Figure 3.1: Figure a shows the graphs of f1;0.2,0.2;0,0 (which coincides with the
diagonal) and f1;0.2,0.2;0.075,0.05 as functions of p on the interval [0.2, 0.8].
By changing the frequencies of contrarians from (γA, γB) = (0, 0) into
(γA, γB) = (0.075, 0.05), the collection of neutrally stable equilibria (the
diagonal) bifurcates into a unique stable equilibrium p̂ = 0.44 on which
the B opinion has the majority. Figure b shows the diagonal together
with the graph of f1;0,0;0.2,0.2 on [0, 1], and the graph of f1;0.15,0.2;0.2,0.2
on [0.15, 0.8], both as functions of p. The dashed lines indicate the
boundaries of the interval [0.15, 0.8]. The graphs of the two functions
almost coincide on this interval and are parallel (due to the equal
frequencies of contrarians for both cases). The dynamics generated by
these two functions have p̂ = 0.5 and p̂ = 0.475 as their respective
stable equilibria.

3.3 group size 2

In groups of size 2 the number of members that support the A or B opinion may

be equal, in which case a tie occurs. We shall deal with the neural treatment in

case of a tie, in which each supporter keeps its own opinion.

Table 2 in Appendix 3.6.2 is related to groups of size 2. We obtain

pt+1 = f2;αA,αB;0,0(pt) = pt, (3.6)

which is obvious, since in groups of size 2 no majorities can occur, and, in case

of a tie, the neutral application of the local majority rule does not have any effect.

Incorporating the effect of non-contrarian as well as contrarian floaters, Table 2

yields that

pt+1 = f2;αA,αB;γA,γB(pt) = αAγA + (1− αB)γB +
(

1− (γA + γB)
)

pt. (3.7)
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Figure 3.2: An overview of the opinion dynamics of f1;αA,αB;γA,γB , for values αA
and αB as indicated, and with γA and γB in each pane on the horizontal
and vertical axis, respectively, both ranging between 0 and 1. In each
pane the line with negative slope γA + γB = 1 is drawn, and possibly
an additional red line of positive (possibly infinite) or zero slope. On
the line γA + γB = 1 the function f1;αA,αB;γA,γB is constant, and the
corresponding values of γA and γB separate between monotone and
alternating dynamics, with the monotone dynamics occurring if 0 <
γA +γB < 1, i.e., below the line. The red line, if present, gives the values
(γ1, γ2) 6= (0, 0) for which the equilibrium of the opinion dynamics
equals 0.5, and is determined by the expression (αA − 0.5)γA − (αB −
0.5)γB = 0. Opinion A obtains the majority if (and only if) (αA −
0.5)γA − (αB − 0.5)γB > 0 holds, i.e., if αB < 0.5 and (γA, γB) lies
above the red line. The panes for values (αA, αB) for which αA + αB = 1
represent degenerate cases, in the sense that only inflexibles for both
opinions are present in the community and only one density p̂ = αA
for the A opinion occurs in time. In case αB > 0.5, opinion A will never
achieve the majority in equilibrium.
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Thus, for groups of size 2 the effect of the neutral application of the local majority

rule and the contrarians is the same as for groups of size 1.

3.4 group size 3

Group size 3 is the smallest value of L for which the local majority rule becomes

effective due to possible group compositions in which a majority of one of the two

opinions occurs. As a consequence, the generated dynamics allows for features

different from those for group sizes 1 and 2. Careful bookkeeping based on Table 3

in Appendix 3.6.3 yields that

pt+1 = f3;αA,αB;γA,γB(pt) =

αA(1− γA) + (1− αB)γB −
(

2αA(1− 2γA)− γA + γB

)
pt +

(
3 + αA(1− 2γA)− αB(1− 2γB)− 4γA − 2γB

)
p2

t − 2
(

1− γA − γB

)
p3

t =

pt + αA(1− γA) + (1− αB)γB −
(

1 + 2αA(1− 2γA)− γA + γB

)
pt +

(
3 + αA(1− 2γA)− αB(1− 2γB)− 4γA − 2γB

)
p2

t − 2
(

1− γA − γB

)
p3

t . (3.8)

For clarity we start the analysis of the generated opinion dynamics with the

symmetric case of equal densities of inflexibles and equal fractions of contrarians

for both opinions.

3.4.1 The fully symmetric case: αA = αB and γA = γB

Taking αA = αB = α and γA = γB = γ, we obtain that

pt+1 = f3;α,α;γ,γ(pt) =

pt + (1− 2pt)
(

γ + α(1− 2γ)− (1− 2γ)pt + (1− 2γ)p2
t

)
. (3.9)
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Figure 3.3: Graphs of f3;0.1,0.1;γ,γ as function of p ∈ [0.1, 0.9], with values γ as
indicated at each specific graph. In addition, the diagonal and the line
1− p are drawn.

As an illustration to expression (3.9), Figure 3.3 shows a collection of graphs of

f3;α,α;γ,γ as function of p, for α = 0.1 and several values of γ.

From expression (3.9) the analysis of the generated opinion dynamics is

straightforward. We give an overview.

Symmetry considerations imply that the dynamics
−−−−→
f3;α,α;γ,γ has p = 0.5 as an

equilibrium, for any choice of α ∈ [0, 0.5] and γ ∈ [0, 1]. In addition to parameter

combinations α and γ for which this equilibrium is unique and stable, there are

combinations which allow for an unstable repelling equilibrium p̂ = 0.5 in

combination with two other, asymptotically stable, equilibria, or with two

asymptotically stable periodic points of minimal period 2. Details for these

possibilities to appear are derived in Appendix 3.6.4, here we confine ourselves to

the outcome.

Let the critical curves c3 and C3 be defined as follows:

c3 = {(α, γ) ∈ [0, 0.5]× [0, 1] : (3− 4α)(1− 2γ) = 2}, (3.10)

and

C3 = {(α, γ) ∈ [0, 0.5]× [0, 1] : (3− 4α)(1− 2γ) = −2}. (3.11)

Figure 3.4 shows the curves c3 and C3 in the (α, γ)-parameter space. On c3 the

derivative f ′3;α,α;γ,γ(0.5) equals 1, whereas on C3 this derivative equals −1. The two
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Figure 3.4: The critical curves c3 and C3 in the (α, γ)-parameter space

corner areas in Figure 3.4 enclosed by either c3 or C3 are the regions of parameter

combinations for which 0.5 is unstable; outside these regions (including the

curves) 0.5 is the unique asymptotically stable equilibrium for
−−−−→
f3;α,α;γ,γ,

independent of the initial condition. The lower left corner region is the area for

which the dynamics
−−−−→
f3;α,α;γ,γ has two asymptotically stable equilibria p̂3;α,α;γ,γ.

Given parameter combinations (α, γ) in this region, the opinion dynamics

eventually will stabilise on an equilibrium on which the opinion with the initial

majority will have maintained its majority. In case (α, γ) 6= (0, 0), this equilibrium

is mixed; if neither inflexibles nor contrarians are present for both opinions, i.e.

(α, γ) = (0, 0), the equilibrium is a single state attractor with only one opinion

present. These results generalise those obtained in [34] for the case of equal

densities of inflexibles and no contrarians for both opinions. For parameter

combinations in the upper left corner region in Figure 3.4, the dynamics has two

attracting periodic points of period 2. Here an initial majority does not guarantee

the eventual majority, since the dynamics is such that both opinions alternately

switch between minority and majority.

Thus, if both opinions are being supported by equal densities α of inflexibles and

equal fractions γ of contrarians among the floaters, for an opinion to obtain the

majority it is necessary that α as well as γ are sufficiently small, and that it has

the initial majority. Also, with increasing α (γ), the maximum value of γ (α) for
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which a majority is attainable decreases. If no inflexibles are present, the fraction

of contrarians among the floaters must be less than approximately 17% (
100
6

%) for

a majority to be realisable, and if the fraction of contrarians among the floaters

equals 0, the density of inflexibles must be less than 25%.

If in the parameter space a combination (α, γ) approaches from within a corner

towards one of the two critical curves, then the two additional equilibria or periodic

points approach towards p = 0.5; a withdrawal in the parameter space results in

the opposite movement of the additional equilibria or periodic points. It follows

that when passing through c3, the dynamics
−−−−→
f3;α,α;γ,γ undergoes a supercritical

pitchfork bifurcation, and when passing through C3 the dynamics undergoes a

period doubling bifurcation (flip bifurcation).

3.4.2 The general case

We now return to the general expression (3.8) and give an overview of the possible

outcomes of the dynamics
−−−−−−−→
f3;αA,αB;γA,γB . The analytical background is given in

Appendix 3.6.5. We distinguish several cases.

1. γA + γB = 1.

For γA and γB such that γA + γB = 1, the function

f3;αA,αB;γA,γB is quadratic in p. The corresponding opinion dynamics
−−−−−−−−−→
f3;αA,αB;γA,1−γA has a unique stable equilibrium in the interval [αA, 1− αB].

For (γA, γB) = (0.5, 0.5), the function f3;αA,αB;0.5,0.5 becomes constant and

equals f3;αA,αB;0.5,0.5(p) = 0.5(1 + αA − αB); it allows for a unique stable

equilibrium p̂ = 0.5(1 + αA − αB), on which opinion A has the majority if

and only if αA > αB. The following figure distinguishes between parameter

combinations αA, αB and γA for which the A opinion obtains either the

majority or minority in equilibrium, and for which the equilibrium is

approached monotonically or alternately (Figure 3.5). It follows that with

increasing value of γA the region of parameter combinations (αA, αB) for

which opinion A obtains the majority decreases. In addition, if γA ≤ 0.5, the

A opinion can obtain the majority for any value of αA, provided that αB is

sufficiently small; if γA > 0.5, αA must be sufficiently large and αB

sufficiently small for an A majority to occur.
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Figure 3.5: The different panes, distinguished by different values of γA, have
αA on the horizontal axis and αB on the vertical one. Each pane

shows the red line αB =
1− 2γA

3− 2γA
+

1 + 2γA

3− 2γA
αA of parameter values

(αA, αB) for which the equilibrium value p̂3;αA,αB;γA,1−γA equals 0.5.
Below a red line the equilibrium value lies above 0.5, i.e., opinion A
then obtains the majority. In addition each pane shows in white the
region of parameters (αA, αB) for which the equilibrium p̂3;αA,αB;γA,1−γA

is approached monotonically; the black regions indicate parameter
combinations for which the equilibrium is approached alternately. For
γA = 0.5, the derivative of f3;αA,αB;γA,1−γA in the equilibrium equals 0
for all parameter values (αA, αB), and the equilibrium is reached in
one iteration. On the line αA + αB = 1 the dynamics is degenerate: the
density p is restricted to a single equilibrium density p̂ = αA. The white
region αA + αB > 1 is not involved in the analysis.

2. γA + γB 6= 1.

The expression f3;αA,αB;γA,γB(p)− p = 0 for determining the equilibria is
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f3;αA,αB;γA,γB(p)− p =

αA(1− γA) + (1− αB)γB −
(

1 + 2αA(1− 2γA)− γA + γB

)
p +

(
3+ αA(1− 2γA)− αB(1− 2γB)− 4γA− 2γB

)
p2 − 2

(
1−γA−γB

)
p3 = 0.

(3.12)

The number of solutions is determined by its discriminant, which is denoted

by D(αA, αB; γA, γB). The expression for the discriminant is derived in

Appendix 3.6.5; here we discuss its implications.

For parameter combinations (αA, αB; γA, γB) such that D(αA, αB; γA, γB) > 0,

the equation f3;αA,αB;γA,γB(p) − p = 0 has a unique real solution. If

D(αA, αB; γA, γB) < 0, there are three real solutions. However, these

solutions do not necessarily have to belong to the interval [αA, 1− αB] (but if

a solution lies in this interval, it clearly is an equilibrium for the dynamics
−−−−−−−→
f3;αA,αB;γA,γB). If D(αA, αB; γA, γB) = 0 there are three real solutions, of which

at least two coincide; if this happens in the interval [αA, 1 − αB], the

parameter combination is at a bifurcation point, discriminating between

dynamics with either a unique equilibrium or three equilibria. If at the

bifurcation point exactly two of the three solutions coincide, the coinciding

solutions form a semistable equilibrium.

Figure 3.6 shows a collection of sign plots for the discriminant, for values αA

and αB as indicated, and with γA and γB for each sign plot between 0 and 1.

In addition the outcome of the analysis for parameter combinations

(αA, αB; γA, 1 − γA) is included, as well as the results of the analysis for

combinations (α, α; γ, γ).

The discriminant becomes singular for parameter combinations

(αA, αB; γA, γB) with γA + γB = 1. In approaching such parameter

combinations for which (γA, γB) 6= (0.5, 0.5), the value of D(αA, αB; γA, γB)

goes to −∞. For (γA, γB) = (0.5, 0.5), the limit generically equals +∞ when

this point is approached from the region γA + γB < 1; the limit equals −∞

in case it is approached from the other side, i.e., from the region
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γA + γB > 1. (In case (0.5, 0.5) is approached along the zero set of

D(αA, αB; γA, γB), i.e., in each pane in Figure 3.6 along the boundary that

distinguishes between the yellow and green regions and touches with the

line γA + γB = 1, the limit clearly equals 0.)

Our further discussion of the opinion dynamics
−−−−−−−→
f3;αA,αB;γA,γB is based on

Figure 3.6. Instead of a detailed analytical treatment, we continue with a

number of characteristic outcomes of the opinion dynamics.

A first characteristic that draws attention in Figure 3.6 is the existence of a

wedge-shaped region of parameter combinations (αA, αB; γA, γB) with negative

discriminant for sufficiently small values of all four parameters. For the cases with

both αA = αB and γA = γB within this region, we already found the existence of

two attracting equilibria, symmetrically positioned with respect to a third,

unstable equilibrium 0.5. We therefore expect also to find a similar pattern of three

equilibria in [αA, 1− αB] for deviations from such symmetric cases within the

wedge-shaped region. In [34] it has been derived that this is indeed the case in the

absence of contrarians, i.e., for parameter combinations for which γA = γB = 0,

and for αA and αB sufficiently small. Figure 3.7, which shows a number of graphs

of functions f3;αA,αB;γA,γB for relatively small values αA, αB, γA and γB, implies the

same pattern: in case the determinant D(αA, αB; γA, γB) is negative, the opinion

dynamics has two attracting equilibria that are separated by an unstable one. The

two attracting equilibria differ with respect to the opinion by which they are

dominated. By leaving the wedge-shaped area, a bifurcation in the opinion

dynamics occurs on its boundary D(αA, αB; γA, γB) = 0. Generically, when

moving from inside the wedge-shaped area towards this boundary, the unstable

equilibrium and one of the two stable equilibria move towards each other, and at

the bifurcation point merge (thus causing a supercritical saddle-node bifurcation).

Once the boundary has been crossed, the region of parameters with a positive

discriminant is entered, and the dynamics is left with one attracting equilibrium.

On this equilibrium opinion A dominates if the upper part of the boundary is

crossed, i.e., when γB > γA; opinion B has the majority when the right-hand side

of the boundary is passed, on which γA > γB holds. This is also illustrated in

Figure 3.7. The occurrence of such a bifurcation may lead to a drastic change in

the outcome of the opinion dynamics: whereas inside the wedge-shaped region
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Figure 3.6: A collection of panes, for values αA and αB as indicated, and γA and
γB for each pane ranging between 0 and 1, with γA on the horizontal
axis and γB on the vertical axis. In each pane the sign plot of the
discriminant D(αA, αB; γA, γB) is shown for points (γA, γB) for which
γA + γB 6= 1. Yellow areas represent the parameter combinations with
a positive discriminant (i.e., combinations for which the corresponding
opinion dynamics has a unique equilibrium), and in green regions the
discriminant is negative (the corresponding opinion dynamics then has
3 different equilibria, but not necessarily in the interval [αA, 1− αB]).
On the curve separating the yellow and green region the discriminant
D(αA, αB; γA, γB) for the third-degree function f3;αA,αB;γA,γB(p) − p
equals 0 (except in (γA, γB) = (0.5, 0.5), where this function becomes
quadratic). In each pane the line γA + γB = 1 is drawn in black. On
these lines the third-degree function f3;αA,αB;γA,γB becomes quadratic
and the corresponding dynamics has a unique equilibrium increasing
from 0 (for γA = 1) to 1 (γA = 0). Furthermore, in panes for which
αA = αB holds, on the line γA = γB in the green regions (i.e., a negative
discriminant) in black the points are indicated for which the equilibrium
p̂ = 0.5 for

−−−−−−−→
f3;αA,αB;γA,γB is unstable; other points on the lines γA = γB

(for αA = αB) indicate parameter combinations for which p̂ = 0.5 is
stable (as follows from Figure 3.4).

the outcome of the opinion dynamics depends on the initial condition, outside the

wedge-shaped area the opinion dynamics will end on the unique equilibrium,
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independent of the initial condition. At the bifurcation point at the endpoint of the

sharp region of the wedge-shaped area a supercritical pitchfork bifurcation occurs,

in which the three equilibria merge together into one attracting equilibrium.

The yellow regions in Figure 3.6 are formed by the parameter combinations for

which the discriminant D(αA, αB; γA, γB) is positive. The corresponding opinion

dynamics then have a unique equilibrium, which (for the parameter combinations

in Figure 3.6) is approached monotonically. Figure 3.8 shows a number of graphs

f3;αA,αB;γA,γB for parameter combinations with a positive discriminant. The Figure

indicates that for small values of γA and large values of γB opinion A dominates

in equilibrium, and that the dominion shift towards the alternative opinion if

the fraction of contrarians among the A floaters increases and that among the B

floaters decreases.

For given parameters αA and αB, crossing the boundary of the yellow area in

any direction away from the lower left corner leads to the occurrence of a saddle-

node bifurcation, now however outside the domain [αA, 1− αB] of the functions

f3;αA,αB;γA,γB (maintaining an attracting equilibrium in the domain). Therefore in

the green region thus entered, the opinion dynamics also is characterised by a

unique attracting equilibrium. Proceeding towards the upper right corner, the line

of parameter combinations (γA, γB) satisfying γA + γB = 1 is crossed. On this

line the discriminant D(αA, αB; γA, γB) is singular, and the corresponding opinion

dynamics have been analysed in 3.4.2.1.

In the green area in the upper right corner, for equal and sufficiently small values

αA = αB = α and sufficiently large and equal values γA = γB = γ it has been

derived earlier that
−−−−−−→
fαA,αB;γA,γB has a unique unstable equilibrium p̂ = 0.5, which

causes the convergence of the dynamics towards an attracting periodic orbit of

period 2. Neither of the two opinions then achieves the definite majority. The values

α and γ for which this occurs have been derived in 3.4.1, and are represented in

Figure 3.6 by black line segments in the upper right corners. For these parameter

combinations the discriminant of the equation f3;αA,αB;γA,γB(p)− p = 0 is negative

and thus has three different solutions, of which two are situated outside the domain

[αA, 1− αB]. Continuity arguments imply that this behaviour will be maintained

for parameter combinations sufficiently close to these line segments. Figure 3.9

illustrates this. If the parameter combinations are sufficiently far removed from
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Figure 3.7: Four panes of graphs of functions f3;αA,αB;γA,γB for relatively small
values αA, αB, γA and γB, with (αA, αB) as indicated below each pane,
and with values γA as indicated by the color code. In each of the four
panes, γA and γB satisfy γA + γB = 0.2. I.e., in the corresponding panes
in Figure 3.6 we traverse the line γA + γB = 0.2 from its upper left
point on the γA = 0 axis to its lower right point on the γB = 0 axis,
thus passing through regions with positive, zero as well as negative
discriminant. Above each of these panes the values of the densities
for opinion A in subsequent time steps are plotted, as obtained by
the corresponding opinion dynamics

−−−−−−−→
f3;αA,αB;γA,γB , with initial density

p = 0.5.
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Figure 3.8: Four panes of graphs of functions f3;αA,αB;γA,γB for relatively small
values αA and αB as indicated, and γA-values as given by the color code.
γA and γB satisfy γA + γB = 0.7, i.e. for given (αA, αB), we traverse the
line γA + γB = 0.7 from its upper left point on the γA = 0 line to its
lower right point on the γB = 0 line. The discriminant D(αA, αB; γA, γB)
for the exposed parameter values is positive, indicating a unique
equilibrium for the corresponding opinion dynamics.

these line segments but γA and γB are still relatively large (i.e., for given αA and

αB, in the upper right corner), the dynamics will converge alternately to a unique

equilibrium. I.e., by moving away from the manifold determined by the constraints

αA = αB and γA = γB with large values γA and γB, a flip bifurcation occurs in

which the attracting periodic 2 orbit collapses to an attracting equilibrium point.

This is illustrated by Figure 3.10. On the attractor the dominion shifts towards

opinion B with increasing γA and decreasing γB.

We end our discussion by presenting some additional opinion dynamics
−−−−−−−→
f3;αA,αB;γA,γB for parameter combinations from both the regions with positive and

negative discriminant. We remark here that the line segments on the line γA = γB

in the lower left and upper right regions of the sign plots of D(α, α; γA, γB)

disappear for α ≥ 0.25. For choices (αA, αB) outside the region for which both
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Figure 3.9: Four panes of graphs of functions f3;αA,αB;γA,γB for relatively small
values αA and αB, and with γA and γB satisfying γA + γB = 1.8. The
values of αA and αB are indicated below each of the four panes, and
values for γA are as indicated by the color code. I.e., for given (αA, αB),
we traverse the line γA + γB = 1.8 from its upper left point on the
γB = 1 line to its lower right point on the γA = 1 line. Above each
of these panes the densities for opinion A are again presented, as
obtained by the corresponding opinion dynamics

−−−−−−−→
f3;αA,αB;γA,γB , with

initial density p = 0.5.
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Figure 3.10: Four panes of graphs of functions f3;αA,αB;γA,γB for relatively small
values αA and αB, and with γA and γB satisfying γA + γB = 1.7. The
values of αA and αB are indicated below each of the four panes, values
for γA are again given by the color code. For given (αA, αB) values of
γA are such that we traverse the line γA + γB = 1.7 from its upper
left point on the γB = 1 line to its lower right point on the γA = 1
line. Above each pane the densities for opinion A are presented, as
obtained by the corresponding opinion dynamics

−−−−−−−→
f3;αA,αB;γA,γB , with

initial density p = 0.5.
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αA ≤ 0.25 and αB ≤ 0.25 there is no qualitative change in the sign plots of

D(αA, αB; γA, γB), and we choose to restrict and illustrate this for the choices

(αA, αB) = (0.1, 0.4) and (αA, αB) = (0.5, 0.3), i.e., a case with small αA and

intermediate αB, and one with both αA and αB intermediate. Figure 3.11 shows the

sign plots of the discriminants D(0.1, 0.4; γA, γB) (a) and D(0.5, 0.3; γA, γB) (b).

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(αA, αB) = (0.1, 0, 4) (αA, αB) = (0.5, 0, 3)

a b

γA

γB

γA

γB

Figure 3.11: Sign plots of the discriminants D(0.1, 0.4; γA, γB) (a) and
D(0.5, 0.3; γA, γB) (b). The color code is as in Fig. 3.6. On the
curve separating the yellow and green region the discriminant
D(αA, αB; γA, γB) for the third-degree function f3;αA,αB;γA,γB(p) − p
again equals 0 (except in (γA, γB) = (0.5, 0.5), where this function
becomes quadratic). In addition in each pane the line γA + γB = 1 is
drawn in black.

The corresponding graphs of f3;αA,αB;γA,γB are represented in Figures 3.12 and 3.13,

for several values of γA and γB. All cases allow for a unique attracting equilibrium.

High values of both γA and γB lead to alternating convergence. Furthermore, a

decrease in the fraction of contrarians among the floaters of an opinion increases

the density of this opinion in equilibrium.

3.5 conclusions

The results presented re-establish those derived in [23, 28], which concerned

communities of non-contrarian and contrarian floaters, and [34], which studied

the combined effects of inflexibles and non-contrarian floaters. The distinctive
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Figure 3.12: The left column shows four panes of graphs of functions f3;0.1,0.4;γA,γB ,
for different combinations of γA and γB, with γA as indicated and per
row of graphs γB such that the relation mentioned below the row of
graphs is satisfied. The right column of the Figure shows the densities
of opinion A as generated by the corresponding opinion dynamics for
initial value p = 0.5.
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Figure 3.13: The left column shows four panes of graphs of functions f3;0.5,0.3;γA,γB

for the same combinations of γA and γB as in Fig. 3.12. The right
column of the Figure shows the densities of opinion A as generated
by the corresponding opinion dynamics for initial value p = 0.5.
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patterns of opinion dynamics are not characterised by complete quantitative detail.

Rather, the results intend to point to possible outcomes of opinion dynamics. We

conclude that various kinds of dynamics may occur. In case the local majority rule

followed by the contrarian changes are applied for group sizes L = 1 or 2, the

opinion dynamics generically converges to a unique equilibrium. In case the sum

of fractions of contrarians for the two opinions is larger than 1, the equilibrium

generically is approached alternately, otherwise the dynamics generically shows

a monotone approach. For an opinion to obtain the majority in equilibrium, it is

required that this opinion is supported by a sufficiently large density of inflexibles

in combination with a sufficiently small fraction of contrarians, as expressed by

condition (3.5).

Group size L = 3 allows for additional outcomes for the opinion dynamics.

For sufficiently small densities of inflexibles for both opinions, and in addition

sufficiently small fractions of contrarians among the floaters for the two opinions,

the dynamics allows for two attracting equilibria, that differ in which opinion

has the majority. The opinion that eventually will achieve the majority thus is

determined by the initial condition, and an opinion that has a fraction of contrarians

that is sufficiently smaller than that of the alternative opinion, may achieve the

majority in equilibrium, although initially it may be present as a minority. For small

values of inflexibles in combination with sufficiently large fractions of contrarians

among the floaters, the generated opinion dynamics causes alternating convergence

to a period 2 stable orbit (Figure 3.9). An increase of the densities of inflexibles or

a slight lowering of at least one of the fractions of contrarians causes the collapse

of the attracting periodic orbit into an equilibrium, but maintains the alternating

behaviour (Figure 3.10). For a relatively large collection of parameter combinations

the dynamics ends up on a unique attracting equilibrium, which is approached

either monotonically or alternating (see e.g. Figures 3.5 and 3.13). An increase in

the fraction of contrarians among the floaters of an opinion leads to a decrease

of the density of that opinion in equilibrium. Thus, for an opinion to achieve

the majority in equilibrium, a small fraction of contrarians among its floaters is

favourable.

In [28], the “hung elections” outcome in several national votes has been discussed

in terms of the interplay of non-contrarian and contrarian floaters. Likewise, the
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present paper may shed a light on the (dis)appearance of alternating opinion

dynamics. An alternating series of wins and losses of the majority for two political

opinions in pre-election polls may point to considerable fractions of contrarians

among the floaters on both sides. In case the alternating pattern converges to a

stable period 2 cycle, the uncertainty who will win the election will linger on

until the final decisive event. (Note that since the outcome of an election in an

alternating environment depends on the moment the election actually takes place,

it may happen that in subsequent polls the same winner occurs. This is however no

indication of sustained major support. Furthermore, in a sequence of alternating

environments, a large number of subsequent wins for the same opinion seems

unlikely.) If however the alternating changes are converging to an equilibrium, one

of the opinions eventually will reach a decisive majority. Due to the sensitivity

of politics for influences, a change in parameter values may easily occur, either

with respect to the densities of inflexibles or to the fractions of contrarians. This

may result in a switch from the one alternating pattern into the other one, or even

into monotone convergence towards an equilibrium. Although our framework

does not map unequivocally to real communities, we think it may hint at possible

explanations of outcomes of opinion dynamics.

In forthcoming papers we plan to continue the study of opinion dynamics, by

focusing on communities in which more than two opinions are being supported,

and by taking into account geographic networks.
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3.6 appendices

Subsections 3.6.1, 3.6.2 and 3.6.3 present tables for groups of sizes L = 1, 2 and 3

from which the density of the A opinion is derived after application of the l.m.r.

and the switch by the contrarians, given an initial density p for the A opinion.

Each table consists of four columns, of which the first four are separated by arrows.

The first column gives the possible group compositions in terms of inflexibles and

non-contrarian and/or contrarian floaters, the second column gives the effect of

the application of the l.m.r. for the group compositions given in the first column.

An application is indicated by a horizontal arrow, whose first appearance in a table

is indexed by “l.m.r.”; at other places in the tables this index is omitted. The third

column then gives the effect of the switches by the contrarians if applicable, where

it is understood that a contrarian switches into a floater of the alternative opinion.

The final column gives the contributions of the effect of the l.m.r. and the presence

of the contrarians to the density of the A opinion, weighed with the probability of

the original group composition in the ensemble of all possible groups of fixed size,

given the densities αA and αB of the inflexibles for both opinions, the fractions γA

and γB of contrarians among the floaters of the A and B opinion, respectively, and

the densities p− αA for the A floaters and 1− αB − p for the B floaters. The total

sum of these contributions yields fL;αA,αB;γA,γB(p). After each opinion update, all

supporters for both opinions are recollected and then redistributed again, either

as inflexible or as a non-contrarian or contrarian floater, according to the fixed

densities for inflexibles and the fixed fractions of contrarians for the two opinions.

In each table the following notation is being used:

Ai inflexible of the A opinion,
A f floater of the A opinion,
Anc non-contrarian floater of the A opinion,
Ac contrarian floater of the A opinion,
A fnc floater of the A opinion coming from a B non-contrarian

floater after application of the l.m.r.,
A fc floater of the A opinion coming from a B contrarian floater

after application of the l.m.r.,

and
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Bi inflexible of the B opinion,
B f floater of the B opinion,
Bnc non-contrarian floater of the B opinion,
Bc contrarian floater of the B opinion,
B fnc floater of the B opinion coming from a A non-contrarian

floater after application of the l.m.r.,
B fc floater of the B opinion coming from a A contrarian floater

after application of the l.m.r..

3.6.1 Table 1: group size L = 1

Table 1

Ai
l.m.r.−−−→ Ai αA

Anc → Anc (1− γA)(p− αA)
Ac → Ac → B f 0
Bi → Bi 0
Bnc → Bnc 0
Bc → Bc → A f γB(1− αB − p)
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3.6.2 Table 2: group size L = 2

Table 2

Ai, Ai
l.m.r.−−−→ Ai, Ai α2

A
Ai, Anc → Ai, Anc 2αA(1− γA)(p− αA)
Ai, Ac → Ai, Ac → Ai, B f αAγA(p− αA)
Ai, Bi → Ai, Bi αAαB
Ai, Bnc → Ai, Bnc αA(1− γB)(1− αB − p)
Ai, Bc → Ai, Bc → Ai, A f 2αAγB(1− αB − p)
Anc, Anc → Anc, Anc (1− γA)

2(p− αA)
2

Anc, Ac → Anc, Ac → Anc, B f γA(1− γA)(p− αA)
2

Anc, Bi → Anc, Bi αB(1− γA)(p− αA)
Anc, Bnc → Anc, Bnc (1− γA)(1− γB)(p− αA)(1− αB − p)
Anc, Bc → Anc, Bc → Anc, A f 2(1− γA)γB(p− αA)(1− αB − p)
Ac, Ac → Ac, Ac → B f , B f 0
Ac, Bi → Ac, Bi → B f , Bi 0
Ac, Bnc → Ac, Bnc → B f , Bnc 0
Ac, Bc → Ac, Bc → B f , A f γAγB(p− αA)(1− αB − p)
Bi, Bi → Bi, Bi 0
Bi, Bnc → Bi, Bnc 0
Bi, Bc → Bi, Bc → Bi, A f αBγB(1− αB − p)
Bnc, Bnc → Bnc, Bnc 0
Bnc, Bc → Bnc, Bc → Bnc, A f γB(1− γB)(1− αB − p)2

Bc, Bc → Bc, Bc → A f , A f γ2
B(1− αB − p)2
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3.6.3 Table 3: group size L = 3

Table 3

Ai, Ai, Ai
l.m.r.−−−→ Ai, Ai, Ai α3

A
Ai, Ai, Anc → Ai, Ai, Anc 3α2

A(1− γA)(p− αA)
Ai, Ai, Ac → Ai, Ai, Ac → Ai, Ai, B f 2α2

AγA(p− αA)
Ai, Ai, Bi → Ai, Ai, Bi 2α2

AαB
Ai, Ai, Bnc → Ai, Ai, A f 3α2

A(1− γB)(1− αB − p)
Ai, Ai, Bc → Ai, Ai, A fc → Ai, Ai, B f 2α2

AγB(1− αB − p)
Ai, Anc, Anc → Ai, Anc, Anc 3αA(1− γA)

2(p− αA)
2

Ai, Anc, Ac → Ai, Anc, Ac → Ai, Anc, B f 4αAγA(1− γA)(p− αA)
2

Ai, Anc, Bi → Ai, Anc, Bi 4αAαB(1− γA)(p− αA)
Ai, Anc, Bnc → Ai, Anc, A f 6αA(1− γA)(1− γB)(p− αA)×

(1− αB − p)
Ai, Anc, Bc → Ai, Anc, A fc → Ai, Anc, B f 4αAγB(1− γA)(p− αA)×

(1− αB − p)
Ai, Ac, Ac → Ai, Ac, Ac → Ai, B f , B f αAγ2

A(p− αA)
2

Ai, Ac, Bi → Ai, Ac, Bi → Ai, B f , Bi 2αAαBγA(p− αA)
Ai, Ac, Bnc → Ai, Ac, A f → Ai, B f , A f 4αAγA(1− γB)(p− αA)×

(1− αB − p)
Ai, Ac, Bc → Ai, Ac, A fc → Ai, B f , B f 2αAγAγB(p− αA)×

(1− αB − p)
Ai, Bi, Bi → Ai, Bi, Bi αAα2

B
Ai, Bi, Bnc → Ai, Bi, Bnc 2αAαB(1− γB)(1− αB − p)
Ai, Bi, Bc → Ai, Bi, Bc → Ai, Bi, A f 4αAαBγB(1− αB − p)2

Ai, Bnc, Bnc → Ai, Bnc, Bnc αA(1− γB)
2(1− αB − p)2

Ai, Bnc, Bc → Ai, Bnc, Bc → Ai, Bnc, A f 4αAγB(1− γB)(1− αB − p)2

Ai, Bc, Bc → Ai, Bc, Bc → Ai, A f , A f 3αAγ2
B(1− αB − p)2

Anc, Anc, Anc → Anc, Anc, Anc (1− γA)
3(p− αA)

3

Anc, Anc, Ac → Anc, Anc, Ac → Anc, Anc, B f 2γA(1− γA)
2(p− αA)

3

Anc, Anc, Bi → Anc, Anc, A f 2αB(1− γA)
2(p− αA)

2

Anc, Anc, Bnc → Anc, Anc, A f 3(1− γA)
2(1− γB)(p− αA)

2×
(1− αB − p)

Anc, Anc, Bc → Anc, Anc, A fc → Anc, Anc, B f 2γB(1− γA)
2(p− αA)

2×
(1− αB − p)

Anc, Ac, Ac → Anc, Ac, Ac → Anc, B f , B f (1− γA)γ
2
A(p− αA)

2

Anc, Ac, Bi → Anc, Ac, Bi → Anc, B f , Bi 2αBγA(1− γA)(p− αA)
2

Anc, Ac, Bnc → Anc, Ac, A f → Anc, B f , A f 4γA(1− γA)(1− γB)(p− αA)
2×

(1− αB − p)
Anc, Ac, Bc → Anc, Ac, A fc → Anc, B f , B f 2γAγB(1− γA)(p− αA)

2×
(1− αB − p)
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Table 3 (continued)
Anc, Bi, Bi → B f , Bi, Bi 0
Anc, Bi, Bnc → B f , Bi, Bnc 0
Anc, Bi, Bc → B f , Bi, Bc → B f , Bi, A f 2αBγB(1− γA)(p− αA)×

(1− αB − p)
Anc, Bnc, Bnc → B f , Bnc, Bnc 0
Anc, Bnc, Bc → B f , Bnc, Bc → B f , Bnc, A f 2γB(1− γA)(1− γB)(p− αA)×

(1− αB − p)2

Anc, Bc, Bc → B f , Bc, Bc → B f , A f , A f 2(1− γA)γ
2
B(p− αA)(1− αB − p)2

Ac, Ac, Ac → Ac, Ac, Ac → B f , B f , B f 0
Ac, Ac, Bi → Ac, Ac, Bi → B f , B f , Bi 0
Ac, Ac, Bnc → Ac, Ac, A f → B f , B f , A f (1− γA)γ

2
A(p− αA)

2(1− αB − p)
Ac, Ac, Bc → Ac, Ac, A fc → B f , B f , B f 0
Ac, Bi, Bi → B fc , Bi, Bi → A f , Bi, Bi α2

BγA(p− αA)
Ac, Bi, Bnc → B fc , Bi, Bnc → A f , Bi, Bnc 2αBγA(1− γB)(p− αA)(1− αB − p)
Ac, Bi, Bc → B fc , Bi, Bc → A f , Bi, A f 4αBγAγB(p− αA)(1− αB − p)
Ac, Bnc, Bnc → B fc , Bnc, Bnc → A f , Bnc, Bnc γA(1− γB)

2(p− αA)(1− αB − p)2

Ac, Bnc, Bc → B fc , Bnc, Bc → A f , Bnc, A f 4γAγB(1− γB)(p− αA)(1− αB − p)2

Ac, Bc, Bc → B fc , Bc, Bc → A f , A f , A f 3γAγ2
B(p− αA)(1− αB − p)2

Bi, Bi, Bi → Bi, Bi, Bi 0
Bi, Bi, Bnc → Bi, Bi, Bnc 0
Bi, Bi, Bc → Bi, Bi, Bc → Bi, Bi, A f α2

BγB(1− αB − p)
Bi, Bnc, Bnc → Bi, Bnc, Bnc 0
Bi, Bnc, Bc → Bi, Bnc, Bc → Bi, Bnc, A f 2αBγB(1− γB)(1− αB − p)2

Bi, Bc, Bc → Bi, Bc, Bc → Bi, A f , A f 2αBγ2
B(1− αB − p)2

Bnc, Bnc, Bnc → Bnc, Bnc, Bnc 0
Bnc, Bnc, Bc → Bnc, Bnc, Bc → Bnc, Bnc, A f γB(1− γB)

2(1− αB − p)3

Bnc, Bc, Bc → Bnc, Bc, Bc → Bnc, A f , A f 2(1− γB)γ
2
B(1− αB − p)3

Bc, Bc, Bc → Bc, Bc, Bc → A f , A f , A f γ3
B(1− αB − p)3
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3.6.4 L = 3: analysis for the fully symmetric case αA = αB and γA = γB

The derivative (with respect to p) f ′3;α,α;γ,γ of the function f3;α,α;γ,γ as given by

expression (3.9) in the equilibrium p̂ = 0.5 equals 0.5(3− 4α)(1− 2γ). There are

two additional equilibria

p̂3;α,α;γ,γ = 0.5
1− 2γ±

√
(1− 2γ)(−2 + (3− 4α)(1− 2γ))

1− 2γ
∈ [α, 1− α] (3.13)

if and only if 0 ≤ γ < 1
6 and 0 < 1−6γ

1−2γ − 4α. If the two additional equilibria exist

they are symmetrically positioned on opposite sides of 0.5, and asymptotically

stable; the equilibrium 0.5 then is unstable, with f ′3;α,α;γ,γ(0.5) > 1.

For α and γ such that 5
6 < γ ≤ 1 and 0 < 5−6γ

1−2γ − 4α, the equilibrium 0.5 also

is unstable, with f ′3;α,α;γ,γ(0.5) < −1. In this case the dynamics
−−−−→
f3;α,α;γ,γ has two

asymptotically stable periodic points p∗3;α;γ of minimal period 2, symmetrically

positioned with respect to 0.5:

p∗3;α,α;γ,γ = 0.5
1− 2γ±

√
(1− 2γ)(2 + (3− 4α)(1− 2γ))

1− 2γ
∈ [α, 1− α]. (3.14)

3.6.5 L = 3: analysis of the general case

The possible equilibria for
−−−−−−−→
f3;αA,αB;γA,γB (in [αA, 1 − αB]) follow from solving

f3;αA,αB;γA,γB(p) = p, under the restriction that p ∈ [αA, 1− αB]. We distinguish

several cases.

1. (γA, γB) = (0.5, 0.5): expression (3.8) equals f3;αA,αB;0.5,0.5(p) = 0.5(1 + αA −
αB), and allows for a unique stable equilibrium p̂ = 0.5(1 + αA − αB), on

which opinion A has the majority if and only if αA > αB.

2. (γA, γB) 6= (0.5, 0.5), γA + γB = 1: the function f3;αA,αB;γA,γB is quadratic

in p. The discriminant D(αA, αB; γA, γB) for the equation f3;αA,αB;γA,γB(p)−
p = 0 equals 4α2

B + 4γA(1− α2
A − 3α2

B)− 4γ2
A(1− 2(α2

A + α2
B)). The opinion

dynamics
−−−−−−−−−→
f3;αA,αB;γA,1−γA has a unique equilibrium
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p̂3;αA,αB;γA,1−γA =

1− γA + (1− 2γA)αA−√
(1− γA)(1− 2γA)α

2
B + γA(1− γA)− γA(1− 2γA)α

2
A

(1− 2γA)(1 + αA + αB)
(3.15)

in the interval [αA, 1− αB]. The derivative in the equilibrium equals

1− 2
√

γA(1− γA) + (1− γA)(1− 2γA)α
2
B − γA(1− 2γA)α

2
A.

3. γA + γB 6= 1. The expression f3;αA,αB;γA,γB(p)− p = 0 for determining the

equilibria now is

f3;αA,αB;γA,γB(p)− p =

αA(1− γA) + (1− αB)γB −
(

1 + 2αA(1− 2γA)− γA + γB

)
pt+

(
3+ αA(1− 2γA)− αB(1− 2γB)− 4γA− 2γB

)
p2

t − 2
(

1− γA− γB

)
p3

t = 0.

(3.16)

Its discriminant is

D(αA, αB; γA, γB) =
(

1
2 q1(αA, αB; γA, γB)

)2
+
(

1
3 q2(αA, αB; γA, γB)

)3
,

with

c0(αA, αB; γA, γB) = αA(1− γA) + (1− αB)γB,

c1(αA, αB; γA, γB) = −(1 + 2αA(1− 2γA)− γA + γB),

c2(αA, αB; γA, γB) = 3 + αA(1− 2γA)− αB(1− 2γB)− 4γA − 2γB,

c3(αA, αB; γA, γB) = −2(1− (γA + γB)),

and

q1(αA, αB; γA, γB) =
2

27

( c2(αA, αB; γA, γB)

c3(αA, αB; γA, γB)

)3
−

1
3

c2(αA, αB; γA, γB)

c3(αA, αB; γA, γB)

c1(αA, αB; γA, γB)

c3(αA, αB; γA, γB)
+

c0(αA, αB; γA, γB)

c3(αA, αB; γA, γB)
,

q2(αA, αB; γA, γB) = −1
3

( c2(αA, αB; γA, γB)

c3(αA, αB; γA, γB)

)2
+

c1(αA, αB; γA, γB)

c3(αA, αB; γA, γB)
.

Figure 3.6 shows a selection of sign plots of the discriminant for this case. In

addition the results of the analysis for combinations (α, α; γ, γ) is included.




