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1
I N T R O D U C T I O N

In our actions with other individuals, we often design strategies to achieve our
goals at minimum cost to ourselves and others. Is it better to take the train or
the car at this time of the day? Should I express my opinion openly and risk
that it is not heard, or first hear out my colleagues to find out if they agree with
me? Should I do my shoppings for Christmas dinner early and risk that some
ingredients will spoil, or should I wait to do them at the last minute and risk that
some ingredients are sold out? How successful my strategy is, depends on what
strategy you have chosen. What strategy you choose, depends on what strategy
you think I will choose. Strategy dynamics studies how the strategies chosen in a
population change over time, and is the subject of this thesis. It can be conceived
on two levels, which we shall both explore:

- the population-dynamical level, on which we deal with changes in the
densities of support of strategies in a community due to interactions of
individuals of;

- the evolution-dynamical level, where the interest lies in explaining from
population-dynamical arguments how a strategy becomes present,
disappears, or coexists with other strategies.

On the population-dynamical level we analyse strategy dynamics where
strategies occur as opinions are present as opinions in a community of two
populations. In each population all individuals adhere (at least momentarily) to a
certain opinion, which differs from the opinion supported in the other population.
We follow the densities of support for the two opinions in time when the
individuals of the two populations repeatedly meet in small groups. Under the
influence of a local majority rule and depending on individual behaviour
individuals may change their opinion, and we shall study the generated dynamics
in opinion support. Opinion dynamics comprises Part I of the thesis.

Part II of the thesis focuses on strategies on the evolution-dynamical level. Here
strategies are phenotypic traits such as they are studied in biology. We consider
communities of populations in which the individuals of each populations carry the
same trait (expressed as a numerical scalar value), and trait values are supposed
to differ between the populations. For convenience we assume that all individuals
are haploids and that reproduction is clonal. If one of the individuals generates a
mutant individual with a slightly different phenotype, this individual, depending
on the environment it encounters, either will be able to increase the presence of its
phenotype by means of reproduction or it will not and therefore will disappear

3



4 introduction

and go unnoticed on the evolutionary timescale. In case of increase of the presence
of the mutant phenotype, in general the population with the individual that
generated the mutant will disappear and be replaced by the mutant population.
The number of phenotypes present in the community then remains unaltered, but
one of their values is slightly changed. However, under specific conditions the
mutant phenotype is able to coexist with all the phenotypes originally present in
the community, and the number of phenotypes present in the community then
is increased by 1. We shall also derive that in case the mutant phenotype differs
sufficiently enough from that of its progenitor, the mutant type and the progenitor
type may disappear from the community, thus causing a decrease in the number
of phenotypes present in the community. Phenotypic trait dynamics is also known
as adaptive dynamics.

Phenotypic changes are underpinned by changes in alleles, while this is clearly
not the case for changes in opinion. Despite these differences opinion dynamics
and adaptive dynamics have much in common, and the concept strategy is central
to both. Before we introduce opinion dynamics and adaptive dynamics in more
detail we shall therefore first in a few words focus on the notion of strategy in
general.

1.1 the notion of strategy

Historically, strategies are mental constructions related to warfare. A strategy then
is a plan, conceived by a ruler, about how to achieve a specific goal, e.g. to win
a war or to conquer a certain piece of land. Considerations on the different ways
to achieve this goal and the decision-making on which specific way to choose
are called tactics. These concepts are reflected e.g. in the ancient game of chess,
which abstracts warfare and in which a player uses a strategy (e.g. directing pieces
towards the enemy king) and tactics (e.g. winning a pawn on the way) to reach the
final goal, which is to mate the opponent’s king. Given the connection of strategies
with warfare one might be inclined to think that strategies are stated in terms of
contrasts, but this is not necessarily the case: in order to reach a certain goal it may
well be useful to seek for (temporary) support from or co-operation with other
individuals and go to the battlefield together.

Taking an instant leap from ancient times into modern societies one observes
that the notion of strategy, now often less bellicose but still concerned with a
plan to reach a predetermined goal, is present everywhere: from the world of
business to politics, and from sports to science. A main part of the planning has
to do with overcoming problems that obstruct the path to the goal. The causes
of these problems, or anything that interferes with any path to reach the goal, is
considered to belong to the environment of the strategy or the strategist, i.e., the
entity (a person, animal, plant, robot) that tries to reach the goal. As such executing
a strategy may be conceived as a struggle (but one that may be less dramatic than
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it sounds), which resonates e.g. in the ’survival of the fittest’ characterisation of
Charles Darwin’s theory of evolution by natural selection.

The entity that executes the strategy may have a mental representation of the
strategy. This will be the case for a general engaged in warfare, a chessplayer
trying to win a game, a soccer trainer composing a team for the next match, or an
executive of a company who aims to maximise profits. But such an internal mental
representation is not a requirement in order to talk about strategies. Consider
for instance bees that extract nectar from the flowers they visit. One strategy
may involve visiting flowers of a single flowering plant species, whereas another
strategy involves visiting flowers of many different flowering plant species. The
bees are executing a strategy that is partly learned and partly genetically-based.
They will be unaware of their strategy. Also plants are clearly unaware of the
strategy they play. Examples of strategies executed by plants are: producing many
small seeds for reproduction, or producing only a few large seeds for reproduction.
Other strategies involve dealing with stress caused by external disturbances such
as predators or lack of food or space. (The discussion of plant behaviour in terms
of strategies gained impetus in the 1970s with the publications by Harper and
Ogden [44] and Grime [43].) In what follows we shall drop the distinction between
entities that are mentally aware of the strategies they execute and those that lack
this awareness. By doing so we allow ourselves to use the statement that an entity
has, carries, executes or performs a strategy. For convenience we shall also loosely
switch between the use of ’strategy’ and those that execute, carry or perform the
strategy.

As stated above, in trying to reach the goal as planned by a strategy in general
obstructions have to be tackled. These obstructions belong to the environment in
which the strategy is executed, and in this environment entities executing other
strategies may be present, thus leading to various possible interactions of strategies.
In general this interaction will change the density of support for both strategies. In
case that two strategies interact, the most extreme cases are complete competition,
in which both strategies go for their own goal with disadvantage for the other
strategy (i.e. a decline in density or per capita growth rate for the support of both
strategies), or a complete co-operation in which each strategy profits from the
presence of the other strategy (expressed by an increase in density or per capita
growth rate for support of both strategies). Any other form of interaction classifies
as exploitation, in which one strategy profits at the cost of the presence of the other
strategy.

Interaction, e.g. competition, of strategies may lead to the replacement of a
strategy by one that is more capable or more effective (taking into account certain
criteria) to deal with the environment, i.e. the obstructions encountered in realising
its goal. It is also possible that under certain conditions two competing strategies
coexist. Coexistence of strategies as well as replacement of a strategy due to
interaction and the resulting dynamics will be discussed in detail in this thesis.
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Mathematicians J. von Neumann and J. Nash formalised thinking about
strategies in the so-called game theory, see e.g. [79]. Game-theoretical concepts
initially were applied in economics, but turned out to be useful in many fields of
science. Maynard Smith applied similar concepts to the field of biology [69], [70].
He introduced the term Evolutionarily Stable Strategy (ESS), which is a strategy
which, when common, cannot be beaten by any other strategy. We shall encounter
this type of strategy as well as other ones in the discussions of opinion dynamics
and adaptive dynamics.

1.2 opinion dynamics

The first strategies that we are considering are opinions. The field of ’opinion
dynamics’ originated from sociophysics, which applies methods originally used to
model physical phenomena to explain social processes. Two early approaches that
yielded insight in this respect were lattice models, already used in the 1940s to
study social segregation, and the Ising model for ferromagnetism as a first
application to understand opinion dynamics (see e.g. [88]). Nowadays
sociophysics is a growing field of research with applications covering different
such as strike behaviour [31], flock behaviour [19] and fluctuating financial
markets (as a specialisation of sociophysics called econophysics; see also [30] and
e.g. [88] and [86] for recent overviews). Within the field of sociophysics, opinion
dynamics deals with the behaviour of opinion support in communities (see e.g.
[10], [21], [24] to get an impression on the subject). In particular we consider
communities in which two opinions are present, and we are interested in the
dynamics of the support as generated by individuals who have different attitudes
with respect to the opinion they support.

In the first chapter of Part I on opinion dynamics a supporter of an opinion may
be an inflexible or a floater. An inflexible always maintains the supported opinion,
independent of the circumstances encountered. A floater changes opinion in case
the initially supported opinion has the minority in the environment it finds itself in.
Here the environment consists of groups of three individuals. This environment is
repeatedly locally updated by randomly regrouping all individuals into groups of
size 3. Thus, due to application of the local majority rule all individuals in a group
adopt the opinion that has the local majority in that group. In case all individuals
in the community are floaters, the opinion that initially has the majority in the
community will fully take over, with opinion support of 50% in the community
being a repellor for both opinions. In case only one of the two opinions is supported
by inflexibles with sufficiently small density, the outcome of the dynamics due
to repeated local updates is governed by two local attractors. On one of these
attractors both opinions are present, with the one supported by inflexibles being
the minority. On the other attractor the opinion supported by the inflexibles is the
only opinion present. This implies that the outcome for the dynamics depends
on the initial condition, and we derive that the basin of attraction for the mixed
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local attractor is relatively small compared to that for the single opinion attractor.
Furthermore we show that in case the density of inflexibles becomes sufficiently
large (approximately 17%), the mixed attractor disappears and the single state
attractor becomes global.

In case both opinions are supported by equally small densities of inflexibles,
there are two mixed local attractors for the dynamics, separated by a repellor
on which both opinions are supported by half of the population. As soon as the
density of inflexibles become different this symmetry disappears. A sufficiently
large increase in density for one of the opinions may lead to a global attractor on
which the opinion with the larger density of inflexibles has the majority.

In the second chapter on opinion dynamics we take floaters to show either
non-contrarian or contrarian behaviour. A non-contrarian shows the behaviour of a
floater as described before, whereas a contrarian floater goes against the grain and
subsequently changes its opinion to the alternative one. Contrarian behaviour may
represent various kinds of attitudes against one’s environment, e.g. an expression
for individualisation by adolescents, especially in the presence of inflexible opinion
supporters, or an expression of conformity with a minority. We again determine the
dynamics of the support for the two opinions, now under repeated local updates
for group sizes 1, 2 and 3. Given fixed densities of inflexibles for the two opinions,
and fixed fractions of contrarians among the floaters for the two opinions, we
derive the dynamics in case individuals meet in groups of either size 1, 2 or 3. We
again state conditions, now in terms of these densities of inflexibles and fractions
of contrarians, that determine if an opinion will eventually gain the majority. It
is shown that relatively small densities of inflexibles allow for various qualitative
outcomes (in terms of number of equilibria and monotone vs. alternating dynamics
with respect to attractors or repellors), and that an increase in the densities of
inflexibles diminishes this variation in dynamics.

1.3 adaptive dynamics

In biology, differences between organisms with different phenotypic traits, for
instance offspring size or sex ratio of the offspring, are also referred to as differences
between strategies. Phenotypic traits are genetically based, and occasionally new
phenotypic traits are produced due to mutations in the DNA. In what follows we
shall call a phenotypic trait simply a phenotype.

Alleles present in the individuals of a population will by means of reproduction
become available in the next generation. The frequency of an allele in the next
generation is determined by its allele fitness, i.e, the relative increase in frequency
of the allele from one generation to the next one, and will depend on the selection
that the genotypes in which the allele participates experience in the environment
these genotypes encounter. A simple population-genetical model illustrates this.
Suppose that two alleles A and a are present in a population of diploid organisms,
with initial frequencies 0.5 for the homozygotes AA, 0 for the heterozygotes Aa,
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and 0.5 for the homozygotes aa. Assuming that AA has the highest fitness, and
that aa has the lowest fitness, allele A will outcompete a as expected. If however
the heterozygotes have the highest fitness, all three genotypes and therefore also
both alleles will remain present in the population.

In practice allele frequencies and allele fitness as well as the phenotypic
realisation of a genotype are hard to quantify. Most of the insights in population
genetics and evolutionary genetics are therefore obtained from theoretical
mathematical models in which selection is directly on the genotypes under
assumption on allele fitness. Also, one could argue that selection is done on
phenotypes that are expressions of alleles, and causes changes in phenotype
densities in a population and consequently also on allele frequencies. The
awareness of this short-cut lead to evolutionary game theory (the ’game’-part gets
involved to explain how a strategy in a game should evolve to eventually give
optimal profit; e.g. in a strongly female-biased population it would be good for
maintenance of the population to produce many sons, whereas in a strongly
male-biased population the same strategy will not be successful) and phenotypic
optimisation theory, and later to adaptive dynamics (see e.g. [8], [73], [39]). These
approaches try to overcome the intricacies of evolutionary genetics by focusing on
the changes of phenotypes in time. The advantage obtained by leaving out genetic
details is that it facilitates the mathematical analysis of these changes.

Adaptive dynamics assumes a community of populations that is assumed to
reside on a community-dynamical attractor in which each population consists of
individuals that all have the same strategy, and with different strategies for the
individuals of different populations. The phenotypes of the various populations
determine the phenotypic trait composition of the community, and are called the
resident phenotypes. In such a community of populations a mutant population
may occur, generated by one of the populations present in the community. The
mutants’ strategy therefore is close to that of its progenitor population. An
important notion in adaptive dynamics is the invasion fitness of a phenotype. In
case the mutant’s phenotype has a non-positive invasion fitness it is not capable of
increasing its initially infinitesimally small density in the environment as set by
the community-dynamical attractor in which it appears and goes extinct,
unnoticed on the evolutionary timescale and leaving the community-dynamical
attractor unaltered. A positive invasion fitness implies a positive probability for
the mutant population to increase its density and to invade the environment as set
by the community-dynamical attractor. In case a mutant population invades, its
strategy as well as the mutants that carry this strategy are called successful. In
case the mutant population does invade, there are three, mutually exclusive,
outcomes possible:

1. the mutant population replaces its progenitor population, and together with
the remaining populations settles on a new community-dynamical attractor
which has a slightly different composition in terms of the phenotypic traits
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present on it, thus implying a small shift in the phenotypic trait composition
of the community;

2. the appearance of the mutant population causes the extinction of the mutant
population as well as of its progenitor population, and on the attractor the
community eventually will reach the number of phenotypes present then
will be reduced by 1 compared to that number for the invaded attractor1

3. the mutant population is able to coexist with all the resident populations. In
this case the number of distinct phenotypic trait values present on the
community-dynamical attractor eventually reached by the mutant and
resident populations is increased by 1 with respect to that number for the
invaded attractor.

The assumption made above that a successful mutant population appears in a
community that resided on a community-dynamical attractor is motivated by
the fact that evolutionary time as set by the pace of the occurrence of successful
mutants is much slower than community-dynamical time as set by the times
communities need to reach an attractor.

Plotting the phenotypic trait compositions of subsequent community-dynamical
attractors on an evolutionary timescale results in a picture that resembles an
evolutionary tree. Figure 1.1 shows an example of such a picture for scalar
phenotypic trait values. The replacement of a progenitor population by a mutant
population corresponds to the growth of a branch of the tree, extinction of the
mutants and the progenitor population as a result of invasion agrees with pruning
of a branch, and coexistence of the resident populations together with the mutant
population corresponds to branching of the tree. E.g., in Figure 1.1 halfway the
evolutionary timescale the tree shows that four resident trait values are present,
resulting from three branching events in the past. This implies that the community
resides on a community-dynamical attractor on which four populations are
present, each represented by its phenotypic trait value (which are called here the
resident trait values). With the increase of time the branches grow due to
subsequent replacements in one of the branches, leaving the other branches
unaffected. Eventually one of the branches is pruned, resulting in a community of
three populations that continues evolving.

1.4 overview

After this introduction, the thesis continues with Part I, in which opinion dynamics
is discussed. Chapter 2 considers the effect of inflexibles and floaters on the

1 It is to be noted here that the extinction of one population may also cause a cascade of extinctions
of other populations present in the community; this is however not the rule. Furthermore, in
host-parasite models it may occur that the invasion of a mutant host population does not cause the
extinction of its progenitor population but of the parasite population; see e.g. [99].
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Figure 1.1: Phenotypic trait composition of subsequent community-dynamical
attractors plotted against evolutionary time.

densities of two opinions under the local majority rule in groups of size 3. In
Chapter 3 this model is extended to include inflexibles as well as non-contrarian
and contrarian floaters, and considers besides groups of size 3 also groups of sizes
1 and 2.

Part II turns to adaptive dynamics. As follows from the introduction above,
adaptive dynamics studies the subsequent phenotypic trait compositions of
attractors that a community visits, where the change from one attractor to the
other is caused by the invasion of a successful mutant population. Chapter 4
presents a notion of community-dynamical attractor, and we derive that for a large
class of community-dynamical models such an attractor exists. Chapter 5 then
discusses adaptive dynamical processes based on Lotka-Volterra
community-dynamics. The phenotypic traits are taken to be scalar values and
appear as arguments in so-called interaction functions that determine the strength
of interaction between individuals of interacting populations. It is derived that in
the context of Lotka-Volterra community-dynamics the invasion fitness function
can be calculated explicitly, and many results dealing with the outcome of a
mutant population invasion can be stated in terms of invasion fitnesses. The three
processes that shape the evolutionary tree (trait substitution, evolutionary pruning
and evolutionary branching) are analysed in terms of invasion fitness. We also
derive that permanence (i.e. the property that all densities in a community of
populations stay sufficiently far away from 0 to be present permanently in time) is
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maintained under sufficiently small mutational steps. This result implies that for
evolutionary pruning to occur a sufficiently large mutational step is required.

The thesis ends with Part III, in which Chapter 6 summarises Parts I and II and
discusses a number of open questions.





Part I

Opinion Dynamics

13





2
T H E R O L E O F I N F L E X I B L E M I N O R I T I E S I N T H E B R E A K I N G
O F D E M OCRATIC OPINION DYNAMICS

This chapter is based on:

S. Galam and F. Jacobs, The role of inflexible minorities in the breaking of democratic
opinion dynamics, Physica A 381, 366-376, 2007

abstract

We study the effect of inflexible agents on two state opinion dynamics. The model
operates via repeated local updates of random grouping of agents. While floater
agents do eventually flip their opinion to follow the local majority, inflexible
agents keep their opinion always unchanged. It is a quenched individual opinion.
In the bare model (no inflexibles), a separator at 50% drives the dynamics towards
either one of two pure attractors, each associated with a full polarisation along
one of the opinions. The initial majority wins. The existence of inflexibles for only
one of the two opinions is found to shift the separator at a lower value than 50%
in favour of that side. Moreover it creates an incompressible minority around the
inflexibles, one of the pure attractors becoming a mixed phase attractor. In
addition above a threshold of 17% inflexibles make their side sure of winning
whatever the initial conditions are. The inflexible minority wins. An equal
presence of inflexibles on both sides restores the balanced dynamics with again a
separator at 50% and now two mixed phase attractors on each side. Nevertheless,
beyond 25% the dynamics is reversed with a unique attractor at a fifty-fifty stable
equilibrium. But a very small advantage in inflexibles results in a decisive
lowering of the separator at the advantage of the corresponding opinion. A few
percent advantage does guarantee to become majority with one single attractor.
The model is solved exhaustedly for groups of size 3.

Keywords: Sociophysics, majority rule, opinion dynamics

PACS numbers: 02.50.Ey, 05.45.-a, 9.65.-s, 87.23.Ge

2.1 introduction

Opinion dynamics has become a very active subject of research [2, 58, 62, 75, 89, 91,
94, 96, 98] in sociophysics [22, 31]. Most works consider two state models which

15



16 the role of inflexible minorities

0 1

Attractor
1/2

pB = 0 Attractor pA =1

Separator pc =1/2

The A opinion has disappeared The B opinion has disappeared

Figure 2.1: The bare model with only floaters. The initial majority is conserved
and increased to eventually invade the whole population.

lead to the disappearance of one of the two opinions. They use local updates in
odd size groups which result in the initial majority victory. A unifying frame was
shown to include most of these models [26]. Continuous extensions [15, 56] and
three state models [37] have been also investigated.

However, including an inertia effect in even size local updates groups, the initial
minority may win the competition spreading over the entire population. The
inertia effect means that in an update even size group at a tie, the opinion which
preserves the Status Quo is selected locally by all the group members [21, 25].
When an opinion represents a vote intention, the model allows to make successful
prediction in real voting cases like for the 2005 french referendum [27].

At contrast it is found that including contrarian behaviour leads to the reversal
of the dynamics with a stable equilibrium at exactly fifty-fifty whatever the initial
conditions are. A contrarian is an agent who makes up its opinion by choosing
the one minority opinion, either the local minority within its update group [23] or
the global minority according to polls [6]. It was used to explain and predict the
occurrence of a recent series of hung elections in democratic countries [23].

In addition to contrarian behaviour [6, 20, 23, 93], another type of behaviour is
also quite current while dealing with real opinion dynamics, it is the inflexible
attitude. At contrast to floater agents who do eventually flip their opinion to follow
the local majority, inflexible agents keep their opinion always unchanged. The
inflexible attitude is a quenched individual state. Surprisingly, it has not been
studied so far. It is the subject of this article to investigate the inflexible effect
on the associate opinion dynamics. To confront our results to any real situation
requires to have an estimate of the various densities of inflexibles, which could be
extracted in principle from appropriate polls.

In the bare model, where no inflexible is present, denoting A and B the two
competing opinions and pt the density of A at time t, the flow diagram of the
dynamics is monitored by a separator at pc = 50%. it drives the dynamics towards
either one of two pure attractors, pB = 0 where the A opinion has totally
disappeared, and pA = 1 where the A opinion has totally invaded the whole
population. It is shown in Fig. 2.1. The initial majority always wins.

The existence of inflexibles for only one of the two opinions, for instance opinion
A, is found to shift the separator at a lower value than 50% in favour of that side.
Moreover it creates an incompressible minority around the inflexibles, one of the
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Attractor
1/2

pB ,a 0 Attractor pA =1

Separator pc <1/2

The A opinion stabilizes at un

uncompressible minority, B

holds the majority

The B opinion has disappeared

0 1

1/2
Attractor pA =1

The B opinion eventually

always disappeared

Figure 2.2: One side inflexibles at low density. In the upper part inflexibles shift
the separator to a lower value than 50% at the advantage of their side.
Moreover, the associated opinion never disappears but at minimum
stabilises at some stable minority value pB,a. The associated opinion can
now invade the whole population even when it starts at an initial value
lower than 50% within some appropriate range. The lower part shows
that beyond 17% in the density of inflexibles, the separator and the
mixed phase attractor have vanished after they have coalesced. At any
initial condition, A wins and eventually invades the whole population.

pure attractors, here pB, becoming a mixed phase attractor, where opinion B holds
the majority but with a stable A minority, pB = 0 → pB,a 6= 0. See the upper
part of Fig. 2.2. In addition, increasing the one side inflexible density above some
threshold (17% for update group of size 3) inflexibles make the separator and the
mixed phase attractor to coalesce and thus cancel each other to both disappear.
Their side becomes certain of winning whatever the initial conditions are. The
inflexible minority wins as illustrated in the lower part of Fig. 2.2.

However an equal presence of inflexibles on both sides is shown to restore the
balanced dynamics with again the separator at pc = 50% and now two mixed
phase attractors pB,a 6= 0 and pA,b 6= 1 on each side as seen in the upper part of Fig.
2.3. Nevertheless, beyond 25% the dynamics is reversed with a unique attractor at
a fifty-fifty stable equilibrium. See the lower part of Fig. 2.3.

But again, a very small advantage in inflexibles results in a decisive lowering of
the separator at the advantage of the corresponding opinion as shown in the upper
part of Fig. 2.4. In addition the lower part of Fig. 2.4 shows that a few percent
advantage does grant the victory.

2.2 group size 3

We now solve analytically the problem for local update groups of size 3. Initial
proportions at time t of both opinion are respectively pt and (1− pt) where each
agent does have an opinion. On the A side, at any time the associated agents are
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The A opinion stabilizes at un

uncompressible minority, B

holds the majority

The B opinion stabilizes at un

uncompressible minority, A

holds the majority

0 1

1/2
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Figure 2.3: Equal presence of inflexibles on both sides. In the upper part the
balanced dynamics is restored with the separator back at pc = 50%.
Now two mixed phase attractors pB,a 6= 0 and pA,b 6= 1 are located
on each side of the separator. Nevertheless, in the lower part, beyond
25% they both coalesce with the separator, which at once becomes the
unique attractor. The dynamics is reversed with a coexistence of both
opinions at a fifty-fifty stable equilibrium.

divided among a fixed and constant proportion of inflexibles a, they always keep
on opinion A, and a varying density of floaters pt− a. The floaters do shift opinion
depending on their local update group composition. Similarly, on the opposite
side B, the agent holder contains a fixed and constant proportion of inflexibles b
with a density of (1− pt − b) floaters.

Dealing with densities we have the constraints 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, 0 ≤
a + b ≤ 1 and a ≤ pt ≤ 1− b. To make the notations more practical we introduce
the difference in inflexible densities x to write a ≡ b + x with −b ≤ x ≤ 1− 2b.
The value of x may be negative to account for an advantage to the B opinion. A
positive value corresponds to an advantage to A. The two external parameters of
the problem are thus b and x.

Then at time t people are grouped randomly by three and a local majority rule
is applied separately within each local group. At time t + 1 within each group all
floaters who held the minority opinion do shift to the local majority one. However
inflexibles do not shift their opinion. Dealing with three agents, the only subtle
cases are the ones where 2 agents sharing the same opinion are against the third
who holds the other one. In case it is a floater the minority agent joins the majority,
otherwise being an inflexible, it does shift opinion and keeps the minority opinion.
A detailed counting of all cases leads to write at time t + 1 for the new proportion
of opinion A,

pt+1 = p3
t + 3p2

t

(
(1− pt − b) +

2
3

b
)
+ 3(1− pt)

2
(

1
3

a
)

, (2.1)
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Figure 2.4: Unequal densities of inflexibles. The upper part shows a rather small
difference in inflexibles, which results in a decisive lowering of the
separator at the advantage of the corresponding larger side. The lower
part shows the case of a few percent advantage, which does grant the
victory.

which simplifies to

pt+1 = −2p3
t + p2

t (3 + x)− 2(b + x)pt + b + x. (2.2)

After one update, all agents are reshuffled before undergoing a second
redistribution among new random groups of three agents each. Now pt+1 plays
the role of pt before, and a new density pt+2 is obtained. The process is repeated
some number n of times leading to the density pt+n of agents sharing opinion A
and 1− pt+n of agents sharing opinion B. It is worth to stress that the respective
proportions of inflexibles a and b are unchanged and independent of the value of
n.

While the reshuffling frame has been viewed as belonging to a mean field
treatment [89, 96, 98], it has demonstrated to indeed create a new universality class
[92].

Before proceeding we review the bare model, i.e., no inflexible is present (a =
b = 0) and all agents are floaters. From Eq. (2.2) one cycle of local opinion updates
via three persons grouping leads to the new distribution of vote intention as,

pt+1 = p3
t + 3p2

t (1− pt), (2.3)

whose dynamics is monitored by the unstable fixed point separator located at
pc =

1
2 . It separates the respective basins of attraction of the two pure phase stable

point attractors at pA = 1 and pB = 0. Accordingly pt+1 > pt if pt > 1
2 and

pt+1 < pt if pt <
1
2 as shown in Fig. 2.1. The initial majority wins.

For instance starting at pt = 0.45 leads successively after 5 updates to the series
pt+1 = 0.43, pt+2 = 0.39, pt+3 = 0.34, pt+4 = 0.26, pt+5 = 0.17 with a continuous
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decline in A support. Adding 3 more cycles would result in zero A support with
pt+6 = 0.08, pt+7 = 0.02 and pt+8 = 0.00. Given any initial distribution of opinions,
the random local opinion update leads toward a total polarisation of the collective
opinion. Individual and collective opinions stabilise simultaneously along the same
and unique vote intention either A or B.

The update cycle number to reach either one of the two stable attractors can be
evaluated from Eq. (2.2). It depends on the distance of the initial densities from the
unstable equilibrium. However, every update cycle takes some time length, which
may correspond in real terms to some number of days. Therefore, in practical
terms the required time to eventually complete the polarisation process is much
larger than any public debate duration, thus preventing it to occur. Accordingly,
associate elections never take place at the stable attractors. From the above example
at pt = 0.45, two cycles yield a result of 39% in favour of A and 61% in favour of B.
One additional update cycle makes 34% in favour of A and 66% in favour of B.

We can now insert the existence of inflexibles. To grasp fully its social meaning
we will introduce it in several steps. For the first one, inflexibles are present only
on one side, say A. We thus have b = 0 which yields a = x. Eq. (2.2) becomes

pt+1 = −2p3
t + p2

t (3 + x)− 2xpt + x. (2.4)

Solving the associated fixed point equation pt+1 = pt yields the three solutions

pB,a =
1
4

(
1 + x−

√
1− 6x + x2

)
, (2.5)

pc =
1
4

(
1 + x +

√
1− 6x + x2

)
, (2.6)

and pA = 1 to be compared to the bare results (x = 0) pB = 0, pc =
1
2 and pA = 1.

While pB and pc have been shifted toward one another, pA stayed unchanged as in
the upper part of Fig. 2.2.

From above expressions an increase in x gets closer the attractor pB,a and the
separator pc before they coalesce at xc = 3− 2

√
2 ≈ 0.17, and there disappear as

seen in Fig. 2.5. The attractor pA stays independent of x. Therefore for x > 0.17
the unique fixed point of the dynamics is the attractor pA = 1. Any initial support
in A leads to its victory.

Fig. 2.6 shows the variation of pt+1 as a function of pt for these two regimes. It
is worth to note that in the second regime the dynamics of the winning inflexible
minority is slowed down in some window of support before it starts to increase at
a speedy path.

For instance pt = 0.20 leads successively to the series pt+1 = 0.23, pt+2 = 0.25,
pt+3 = 0.27, pt+4 = 0.29, pt+5 = 0.30, pt+6 = 0.32, pt+7 = 0.33, pt+8 = 0.34,
pt+9 = 0.36, pt+10 = 0.38, pt+11 = 0.40, pt+12 = 0.42, pt+13 = 0.45, pt+14 = 0.49,
pt+15 = 0.53, pt+16 = 0.59, pt+17 = 0.67, pt+18 = 0.77, pt+19 = 0.87, pt+20 = 0.96,
pt+21 = 1.00, with a continuous increase in A support. However 15 updates are
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Figure 2.5: One sided inflexibles fixed points as a function of their density x. One
line of attractors pA = 1. In the regime x < 0.17 the left upper part of
the curved line is a line of separator (Eq. (2.5)) while the lower part is a
line of attractor (Eq. (2.6)). Both are symmetrical with respect tot the
line 1+x

4 at which they eventually coalesce at xc = 3− 2
√

2 ≈ 0.17. The
diagonal line delimits the floater region for A holders since p ≥ x. As
soon as x > 0.17 the victory is granted for opinion A.

necessary for A to reach the majority from its initial 20%. Before, at x = 0, 8
updates were reducing a 45% support to zero while now 15 are required to gain
30%.

In terms of real time durations, a number of 15 updates may imply many months.
Fig. 2.7 shows two initial supports pt = 0.20 and pt = 0.52 for respectively x = 0
and x = 0.20. The differences in the associated dynamics are drastic.

We note that setting x = −b defines the symmetric situation with inflexibles
only on side B. We then have a = 0 and b for the respective densities of inflexibles.
Above results then apply to the B opinion with the variable b playing the role of x.

At this point to have inflexibles on its side appears to be a decisive step towards
leading the opinion competition. Accordingly both opinions are expected to have
inflexibles. in case of a symmetric presence of inflexibles on both sides with x = 0
and b 6= 0, i.e., a = b 6= 0. In addition, since the total density of both side inflexibles
is 2b, the variable b must obeys b ≤ 1

2 . Eq. (2.2) becomes

pt+1 = −2p3
t + 3p2

t − 2bpt + b, (2.7)

whose fixed points are

pB,a =
1
2

(
1−
√

1− 4b
)

, (2.8)

pA,b =
1
2

(
1 +
√

1− 4b
)

, (2.9)
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Figure 2.6: One sided inflexibles. The left part corresponds to x < 0.17 of
inflexibles in favour of opinion A. The right part shows the case of
x > 0.17, which does grant the victory to opinion A.

and pc =
1
2 . The symmetry restoring has put back the separator at 1

2 independently
of b. The two mixed phase attractors pB,a and pB,a are now symmetric and move
towards pc as a function of increasing b. It is again the initial majority which wins
the competition.

Nevertheless at a = b = 1
4 the dynamics is turned up side down with pB,a and

pA,b merging at pc =
1
2 , which at once becomes an attractor and the unique fixed

point of the dynamics. Any initial condition leads to a hung equilibrium with an
identical support of 50% for both opinions.

The topology of the fixed points as a function of the common density b of
both side inflexibles is shown in Fig. 2.8. It is rather different from the one sided
inflexibles of Fig. 2.5.

The variation of pt+1 as a function of pt is shown in Fig. 2.9 for the two regimes
b < 1

4 and b > 1
4 . It is worth to notice that the presence of contrarians leads to

the same scenario [23]. However, the bare mechanism and its psycho-sociological
meaning are quite different. In addition, while 17% of contrarians are necessary to
reverse the dynamics, 2× 25% = 50% of inflexibles are needed to accomplish the
same reversal. A thorough study of the combined effect of simultaneous contrarians
and inflexibles is under investigation [51]. Nevertheless, it is shown below that this
similarity holds only for the case of equal densities of inflexibles for each opinion.

It is certainly realistic to consider inflexibles on both sides, but the symmetric
hypothesis is peculiar. To account for the numerous situations, which exhibit
different densities of inflexibles, we now study the effect of a discrepancy in a and
b.

It is thus the general form of Eq. (2.2) which has to be solved to determine its
associated fixed points. It yields the cubic equation

y3
t + Ayt + B = 0, (2.10)
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Figure 2.7: Comparison of the update series from two initial supports pt = 0.52
and pt = 0.48 for the pure floater case x = 0 and one sided inflexible
with a density x = 0.20 above the threshold xc ≈ 0.17. In the latter case
the victory is granted for opinion A although it starts from such a lower
support of 20%. Nevertheless the process is rather slow.

which can be solved analytically with yt ≡ pt − 3+x
6 , A ≡ 1+2b+2x

2 − (3+x)2

12 and

B ≡ − b+x
2 + (3+x)(1+2b+2x)

12 − (3+x)3

108 . The solution depends on the sign of the
discriminant

D =
A3

27
+

B2

4
. (2.11)

Being interested in the nature of the associated dynamics what matters is
the number of real roots. Their respective formulations being rather anaesthetic
formulas in b and x, we do not explicit them. But we note that for D < 0 there
exists three distinct real solutions, for D = 0 there are three real solutions of
which at least two are equal, and for D > 0 there are one single real root and two
imaginary roots.

(i) The first case of three real solutions (D < 0) corresponds to the existence of
a separator and two attractors as shown in the left part of Fig. 2.10. Any
positive x (more inflexibles in favour of opinion A), shifts the separator below
50% as in the case of one sided inflexible. For instance b = 0.15 and x = 0.02
yield pB,a = 0.22, pc = 0.47 and pA,b = 0.82. A 2% difference in inflexible
produces a substantial unbalance of the democratic frame of the public debate
since the A opinion needs to start with an initial support larger than 47% to
be sure to win an associated election provided the campaign duration is long
enough.
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Figure 2.8: Two side symmetric inflexibles fixed points as a function of their
density b. The first part of the line pc =

1
2 till b = 1

4 is a separator. From
there, it becomes the unique attractor of the dynamics. The left curved
line is a line of mixed phase attractors pA,b (upper part, Eq. (2.5)) and
pB,a (lower part, Eq. (2.6)). Both are symmetrical with respect tot the
line 1

2 at which they eventually coalesce at bc =
1
4 . The two lines b and

(1− b) delimits the floater region for A holders since p ≥ b with b ≤ 1
2 .

As soon as b > 1
4 no opinion wins.
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Figure 2.9: Two sided inflexibles. The left part corresponds to x = 0 and b < 0.25
of inflexibles for each of the two opinions. The two arrows along the
diagonal show the directions in which the two attractors move when
the equal densities of inflexibles are increased. The right part shows the
case of x = 0 and b > 0.25, which always yields a stable hung fifty-fifty
equilibrium.
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Figure 2.10: Two side asymmetric inflexibles. The left part corresponds to b =
0.15, x = 0.02 with three fixed points pB,a = 0.22 (attractor), pc = 0.47
(separator) and pA,b = 0.82 (attractor). The two arrows along the
diagonal show the directions in which the two attractors move when
the difference x in densities of inflexibles is increased. In the middle
part b = 0.15 and x = 0.10 > xc = 0.055 putting the dynamics in
the case with the single fixed point pA,b (attractor). The flow is very
slow. The right part shows a larger value x = 0.15 with still b = 0.15,
which accelerates the converging towards the unique attractor of the
dynamics.

For instance, an initial pt = 0.48 leads to the series pt+1 = 0.481, pt+2 = 0.483,
pt+3 = 0.485, pt+4 = 0.487, pt+5 = 0.490, pt+6 = 0.493, pt+7 = 0.497 and
pt+8 = 0.502. Eight updates are necessary to cross the winning bar of fifty
percent, i.e. to gain 2.2%. To reach a higher score requires more updates with
the follow up of pt+9 = 0.507, pt+10 = 0.513, pt+11 = 0.521, pt+12 = 0.529,
pt+13 = 0.539, pt+14 = 0.551, pt+15 = 0.566, pt+16 = 0.582, pt+17 = 0.601.
Nine additional updates makes the support in favour of A to exceed sixty
percent. The majority reversal is here much slower than in the precedent
cases.

It is worth to emphasise that the initial value pt = 0.46 < pc leads to the
victory of the B opinion since it starts below the separator located at pc = 0.47.
By symmetry, a negative value x = −0.02 with the initial value pt = 0.52
yields the advantage to opinion B which wins the majority with the same
above dynamics.

(ii) Furthermore, given b and increasing x > 0 results in a continuous shrinking
of the distance between the separator pc and the mixed phase attractor pB,a.
At some threshold value xc both fixed points coalesce. We are then in the
second case with two real solutions whose one is double (D = 0). At reverse,
for x < 0 it is pc and pA,b which coalesce at x = −xc. Above choice b = 0.15
yields xc = 0.055.

(iii) Afterwards for x > xc the two fixed points which have coalesced disappear
leaving pA,b as the single attractor of the dynamics. To disappear means
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Figure 2.11: Evolution of an initial A support pt = 0.48 (ordinate) as a function of
repeated updates whose number is put on the abscis. Three different
series are shown for respectively x = 0.02, 0.10, 0.15 with b = 0.15. The
two extreme cases x = 0.02 and x = 0.15 yields a similar dynamics.
However in the first case an initial pt = 0.46 would lead the the B
victory at contrast with the second case where A wins always.

they became imaginary, we are in the third case D > 0 with one single real
solution pA,b.

For x > xc, in the vicinity of xc the flow is very slow as seen in the middle
part of Fig. 2.10 where we have the set (b = 0.15, x = 0.10). The dynamics
in the third case with only one unique fixed point, an attractor and above
initial value pt = 0.48 yields now the series pt+1 = 0.503, pt+2 = 0.528,
pt+3 = 0.556, pt+4 = 0.587, pt+5 = 0.620.

One single update is now sufficient to rise the minority opinion A to the
status of majority as compared to eight updates above. Only four additional
updates reach the sixty percent bar instead of the previous nine. The majority
reversal has been accelerated.

Going to the set (b = 0.15, x = 0.15) makes the dynamics faster as exhibited in
the right part of Fig. 2.10. We now have from pt = 0.48 the series pt+1 = 0.517,
pt+2 = 0.555, pt+3 = 0.595, pt+4 = 0.637, pt+5 = 0.679.

As soon as ±xc are reached the dynamics ineluctably leads the opinion which
have the surplus of inflexibles to invade the majority of the population (A
for xc and B when ±xc). The above three different series for b = 0.15 and
x = 0.02, 0.10, 0.15 are reproduced in Fig. 2.11.

It thus appear to be of a central importance to determine the value of xc given
the value of b. Once the associated opinion reached a surplus of inflexibles xc it
eventually wins the election with certainty. To achieve this goal, we need to solve
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Figure 2.12: The dynamics map. The white triangle delimited by 0 ≤ b ≤ 1 and
−b ≤ x ≤ 1− 2b shows the accessible range for the respective values
of b and x. Within the accessible area, the left aqua-coloured area
corresponds to region where D < 0, and the dynamics is monitored
by a separator and two attractors with xc2 < x < xc1 where xc2 ≤ 0
and xc1 ≥ 0. Outside this closed area, the dynamics is driven by a
single attractor.

the equation D = 0 as a function of the variable x, b being a fixed parameter,
where D is given by Eq. (2.11).

Performing a Taylor expansion of Eq. (2.11) in power of x at order 2 leads to the
solutions

xc1,c2 =
3− 24b + 48b2 ∓ 2(−1 + 4b)3/2

√
−2 + b + b2

1− 32b + 4b2 , (2.12)

which are shown in Fig. 2.12 together with the available values for (b, x) constrained
by the frontiers 0 ≤ b ≤ 1 and −b ≤ x ≤ 1− 2b. The positive value xc1 exists for
the range 0 ≤ b ≤ 1

4 , while for the negative value xc2 it is the range 3− 2
√

2 ≈
0.17 ≤ b ≤ 1

4 .
In the region xc2 < x < xc1, D < 0 which yields a separator and two attractors.

At odd, outside this closed area and with −b < x < 1− 2b, we have D < 0 with
one single attractor. The case x > 0 guarantees the A victory while x < 0 grants
the B victory. The various domains are shown in Fig. 2.12. It appears that D > 0
for b > 1

4 . A positive x yields a A victory while a negative x a B victory. The three
fixed points coalesce at the unique set b = 1

4 , x = 0.
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2.3 conclusions

We have singled out the effect of inflexible choices on the democratic opinion
forming. An inflexible being an agent who always sticks to its opinion without any
shift. At low and equal densities, they prevent the trend towards a total polarisation
of floaters along one unique opinion. The opinion dynamics is found to lead to a
mixed phase attractor with a clear cut majority-minority splitting. Below 25% of
equal density inflexibles for both opinions, the initial majority opinion wins the
public debate. At contrast, beyond 25% the dynamics is reversed and converge
towards a fifty-fifty attractor. Therefore an equal density of inflexibles produces
effects which can also be achieved by sufficiently low densities of contrarians [23].

However, even a very small asymmetry in the respective inflexibles densities
upsets the balanced character of above results. At a very low difference, the main
effect is to shift the separator from fifty percent to a lower value at the advantage of
the larger inflexible opinion. It also increases its incompressible minority support.
Moreover, an excess in inflexibles beyond some small threshold xc, which depends
on b, grants the victory to the beneficiary opinion. In this regime there exists only
one single attractor, which drives the corresponding opinion to an overwhelming
majority. Nevertheless it is worth to emphasise that the associated dynamics may
become rather slow.

Fig. 2.12 sums up our results. It allows to determine which strategy is best for a
given opinion to win the public debate competition. It appears that the decisive
goal should be to get a lead, even small, in the respective inflexible densities. It
immediately produces the substantial advantage to lower the separator from 50%.
A larger difference in inflexibles, whose amplitude varies as a function of the other
opinion support, guarantees the winning of the campaign, and eventually the
follow up election.

On this basis we plan to extend our study to larger size update groups. We also
plan to combine both effects of contrarians and inflexibles to study the dynamics
of floaters [51].
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T W O - O P I N I O N S - D Y N A M I C S G E N E R AT E D B Y I N F L E X IBLES
AND NON-CONTRARIAN AND CONTRARIAN FLOATERS

This chapter is based on:

F. Jacobs and S. Galam, Two-opinion-dynamics generated by inflexibles and
non-contrarian and contrarian floaters, Advances in Complex Systems, Volume 22 No. 04,
1950008, 2019

abstract

We assume a community whose members adopt one of two opinions A or B. Each

member appears as an inflexible, or as a non-contrarian or contrarian floater. An

inflexible sticks to its opinion, whereas a floater may change into a floater of the

alternative opinion. The occurrence of this change is governed by the local

majority rule: members meet in groups of a fixed size, and a floater then changes

its opinion provided it is a minority in the group. Subsequently, a non-contrarian

floater keeps the opinion as adopted under the local majority rule, whereas a

contrarian floater adopts the alternative opinion. Whereas the effects of on the one

hand inflexibles and on the other hand non-contrarians and contrarians have

previously been studied separately, the current approach allows us to gain insight

in the effect of their combined presence in a community. Given fixed proportions

of inflexibles (αA, αB) for the two opinions, and fixed fractions of contrarians

(γA, γB) among the A and B floaters, we derive the update equation pt+1 for the

overall support for opinion A at time t + 1, given pt. The update equation is

derived respectively for local group sizes 1, 2 and 3. The associated dynamics

generated by repeated local updates is then determined to identify its asymptotic

steady configuration. The full opinion flow diagram is thus obtained, showing

conditions in terms of the parameters for each opinion to eventually win the

competing dynamics. Various dynamical scenarios are thus exhibited, and it is

derived that relatively small densities of inflexibles allow for more variation in the

29
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qualitative outcome of the dynamics than higher densities of inflexibles.

Keywords: Sociomathematics, sociophysics, opinion dynamics, local majority rule,

contrarian behaviour, floating behaviour

PACS Classification: 05.70.Jk; 89.65.Cd; 89.65.Ef

3.1 introduction

Within the growing field of sociophysics (see [31] for the defining paper and [30],

[80], [88] for an impression of the state of the art), a great deal of work has been

devoted to opinion dynamics [10]. The seminal Galam models of opinion

dynamics [21, 24] and their unification [26] play a guiding role in analysing the

process of opinion spreading in communities and in providing possible

explanations for the outcome of elections. These models are centred around the

local majority rule (l.m.r.), which is applied either in a deterministic or a

probabilistic way. In the basic deterministic case, supporters of the two opinions

present in a community are randomly distributed over groups of a fixed size L.

Within each group members adopt the opinion that has the majority in that group,

after which all group members are recollected again. In case there is no majority

in a group, its members stick to their own opinion (i.e., neutral treatment; the

probabilistic treatment in case of a tie assigns opinions to the group members

according to a certain probability distribution). Repeated application of this

principle generates what is called randomly localised dynamics with a local majority

rule. In the basic probabilistic case, the community members are divided among

groups of various sizes according to some probability distribution, and within

each group all members adopt one of the possible opinions with either certainty

(majority rule) or probability (at a tie in even-sized groups) [21] .

In the basic deterministic two states opinion model, fast dynamics occurs in

which the opinion that originally has the majority eventually will obtain complete

presence at the cost of the alternative opinion. In the probabilistic two states

opinion model, the final outcome depends on the probability distributions for

group sizes and local adaptation. Eventually the state of the community can be
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either one in which only the opinion with initial majority or minority remains,

or one with a perfect consensus on both opinions (see [26], which unifies basic

probabilistic two states opinion models).

In [37] a three states opinion model is introduced in which the community members

are randomly distributed over groups of size 3. Within each group the l.m.r. is

applied, with the additional rule that in case of a tie all members of the group

adopt one of the three opinions according to some probability distribution. It is

shown that the dynamics quickly converges to a state in which only one of the three

opinions is present, which may be an opinion that initially has a minor presence in

the community. In addition, the effect of non-voting persons (abstention, sickness,

apathy) was shown to have drastic effect on the asymmetry of the threshold value

to power [33].

As a next step to gain a better insight into opinion dynamics, in [23] the basic

deterministic two states Galam opinion model is extended by the introduction

of so-called contrarians. A contrarian is a community member who, instead of

keeping the opinion it adopted under the l.m.r., switches to the alternative opinion.

Contrarian behaviour can manifest itself in various ways, e.g. in adolescents as

a strive for individualisation, especially in an environment of inflexible opinion

supporters (see below), as an expression of conformity with the minority, and

as negative voting in order to diminish the support for a majority. Depending

on the density1 of contrarians as well as on group size, their presence either

leads to a stabilisation of the opinion dynamics in which one opinion (the one

with the lower density of contrarians) dominates the other, to an equilibrium

in which neither opinion dominates (in case both opinions have equal densities

of contrarians), or (in case of relatively large densities of contrarians for both

opinions) to a dynamics in which the dominating opinion constantly alternates

between the two opinions. The incorporation of contrarians in opinion dynamics

models was a step towards a possible explanation of the “hung elections” outcome

in the U.S. presidential elections in 2000. Although introducing contrarians to

explain “hung elections” at the time may have been a bit speculative (and being

1 All opinion dynamics models considered in this article are understood to refer to large communities
and sub-communities (e.g. contrarians) in which the size of a sub-community can effectively be
described by its density (the part of the sub-community’s size with respect to the whole community)
instead of by discrete whole numbers.
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aware that possible other influences such as finite population sizes and exogenous

factors influencing opinion dynamics have not been considered), it was concluded

that if the assumption was sound, under similar conditions the phenomenon

should repeat itself in the following years in democratic countries. And indeed,

“hung elections’ occurred again several times as with the German elections in

2002 and 2005 as well as the 2006 Italian elections [28]. The origin of contrarian

behaviour as well as its implications have been the focus of numerous studies

[7, 12, 20, 36, 65–67, 76–78, 87, 93, 95, 97, 100, 101].

In addition to the incorporation of contrarian behaviour, the basic deterministic

two states Galam model has been modified introducing opinion supporters that

express what in politics (and other games) is called inflexible behaviour [32, 34]. An

inflexible community member is a supporter that under all conditions sticks to

its opinion. Under this terminology supporters that switch opinion when in the

minority then classify as floaters, and we shall use this distinction in what follows.

In [34] the effect of inflexible behaviour on opinion dynamics is studied for the case

that opinion supporters repeatedly meet in groups of fixed size 3. It is shown that a

small density of inflexibles for only one of the two opinions allows for the existence

of two local attractors. One of these local attractors is a mixed one, on which both

opinions are present and on which the opinion that is supported by inflexibles is a

minority. The other attractor is a single state attractor, on which the opinion that is

supported by inflexibles has complete majority, i.e., its density equals 1, the other

opinion being absent. Due to the presence of these two attractors, the outcome of

the opinion dynamics thus depends on the initial condition, the basin of attraction

for the mixed local attractor being relatively small compared to that for the single

state attractor. If the density of inflexibles is sufficiently large (approximately 17%),

the mixed attractor disappears and the single state attractor becomes global. In

case both opinions have small and equal densities of inflexibles there are two

mixed local attractors. These two attractors are symmetrically situated with regard

to a separator on which both opinions are present with density 0.5.

A change in the density of inflexibles for one of the opinions breaks this symmetry,

and a sufficiently large increase may lead to a global attractor on which the opinion

with the larger density of inflexibles has the majority [34]. The inflexible effect

could provide for some counter-intuitive explanation to real paradoxical situations
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[29]. The effect of inflexibles and floaters on opinion dynamics has also been

studied extensively in recent years, as seen in [3, 5, 9, 42, 55, 63, 64, 74, 81–83, 90].

In this paper we combine the approaches presented in [23] and [34], by allowing

for groups composed of inflexibles as well as contrarian and non-contrarian

opinion supporters. For clarity we restrict ourselves to groups of fixed size 1, 2

and 3. For both opinions we assume fixed densities for the inflexibles. Also, we

consider the contrarians to be part of the floaters, i.e., in a given group the

contrarians first determine their opinion according to the l.m.r., and subsequently

change to become a floater (not necessarily a contrarian) for the alternative

opinion (which thus may be the opinion that the contrarian initially was

supporting). The presence of contrarians for each opinion is quantitatively

expressed as a fixed fraction of the density of floaters of the respective opinion. In

case of a tie in groups of size 2 we apply the neutral treatment. After an opinion

update, all supporters for both opinions are recollected and then are redistributed

again, either as an inflexible or as a non-contrarian or contrarian floater, according

to the fixed densities for inflexibles and the fixed fractions of contrarians for the

two opinions. We study qualitative characteristics of the opinion dynamics

generated by repeated updates. In particular we study changes in the number of

equilibria, and changes from monotone to alternating dynamics, due to changes in

parameter combinations. The opinion dynamics thus obtained reflects the

behaviour of the support for opinions as it is influenced by individuals that for

various (e.g. psychological, political) reasons go against the grain as they find

themselves in a background consisting of individuals with a clear conviction. A

detailed mathematical extension to groups of size 4 will be given in a forthcoming

paper [35].

Notation

We denote the two opinions by A and B. The densities of inflexibles for the A and

B opinion are denoted by αA and αB respectively, with 0 ≤ αA ≤ 1 as well as

0 ≤ αB ≤ 1, and in addition 0 ≤ αA + αB ≤ 1. Since the roles of the A and B

opinion are interchangeable in deriving the opinion dynamics, we may without

loss of generality assume that 0 ≤ αA ≤ 0.5, and we shall do so in what follows.
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The fraction of contrarians among the A floaters is denoted by γA, and γB denotes

the fraction of contrarians among the B floaters, with both 0 ≤ γA ≤ 1 and

0 ≤ γB ≤ 1. The size of the groups in which opinion supporters meet is denoted

by L. The density of the A opinion at time t = 0, 1, 2, · · · (or after t updates) shall

be denoted as pt. Note that for given αA and αB the density pt necessarily lies in

the interval [αA, 1 − αB] (independent of L, γA or γB). With fL;αA,αB;γA,γB we

denote the function that determines the density of the A opinion after application

of the l.m.r. followed by the switch of the contrarians. Thus,

pt+1 = fL;αA,αB;γA,γB(pt). Setting γA = γB = 0, pt+1 = fL;αA,αB;0,0(pt) then gives the

density obtained from pt when the l.m.r. is applied without being followed by the

switch of the contrarians. In the Appendix tables are given, presenting all possible

group compositions in terms of inflexibles and non-contrarian and contrarian

floaters for group sizes L = 1 to 3, together with the effects of the l.m.r. and the

opinion changes of contrarians. It is assumed that the community is sufficiently

large and well-mixed to allow for the derivation of the density of each possible

group composition in the ensemble of all groups of a fixed size from the densities

in the community of the constituents of a group. From these tables the expressions

for fL;αA,αB;γA,γB are obtained.

With
−−−−−−−→
fL;αA,αB;γA,γB we denote the dynamics generated by repeated application of

fL;αA,αB;γA,γB in subsequent timesteps. Furthermore, p̂L;αA,αB;γA,γB denotes an

asymptotically stable equilibrium for
−−−−−−−→
fL;αA,αB;γA,γB , and p∗L;αA,αB;γA,γB

refers to an

asymptotically stable periodic point.

We now turn to the treatment of the opinion dynamics for group sizes L = 1, 2

and 3.

3.2 group size 1

The case L = 1 resembles a community in which each member is unaffected

by other community members in determining its opinion, and the only changes

in opinion come from the contrarians. The contributions to the A density after

application of the local majority rule is obtained from the second column in Table 1

in Appendix 3.6.1. This column obviously is equal to the first one, since in groups
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of size 1 local majority is automatically obtained, but is without effect on the

opinion densities. These contributions are: αA for the A inflexibles, and p− αA for

the (non-contrarian and contrarian) A floaters. Their sum is p, and we obtain for

the update rule of the local majority rule that

pt+1 = f1;αA,αB;0,0(pt) = pt; (3.1)

consequently, each p ∈ [αA, 1− αB] is a neutrally stable equilibrium for the opinion

dynamics generated by the l.m.r..

In case only (non-contrarian and contrarian) floaters are involved both αA and

αB are equal to 0, and we restrict ourselves to the contributions from the second,

third, fifth and sixth line in the table. Since the l.m.r. leaves each group of size

1 unaffected, a switch by a contrarian in this case necessarily implies a change

to the opinion it initially does not support. Thus, here also a contribution to the

A density comes from the group that initially consists of only B contrarians, as

these will turn into A floaters. In this case we obtain for the contribution to the A

density:

pt+1 = f1;0,0;γA,γB(pt) = (1− γA)pt + γB(1− pt) = γB +
(

1− (γA + γB)
)

pt. (3.2)

The effect of both inflexibles and non-contrarian as well as contrarian floaters is

obtained by adding all the expressions in the last column: the contributions αA due

to the invariant density of A inflexibles, (1− γA)(pt− αA) from the non-contrarian

A floaters, and γB(1− αB − pt) from the contrarian B floaters. This yields:

pt+1 = f1;αA,αB;γA,γB(pt) = αA + (1− γA)(pt − αA) + γB(1− αB − pt) =

αAγA + (1− αB)γB +
(

1− (γA + γB)
)

pt. (3.3)

It follows that if γA + γB > 0, then

p̂ =
αAγA + (1− αB)γB

γA + γB
(3.4)

is the unique equilibrium for the opinion dynamics
−−−−−−−→
f1;αA,αB;γA,γB . Due to its linearity

as a function of pt, expression (3.3) implies that the dynamical characteristics

of this equilibrium are governed solely by the frequencies of the contrarians.
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The equilibrium is asymptotically stable if and only if 0 < γA + γB < 2. For

0 < γA + γB < 1 the equilibrium is approached monotonically, with an increase in

the A density if and only if its initial value is less than the equilibrium value. For

γA + γB = 1, the function f1;αA,αB;γA,γB is constant and equals αAγA + (1− αB)γB;

the opinion dynamics then reaches its equilibrium in one iteration. For 1 <

γA + γB < 2, the equilibrium is approached alternately. For γA + γB = 2, i.e., both

γA = 1 and γB = 1, the equilibrium equals 0.5(1+ αA− αB) and is neutrally stable;

each p ∈ [αA, 1− αB] different from 0.5(1 + αA − αB) generates a neutrally stable

cycle of length 2.

On the equilibrium, the A opinion has the majority if and only if the inequality

(0.5− αA)γA < (0.5− αB)γB (3.5)

holds. Thus, for an opinion to achieve the majority it is required that it is being

supported by a sufficiently large density of inflexibles, and/or a sufficiently small

frequency of contrarians among the floaters.

Given densities αA and αB of inflexibles for the two opinions, a change in the

frequencies of contrarians from 0 into small values γA and γB causes the

bifurcation from a collection of neutrally stable equilibria for
−−−−−→
f1;αA,αB;0,0 into a

unique stable equilibrium for
−−−−−−−→
f1;αA,αB;γA,γB . The opinion which has the majority on

this equilibrium is determined by inequality (3.5). In case αA = αB = α, the

opinion with the smaller frequency of contrarians obtains the majority. Conversely,

given different frequencies γA and γB of contrarian floaters for the two opinions,

in the absence of inflexibles the dynamics
−−−−−−→
f1;0,0;γA,γB has p̂ = γB

γA+γB
as its unique

stable equilibrium, on which the opinion with the smaller frequency of contrarians

has the majority. Fixing sufficiently small densities αA and αB of both opinions as

inflexibles, this equilibrium slightly shifts but leaves the majority unaltered. In

case γA = γB, in the absence of inflexibles the equilibrium p̂ equals 0.5, and the

introduction of small densities of inflexibles for both opinions changes this

equilibrium into one on which the opinion with the larger density of inflexibles

takes the majority. Figure 3.1 illustrates these conclusions.

Figure 3.2 gives a qualitative overview of the outcomes of the possible opinion

dynamics
−−−−−−−→
f1;αA,αB;γA,γB .
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Figure 3.1: Figure a shows the graphs of f1;0.2,0.2;0,0 (which coincides with the
diagonal) and f1;0.2,0.2;0.075,0.05 as functions of p on the interval [0.2, 0.8].
By changing the frequencies of contrarians from (γA, γB) = (0, 0) into
(γA, γB) = (0.075, 0.05), the collection of neutrally stable equilibria (the
diagonal) bifurcates into a unique stable equilibrium p̂ = 0.44 on which
the B opinion has the majority. Figure b shows the diagonal together
with the graph of f1;0,0;0.2,0.2 on [0, 1], and the graph of f1;0.15,0.2;0.2,0.2
on [0.15, 0.8], both as functions of p. The dashed lines indicate the
boundaries of the interval [0.15, 0.8]. The graphs of the two functions
almost coincide on this interval and are parallel (due to the equal
frequencies of contrarians for both cases). The dynamics generated by
these two functions have p̂ = 0.5 and p̂ = 0.475 as their respective
stable equilibria.

3.3 group size 2

In groups of size 2 the number of members that support the A or B opinion may

be equal, in which case a tie occurs. We shall deal with the neural treatment in

case of a tie, in which each supporter keeps its own opinion.

Table 2 in Appendix 3.6.2 is related to groups of size 2. We obtain

pt+1 = f2;αA,αB;0,0(pt) = pt, (3.6)

which is obvious, since in groups of size 2 no majorities can occur, and, in case

of a tie, the neutral application of the local majority rule does not have any effect.

Incorporating the effect of non-contrarian as well as contrarian floaters, Table 2

yields that

pt+1 = f2;αA,αB;γA,γB(pt) = αAγA + (1− αB)γB +
(

1− (γA + γB)
)

pt. (3.7)
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Figure 3.2: An overview of the opinion dynamics of f1;αA,αB;γA,γB , for values αA
and αB as indicated, and with γA and γB in each pane on the horizontal
and vertical axis, respectively, both ranging between 0 and 1. In each
pane the line with negative slope γA + γB = 1 is drawn, and possibly
an additional red line of positive (possibly infinite) or zero slope. On
the line γA + γB = 1 the function f1;αA,αB;γA,γB is constant, and the
corresponding values of γA and γB separate between monotone and
alternating dynamics, with the monotone dynamics occurring if 0 <
γA +γB < 1, i.e., below the line. The red line, if present, gives the values
(γ1, γ2) 6= (0, 0) for which the equilibrium of the opinion dynamics
equals 0.5, and is determined by the expression (αA − 0.5)γA − (αB −
0.5)γB = 0. Opinion A obtains the majority if (and only if) (αA −
0.5)γA − (αB − 0.5)γB > 0 holds, i.e., if αB < 0.5 and (γA, γB) lies
above the red line. The panes for values (αA, αB) for which αA + αB = 1
represent degenerate cases, in the sense that only inflexibles for both
opinions are present in the community and only one density p̂ = αA
for the A opinion occurs in time. In case αB > 0.5, opinion A will never
achieve the majority in equilibrium.
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Thus, for groups of size 2 the effect of the neutral application of the local majority

rule and the contrarians is the same as for groups of size 1.

3.4 group size 3

Group size 3 is the smallest value of L for which the local majority rule becomes

effective due to possible group compositions in which a majority of one of the two

opinions occurs. As a consequence, the generated dynamics allows for features

different from those for group sizes 1 and 2. Careful bookkeeping based on Table 3

in Appendix 3.6.3 yields that

pt+1 = f3;αA,αB;γA,γB(pt) =

αA(1− γA) + (1− αB)γB −
(

2αA(1− 2γA)− γA + γB

)
pt +

(
3 + αA(1− 2γA)− αB(1− 2γB)− 4γA − 2γB

)
p2

t − 2
(

1− γA − γB

)
p3

t =

pt + αA(1− γA) + (1− αB)γB −
(

1 + 2αA(1− 2γA)− γA + γB

)
pt +

(
3 + αA(1− 2γA)− αB(1− 2γB)− 4γA − 2γB

)
p2

t − 2
(

1− γA − γB

)
p3

t . (3.8)

For clarity we start the analysis of the generated opinion dynamics with the

symmetric case of equal densities of inflexibles and equal fractions of contrarians

for both opinions.

3.4.1 The fully symmetric case: αA = αB and γA = γB

Taking αA = αB = α and γA = γB = γ, we obtain that

pt+1 = f3;α,α;γ,γ(pt) =

pt + (1− 2pt)
(

γ + α(1− 2γ)− (1− 2γ)pt + (1− 2γ)p2
t

)
. (3.9)
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Figure 3.3: Graphs of f3;0.1,0.1;γ,γ as function of p ∈ [0.1, 0.9], with values γ as
indicated at each specific graph. In addition, the diagonal and the line
1− p are drawn.

As an illustration to expression (3.9), Figure 3.3 shows a collection of graphs of

f3;α,α;γ,γ as function of p, for α = 0.1 and several values of γ.

From expression (3.9) the analysis of the generated opinion dynamics is

straightforward. We give an overview.

Symmetry considerations imply that the dynamics
−−−−→
f3;α,α;γ,γ has p = 0.5 as an

equilibrium, for any choice of α ∈ [0, 0.5] and γ ∈ [0, 1]. In addition to parameter

combinations α and γ for which this equilibrium is unique and stable, there are

combinations which allow for an unstable repelling equilibrium p̂ = 0.5 in

combination with two other, asymptotically stable, equilibria, or with two

asymptotically stable periodic points of minimal period 2. Details for these

possibilities to appear are derived in Appendix 3.6.4, here we confine ourselves to

the outcome.

Let the critical curves c3 and C3 be defined as follows:

c3 = {(α, γ) ∈ [0, 0.5]× [0, 1] : (3− 4α)(1− 2γ) = 2}, (3.10)

and

C3 = {(α, γ) ∈ [0, 0.5]× [0, 1] : (3− 4α)(1− 2γ) = −2}. (3.11)

Figure 3.4 shows the curves c3 and C3 in the (α, γ)-parameter space. On c3 the

derivative f ′3;α,α;γ,γ(0.5) equals 1, whereas on C3 this derivative equals −1. The two
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Figure 3.4: The critical curves c3 and C3 in the (α, γ)-parameter space

corner areas in Figure 3.4 enclosed by either c3 or C3 are the regions of parameter

combinations for which 0.5 is unstable; outside these regions (including the

curves) 0.5 is the unique asymptotically stable equilibrium for
−−−−→
f3;α,α;γ,γ,

independent of the initial condition. The lower left corner region is the area for

which the dynamics
−−−−→
f3;α,α;γ,γ has two asymptotically stable equilibria p̂3;α,α;γ,γ.

Given parameter combinations (α, γ) in this region, the opinion dynamics

eventually will stabilise on an equilibrium on which the opinion with the initial

majority will have maintained its majority. In case (α, γ) 6= (0, 0), this equilibrium

is mixed; if neither inflexibles nor contrarians are present for both opinions, i.e.

(α, γ) = (0, 0), the equilibrium is a single state attractor with only one opinion

present. These results generalise those obtained in [34] for the case of equal

densities of inflexibles and no contrarians for both opinions. For parameter

combinations in the upper left corner region in Figure 3.4, the dynamics has two

attracting periodic points of period 2. Here an initial majority does not guarantee

the eventual majority, since the dynamics is such that both opinions alternately

switch between minority and majority.

Thus, if both opinions are being supported by equal densities α of inflexibles and

equal fractions γ of contrarians among the floaters, for an opinion to obtain the

majority it is necessary that α as well as γ are sufficiently small, and that it has

the initial majority. Also, with increasing α (γ), the maximum value of γ (α) for
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which a majority is attainable decreases. If no inflexibles are present, the fraction

of contrarians among the floaters must be less than approximately 17% (
100
6

%) for

a majority to be realisable, and if the fraction of contrarians among the floaters

equals 0, the density of inflexibles must be less than 25%.

If in the parameter space a combination (α, γ) approaches from within a corner

towards one of the two critical curves, then the two additional equilibria or periodic

points approach towards p = 0.5; a withdrawal in the parameter space results in

the opposite movement of the additional equilibria or periodic points. It follows

that when passing through c3, the dynamics
−−−−→
f3;α,α;γ,γ undergoes a supercritical

pitchfork bifurcation, and when passing through C3 the dynamics undergoes a

period doubling bifurcation (flip bifurcation).

3.4.2 The general case

We now return to the general expression (3.8) and give an overview of the possible

outcomes of the dynamics
−−−−−−−→
f3;αA,αB;γA,γB . The analytical background is given in

Appendix 3.6.5. We distinguish several cases.

1. γA + γB = 1.

For γA and γB such that γA + γB = 1, the function

f3;αA,αB;γA,γB is quadratic in p. The corresponding opinion dynamics
−−−−−−−−−→
f3;αA,αB;γA,1−γA has a unique stable equilibrium in the interval [αA, 1− αB].

For (γA, γB) = (0.5, 0.5), the function f3;αA,αB;0.5,0.5 becomes constant and

equals f3;αA,αB;0.5,0.5(p) = 0.5(1 + αA − αB); it allows for a unique stable

equilibrium p̂ = 0.5(1 + αA − αB), on which opinion A has the majority if

and only if αA > αB. The following figure distinguishes between parameter

combinations αA, αB and γA for which the A opinion obtains either the

majority or minority in equilibrium, and for which the equilibrium is

approached monotonically or alternately (Figure 3.5). It follows that with

increasing value of γA the region of parameter combinations (αA, αB) for

which opinion A obtains the majority decreases. In addition, if γA ≤ 0.5, the

A opinion can obtain the majority for any value of αA, provided that αB is

sufficiently small; if γA > 0.5, αA must be sufficiently large and αB

sufficiently small for an A majority to occur.
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Figure 3.5: The different panes, distinguished by different values of γA, have
αA on the horizontal axis and αB on the vertical one. Each pane

shows the red line αB =
1− 2γA

3− 2γA
+

1 + 2γA

3− 2γA
αA of parameter values

(αA, αB) for which the equilibrium value p̂3;αA,αB;γA,1−γA equals 0.5.
Below a red line the equilibrium value lies above 0.5, i.e., opinion A
then obtains the majority. In addition each pane shows in white the
region of parameters (αA, αB) for which the equilibrium p̂3;αA,αB;γA,1−γA

is approached monotonically; the black regions indicate parameter
combinations for which the equilibrium is approached alternately. For
γA = 0.5, the derivative of f3;αA,αB;γA,1−γA in the equilibrium equals 0
for all parameter values (αA, αB), and the equilibrium is reached in
one iteration. On the line αA + αB = 1 the dynamics is degenerate: the
density p is restricted to a single equilibrium density p̂ = αA. The white
region αA + αB > 1 is not involved in the analysis.

2. γA + γB 6= 1.

The expression f3;αA,αB;γA,γB(p)− p = 0 for determining the equilibria is
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f3;αA,αB;γA,γB(p)− p =

αA(1− γA) + (1− αB)γB −
(

1 + 2αA(1− 2γA)− γA + γB

)
p +

(
3+ αA(1− 2γA)− αB(1− 2γB)− 4γA− 2γB

)
p2 − 2

(
1−γA−γB

)
p3 = 0.

(3.12)

The number of solutions is determined by its discriminant, which is denoted

by D(αA, αB; γA, γB). The expression for the discriminant is derived in

Appendix 3.6.5; here we discuss its implications.

For parameter combinations (αA, αB; γA, γB) such that D(αA, αB; γA, γB) > 0,

the equation f3;αA,αB;γA,γB(p) − p = 0 has a unique real solution. If

D(αA, αB; γA, γB) < 0, there are three real solutions. However, these

solutions do not necessarily have to belong to the interval [αA, 1− αB] (but if

a solution lies in this interval, it clearly is an equilibrium for the dynamics
−−−−−−−→
f3;αA,αB;γA,γB). If D(αA, αB; γA, γB) = 0 there are three real solutions, of which

at least two coincide; if this happens in the interval [αA, 1 − αB], the

parameter combination is at a bifurcation point, discriminating between

dynamics with either a unique equilibrium or three equilibria. If at the

bifurcation point exactly two of the three solutions coincide, the coinciding

solutions form a semistable equilibrium.

Figure 3.6 shows a collection of sign plots for the discriminant, for values αA

and αB as indicated, and with γA and γB for each sign plot between 0 and 1.

In addition the outcome of the analysis for parameter combinations

(αA, αB; γA, 1 − γA) is included, as well as the results of the analysis for

combinations (α, α; γ, γ).

The discriminant becomes singular for parameter combinations

(αA, αB; γA, γB) with γA + γB = 1. In approaching such parameter

combinations for which (γA, γB) 6= (0.5, 0.5), the value of D(αA, αB; γA, γB)

goes to −∞. For (γA, γB) = (0.5, 0.5), the limit generically equals +∞ when

this point is approached from the region γA + γB < 1; the limit equals −∞

in case it is approached from the other side, i.e., from the region
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γA + γB > 1. (In case (0.5, 0.5) is approached along the zero set of

D(αA, αB; γA, γB), i.e., in each pane in Figure 3.6 along the boundary that

distinguishes between the yellow and green regions and touches with the

line γA + γB = 1, the limit clearly equals 0.)

Our further discussion of the opinion dynamics
−−−−−−−→
f3;αA,αB;γA,γB is based on

Figure 3.6. Instead of a detailed analytical treatment, we continue with a

number of characteristic outcomes of the opinion dynamics.

A first characteristic that draws attention in Figure 3.6 is the existence of a

wedge-shaped region of parameter combinations (αA, αB; γA, γB) with negative

discriminant for sufficiently small values of all four parameters. For the cases with

both αA = αB and γA = γB within this region, we already found the existence of

two attracting equilibria, symmetrically positioned with respect to a third,

unstable equilibrium 0.5. We therefore expect also to find a similar pattern of three

equilibria in [αA, 1− αB] for deviations from such symmetric cases within the

wedge-shaped region. In [34] it has been derived that this is indeed the case in the

absence of contrarians, i.e., for parameter combinations for which γA = γB = 0,

and for αA and αB sufficiently small. Figure 3.7, which shows a number of graphs

of functions f3;αA,αB;γA,γB for relatively small values αA, αB, γA and γB, implies the

same pattern: in case the determinant D(αA, αB; γA, γB) is negative, the opinion

dynamics has two attracting equilibria that are separated by an unstable one. The

two attracting equilibria differ with respect to the opinion by which they are

dominated. By leaving the wedge-shaped area, a bifurcation in the opinion

dynamics occurs on its boundary D(αA, αB; γA, γB) = 0. Generically, when

moving from inside the wedge-shaped area towards this boundary, the unstable

equilibrium and one of the two stable equilibria move towards each other, and at

the bifurcation point merge (thus causing a supercritical saddle-node bifurcation).

Once the boundary has been crossed, the region of parameters with a positive

discriminant is entered, and the dynamics is left with one attracting equilibrium.

On this equilibrium opinion A dominates if the upper part of the boundary is

crossed, i.e., when γB > γA; opinion B has the majority when the right-hand side

of the boundary is passed, on which γA > γB holds. This is also illustrated in

Figure 3.7. The occurrence of such a bifurcation may lead to a drastic change in

the outcome of the opinion dynamics: whereas inside the wedge-shaped region
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Figure 3.6: A collection of panes, for values αA and αB as indicated, and γA and
γB for each pane ranging between 0 and 1, with γA on the horizontal
axis and γB on the vertical axis. In each pane the sign plot of the
discriminant D(αA, αB; γA, γB) is shown for points (γA, γB) for which
γA + γB 6= 1. Yellow areas represent the parameter combinations with
a positive discriminant (i.e., combinations for which the corresponding
opinion dynamics has a unique equilibrium), and in green regions the
discriminant is negative (the corresponding opinion dynamics then has
3 different equilibria, but not necessarily in the interval [αA, 1− αB]).
On the curve separating the yellow and green region the discriminant
D(αA, αB; γA, γB) for the third-degree function f3;αA,αB;γA,γB(p) − p
equals 0 (except in (γA, γB) = (0.5, 0.5), where this function becomes
quadratic). In each pane the line γA + γB = 1 is drawn in black. On
these lines the third-degree function f3;αA,αB;γA,γB becomes quadratic
and the corresponding dynamics has a unique equilibrium increasing
from 0 (for γA = 1) to 1 (γA = 0). Furthermore, in panes for which
αA = αB holds, on the line γA = γB in the green regions (i.e., a negative
discriminant) in black the points are indicated for which the equilibrium
p̂ = 0.5 for

−−−−−−−→
f3;αA,αB;γA,γB is unstable; other points on the lines γA = γB

(for αA = αB) indicate parameter combinations for which p̂ = 0.5 is
stable (as follows from Figure 3.4).

the outcome of the opinion dynamics depends on the initial condition, outside the

wedge-shaped area the opinion dynamics will end on the unique equilibrium,
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independent of the initial condition. At the bifurcation point at the endpoint of the

sharp region of the wedge-shaped area a supercritical pitchfork bifurcation occurs,

in which the three equilibria merge together into one attracting equilibrium.

The yellow regions in Figure 3.6 are formed by the parameter combinations for

which the discriminant D(αA, αB; γA, γB) is positive. The corresponding opinion

dynamics then have a unique equilibrium, which (for the parameter combinations

in Figure 3.6) is approached monotonically. Figure 3.8 shows a number of graphs

f3;αA,αB;γA,γB for parameter combinations with a positive discriminant. The Figure

indicates that for small values of γA and large values of γB opinion A dominates

in equilibrium, and that the dominion shift towards the alternative opinion if

the fraction of contrarians among the A floaters increases and that among the B

floaters decreases.

For given parameters αA and αB, crossing the boundary of the yellow area in

any direction away from the lower left corner leads to the occurrence of a saddle-

node bifurcation, now however outside the domain [αA, 1− αB] of the functions

f3;αA,αB;γA,γB (maintaining an attracting equilibrium in the domain). Therefore in

the green region thus entered, the opinion dynamics also is characterised by a

unique attracting equilibrium. Proceeding towards the upper right corner, the line

of parameter combinations (γA, γB) satisfying γA + γB = 1 is crossed. On this

line the discriminant D(αA, αB; γA, γB) is singular, and the corresponding opinion

dynamics have been analysed in 3.4.2.1.

In the green area in the upper right corner, for equal and sufficiently small values

αA = αB = α and sufficiently large and equal values γA = γB = γ it has been

derived earlier that
−−−−−−→
fαA,αB;γA,γB has a unique unstable equilibrium p̂ = 0.5, which

causes the convergence of the dynamics towards an attracting periodic orbit of

period 2. Neither of the two opinions then achieves the definite majority. The values

α and γ for which this occurs have been derived in 3.4.1, and are represented in

Figure 3.6 by black line segments in the upper right corners. For these parameter

combinations the discriminant of the equation f3;αA,αB;γA,γB(p)− p = 0 is negative

and thus has three different solutions, of which two are situated outside the domain

[αA, 1− αB]. Continuity arguments imply that this behaviour will be maintained

for parameter combinations sufficiently close to these line segments. Figure 3.9

illustrates this. If the parameter combinations are sufficiently far removed from
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Figure 3.7: Four panes of graphs of functions f3;αA,αB;γA,γB for relatively small
values αA, αB, γA and γB, with (αA, αB) as indicated below each pane,
and with values γA as indicated by the color code. In each of the four
panes, γA and γB satisfy γA + γB = 0.2. I.e., in the corresponding panes
in Figure 3.6 we traverse the line γA + γB = 0.2 from its upper left
point on the γA = 0 axis to its lower right point on the γB = 0 axis,
thus passing through regions with positive, zero as well as negative
discriminant. Above each of these panes the values of the densities
for opinion A in subsequent time steps are plotted, as obtained by
the corresponding opinion dynamics

−−−−−−−→
f3;αA,αB;γA,γB , with initial density

p = 0.5.
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Figure 3.8: Four panes of graphs of functions f3;αA,αB;γA,γB for relatively small
values αA and αB as indicated, and γA-values as given by the color code.
γA and γB satisfy γA + γB = 0.7, i.e. for given (αA, αB), we traverse the
line γA + γB = 0.7 from its upper left point on the γA = 0 line to its
lower right point on the γB = 0 line. The discriminant D(αA, αB; γA, γB)
for the exposed parameter values is positive, indicating a unique
equilibrium for the corresponding opinion dynamics.

these line segments but γA and γB are still relatively large (i.e., for given αA and

αB, in the upper right corner), the dynamics will converge alternately to a unique

equilibrium. I.e., by moving away from the manifold determined by the constraints

αA = αB and γA = γB with large values γA and γB, a flip bifurcation occurs in

which the attracting periodic 2 orbit collapses to an attracting equilibrium point.

This is illustrated by Figure 3.10. On the attractor the dominion shifts towards

opinion B with increasing γA and decreasing γB.

We end our discussion by presenting some additional opinion dynamics
−−−−−−−→
f3;αA,αB;γA,γB for parameter combinations from both the regions with positive and

negative discriminant. We remark here that the line segments on the line γA = γB

in the lower left and upper right regions of the sign plots of D(α, α; γA, γB)

disappear for α ≥ 0.25. For choices (αA, αB) outside the region for which both
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Figure 3.9: Four panes of graphs of functions f3;αA,αB;γA,γB for relatively small
values αA and αB, and with γA and γB satisfying γA + γB = 1.8. The
values of αA and αB are indicated below each of the four panes, and
values for γA are as indicated by the color code. I.e., for given (αA, αB),
we traverse the line γA + γB = 1.8 from its upper left point on the
γB = 1 line to its lower right point on the γA = 1 line. Above each
of these panes the densities for opinion A are again presented, as
obtained by the corresponding opinion dynamics

−−−−−−−→
f3;αA,αB;γA,γB , with

initial density p = 0.5.
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Figure 3.10: Four panes of graphs of functions f3;αA,αB;γA,γB for relatively small
values αA and αB, and with γA and γB satisfying γA + γB = 1.7. The
values of αA and αB are indicated below each of the four panes, values
for γA are again given by the color code. For given (αA, αB) values of
γA are such that we traverse the line γA + γB = 1.7 from its upper
left point on the γB = 1 line to its lower right point on the γA = 1
line. Above each pane the densities for opinion A are presented, as
obtained by the corresponding opinion dynamics

−−−−−−−→
f3;αA,αB;γA,γB , with

initial density p = 0.5.
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αA ≤ 0.25 and αB ≤ 0.25 there is no qualitative change in the sign plots of

D(αA, αB; γA, γB), and we choose to restrict and illustrate this for the choices

(αA, αB) = (0.1, 0.4) and (αA, αB) = (0.5, 0.3), i.e., a case with small αA and

intermediate αB, and one with both αA and αB intermediate. Figure 3.11 shows the

sign plots of the discriminants D(0.1, 0.4; γA, γB) (a) and D(0.5, 0.3; γA, γB) (b).
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a b

γA

γB

γA

γB

Figure 3.11: Sign plots of the discriminants D(0.1, 0.4; γA, γB) (a) and
D(0.5, 0.3; γA, γB) (b). The color code is as in Fig. 3.6. On the
curve separating the yellow and green region the discriminant
D(αA, αB; γA, γB) for the third-degree function f3;αA,αB;γA,γB(p) − p
again equals 0 (except in (γA, γB) = (0.5, 0.5), where this function
becomes quadratic). In addition in each pane the line γA + γB = 1 is
drawn in black.

The corresponding graphs of f3;αA,αB;γA,γB are represented in Figures 3.12 and 3.13,

for several values of γA and γB. All cases allow for a unique attracting equilibrium.

High values of both γA and γB lead to alternating convergence. Furthermore, a

decrease in the fraction of contrarians among the floaters of an opinion increases

the density of this opinion in equilibrium.

3.5 conclusions

The results presented re-establish those derived in [23, 28], which concerned

communities of non-contrarian and contrarian floaters, and [34], which studied

the combined effects of inflexibles and non-contrarian floaters. The distinctive
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Figure 3.12: The left column shows four panes of graphs of functions f3;0.1,0.4;γA,γB ,
for different combinations of γA and γB, with γA as indicated and per
row of graphs γB such that the relation mentioned below the row of
graphs is satisfied. The right column of the Figure shows the densities
of opinion A as generated by the corresponding opinion dynamics for
initial value p = 0.5.
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Figure 3.13: The left column shows four panes of graphs of functions f3;0.5,0.3;γA,γB

for the same combinations of γA and γB as in Fig. 3.12. The right
column of the Figure shows the densities of opinion A as generated
by the corresponding opinion dynamics for initial value p = 0.5.
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patterns of opinion dynamics are not characterised by complete quantitative detail.

Rather, the results intend to point to possible outcomes of opinion dynamics. We

conclude that various kinds of dynamics may occur. In case the local majority rule

followed by the contrarian changes are applied for group sizes L = 1 or 2, the

opinion dynamics generically converges to a unique equilibrium. In case the sum

of fractions of contrarians for the two opinions is larger than 1, the equilibrium

generically is approached alternately, otherwise the dynamics generically shows

a monotone approach. For an opinion to obtain the majority in equilibrium, it is

required that this opinion is supported by a sufficiently large density of inflexibles

in combination with a sufficiently small fraction of contrarians, as expressed by

condition (3.5).

Group size L = 3 allows for additional outcomes for the opinion dynamics.

For sufficiently small densities of inflexibles for both opinions, and in addition

sufficiently small fractions of contrarians among the floaters for the two opinions,

the dynamics allows for two attracting equilibria, that differ in which opinion

has the majority. The opinion that eventually will achieve the majority thus is

determined by the initial condition, and an opinion that has a fraction of contrarians

that is sufficiently smaller than that of the alternative opinion, may achieve the

majority in equilibrium, although initially it may be present as a minority. For small

values of inflexibles in combination with sufficiently large fractions of contrarians

among the floaters, the generated opinion dynamics causes alternating convergence

to a period 2 stable orbit (Figure 3.9). An increase of the densities of inflexibles or

a slight lowering of at least one of the fractions of contrarians causes the collapse

of the attracting periodic orbit into an equilibrium, but maintains the alternating

behaviour (Figure 3.10). For a relatively large collection of parameter combinations

the dynamics ends up on a unique attracting equilibrium, which is approached

either monotonically or alternating (see e.g. Figures 3.5 and 3.13). An increase in

the fraction of contrarians among the floaters of an opinion leads to a decrease

of the density of that opinion in equilibrium. Thus, for an opinion to achieve

the majority in equilibrium, a small fraction of contrarians among its floaters is

favourable.

In [28], the “hung elections” outcome in several national votes has been discussed

in terms of the interplay of non-contrarian and contrarian floaters. Likewise, the
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present paper may shed a light on the (dis)appearance of alternating opinion

dynamics. An alternating series of wins and losses of the majority for two political

opinions in pre-election polls may point to considerable fractions of contrarians

among the floaters on both sides. In case the alternating pattern converges to a

stable period 2 cycle, the uncertainty who will win the election will linger on

until the final decisive event. (Note that since the outcome of an election in an

alternating environment depends on the moment the election actually takes place,

it may happen that in subsequent polls the same winner occurs. This is however no

indication of sustained major support. Furthermore, in a sequence of alternating

environments, a large number of subsequent wins for the same opinion seems

unlikely.) If however the alternating changes are converging to an equilibrium, one

of the opinions eventually will reach a decisive majority. Due to the sensitivity

of politics for influences, a change in parameter values may easily occur, either

with respect to the densities of inflexibles or to the fractions of contrarians. This

may result in a switch from the one alternating pattern into the other one, or even

into monotone convergence towards an equilibrium. Although our framework

does not map unequivocally to real communities, we think it may hint at possible

explanations of outcomes of opinion dynamics.

In forthcoming papers we plan to continue the study of opinion dynamics, by

focusing on communities in which more than two opinions are being supported,

and by taking into account geographic networks.
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3.6 appendices

Subsections 3.6.1, 3.6.2 and 3.6.3 present tables for groups of sizes L = 1, 2 and 3

from which the density of the A opinion is derived after application of the l.m.r.

and the switch by the contrarians, given an initial density p for the A opinion.

Each table consists of four columns, of which the first four are separated by arrows.

The first column gives the possible group compositions in terms of inflexibles and

non-contrarian and/or contrarian floaters, the second column gives the effect of

the application of the l.m.r. for the group compositions given in the first column.

An application is indicated by a horizontal arrow, whose first appearance in a table

is indexed by “l.m.r.”; at other places in the tables this index is omitted. The third

column then gives the effect of the switches by the contrarians if applicable, where

it is understood that a contrarian switches into a floater of the alternative opinion.

The final column gives the contributions of the effect of the l.m.r. and the presence

of the contrarians to the density of the A opinion, weighed with the probability of

the original group composition in the ensemble of all possible groups of fixed size,

given the densities αA and αB of the inflexibles for both opinions, the fractions γA

and γB of contrarians among the floaters of the A and B opinion, respectively, and

the densities p− αA for the A floaters and 1− αB − p for the B floaters. The total

sum of these contributions yields fL;αA,αB;γA,γB(p). After each opinion update, all

supporters for both opinions are recollected and then redistributed again, either

as inflexible or as a non-contrarian or contrarian floater, according to the fixed

densities for inflexibles and the fixed fractions of contrarians for the two opinions.

In each table the following notation is being used:

Ai inflexible of the A opinion,
A f floater of the A opinion,
Anc non-contrarian floater of the A opinion,
Ac contrarian floater of the A opinion,
A fnc floater of the A opinion coming from a B non-contrarian

floater after application of the l.m.r.,
A fc floater of the A opinion coming from a B contrarian floater

after application of the l.m.r.,

and
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Bi inflexible of the B opinion,
B f floater of the B opinion,
Bnc non-contrarian floater of the B opinion,
Bc contrarian floater of the B opinion,
B fnc floater of the B opinion coming from a A non-contrarian

floater after application of the l.m.r.,
B fc floater of the B opinion coming from a A contrarian floater

after application of the l.m.r..

3.6.1 Table 1: group size L = 1

Table 1

Ai
l.m.r.−−−→ Ai αA

Anc → Anc (1− γA)(p− αA)
Ac → Ac → B f 0
Bi → Bi 0
Bnc → Bnc 0
Bc → Bc → A f γB(1− αB − p)
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3.6.2 Table 2: group size L = 2

Table 2

Ai, Ai
l.m.r.−−−→ Ai, Ai α2

A
Ai, Anc → Ai, Anc 2αA(1− γA)(p− αA)
Ai, Ac → Ai, Ac → Ai, B f αAγA(p− αA)
Ai, Bi → Ai, Bi αAαB
Ai, Bnc → Ai, Bnc αA(1− γB)(1− αB − p)
Ai, Bc → Ai, Bc → Ai, A f 2αAγB(1− αB − p)
Anc, Anc → Anc, Anc (1− γA)

2(p− αA)
2

Anc, Ac → Anc, Ac → Anc, B f γA(1− γA)(p− αA)
2

Anc, Bi → Anc, Bi αB(1− γA)(p− αA)
Anc, Bnc → Anc, Bnc (1− γA)(1− γB)(p− αA)(1− αB − p)
Anc, Bc → Anc, Bc → Anc, A f 2(1− γA)γB(p− αA)(1− αB − p)
Ac, Ac → Ac, Ac → B f , B f 0
Ac, Bi → Ac, Bi → B f , Bi 0
Ac, Bnc → Ac, Bnc → B f , Bnc 0
Ac, Bc → Ac, Bc → B f , A f γAγB(p− αA)(1− αB − p)
Bi, Bi → Bi, Bi 0
Bi, Bnc → Bi, Bnc 0
Bi, Bc → Bi, Bc → Bi, A f αBγB(1− αB − p)
Bnc, Bnc → Bnc, Bnc 0
Bnc, Bc → Bnc, Bc → Bnc, A f γB(1− γB)(1− αB − p)2

Bc, Bc → Bc, Bc → A f , A f γ2
B(1− αB − p)2
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3.6.3 Table 3: group size L = 3

Table 3

Ai, Ai, Ai
l.m.r.−−−→ Ai, Ai, Ai α3

A
Ai, Ai, Anc → Ai, Ai, Anc 3α2

A(1− γA)(p− αA)
Ai, Ai, Ac → Ai, Ai, Ac → Ai, Ai, B f 2α2

AγA(p− αA)
Ai, Ai, Bi → Ai, Ai, Bi 2α2

AαB
Ai, Ai, Bnc → Ai, Ai, A f 3α2

A(1− γB)(1− αB − p)
Ai, Ai, Bc → Ai, Ai, A fc → Ai, Ai, B f 2α2

AγB(1− αB − p)
Ai, Anc, Anc → Ai, Anc, Anc 3αA(1− γA)

2(p− αA)
2

Ai, Anc, Ac → Ai, Anc, Ac → Ai, Anc, B f 4αAγA(1− γA)(p− αA)
2

Ai, Anc, Bi → Ai, Anc, Bi 4αAαB(1− γA)(p− αA)
Ai, Anc, Bnc → Ai, Anc, A f 6αA(1− γA)(1− γB)(p− αA)×

(1− αB − p)
Ai, Anc, Bc → Ai, Anc, A fc → Ai, Anc, B f 4αAγB(1− γA)(p− αA)×

(1− αB − p)
Ai, Ac, Ac → Ai, Ac, Ac → Ai, B f , B f αAγ2

A(p− αA)
2

Ai, Ac, Bi → Ai, Ac, Bi → Ai, B f , Bi 2αAαBγA(p− αA)
Ai, Ac, Bnc → Ai, Ac, A f → Ai, B f , A f 4αAγA(1− γB)(p− αA)×

(1− αB − p)
Ai, Ac, Bc → Ai, Ac, A fc → Ai, B f , B f 2αAγAγB(p− αA)×

(1− αB − p)
Ai, Bi, Bi → Ai, Bi, Bi αAα2

B
Ai, Bi, Bnc → Ai, Bi, Bnc 2αAαB(1− γB)(1− αB − p)
Ai, Bi, Bc → Ai, Bi, Bc → Ai, Bi, A f 4αAαBγB(1− αB − p)2

Ai, Bnc, Bnc → Ai, Bnc, Bnc αA(1− γB)
2(1− αB − p)2

Ai, Bnc, Bc → Ai, Bnc, Bc → Ai, Bnc, A f 4αAγB(1− γB)(1− αB − p)2

Ai, Bc, Bc → Ai, Bc, Bc → Ai, A f , A f 3αAγ2
B(1− αB − p)2

Anc, Anc, Anc → Anc, Anc, Anc (1− γA)
3(p− αA)

3

Anc, Anc, Ac → Anc, Anc, Ac → Anc, Anc, B f 2γA(1− γA)
2(p− αA)

3

Anc, Anc, Bi → Anc, Anc, A f 2αB(1− γA)
2(p− αA)

2

Anc, Anc, Bnc → Anc, Anc, A f 3(1− γA)
2(1− γB)(p− αA)

2×
(1− αB − p)

Anc, Anc, Bc → Anc, Anc, A fc → Anc, Anc, B f 2γB(1− γA)
2(p− αA)

2×
(1− αB − p)

Anc, Ac, Ac → Anc, Ac, Ac → Anc, B f , B f (1− γA)γ
2
A(p− αA)

2

Anc, Ac, Bi → Anc, Ac, Bi → Anc, B f , Bi 2αBγA(1− γA)(p− αA)
2

Anc, Ac, Bnc → Anc, Ac, A f → Anc, B f , A f 4γA(1− γA)(1− γB)(p− αA)
2×

(1− αB − p)
Anc, Ac, Bc → Anc, Ac, A fc → Anc, B f , B f 2γAγB(1− γA)(p− αA)

2×
(1− αB − p)
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Table 3 (continued)
Anc, Bi, Bi → B f , Bi, Bi 0
Anc, Bi, Bnc → B f , Bi, Bnc 0
Anc, Bi, Bc → B f , Bi, Bc → B f , Bi, A f 2αBγB(1− γA)(p− αA)×

(1− αB − p)
Anc, Bnc, Bnc → B f , Bnc, Bnc 0
Anc, Bnc, Bc → B f , Bnc, Bc → B f , Bnc, A f 2γB(1− γA)(1− γB)(p− αA)×

(1− αB − p)2

Anc, Bc, Bc → B f , Bc, Bc → B f , A f , A f 2(1− γA)γ
2
B(p− αA)(1− αB − p)2

Ac, Ac, Ac → Ac, Ac, Ac → B f , B f , B f 0
Ac, Ac, Bi → Ac, Ac, Bi → B f , B f , Bi 0
Ac, Ac, Bnc → Ac, Ac, A f → B f , B f , A f (1− γA)γ

2
A(p− αA)

2(1− αB − p)
Ac, Ac, Bc → Ac, Ac, A fc → B f , B f , B f 0
Ac, Bi, Bi → B fc , Bi, Bi → A f , Bi, Bi α2

BγA(p− αA)
Ac, Bi, Bnc → B fc , Bi, Bnc → A f , Bi, Bnc 2αBγA(1− γB)(p− αA)(1− αB − p)
Ac, Bi, Bc → B fc , Bi, Bc → A f , Bi, A f 4αBγAγB(p− αA)(1− αB − p)
Ac, Bnc, Bnc → B fc , Bnc, Bnc → A f , Bnc, Bnc γA(1− γB)

2(p− αA)(1− αB − p)2

Ac, Bnc, Bc → B fc , Bnc, Bc → A f , Bnc, A f 4γAγB(1− γB)(p− αA)(1− αB − p)2

Ac, Bc, Bc → B fc , Bc, Bc → A f , A f , A f 3γAγ2
B(p− αA)(1− αB − p)2

Bi, Bi, Bi → Bi, Bi, Bi 0
Bi, Bi, Bnc → Bi, Bi, Bnc 0
Bi, Bi, Bc → Bi, Bi, Bc → Bi, Bi, A f α2

BγB(1− αB − p)
Bi, Bnc, Bnc → Bi, Bnc, Bnc 0
Bi, Bnc, Bc → Bi, Bnc, Bc → Bi, Bnc, A f 2αBγB(1− γB)(1− αB − p)2

Bi, Bc, Bc → Bi, Bc, Bc → Bi, A f , A f 2αBγ2
B(1− αB − p)2

Bnc, Bnc, Bnc → Bnc, Bnc, Bnc 0
Bnc, Bnc, Bc → Bnc, Bnc, Bc → Bnc, Bnc, A f γB(1− γB)

2(1− αB − p)3

Bnc, Bc, Bc → Bnc, Bc, Bc → Bnc, A f , A f 2(1− γB)γ
2
B(1− αB − p)3

Bc, Bc, Bc → Bc, Bc, Bc → A f , A f , A f γ3
B(1− αB − p)3
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3.6.4 L = 3: analysis for the fully symmetric case αA = αB and γA = γB

The derivative (with respect to p) f ′3;α,α;γ,γ of the function f3;α,α;γ,γ as given by

expression (3.9) in the equilibrium p̂ = 0.5 equals 0.5(3− 4α)(1− 2γ). There are

two additional equilibria

p̂3;α,α;γ,γ = 0.5
1− 2γ±

√
(1− 2γ)(−2 + (3− 4α)(1− 2γ))

1− 2γ
∈ [α, 1− α] (3.13)

if and only if 0 ≤ γ < 1
6 and 0 < 1−6γ

1−2γ − 4α. If the two additional equilibria exist

they are symmetrically positioned on opposite sides of 0.5, and asymptotically

stable; the equilibrium 0.5 then is unstable, with f ′3;α,α;γ,γ(0.5) > 1.

For α and γ such that 5
6 < γ ≤ 1 and 0 < 5−6γ

1−2γ − 4α, the equilibrium 0.5 also

is unstable, with f ′3;α,α;γ,γ(0.5) < −1. In this case the dynamics
−−−−→
f3;α,α;γ,γ has two

asymptotically stable periodic points p∗3;α;γ of minimal period 2, symmetrically

positioned with respect to 0.5:

p∗3;α,α;γ,γ = 0.5
1− 2γ±

√
(1− 2γ)(2 + (3− 4α)(1− 2γ))

1− 2γ
∈ [α, 1− α]. (3.14)

3.6.5 L = 3: analysis of the general case

The possible equilibria for
−−−−−−−→
f3;αA,αB;γA,γB (in [αA, 1 − αB]) follow from solving

f3;αA,αB;γA,γB(p) = p, under the restriction that p ∈ [αA, 1− αB]. We distinguish

several cases.

1. (γA, γB) = (0.5, 0.5): expression (3.8) equals f3;αA,αB;0.5,0.5(p) = 0.5(1 + αA −
αB), and allows for a unique stable equilibrium p̂ = 0.5(1 + αA − αB), on

which opinion A has the majority if and only if αA > αB.

2. (γA, γB) 6= (0.5, 0.5), γA + γB = 1: the function f3;αA,αB;γA,γB is quadratic

in p. The discriminant D(αA, αB; γA, γB) for the equation f3;αA,αB;γA,γB(p)−
p = 0 equals 4α2

B + 4γA(1− α2
A − 3α2

B)− 4γ2
A(1− 2(α2

A + α2
B)). The opinion

dynamics
−−−−−−−−−→
f3;αA,αB;γA,1−γA has a unique equilibrium
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p̂3;αA,αB;γA,1−γA =

1− γA + (1− 2γA)αA−√
(1− γA)(1− 2γA)α

2
B + γA(1− γA)− γA(1− 2γA)α

2
A

(1− 2γA)(1 + αA + αB)
(3.15)

in the interval [αA, 1− αB]. The derivative in the equilibrium equals

1− 2
√

γA(1− γA) + (1− γA)(1− 2γA)α
2
B − γA(1− 2γA)α

2
A.

3. γA + γB 6= 1. The expression f3;αA,αB;γA,γB(p)− p = 0 for determining the

equilibria now is

f3;αA,αB;γA,γB(p)− p =

αA(1− γA) + (1− αB)γB −
(

1 + 2αA(1− 2γA)− γA + γB

)
pt+

(
3+ αA(1− 2γA)− αB(1− 2γB)− 4γA− 2γB

)
p2

t − 2
(

1− γA− γB

)
p3

t = 0.

(3.16)

Its discriminant is

D(αA, αB; γA, γB) =
(

1
2 q1(αA, αB; γA, γB)

)2
+
(

1
3 q2(αA, αB; γA, γB)

)3
,

with

c0(αA, αB; γA, γB) = αA(1− γA) + (1− αB)γB,

c1(αA, αB; γA, γB) = −(1 + 2αA(1− 2γA)− γA + γB),

c2(αA, αB; γA, γB) = 3 + αA(1− 2γA)− αB(1− 2γB)− 4γA − 2γB,

c3(αA, αB; γA, γB) = −2(1− (γA + γB)),

and

q1(αA, αB; γA, γB) =
2

27

( c2(αA, αB; γA, γB)

c3(αA, αB; γA, γB)

)3
−

1
3

c2(αA, αB; γA, γB)

c3(αA, αB; γA, γB)

c1(αA, αB; γA, γB)

c3(αA, αB; γA, γB)
+

c0(αA, αB; γA, γB)

c3(αA, αB; γA, γB)
,

q2(αA, αB; γA, γB) = −1
3

( c2(αA, αB; γA, γB)

c3(αA, αB; γA, γB)

)2
+

c1(αA, αB; γA, γB)

c3(αA, αB; γA, γB)
.

Figure 3.6 shows a selection of sign plots of the discriminant for this case. In

addition the results of the analysis for combinations (α, α; γ, γ) is included.
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abstract

We introduce a notion of attractor adapted to dynamical processes as they are

studied in community-ecological models and their computer simulations. This

attractor concept is modeled after that of Ruelle as presented in [84] and [85]. It

incorporates the fact that in an immigration-free community populations can go

extinct at low values of their densities.

Keywords: Community dynamics, attractors, adaptive dynamics, chain recurrence,

pseudo-orbits

MSC (2020): 37b20, 37c20, 37c70

4.1 introduction

The aim of this paper is to introduce a modification of the attractor concept

introduced by Ruelle ([84], [85]) and Hurley ([50]) (based on ideas of Conley ([13])),

below referred to as chain attractors, that is adapted to the asymptotic behaviour

67



68 on the concept of attractor

of the dynamical systems studied in community ecology. The construction of

chain attractors is based on the idea that any mathematical system is but an

idealisation of reality and that neither physical nor numerical experiments produce

the precise orbits of the theoretical system under consideration, but rather so-

called pseudo-orbits that occur as a consequence of small disturbances or roundoff

errors. We opted for the name chain attractor to bring out the close connection

of this attractor concept with the notion of chain recurrence. Below we shall give

a short review of Ruelle’s construction and some of its properties (Section 2). In

addition we introduce the useful terms chain repeller and chain saddle, and basin

of chainability and of chain attraction, as it is sometimes convenient to refer to

these concepts by name. Next we propose the modification (Section 3), followed

by four examples (Section 4) and a discussion (Section 5). This modification is

necessary in order to deal with the feature of extinction of a population as it may

occur in community dynamics: a pseudo-orbit that reaches a boundary plane of

the community state space spanned by the densities of the populations involved,

will proceed in this boundary plane and cannot enter again into the interior of

the community state space. This condition is not imposed in the construction of

ordinary chain attractors, which in essence have their motivation in physics rather

than community ecology.

4.2 chaining, chain attractors and basin of chain attraction

No model of an empirical process in the form of a smooth deterministic dynamical

system is ever exact. At best the empirical process matches its theoretical model up

to some continual small perturbations of its states (due to externally imposed or

internally generated noise in the case of physical, chemical or biological processes,

or cut-off errors in the case of numerical processes). One way of formalising the

ubiquitous presence of small perturbations is in terms of pseudo-orbits, to be

defined below, leading to a characterisation of their asymptotic behaviour by

means of chain attractors, which are constructed in terms of these pseudo-orbits.

In this section we summarise this construction as presented in [84] and Section 8

of [85]. We concentrate on those results that are of importance with regard to the



4.2 chain attractors 69

modification that we propose in the next section; for a more extensive exposition

of the various concepts the reader is referred to [1].

Let (M, d) be a compact metric space, and let (φt)t≥0 be a continuous semiflow

on M. Furthermore, let ε > 0 and let t0, t1 ∈ R, with t0 ≤ t1. An ε-pseudo-orbit

ηε,[t0,t1]
of (φt)t≥0 is a (not necessarily continuous) function ηε,[t0,t1]

: [t0, t1] → M

such that

d
(

φβ(ηε,[t0,t1]
(t + α)), φα+β(ηε,[t0,t1]

(t))
)
< ε

whenever α, β ≥ 0, α + β ≤ 1, and t, t + α ∈ [t0, t1]. Thus, during a unit time

ε-pseudo-orbits are allowed to ”accrue an amount of error of at most ε relative to

orbits”, where the error measure takes into account how the error is transported

along orbits (see Figure 1). (Another way of looking at ε-pseudo-orbits is by noting

that in whatever way we sample the error within time steps ≤ 1, the error per step

relative to the unperturbed orbit will always be smaller than ε.)

Figure 4.1: An illustration of an ε-pseudo-orbit

An ε-pseudo-orbit ηε,[t0,t1]
is said to go from ηε,[t0,t1]

(t0) to ηε,[t0,t1]
(t1) (or to start

in ηε,[t0,t1]
(t0) and to end in ηε,[t0,t1]

(t1)), and to have length t1 − t0. (Note that the

word ”length” is used here in an unusual, but time honoured, manner for the time

taken instead of the traversed distance.) By concatenation of two ε-pseudo-orbits,

one going from x to y and of length T, the second one going from y to z and of

length T′, we obtain a 2ε-pseudo-orbit going from x to z and of length T + T′. The

deviation from an unperturbed orbit allowed for in ε-pseudo-orbits is controlled

in time by the bound imposed on the sum α + β, and in state space by ε, where a

change in one can be compensated by an appropriate change in the other.
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For the applications of ε-pseudo-orbits we have in mind in this paper only

arbitrarily small values of ε are of importance.

Under the dynamical system (φt)t≥0 on M the possible future states of an

arbitrary x ∈ M are well-determined by its forward orbit {φt(x)}t≥0. As indicated

above, an ε-pseudo-orbit (more precisely, its image) through x may deviate from

this forward orbit. The intersection C+(x) =
⋂
ε>0

Nε,+(x), with Nε,+(x) the union

of the images of all ε-pseudo-orbits of (φt)t≥0 starting at x, is called the

forward chain lineage through x. The forward orbit through x is contained in the

forward chain lineage through x. However, where an orbit through x ’ends’ in the

ω-limit set of x, the forward chain lineage through x may proceed beyond this

ω-limit set. For example, the forward chain lineage through an x on the stable

manifold of a saddle-point contains in addition to the orbit through x at least also

the full unstable manifold of that saddle-point. Analogously we can introduce the

backward chain lineage through x, C−(x), as the union of the images of all

ε-pseudo-orbits of (φt)t≥0 ending at x; the union C(x) = C+(x) ∪ C−(x) then is

the chain lineage through x.

A point x is chain recurrent if for every ε > 0 and every T > 0, there is an

ε-pseudo-orbit of length ≥ T going from x to x. Chain recurrence captures the

notion of positive recurrence under arbitrarily small perturbations. (We recall that

an element x ∈ M is positively recurrent (in the ordinary sense) if for each δ > 0

and each T > 0 there exists a t > T such that d
(
φt(x), x

)
< δ.) The set of chain

recurrent points is the chain recurrent set. Points that are not chain recurrent we

shall refer to as ephemeral.

On M the following relation <, to be called chaining, is defined: x < y (’x chains

to y’) if for every ε > 0 there exists an ε-pseudo-orbit going from x to y. (Roughly

stated x < y means that there is an orbit or an arbitrarily little perturbed orbit, or a

sequence of arbitrarily little perturbed orbits, in M going from x to y.) Note that the

forward chain lineage through x corresponds to the image of x under the relation

<. The relation < is reflexive (x < x, trivially by means of an ε-pseudo-orbit of

length 0) and transitive (x < y and y < z imply x < z), and thus is a preorder on

M. The relation < is also closed, in the sense that if (xi) and (yi) are two sequences

in M converging to x and y respectively and such that for all i: xi < yi, then x < y.
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(For a proof of this statement see [1], Chapter 1 Proposition 8.) As a consequence,

the chain recurrent set is closed. The following Proposition is straightforward (see

also [1], Chapter 1 Proposition 11):

Proposition 1. Let x, y ∈ M. x < y if and only if either there is a t ≥ 0 such that

φt(x) = y or for all t ≥ 0: φt(x) < y.

On M the relation ∼, to be called mutual chaining, is defined in the following

way: x ∼ y (’x and y chain to each other’) if x < y and y < x. Since < is a preorder,

∼ is an equivalence relation on M. The equivalence class of x under ∼ is denoted

by [x]. Clearly ∼ is a closed relation (in the sense indicated above), and therefore

every equivalence class is closed.

An equivalence class [x] is called a basic class if x (and consequently every

y ∈ [x]) is chain recurrent, and the chain recurrent set then is the union of all basic

classes.

Proposition 2. The following three statement are equivalent:

1. [x] is a basic class;

2. x is a fixed point or [x] contains more than one point;

3. for all t ≥ 0: φt([x]) = [x].

The proof of this Proposition follows from Proposition 1.

A class that is not basic, as well as the corresponding state, will be called chain

ephemeral.

LetM = {[x]|x ∈ M} denote the set of equivalence classes in M under ∼. On

M the relation >, to be called connecting, is defined by: [x] > [y] (’[x] connects

to [y]’) if x < y. This relation is reflexive and transitive. In addition, [x] > [y]

and [y] > [x] together imply that [x] = [y]. The relation > thus imposes a partial

ordering onM.

Definition 1. A minimal element inM under > is called a chain attractor.

An existence proof, through the use of Zorn’s lemma, can be found in [84].

Ruelle in [84] and [85] does not introduce any special term to characterise

his attractors; Buescu in [4] uses the term Conley-Ruelle attractor. Hurley, who
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independently introduced the same concept in [50] (though through a different, less

physically interpretable, construction) refers to it as chain transitive quasi-attractor.

Neither term seems to have caught on yet.

A chain attractor is a basic class, and, by Proposition 2, contains the ω-limit sets

of all its elements.

In addition to the above review of the idea of chain attractor, we introduce the

terms chain repeller and chain saddle, and basin of chainability and basin of chain

attraction.

Definition 2.

(i) A maximal basic class inM under > is called a chain repeller.

(ii) Any basic class in M which is neither minimal nor maximal under > is

called a chain saddle.

(iii) Chain ephemeral classes, chain repellers and chain saddles, c.q. the states

therein, shall be referred to as chain transient.

If M is a manifold with boundary, any ephemeral maximal class inM under >

necessarily is contained in the boundary of M. This follows easily from the fact

that an orbit through an ephemeral state in the interior of M can be extended

backward in time to another ephemeral state in the interior.

Definition 3. Let x ∈ M.

(i) The basin of chainability of x, denoted B<(x), is the collection of points

y ∈ M that chain to x: B<(x) = {y ∈ M|y < x}.

(ii) The basin of chainability of the equivalence class [x], denoted B<([x]), is:

B<([x]) = B<(x).

(iii) If [x] is a chain attractor, we refer to its basin of chainability as its basin of

chain attraction, and shall denote it as Att([x]).

Note that for each x ∈ M, B<(x) 6= ∅ since x ∈ B<(x). An element of M can

belong to several basins of chainability, and each element of M belongs to the basin

of chain attraction of at least one chain attractor (again by Zorn’s lemma, see [84]).
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Therefore the different asymptotic regimes of a dynamical system, described by

a semiflow on M that is subject to (very) small perturbations, are captured by its

chain attractors.

4.3 extinction preserving chain attractors for

immigration-free communities

We now restrict our attention to point-dissipative community-dynamical processes

for closed communities (i.e., communities without immigration). We recall that

a dynamical system is point-dissipative if there exists a bounded set such that

each orbit eventually enters this set and remains in it. The compact metric space

(M, d) of the previous section here is understood to be the community state space

spanned by the densities of the populations involved in the community-dynamical

process under consideration. For k ≥ 1 populations 1, ..., k, with respective densities

n1, ..., nk, M is the intersection of Rk
+ ⊂ Rk with the closure of a simply connected

neighbourhood of 0 in Rk. M is supposed to be provided with the standard

(Euclidean) metric and topology.

For l ∈ N, with 1 ≤ l ≤ k, and for i1, ..., il ∈ {1, ..., k} such that 1 ≤ i1 < ... <

il ≤ k, bdi1,...,il
(
Rk

+

)
denotes the set{

(n1, ..., nk) ∈ Rk
+|ni1 = ... = nil = 0

}
⊂ bd

(
Rk

+

)
={

(n1, ..., nk) ∈ Rk
+|∃i ∈ {1, ..., k} : ni = 0

}
,

which is the boundary set of Rk
+. Furthermore we write

bdi1,...,il(M) for M ∩ bdi1,...,il
(
Rk

+

)
, and call it the extinction boundary for the

populations i1, ..., il; bde(M) denotes the intersection of M with bd
(
Rk

+

)
. In

addition, we write bdint(M) for the intersection of the boundary of M with

int
(
Rk

+

)
. The assumption of no immigration translates into the invariance of the

extinction boundaries bdi1,...,il(M) under the semiflow
(
φt)

t≥0.

For later use we mention here that M is a normal space, i.e., it satisfies the

following property: if C1 and C2 are two closed and disjoint subsets of M, then

there exist open and disjoint subsets O1, O2 in M such that C1 ⊂ O1 and C2 ⊂ O2.

The closure of a subset U of M will be denoted by U.
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For n ∈ bdi1,...,il(M) the equivalence class generated by the relation of mutual

chaining connected to the semiflow
(

φt|bdi1,...,il
(M)

)
t≥0

will be denoted as [n]i1,...,il .

In the theory reviewed in Section 2, an ε-pseudo-orbit which has a point in

common with (or, more generally, comes arbitrarily close to) an extinction boundary

of M, may again get away from this extinction boundary and proceed in M \
bde(M). This is unrealistic in the case of community-dynamical processes, in

which populations that attain densities arbitrarily close to zero are bound to go

irreversibly extinct due to the discreteness of individuals. To incorporate this

restriction into our considerations we introduce the notion of extinction preserving

ε-pseudo-orbits.

Definition 4. Let ηε,[t0,t1]
be an ε-pseudo-orbit in M. For tα ∈ [t0, t1], ext(tα)

denotes the collection of the minimal (with regard to the partial ordering by ⊆)

extinction boundaries that have a non-empty intersection with the set of

accumulation points lim
t→tα

ηε,[t0,t1]
(t).

Note that if ηε,[t0,t1]
is (left-)continuous in t = tα, then ext(tα) contains only the

unique minimal extinction boundary containing ηε,[t0,t1]
(tα).

Definition 5. An ε-pseudo-orbit ηε,[t0,t1]
in M is extinction preserving (abbreviated

as ep) if the following property holds: if tα ∈ [t0, t1] is such that ext(tα) 6= ∅, then

there is a bdi1,...,il(M) ∈ ext(tα) such that for all t ∈ [tα, t1]: ηε,[t0,t1]
(t) ∈ bdi1,...,il(M).

In addition we define:

Definition 6. A point n is ep-chain recurrent if for every ε > 0 and every T > 0

there is an ep ε-pseudo-orbit of length ≥ T going from n to n. The set of ep-chain

recurrent points is called the ep-chain recurrent set.

Note that an ep-chain recurrent point satisfies either one of the following two

mutually exclusive conditions:

1. n as well as every ep ε-pseudo-orbit going from n to n belongs to M ∩
int
(
Rk

+

)
;

2. n as well as every ep ε-pseudo-orbit going from n to n belongs to M ∩
int
(
bdi1,...,il

(
Rk

+

))
, for a unique bdi1,...,il

(
Rk

+

)
.
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Furthermore, the ep-chain recurrent set is a subset of the chain recurrent set.

In accordance with the previous section we define an equivalence relation on M

and a partial ordering on the corresponding equivalence classes, now however in

terms of ep ε-pseudo-orbits.

Definition 7. For a, b ∈ M we define a <ep b (’a ep-chains to b’) if for every ε > 0

there exists an ep ε-pseudo-orbit going from a to b.

The relation <ep (to be called ep-chaining) is a preorder on M. Ep-chaining is not

necessarily a closed relation: if (ai) and (bi) are two sequences in M that converge

to a and b respectively and are such that for all i: ai <ep bi, then not necessarily

a <ep b (take e.g. a and b in different extinction boundaries of M and not in their

intersection).

We shall refer to the image of a under <ep as the forward ep-chain lineage

through a, denoted as Cep,+(a). The backward ep-chain lineage through a, denoted

as Cep,−(a), is defined as the inverse image of a under <ep; the ep-chain lineage

through a is the union Cep,−(a) ∪ Cep,+(a) and is denoted by Cep(a).

Definition 8. For elements a, b ∈ M the relation ∼ep is defined by: a ∼ep b if

a <ep b and b <ep a.

Since <ep is a preorder, ∼ep is an equivalence relation on M, to be called mutual

ep-chaining. The expression a ∼ep b (’a and b ep-chain to each other’) implies

that either both a and b belong to M ∩ int
(
Rk

+

)
, or that a and b both belong to

M ∩ int
(
bdi1,...il

(
Rk

+

))
, for one and the same bdi1,...,il

(
Rk

+

)
. The equivalence class

of a under ∼ep is denoted as [a]ep, andMep denotes the set of equivalence classes

in M under ∼ep. Note that the relation ∼ep is not closed (in the sense indicated

above).

Proposition 3. If [a]ep ⊂ M ∩ int
(
Rk

+

)
, then [a]ep = [a]; if

[a]ep ⊂ M ∩ int
(
bdi1,...,il

(
Rk

+

))
, then [a]ep = [a]i1,...,il . Consequently, in both cases

[a]ep is closed.

Proof M is a normal space, and so are the bdi1,...,il(M). Therefore, under the

constraints of the Proposition, if b ∈ [a]ep there exists a δ > 0 such that for every

ε < δ there exists at least one ε-pseudo-orbit going from a to b (and also at least one

going from b to a) that is confined to M ∩ int
(
Rk

+

)
or to M ∩ int

(
bdi1,...,il

(
Rk

+

))
.

Any of these ε-pseudo-orbits then are ep ε-pseudo-orbits.
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Definition 9. [a]ep is called an ep-basic class if a (and consequently every x ∈ [a]ep)

is ep-chain recurrent.

The ep-chain recurrent set is the union of all ep-basic classes. Three equivalent

statements similar to the characterisation of basic classes in Proposition 2 can be

made for ep-basic classes:

Proposition 4. The following three statements are equivalent:

1. [a]ep is an ep-basic class;

2. a is a fixed point or [a]ep contains more than one point;

3. for all t ≥ 0: φt([a]ep) = [a]ep.

A class that is not ep-basic, as well as the corresponding state, will be called

ep-chain ephemeral. As the term ephemeral is tied in the negative to the notion of

recurrence, we have from the implications:

a is positively recurrent⇒ a is ep-chain recurrent⇒ a is chain recurrent

that:

a is chain ephemeral⇒ a is ep-chain ephemeral⇒ a is ephemeral.

Definition 10. For elements [a]ep, [b]ep ∈ Mep the relation >ep is defined by:

[a]ep >ep [b]ep if a <ep b.

The relation >ep (to be called ep-connecting) is a partial ordering on the set of

equivalence classes of ∼ep. By means of >ep we adapt the definitions of chain

attractors, -repellers and -saddles to community-dynamical processes.

Definition 11.

(i) [a]ep is an ep-chain attractor if it is a minimal element of the partial ordering

>ep.

(ii) [a]ep is an ep-chain repeller if it is a maximal ep-basic class of the partial

ordering >ep.
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(iii) [a]ep is an ep-chain saddle if it is an ep-basic class that is neither minimal nor

maximal under >ep.

(iv) Ep-chain ephemeral classes, ep-chain repellers and ep-chain saddles, c.q. the

states therein, shall be referred to as ep-chain transient.

An ep-chain attractor is an ep-basic class, and, by Proposition 4, contains the

ω-limit sets of all its elements.

Existence of ep-chain attractors follows along the same line of reasoning that

guarantees the existence of chain attractors: since M is a normal space, under the

restriction of ep ε-pseudo-orbits any forward ep-chain lineage necessarily ends up

in either some compact set in the interior of the community state space, or in a

compact set in the interior of one of the extinction boundaries, of which there are

only finitely many. Since on such a compact set the restriction of <ep coincides

with <, we can fall back on Ruelle’s result in [84] for chain attractors.

Any ephemeral maximal class inMep under >ep belongs to bdint(M).

Proposition 5. Any ep-chain attractor is closed.

Proof If not([a]ep ⊂ M ∩ int
(
Rk

+

)
or [a]ep ⊂ M ∩ int

(
bdi1,...,il

(
Rk

+

))
for some

i1, ..., il), then [a]ep is not a minimal element of >ep. The result now follows from

Proposition 3.

In addition we adapt the definition of the basin of chainability.

Definition 12. Let a ∈ M.

(i) The basin of ep-chainability of a, denoted B<ep(a), is the collection of points

b ∈ M that ep-chain to a: B<ep(a) = {b ∈ M|b <ep a}.

(ii) The basin of ep-chainability of the equivalence class [a]ep, denoted B<ep([a]ep),

is: B<ep([a]ep) = B<ep(a).

(iii) If [a]ep is an ep-chain attractor, we refer to its basin of ep-chainability as its

basin of ep-chain attraction, and shall denote it as Attep([a]ep).

The basins of ep-chainability have properties similar to the ones for the basins

of chainability: for each a ∈ M, B<ep(a) 6= ∅; also, an element of M can belong
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to several basins of ep-chainability, and each element of M belongs to the basin

of ep-chain attraction of at least one ep-chain attractor (by the same argument as

used to show the existence of ep-chain attractors).

Proposition 6. Every chain attractor contains an ep-chain attractor.

Proof Let [a] denote a chain attractor. If [a] ⊂ M ∩ int
(
Rk

+

)
or

[a] ⊂ M ∩ int
(
bdi1,...,il

(
Rk

+

))
, then [a] = [a]ep and the validity of the statement

follows immediately. In general, choose b ∈ [a]. b belongs to the basin of ep-chain

attraction of at least one ep-chain attractor [c]ep. Since any ep ε-pseudo-orbit

through b also is an ε-pseudo-orbit through b, it follows that [c]ep ⊂ [a].

4.4 four examples

Example 1

Figure 4.2 depicts a dynamical system consisting of two populations that are

population-dynamically equivalent, e.g. since their members differ only in some

neutral marker. The dynamics is degenerate, in the sense that there exists a line

AB of neutrally stable equilibria. Each equilibrium on this line attracts all points

on the straight line through it and the origin, except for the origin itself (which is

an unstable equilibrium on each line). In particular, A and B are globally stable

equilibria for the two single populations.

For each pair E1, E2 of neutrally stable equilibria on AB we have that E1 ∼ E2, as

E1 and E2 are connected for all ε > 0 by back and forth ε-pseudo-orbits consisting

of movement at a fixed speed ε/2 along the line AB. Consequently, the line AB is

the (unique) chain attractor for the dynamics depicted in Figure 4.2. The ep-chain

attractors are given by equilibria A and B and the origin. The origin is a degenerate

ep-chain attractor, since its basin of ep-chain attraction contains only one point

(and it is at the same time an ep-chain repeller).
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Figure 4.2: A degenerate dynamical system, which has the line AB as its unique
chain attractor and A, B and the origin as its ep-chain attractors

Example 2

The dynamical system depicted in Figure 4.3 results as the simplest perturbation

of the degenerate case shown in Figure 4.2. The neutrally stable equilibria on

AB in Figure 4.2 have turned ephemeral, but for the two single species and the

one two-species equilibria. These three equilibria together with the origin are the

ep-chain attractors.

Example 3

In the May-Leonard system as described in [68], the community state moves

towards a chain attractor in the form of a heteroclinic cycle in bd
(
R3

+

)
, connecting

three single species equilibria; see Figure 4.4. These three equilibria and the origin

are the ep-chain attractors of the system.
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Figure 4.3: The simplest perturbation of the dynamical system from Example 1.
The four ep-chain attractors are: the two-species equilibrium, the two
non-trivial single species equilibria, and the origin

Figure 4.4: The May-Leonard dynamical system, with a heteroclinic cycle as its
chain attractor and three non-trivial single species equilibria together
with the origin as its ep-chain attractors
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Example 4

This example illustrates that the ep-chain recurrent set does not necessarily have to

be a closed set. In the dynamical system represented in Figure 4.5, a community in

the interior of the community state space is attracted to a plane in whose interior

the dynamics is determined by neutrally stable cycles. The ep-chain recurrent set

consists of the interior of this plane together with three single species equilibria

and the origin. Eventually any arbitrary community starting outside the origin

will be confined to one of the three non-trivial ep-chain attractors of the system

(the three non-trivial single species equilibria). The origin again is a degenerate

ep-chain attractor.

Figure 4.5: An example of a dynamical system with an open ep-chain recurrent
set

4.5 discussion

We can expect that eventually the populations in a closed

community-dynamical system will end up close to an ep-chain attractor in the

interior of an Rl
+ (for an appropriate l ≤ k, with k the number of populations



82 on the concept of attractor

initially present in the community). The actual attractor that will be reached may

depend on the perturbations that the community is exposed to.

A word of warning may be in order though: Along its way towards an (ep-) chain

attractor, a community may pass through a cascade of (ep-)chain saddles to which

it initially is attracted but from which it subsequently moves away. These phases

each have their own specific timescale, measured by a relaxation and excitation

time. Since these times can be considerably larger than the eventual relaxation

time to the (ep-)chain attractor, it may in empirical practice sometimes be hard to

decide whether or not a community is already approaching one of its (ep-)chain

attractors.

A bifurcation theory for a class of community-dynamical systems (φt
µ)t≥0,

depending on a parameter (or a vector of parameters) µ, in essence must study the

relation between µ and the induced ordering >ep onMep. The bifurcation points

are those values of µ for which in any neighbourhood there are parameter values

for which
〈
Mep,>ep

〉
(i.e., the setMep provided with the partial ordering relation

>ep) belongs to a different order isomorphism class.

In the context of phenotypic trait evolution as studied in adaptive dynamics

(e.g. [17], [39], [38], [73]), it is assumed that a mutant population emerges from

a resident community on an attractor. This assumption is based on the notion

that the time needed for a community to reach its attractor is shorter than the

timespan between the occurrences of successful mutant populations (successful in

the sense that a mutant population invades the resident community and increases

its density, causing a change from residental community dynamics into a dynamics

of the resident populations with the mutant population; as regards the justification

of the assumption of timescale separation the proof of the pudding is in the

eating.). However, it never was made very clear what was meant with an attractor.

Basically the theory was developed only for systems having classical attractors

with pretty strong properties, such as equilibria or limit cycles. The concept of

ep-chain attractors provides one possible step towards a further extension of the

reach of adaptive dynamics theory. In the special case of Lotka-Volterra community

dynamics, it is more or less clear how one can build a theory starting from this

attractor concept only (see [53]). In order to arrive at a well-structured theory of

adaptive dynamics for more general types of community dynamics, at least some
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restrictions will be necessary on the properties of the attractors that can occur. In

any case, ep-chain attractors appear to be the minimal ingredients from which to

start.





5
A D A P T I V E D Y N A M I C S F O R L O T K A - V O LT E R R A

C O M M U N I T Y D Y N AMICS

This chapter has not yet been published.

abstract

Adaptive dynamics considers phenotypic trait evolution as a process which

proceeds in many successive small steps, each step being initiated by the

occurrence of mutants in a community of resident populations. In this paper we

analyse scalar phenotypic trait evolution in case the underlying community

dynamics is given by a Lotka-Volterra model. The Lotka-Volterra model serves as

a toy model to introduce several ideas of adaptive dynamics. These ideas go

beyond the limitations of the Lotka-Volterra model under consideration; it is

however only by simplifying that we can start to grasp the complex process of

phenotypic trait evolution. The usual coefficients in the community-dynamical

differential equations of the Lotka-Volterra model are obtained from two functions

that have the phenotypic traits of the populations as their arguments. From the

community-dynamical differential equations the invasion fitness function is

derived. This function plays an essential role in adaptive dynamics. It expresses

the initial fate of mutants after their emergence from the resident community in

terms of the phenotypic trait values of both residents and mutants. The three

processes that cause the change of the phenotypic composition of communities on

the evolutionary timescale are trait substitution, evolutionary branching and

evolutionary pruning, and these processes are analysed in terms of invasion

fitness functions. Furthermore, we derive that for a large class of Lotka-Volterra

models, permanence is maintained under sufficiently small mutational steps. We

can represent trait evolution in a so-called Trait Evolution Plot, shortly denoted by

85
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TEP. By making use of TEPs adaptive dynamics gets a geometric component,

which can guide the intuition in finding patterns in the evolutionary process. Parts

of our results also hold for adaptive dynamics of phenotypic trait vectors instead

of scalar traits.

5.1 introduction

Adaptive dynamics is a theory under construction which aims to describe in a

mathematical way the biological phenomenon of phenotypic trait (or strategy)

evolution. The theory relies heavily on the theory of dynamical systems as well

as on the theory of stochastic processes (see e.g. the introductions [39], [38], [73]),

which explains the manifold use of terminology from these fields of mathematics

as well as of the relevant biological concepts. In this paper we shall not dwell on

every facet of adaptive dynamics, but concentrate on the deterministic part of the

theory.

Briefly one could say that adaptive dynamics considers phenotypic trait evolution

as a process which proceeds in many successive small steps, each step being

initiated by the occurrence of mutants in a community of resident populations.

Each population consists of individuals that carry the same phenotypic trait

value (or vector of trait values; in this paper we consider scalar traits, although

several algebraic results also hold for trait vectors, as we shall indicate in the

Discussion). We assume that there appears only one single mutant population at

a time, emanated from one of the resident populations, an assumption justified

by the general assumption of rareness of relevant mutations. The phenotypic

trait values for resident and mutant populations are taken to be elements of a

so-called trait space T, which is a closed interval of the real numbers, and the

mutants’ phenotype is close to that of its progenitor population. The community-

dynamical timescale is supposed to be much shorter than the evolutionary one.

Therefore the resident community can be assumed to reside on a community-

dynamical attractor, or c-attractor for short (the c here stems from community),

in the interior of its community state space. This c-attractor is presumed to be

“good”, a characterisation which i.a. implies that it is a closed and bounded subset

for which any potential mutant population has a uniquely associated transversal
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Lyapunov exponent. Details of the notion of “good” c-attractor will be given

in Section 5.2.4. A “good” c-attractor shall be represented by the traits of the

resident populations that are present on it, and therefore can be taken to be

an element of Tk for an appropriate value of k. The adaptive-dynamical state

space consists of the collection of possible c-attractors in the Tk, k ≥ 1. A mutant

population that emerges (evidently in very low density) from a resident c-attractor

either will be successful or not in increasing its density. Unsuccessful mutants

go extinct after a relatively short time (on the community-dynamical timescale)

and leave the resident community on its c-attractor. Successful mutants invade

the resident c-attractor. This initial fate of the mutant population depends on the

mutants’ phenotype fitness on the attractor, which is captured by the invasion

fitness function. Here fitness on a c-attractor is defined as the long-term averaged

initial per capita growth rate (or transversal Lyapunov exponent, see [72]) of

the mutant population in the environment set by that c-attractor, and as such is

derived from the community-dynamical differential equations for the community

of residents and mutants. (For general community-dynamical models there are

some problems in selecting or even defining this Lyapunov exponent. However, all

these problems conveniently disappear in a Lotka-Volterra community-dynamical

context.) Mutants with traits that have a positive fitness on a c-attractor have

a positive probability to invade that c-attractor, but will not always do so: due

to the initially low density of the mutant population, invasion is a process on

which demographic stochasticity has an essential influence. In an actual invasion

process the mutant population may die out, despite its fitness being positive. A

non-positive fitness translates into a zero probability of invasion by the mutants.

After invasion, the residents and mutants eventually home in on a (possibly

unique) c-attractor in the community state space spanned by their population

densities, or on a c-attractor in the community state space spanned by a subset

of these densities. (Note that this addition with respect to a subset is necessary,

since a c-attractor is assumed to lie in the interior of a community state space.)

On this c-attractor the phenotypic composition of the community in general will

be different from the one which became invaded. In case the mutant population

replaces its progenitor population, we say that a trait substitution takes place (on

the evolutionary timescale). A trait substitution leaves the number of populations
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that constitute the community unaltered, and corresponds to a small change in

the phenotypic trait composition of the community. The direction and size of this

change are determined by the specific mutant population which by chance occurs

and invades the resident c-attractor. The probability distribution for the mutant

trait values that actually do invade is determined by the possible supply of mutants

and by the probability that a given mutant population actually invades. This latter

probability (which we assume to be a continuous function with respect to the

mutants’ trait value) is up to first order determined by the so-called local fitness

gradient at the resident attractor as determined by the trait value of the population

from which the mutants emerged. It thus follows that on a given c-attractor there

exist as many local fitness gradients as there are resident populations present on

that c-attractor.

If on the attractor approached by the residents and mutants all resident

phenotypes together with the mutant trait are present, this c-attractor can be a

steppingstone to so-called evolutionary branching. In the terminology of adaptive

dynamics, evolutionary branching is an increase in the number of trait values which

is enduring locally on the evolutionary timescale, i.e., it must persist at least long

enough to be noticeable on that scale, even though in the long run an increase may

disappear again due to so-called evolutionary pruning (see below). We shall derive

that for a c-attractor to be a steppingstone to evolutionary branching, in general

this c-attractor must be close to a c-attractor on which at least one of the local

fitness gradients is equal to 0. In case invasion of the mutants causes the extinction

of more than one of the populations in the community, there is a decrease in the

number of phenotypes. A locally enduring decrease on the evolutionary timescale

in the number of phenotypes is called evolutionary pruning. The terminology

relates to the tree-like shapes that are obtained when the traits present on the

c-attractors that are subsequently visited by the communities are plotted against

evolutionary time. From the three possible scenarios after invasion of a mutant

population, trait substitution will turn out to be the rule (pointwise in the

adaptive-dynamical state space; evolutionary trajectories as a whole however may

well branch or be pruned). By making use of these concepts, adaptive dynamics

tries to give a gross dynamical explanation for changes in the phenotypic
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composition of communities, in contrast to population dynamics where one is

interested in the evolution in time of the densities of the constituent populations.

c-Attractors, fitness and the effect of an invasion are determined by the

differential equations that describe the development in time of the densities of the

interacting populations. These differential equations in turn depend on the

phenotypic traits of the members of the community (and possibly on external

environmental parameters). In this paper we study adaptive dynamics in case the

community dynamics is given by a Lotka-Volterra model. For such models the

invasion fitness functions and local fitness gradients can be calculated explicitly.

The usual coefficients in the model, i.e., the per capita initial growth rates and the

interaction coefficients, are derived from two functions that have the phenotypes

of the involved populations as their variables. Necessary conditions for the

possible outcomes for mutants and residents after invasion of the mutant

population will be formulated, and it will turn out that these conditions can be

stated solely in terms of invasion fitness functions. We shall determine when these

conditions are being satisfied. We also show that for a large class of Lotka-Volterra

models permanence is maintained under sufficiently small mutational steps. By

means of a so-called Trait Evolution Plot (TEP) we can represent phenotypic trait

evolution in a graphical way. Figure 2 shows an example of a TEP. By making use

of TEPs adaptive dynamics gets a geometric component, which can guide the

intuition in finding patterns in the evolutionary process. Furthermore the

geometric aspect is appealing from a purely mathematical point of view.

Beside the presentation of the results of phenotypic trait evolution based on

Lotka-Volterra community dynamics our aim is to whet the readers’ appetite for

adaptive dynamics as a theory that helps to understand the broad outlines of

evolution. Lojtka-Volterra-Based adaptive dynamics as discussed below therefore

must be considered as a framework which serves to introduce several ideas of

phenotype trait evolution that go beyond the limitations of the model under

consideration (see also [73]). It is only by simplifying that we can come to grasp

such a complex process as phenotype trait evolution, and can start to develop

ingredients for a well-based theoretical framework. We present here pointers to

some of those ingredients.
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5.2 an introduction to the mathematical framework

In this section we provide the basic tools and assumptions that are used in the

mathematical description of scalar phenotypic trait evolution. The underlying

community dynamics are taken to be those of Lotka-Volterra models. We shall use

several properties of Lotka-Volterra models as they are derived in the standard

reference [49].

5.2.1 Preliminaries on trait spaces and Lotka-Volterra community dynamics

We start with specifying the underlying Lotka-Volterra community dynamics and

the role of phenotypic traits herein.

Assumption 1. Let a closed interval T ⊂ R be given, together with two bounded

functions r : T→ R and a : T2 → R. The set T will be called the trait space, and

its elements are called trait values. The functions r and a are assumed to be as

many times continuously differentiable as is required for our aims. For each k ∈N,

k ≥ 1, and each (τ1, . . . , τk) ∈ Tk we define a Lotka-Volterra community-dynamical

system for k populations, indicated by LVk(τ1, . . . , τk) and specified as follows:

1. In LVk(τ1, . . . , τk), all individuals of population i ∈
{1, . . . , k} are being characterised by trait value τi ∈ T. The trait as

represented by population i may also be called the i-trait value. The density

of population i in LVk(τ1, . . . , τk) will be denoted by xi
1. The community

state space spanned by the densities of the k populations is the nonnegative

orthant

Rk
+ =

{
x = (x1, . . . , xk) ∈ Rk| for i = 1, . . . , k : xi ≥ 0

}
.

For LVk(τ1, . . . , τk), the densities develop in time according to the following

set of differential equations on Rk
+:

d
dt

xi = xi

(
r(τi) +

k

∑
j=1

a(τi, τj)xj

)
, i = 1, . . . , k. (5.1)

1 In this paper we adopt the notation for population density from [49].
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The flow generated by equations (5.1) will be denoted by (xt), and (xt)t≥0

denotes the induced semiflow. We shall refer to the function r as the initial

per capita growth rate function, and to the function a as the interaction

function for LVk(τ1, . . . , τk). We assume that zeros of r (if they exist) are

isolated.

For V ⊂ Tk, LVk(V) denotes the family of Lotka-Volterra

community-dynamical systems {LVk(τ1, . . . , τk)|(τ1, . . . , τk) ∈ V}.
(Note that we do not require that two different populations i and j are

characterised by different values τi and τj; this allows us to split a

population into two, a property which we shall introduce in

subsection 5.2.2.)

2. The matrix A(τ1, . . . , τk) = (a(τi, τj))1≤i,j≤k is called the interaction matrix

for the system LVk(τ1, . . . , τk).

With τ denoting the vector (τ1, . . . , τk), r(τ ) the vector (r(τ1), . . . , r(τk)), and

x the vector of densities (x1, . . . , xk), the set of differential equations (5.1)

may also be denoted as

d
dt
x = x ◦ (r(τ )+ A(τ1, . . . , τk)x), (5.2)

with ◦ denoting the Hadamard product.

The determinant of A(τ1, . . . , τk) shall be denoted by |A(τ1, . . . , τk)|.

3. The function a is assumed to be such that for each function r and each choice

of trait values τ1, . . . , τk, k ≥ 1, the solutions of the Lotka-Volterra equations

(5.1) are uniformly bounded for t → +∞. (The matrix A(τ1, . . . , τk) then is

called a B-matrix, see [49], and the uniformity holds with respect to initial

conditions in Rk
+). Thus, given a and r, for each choice (τ1, . . . , τk) ∈ Tk there

exists a (finite) b(r, a, τ1, . . . , τk) such that for all x ∈ Rk
+ and all i ∈ {1, . . . , k}:

lim sup
t→+∞

xi(t) ≤ b(r, a, τ1, . . . , τk).

4. The community state spaces Rk
+ are provided with the sum norm, denoted

by ||.||, and the metric, denoted by d, and topology induced by it. (Thus,

for x = (x1, . . . , xk) ∈ Rk
+, ||x|| =

k

∑
i=1
|xi|, with in general |x| denoting the

absolute value of the real number x.) The sets Tk as well as any of their
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subsets are assumed to be provided with the sup norm, denoted by ||.||sup,

and the metric and topology derived from it.

The elements of the trait space T are numerical values of the manifestation of a

(not further specified) metric (or scalar) phenotype. The τi, i = 1, . . . , k, in

LVk(τ1, . . . , τk) are parameters for the community dynamics described by (5.1).

Much of our concern deals with the effect that a small change in the phenotypic

composition of a community, from (τ1, . . . , τk) into (τ1, . . . , τk, ν), has on its

asymptotic dynamics. Here the τi, i = 1, . . . , k, denote the trait values of k resident

populations, and ν denotes the trait value of a mutant population that occurs in an

infinitesimally small density. The value ν is supposed to lie very close to τi, for an

i ∈ {1, . . . , k}. By identifying (τ1, . . . , τk) ∈ Tk with (τ1, . . . , τk, τi) ∈ Tk+1, the

change in phenotypic trait composition from (τ1, . . . , τk, τi) into (τ1, . . . , τk, ν) then

indeed is small, in terms of the sup norm on Tk+1. (The identification of

(τ1, . . . , τk) ∈ Tk with (τ1, . . . , τk, τi) ∈ Tk+1 is common in adaptive dynamics, and

is based on a notion of equivalence that will be introduced in the next subsection.)

Note that we do not claim that the phenotypic change as caused by the occurrence

of a mutant population is maintained throughout the asymptotic phase of the

dynamics of the resident and mutant populations. The introduction of the mutants

is the impetus for a dynamics whose outcome, in terms of phenotypic

composition, may be different from the initial one. In fact, as we shall conclude,

generically the values τ1, . . . , τk, ν that originally were present will not all be

present in the end (on the community-dynamical timescale).

5.2.2 Trait-dependent ODE community-dynamical systems

The Lotka-Volterra systems LVk(τ1, . . . , τk) introduced above are special examples

of trait-dependent ODE community-dynamical systems. These systems inherit a

number of properties from the real processes they represent, which we discuss

here in brief for later use.
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In general, a trait-dependent ODE community-dynamical system for k

populations is a dissipative system described by a collection of k differential

equations
d
dt

xi = xi fk(x1, ..., xk; τ1, . . . , τk; τi), i = 1, . . . , k, (5.3)

with fk : Rk
+ × Tk × T → R at least continuous. The first 2k arguments of fk

represent again the k population densities respectively k trait values of the

individuals of these populations; the last argument indicates the trait value of an

arbitrary population that experiences the environment set by the densities of the

populations and their trait values specified by the first 2k arguments of fk (and

possibly by external environmental parameters that are left unspecified). We shall

for the moment denote such a trait-dependent community-dynamical system

simply by (τ1, . . . , τk). For the Lotka-Volterra system LVk(τ1, . . . , τk) the functions

fk are defined by

fk(x1, . . . , xk; τ1, . . . , τk; τ) = r(τ) +
k

∑
i=1

a(τ, τi)xi.

Based on ecological considerations, the functions fk should in general have

three properties that relate to the invariance of the community dynamics under a

permutation of populations, the (absence of) effect on the community dynamics

under the splitting of a population into two smaller subpopulations, and the

invariance of the extinction subspaces xi = 0, i = 1, . . . , k of the community state

space. To formalise these properties we first introduce the following Notation.

Notation 1. Let k ≥ 1 in N be given.

1. Σk denotes the set of permutations on k elements, and σ0 denotes the identity

permutation in any Σk.

2. Vk,σ0 denotes the subset {(τ1, . . . , τk) ∈ Tk|τ1 < · · · < τk} of Tk. For σ ∈ Σk,

Vk,σ denotes the set {(τσ(1), . . . , τσ(k)) ∈ Tk|(τ1, . . . , τk) ∈ Vk,σ0}.

3. Let (τ1, . . . , τk) ∈ Tk, and for l ∈ {1, . . . , k} let {i1, . . . , il} ⊂ {1, . . . , k} with

i1 < i2 < · · · < il. Then (τ1, . . . , τk \ τi1 , . . . , τil) denotes the element

(τ1, . . . , τi1−1, τi1+1, . . . , τil−1, τil+1, . . . , τk) ∈ Tk−l. In case the numbers

i1, . . . , il are not in increasing order, (τ1, . . . , τk \ τi1 , . . . , τil) denotes the
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element (τ1, . . . , τk \ τσ(i1), . . . , τσ(il)), with σ ∈ Σl the permutation that puts

the sequence i1, . . . , il in increasing order. In addition we introduce an

element λ := (τ1, . . . , τk \ τ1, . . . , τk), and set T0 to be equal to {λ}.

4. Let i, j ∈ {1, . . . , k} with i < j. With 4k
i,j we denote the diagonal hyperplane

τi = τj of Tk. The collection of all diagonal hyperplanes shall be denoted by

4k =
⋃

1≤i<j≤k

4k
i,j.

We now discuss the three ecological properties for trait-dependent community-

dynamical systems (5.3) in more detail.

1. For all σ ∈ Σk and all τ ∈ T:

fk(x1, . . . , xk; τ1, . . . , τk; τ) = fk(xσ(1), . . . , xσ(k); τσ(1), . . . , τσ(k); τ).

This property states that the community dynamics of a community of k

populations 1, . . . , k is independent of the numbering of these populations.

We shall call this property exchangeability under permutation, and we say

that the systems (τ1, . . . , τk) and (τσ(1), . . . , τσ(k)) are exchangeable under

permutation.

2. For all (τ1, . . . , τk) ∈ 4k
i,j and τ ∈ T:

fk(x1, . . . , xi, . . . , xj, . . . , xk; τ1, . . . , τi, . . . , τj, . . . , τk; τ) =

fk−1(x1, . . . , , xi + xj, . . . , xj−1, xj+1, . . . , xk; τ1, . . . , τi, . . . , τj−1, τj+1, . . . , τk; τ).

That is, if populations i and j are characterised by the same phenotypic

trait value, τi = τj, the dynamics of the community is identical to that of

a community of k− 1 populations obtained by merging populations i and

j. As a consequence, in the k-community the relative densities xi(t)
xi(t)+xj(t)

and
xj(t)

xi(t)+xj(t)
are constant in time, their values being determined by their

initial conditions. We shall refer to this property as merging, and we say that

(τ1, . . . τk) ∈ 4k
i,j merges to (τ1, . . . , τk \ τj). Conversely this property allows,

in a community of k populations, the splitting of a population i into two

subpopulations characterised by the same phenotypic trait, without affecting

the dynamics of the other populations. The dynamics of the sum of the
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densities of the two subpopulations then is equal to that of population i in

the original community, and the dynamics of the relative densities of the

two subpopulations with regard to the density of the original population i is

constant. This reversal of the merging property we shall call splitting, and we

say that (τ1, . . . , τi, . . . , τk) splits into (τ1, . . . , τi, . . . , τk, τi) ∈ 4k+1
i,k+1.

3. For all τ ∈ T and all i ∈ 1, . . . , k:

fk(x1, . . . , xi−1, 0, xi+1, . . . , xk; τ1, . . . , τi−1, τi, τi+1, . . . , τk; τ) =

fk−1(x1, . . . , xi−1, xi+1, . . . , xk; τ1, . . . , τi−1, τi+1, . . . , τk; τ).

This property states that on xi = 0 the community dynamics reduces to that

obtained by removing population i from the community. In other words,

a phenotypic trait value τi is not allowed to affect the community if all its

carriers are absent from that community. This property we shall call reduction

by absence, and (τ1, . . . , τk) is said to reduce to (τ1, . . . , τk \ τi) by absence of

population i.

In correspondence to the properties of community-dynamical differential

equations mentioned above we introduce the following notion of phenotypic

equivalence of trait combinations (and their corresponding trait-dependent

community-dynamical systems).

Definition 1.

1. Two elements (τ1, . . . , τk) ∈ Tk and (τ′1, . . . , τ′k′) ∈ Tk′ are phenotypically

equivalent if there exists a composition of a permutation of indices and/or

merging or splitting that maps either one of the trait combination onto the

other one.

2. Two sets V ⊂ Tk and V′ ⊂ Tk′ are said to be phenotypically equivalent if

each element of V is phenotypically equivalent to an element of V′ and vice

versa.

Phenotypic equivalence is an equivalence relation between trait combinations in⋃
k≥1

Tk. It allows us to introduce a notion of nearness of two trait combinations:
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(τ1, . . . , τk) ∈ Tk and (τ′1, . . . , τ′k′) ∈ Tk′ are near to each other if there is a

composition of a permutation of indices and/or mergings or splittings under

which the image of one of the trait combinations is close to the other trait

combination. This notion of nearness will be exploited further in relation to trait

evolution later on in the text.

Remark 1. Phenotypic equivalence of two community-dynamical systems does not

imply their topological equivalence. To see this, consider a community-dynamical

system (τ) which has a non-trivial point-equilibrium. (τ) clearly is phenotypically

equivalent with (τ, τ). However, since their community state spaces have different

dimensions, there cannot exist a homeomorphism between the collections of orbits

of the two systems.

5.2.3 Properties of the maps Tk → LVk(T
k)

After this discourse into general trait-dependent ODE community-dynamical

systems we continue the discussion of Lotka-Volterra community-dynamical

systems. We mention several properties that will play a role in the context of

adaptive dynamics.

In Tk, the sets Vk,σ, σ ∈ Σk, are clearly exchangeable under permutation, and are

separated from each other by the diagonal hyperplanes 4k
i,j, 1 ≤ i < j ≤ k.

Furthermore, they are pairwise disjoint, and
⋃

σ∈Σk

Vk,σ = Tk \ 4k. Consequently,

the collection of Lotka-Volterra community dynamics covered by LVk(T
k) is fully

described by the subclass of Lotka-Volterra models
k⋃

i=1

LVk
(
Vi,σ0

)
.

The determinant of the interaction matrix at (τ1, . . . , τk), |A(τ1, . . . , τk)|, is

invariant under a permutation of the coordinates, i.e., invariant under

composition of reflections of (τ1, . . . , τk) over any of the diagonal hyperplanes 4k
i,j.

Its value on each of the diagonal hyperplanes is equal to 0. We introduce the

following notation pertaining to determinants.

Notation 2. For V ⊂ Tk, we write D(V) for the set of elements in V for which

the interaction determinant equals 0:
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D(V) = {(τ1, . . . , τk) ∈ V||A(τ1, . . . , τk)| = 0}; its complement in V shall be

denoted by R(V): R(V) = {(τ1, . . . , τk) ∈ V||A(τ1, . . . , τk)| 6= 0}.

An element of D(V), as well as the community dynamics it represents, will be

called degenerate; an element of R(V) as well as its corresponding dynamics will be

called regular. (Another possible name for an element of D(V) could be singular;

this term, however, will be used to characterise adaptive-dynamical properties of

trait combinations.)

We introduce the following notation for extinction boundaries for LVk(τ1, . . . , τk).

Notation 3. For i1, . . . , il ∈ {1, . . . , k}, bdi1,...,il
(
Rk

+

)
denotes the set{

(x1, . . . , xk) ∈ Rk
+|xi1 = · · · = xil = 0

}
. It is a subset of

bd
(
Rk

+

)
=
{
(x1, . . . , xk) ∈ Rk

+|∃i ∈ {1, . . . , k} : xi = 0
}

, the boundary set of Rk
+.

By the property of reduction by absence introduced above, on bdi1,...,il
(
Rk

+

)
the

Lotka-Volterra model LVk(τ1, . . . , τk) reduces to LVk−l(τ1, . . . , τk \ τi1 , . . . , τil).

If (τ1, . . . , τk) ∈ R(Tk) is such that LVk(τ1, . . . , τk) allows for a rest point in the

interior of the community state space, then this rest point is unique.

Notation 4.

1. For a subset V ⊂ Tk or V ⊂ Rk
+, int(V) denotes the interior of V.

Let (τ1, . . . , τk) ∈ Tk.

2. A general rest point of LVk(τ1, . . . , τk) in the community state space Rk
+ will

be denoted by x∗ =
(
x∗1 , . . . , x∗k

)
(or, if convenient, by

(
x∗1 , . . . , x∗k

)
(τ1, . . . , τk)

or
(
x∗1(τ1, . . . , τk), . . . , x∗k (τ1, . . . , τk)

)
).

3. A rest point of LVk(τ1, . . . , τk) in the interior of Rk
+ that is unique will be

denoted by x̂ (= (x̂1, . . . , x̂k), and with the same notational conventions as in

2). Such a rest point necessarily satisfies the set of equations

r(τi) +
k

∑
j=1

a(τi, τj)xj = 0, i = 1, . . . , k. (5.4)

For V ⊂ Tk, we denote with Rint(V) the subset of trait combinations

(τ1, . . . , τk) ∈ R(V) for which the unique x̂ ∈ int(Rk
+) exists.
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If in a LVk(τ1, . . . , τk) two trait values τi and τj are such that both a(τi, τj) < 0

and a(τj, τi) < 0, then the populations i and j are said to be in a competitive

relationship. Interaction between two populations that are in a competitive

relationship causes a negative contribution to their per capita growth rates. If all

interaction coefficients a(τi, τj) are strictly negative, then LVk(τ1, . . . , τk) is called a

fully competitive Lotka-Volterra model. In a fully competitive Lotka-Volterra

model the per capita growth rates of all populations decrease due to the

interactions within and between the populations. Clearly a fully competitive

Lotka-Volterra model has uniformly bounded orbits. Opposite to a competitive

relationship is a cooperative (or mutualistic) relationship: two populations i and j

in LVk(τ1, . . . , τk) are in a cooperative relationship if the respective traits τi and τj

satisfy a(τi, τj) > 0 and a(τj, τi) > 0. Interactions between two populations that are

in a cooperative relationship cause positive contributions to the per capita growth

rates of these populations. (For an extensive study on competitive and cooperative

systems see [46], [47], [48].) In the asymmetric case in which two traits τi and τj

satisfy a(τi, τj) > 0 and a(τj, τi) < 0 exploitation takes place, in which population i

is the exploiter and exploits population j (and population j is being exploited by

population i). Exploitation occurs in host-parasite (or prey-predator) relationships.

Finally, if two traits τi and τj satisfy a(τi, τj) = 0, then population j is said to be

neutral with respect to population i. An extensive study on competitive and

cooperative systems is

Theorem 15.2.1 in [49] on uniform boundedness implies the following

Lemma 1.

1. The orbits of equation (5.1) for a single population with trait value τ and

density x (= xτ) are uniformly bounded for t → +∞ if and only if the

interaction function a satisfies: a(τ, τ) < 0.

2. The orbits of the Lotka-Volterra equations (5.1) for two populations with trait

values τ1 and τ2 are uniformly bounded for t→ +∞ if and only if a(τ1, τ1) <

0 and a(τ2, τ2) < 0 and, in case of a cooperative interaction between the two

populations, |A(τ1, τ2)| = a(τ1τ1)a(τ2, τ2)− a(τ1, τ2)a(τ2, τ1) > 0.

The previous Lemma implies that a(τi, τi) < 0, i = 1, . . . , k, is a necessary condition

on the contypic interaction coefficients for the solutions of the equations (5.1) to be
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uniformly bounded (for any function r). We therefore shall assume this condition

to hold from now on:

Assumption 2. For all τ ∈ T: a(τ, τ) < 0.

Continuity of the function a implies:

Corollary 1. Let k ≥ 2, and i, j ∈ {1, . . . , k}with i 6= j. For each τ ∈ T there exists a

non-empty neighbourhood Uτ of τ in T such that for any choice of (τ1, . . . , τk) ∈ Tk

with τi, τj ∈ Uτ, the corresponding populations i and j in LVk(τ1, . . . , τk) are in a

competitive relationship.

Remark 2. By means of the density transformation x 7→ a(τ, τ)x we may rewrite

the equations (5.1) to obtain a Lotka-Volterra model for the k populations with the

contypic interaction coefficients a(τi, τi) for all i ∈ {1, . . . , k} equal to −1. We shall

however not explicitly assume this here.

For later use we also recall the definition of permanence (see also [49], chapter

13 Section 1):

Definition 2. LVk(τ1, . . . , τk) is called permanent if there exist δ > 0 and D > 0

such that whenever xi > 0 for all i = 1, . . . , k, then

1. δ < lim inf
t→+∞

xi(t) for all i (with δ independent of the xi(0)),

and in addition

2. lim sup
t→+∞

xi(t) ≤ D for all i.

If a community-dynamical system is permanent, sufficiently small perturbations

in any of the densities cannot lead to extinction of one or more of the populations.

After this discussion of Lotka-Volterra community-dynamical systems we turn

our attention to attractors, and make the first steps towards adaptive dynamics.

5.2.4 c-Attractors and invasion fitness: from community dynamics towards adaptive
dynamics

In this paper we are i.a. interested in the fate of resident and mutant populations

after emergence of the mutants from the community of residents. Due to the
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initially very low density of a mutant population, invasion of the environment

it encounters, by increase of its density, is subject to demographic stochasticity.

Whether or not a mutant population has a positive probability to invade an

environment depends, amongst others, on the phenotypic trait of the mutants, and

is captured by the invasion fitness of the mutants’ phenotypic trait value in that

environment.

Definition 3. The invasion fitness of the phenotypic trait value of a mutant

population with respect to an environment is the long-term averaged initial per

capita growth rate (or transversal Lyapunov exponent) of the mutant population

in that environment.

The general idea of this definition of invasion fitness is discussed in [73] and

[72]. Throughout the paper we shall vary our terminology when talking about the

invasion fitness of a phenotypic trait value: also the invasion fitness of a phenotypic

trait, the invasion fitness of a phenotype, the invasion fitness of a trait, or simply

the invasion fitness or fitness, are being used, and all these come down to the same

notion.

A mutant population in an environment whose phenotype has a positive

invasion fitness, has a positive probability to invade that environment, and is

called successful. A mutant population in an environment for which the phenotype

has a non-positive invasion fitness has a zero probability to invade that

environment, and is called unsuccessful; it disappears after a relatively short time

(on the community-dynamical timescale) and leaves the phenotypic composition

of the environment unaltered. (For details on the relation between positive

invasion fitness and the non-zero probability of invasion see e.g. [11] and [61].)

Concerning the occurrence of mutants we make the following assumption.

Assumption 3. There is a separation between the timescale on which a

community-dynamical attractor is approached and that on which successful

mutant populations occur.

Assumption 3 forms the basis for the working hypothesis that only a single

successful mutant population may emerge, from a community that resides on an

attractor. In the case of successful mutants we shall concentrate on those invasion

attempts where the mutants make it to such densities that the deterministic
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description in terms of ODE’s is applicable. We shall soon provide more details

about the notion of attractor that we adopt in the paper.

In general, for the invasion fitness of a mutant population’s phenotype to be well-

defined it is required that the environment that the mutants encounter is ergodic.

In case a mutant population interacts with a resident community according to a

Lotka-Volterra community dynamics, the constraint on ergodicity can however be

relaxed (see Corollary 4.1). The invasion fitness of the phenotype of the mutant

population in the environment set by the resident attractor then can be calculated

whenever the densities of the resident populations evolve in time along an orbit

that is confined to a closed and bounded set in the interior of the residents’

community state space. So-called extinction-preserving chain attractors qualify

as such sets. The notion of chain attractor is an appropriate attractor notion for

dynamical systems subject to arbitrarily small perturbations. In such a system,

while converging to an ω-limit set, arbitrarily small perturbations may transfer the

dynamics from its stable manifold to its unstable manifold (if the latter exists). A

chain attractor is the resulting configuration the dynamics eventually will reside

on. The notion of extinction preserving chain attractor (ep-chain attractor) is that of

chain attractor, but adapted to dissipative immigration-free community processes,

in which populations can go extinct at low densities and then cannot be rescued

by noise (see [52]). An ep-chain attractor therefore necessarily lies either in the

interior of the community state space, or in the interior of one of its extinction

boundaries. In [52] it is derived that in general an ep-chain attractor is a closed and

bounded set. (Note that the dynamics restricted to an ep-chain attractor necessarily

is permanent.) By definition, for any k ≥ 1 the point (0, . . . , 0) ∈ Rk
+ is an ep-chain

attractor. We shall show that in the context of Lotka-Volterra community dynamics,

the invasion fitness of a mutant phenotype is independent of the specific ep-chain

attractor in the interior of a community state space on which the mutants emerge,

and that we therefore are allowed to speak simply of the invasion fitness of that

phenotype with respect to the resident trait values. (We shall however not include

noise in the dynamics, nor in the mathematical concepts derived from it: we assume

a deterministic Lotka-Volterra community dynamics, but adopt the attractor notion
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for such dynamics under arbitrarily small perturbations.) We continue with the

following

Assumption 4.

1. We assume that when a mutant population emerges, the resident community

moves along an orbit in an ep-chain attractor, which is a closed and bounded

subset in the interior of the resident community dynamics state space. We

shall denote such an attractor as c-attractor, where the c stems from

community.

2. Throughout the paper we assume that on a c-attractor only one mutant

population emerges at a time, in a very small positive density, from one of

the populations present on that attractor. M(τ) denotes the set of possible

phenotypic trait values of mutant populations that can emerge from the

resident population with trait value τ, and is called the mutational range of τ.

We suppose that there exist two positive numbers ε−(τ) and ε+(τ) such that

M(τ) can be written as M(τ) = {ν ∈ T|τ − ε−(τ) < ν < τ + ε+(τ)}. (Note

that this allows for the degenerate case in which the mutants’ phenotypic

trait value is equal to that of its progenitors. Mutants and progenitors then

are indistinguishable, and the system of only residents is phenotypically

equivalent to that of residents and mutants.) Two sets M(τi) and M(τj) are

not necessarily disjoint. With xν we denote the mutant population’s density

for mutants with phenotypic trait value ν.

3. After the emergence of a mutant population with trait value ν ∈ T from a

c-attractor for LVk(τ1, . . . , τk), the densities of residents and mutants develop

in time according to the community-differential equations (5.1) for

LVk+1(τ1, ..., τk, ν).

We now determine the invasion fitness of a mutants’ phenotypic trait value in

the context of Lotka-Volterra community dynamics, and discuss its implications.

We start with the following general property of mappings t 7→ x(t), t ≥ 0 for

which the image is restricted to a closed and bounded subset in the interior of Rk
+,
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k ≥ 1. (Note that we do not require the mapping t 7→ x(t) to be continuous; in

particular, it is not required here that x(t), t ≥ 0 is a solution of (5.1)).

Lemma 2. Let R+ → U ⊂ int(Rk
+), t 7→ x(t) = (x1(t), . . . , xk(t)), denote a

mapping into a closed and bounded subset U in the interior of Rk
+, k ≥ 1. Then

for each i = 1. . . . , k: lim
t→+∞

log(xi(t))
t

= 0.

Proof The proof of this statement is straightforward: lim sup
t→+∞

log(xi(t))
t

= 0 follows

from the assumption on boundedness of x(t) (in principle uniform boundedness

of x(t) for t → +∞ would suffice here); lim inf
t→+∞

log(xi(t))
t

< 0 would contradict

that {x(t)|t ≥ 0} lies in a closed subset in the interior of Rk
+.

Suppose the mutant population emerges from population i on an orbit of (5.1) in

a c-attractor in the interior of Rk
+. The possible invasion fitnesses for the mutants’

phenotypic trait values ν ∈ M(τi) are considered to be a function in ν in which

the resident trait values τ1, . . . , τk appear as parameters. This function is called the

invasion fitness function on the specific orbit on which the mutants appear. Formally

invasion fitness is a valid notion for any trait value ν ∈ T, and extends beyond the

biologically restricted set
k⋃

i=1

M(τi) of possible mutant trait values that may emerge

from a community of resident populations carrying traits τ1, . . . , τk. Therefore the

domain of the invasion fitness function is taken to be T rather than
k⋃

i=1

M(τi), and

its argument may refer to the phenotypic trait value of any population that tries to

invade the resident community in an initially very small positive density.

Notation 5. sk(τ1, . . . , τk; .) : T→ R denotes the invasion fitness function on an

orbit in a c-attractor in the interior of Rk
+.

The parameters τ1, . . . , τk appear in the argument of the invasion fitness function,

and are separated from the mutants’ trait value by means of a semicolon. By doing

so we can make a clear distinction between the resident trait values and possible

operations performed on them (such as a permutation, or a reduction due to

absence of a resident population), and the mutants’ trait value. Furthermore, by

letting the parametric resident traits appear in the argument of the invasion fitness

function rather than as an index to it, we adapt already here to a notation that
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will only become effective in the second part of the text, where we will consider

functional dependence of the mutants’ fitness on the resident trait values. By

adopting this notation we already anticipate on the result that the invasion fitness

of a phenotype is independent of the specific c-attractor in int(Rk
+), or specific

orbit herein, on which the mutants appear; see Corollary 3. Therefore it suffices

to refer to the resident community solely by means of the phenotypic trait values

present in it.

From the definition of invasion fitness and equations (5.1) we derive that:

sk(τ1, . . . , τk; ν) = lim
T→+∞

1
T

∫ T

0

(
1

xν(t)
d
dt

xν(t)dt
) ∣∣∣

xν(t)=0
=

lim
T→+∞

1
T

∫ T

0

(
r(ν) +

k

∑
i=1

a(ν, τi)xi(t)

)
dt = r(ν) +

k

∑
i=1

a(ν, τi)xi. (5.5)

Here xi = xi(τ1, . . . , τk) = lim
T→+∞

1
T

∫ T

0
xi(t)dt exists, and denotes the time average

of the density of population i along the specific orbit followed by the resident

community. This average density xi in general depends on trait value τi as well

as on the trait values of the other resident populations. The fact that this average

density exists follows from the confinement of the density xi at any time to a

closed and bounded set in the interior of R+; see also e.g. the first part of the proof

of Theorem 5.2.3 in [49]. (At this point it is not yet allowed to conclude that this

average is independent of the specific orbit followed; this can only be done with

additional results that we derive below in Lemma 3.)

The densities of the populations present on an orbit in int(Rk
+) do not become

zero nor increase to infinity. Therefore it intuitively is clear that the trait value of a

resident population has a zero invasion fitness with respect to the environment

that this population itself belongs to.

Lemma 3. For i = 1, . . . , k: sk(τ1, . . . , τk; τi) = 0.

The proof of this statement goes as follows. Consider k + 1 populations, with trait

values τ1, . . . , τk, τk+1, respectively, of which the k + 1-th population is the mutant
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population, with trait value τk+1 = τi for some i ∈ {1, . . . , k}, that appears on a

c-attractor component for LVk(τ1, . . . , τk). Then

sk(τ1, . . . , τk; τk+1) = lim
T→+∞

1
T

∫ T

0

(
1

xk+1(t)
d
dt

xk+1(t)dt
) ∣∣∣

xk+1(t)=0
=

lim
T→+∞

1
T

∫ T

0

(
r(τk+1) +

k

∑
j=1

a(τk+1, τj)xj(t)

)
dt. (5.6)

Since τk+1 = τi, this last expression is equal to

lim
T→+∞

1
T

∫ T

0

(
r(τi) +

k

∑
j=1

a(τi, τj)xj(t)

)
dt = lim

T→+∞

1
T

∫ T

0

1
xi(t)

d
dt

xi(t)dt =

lim
T→+∞

1
T

∫ T

0

1
xi(t)

dxi(t) = lim
T→+∞

1
T

∫ T

0
dlog(xi(t)) =

lim
T→+∞

log(xi(T))− log(xi(0))
T

= 0 (5.7)

(by Lemma 2), which proves the statement.

The k equalities sk(τ1, . . . , τk; τi) = 0, i = 1, . . . , k yield k expressions

r(τi) +
k

∑
j=1

a(τi, τj)xj = 0, i = 1, . . . , k, (5.8)

that imply the following

Corollary 2. Let (xt)t≥0 denote an orbit of LVk(τ1, . . . , τk) in a closed and

bounded subset in the interior of Rk
+. Then for each i = 1, . . . , k the average

density xi(τ1, . . . , τk) is uniquely determined (and necessarily equal to the positive

equilibrium density x̂i(τ1, . . . , τk)) if and only if (τ1, . . . , τk) ∈ Rint(T
k).

Thus, if (τ1, . . . , τk) ∈ R(Tk), the existence of an orbit (xt)t≥0 confined to a closed

and bounded set in the interior of Rk
+ implies the existence of a unique interior

rest point for LVk(τ1, . . . , τk), i.e., then (τ1, . . . , τk) ∈ Rint(T
k).

Remark 3. Corollary 2 is put slightly stronger than Theorem 5.2.3 in [49]. This

Theorem assumes that the densities x1, . . . , xk of k populations develop according to

a Lotka-Volterra community dynamics for which there exist a unique equilibrium
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density x̂ = (x̂1, . . . , x̂k) ∈ int(Rk
+). Then, if there exist two positive numbers a and

A such that a < xi(t) < A for all i and all t > 0, the average density xi exists and

equals x̂i.

Corollary 3. If (τ1, . . . , τk) ∈ Rint(T
k), then the function sk(τ1, . . . , τk; .) is well-

defined, in the sense that sk(τ1, . . . , τk; ν) is independent of the specific orbit the

resident community follows, in any of the possible c-attractors for LVk(τ1, . . . , τk).

The previous Corollary allows us to define the invasion fitness of the mutants’

phenotype on a c-attractor.

Notation 6.

1. For each k ≥ 1, an element (τ1, . . . , τk) ∈ Tk for which there exists a c-attractor

for LVk(τ1, . . . , τk) in int(Rk
+) will be denoted by 〈τ1, . . . , τk〉.

2. For a given (τ1, . . . , τk) ∈ Tk the set Att(τ1, . . . , τk) denotes the collection of

c-attractors for LVk(τ1, . . . , τk) in int(Rk
+). However, for specific choices of

(τ1, . . . , τk) this set can be empty.

3. The collection of elements 〈τ1, . . . , τk〉, for all (τ1, . . . , τk) ∈ Rint(T
k), is

denoted by Ak.

An element of A1 is referred to as a monomorphism. For k ≥ 2, an element of Ak

in general is called polymorphism or k-morphism, with the additional nomenclature

dimorphism for an element of A2, and trimorphism for an element that belongs to

A3. We shall take this nomenclature also to hold for a c-attractor in the respective

int(Rk
+).

It follows straightforwardly that Ak ⊂ Rint(T
k). Based on expression (5.5) and

Corollaries 2 and 3 we obtain:

Corollary 4. Let 〈τ1, . . . , τk〉 ∈ Ak.

1.

sk(τ1, . . . , τk; ν) = r(ν) +
k

∑
i=1

a(ν, τi)x̂i(τ1, . . . , τk). (5.9)

Therefore, in case of multiple c-attractors represented by 〈τ1, . . . , τk〉, mutants

do not discriminate between these attractors with regard to invasion. These

c-attractors then are said to be evolutionary equivalent with regard to invasion.
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2. The function sk(τ1, . . . , τk; .) : T→ R inherits the differentiability properties

from the functions r and a.

3. For each σ ∈ Σk, and for all ν ∈ T: sk(τ1, . . . , τk; ν) = sk(τσ(1), . . . , τσ(k); ν).

The origin 0 ∈ R0
+ is a c-attractor by definition, on which no traits are present; it

shall be denoted by λ (see Notation 1.3.). We make the following definition with

respect to λ, to be used in the next section.

Definition 4.

1. x̂(λ) = 0.

2. |A(λ)| = 1.

3. The invasion fitness function on λ is s0(λ; .) : T→ R, s0(λ; ν) = r(ν); it will

simply be denoted by s0 (omitting the λ).

Remark 4.

1. The third statement in Corollary 4 states that the ordering of the traits present

on a resident c-attractor does not influence the fitness of the mutants’ trait.

In particular this implies that the order in evolutionary time in which the

resident populations were subsequently incorporated to form a c-attractor,

does not affect the fitness of mutants that emerge from that attractor.

2. Note that the notational conventions introduced so far for elements

(τ1, . . . , τk) of Tk do not automatically extend to the bracket notation

〈τ1, . . . , τk〉 ∈ Rint(T
k). E.g., the notation 〈τ1, . . . , τk \ τk〉 and its

identification with 〈τ1, . . . , τk−1〉 only make sense if there exists a c-attractor

in the interior of the community state space of LVk−1(τ1, . . . , τk−1). However,

for each σ ∈ Σk, 〈τ1, . . . , τk〉 can be identified with 〈τσ(1), . . . , τσ(k)〉.

3. Two Lotka-Volterra models LVk(τ1, . . . , τk) and LVl(τ
′
1, . . . , τ′l ) that are

phenotypically equivalent do not necessarily have equal collections of

c-attractors. As a consequence the equality of functions

sk(τ1, . . . , τk; .) = sl(τ
′
1, . . . , τ′l ; .) may not hold true. In fact, let k > l, and

suppose that LVk(τ1, . . . , τk) is phenotypically equivalent to LVl(τ
′
1, . . . , τ

′
l ),
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with the latter admitting a global c-attractor. Then LVk(τ1, . . . . , τk) will have

no c-attractors, and any dynamics that starts in the interior of Rk
+ eventually

will converge to the global c-attractor for LVl(τ
′
1, . . . , τ

′
l ). For example,

suppose that LV1(τ) has a unique c-attractor 〈τ〉. LV2(τ, τ) has no c-attractor;

it has a line of neutral equilibria which connects the two boundary equilibria

in the two state spaces for the two populations separately. These two

boundary equilibria are c-attractors for the two respective single dynamics

as well as for the combined dynamics. The line of equilibria in the interior of

the combined dynamics is however not a c-attractor: arbitrarily small

perturbations eventually will drive a community present on this line to

either one of the two boundary attractors. The function s1(τ; .) is

well-defined; the function s2(τ, τ; .) however is not well-defined, because the

determinant of the interaction matrix equals 0. In a later section we shall

construct well-defined extensions of functions sk(τ1, . . . , τk; .) to cases for

which (τ1, . . . , τk) ∈ 4k.

4. By Definition 4 we may write R(T0) = A0 = {λ}.

Example 1.

1. For k = 1 equations (5.1) reduce to

d
dt

x = x(r(τ) + a(τ, τ)x), (5.10)

and it follows immediately that each τ ∈ T with r(τ) > 0 corresponds

unequivocally with a unique point-attractor 〈τ〉 in the interior of the

population state space, with x̂τ = x̂τ〈τ〉 = − r(τ)
a(τ, τ)

. Thus,

A1 = {τ ∈ T|r(τ) > 0}. If r(τ) ≤ 0, then the origin 0 is the unique

c-attractor for LV1(τ) and Att(τ) = ∅. From expression (5.9) it follows that

for τ ∈ A1:

s1(τ; ν) = r(ν)− r(τ)
a(ν, τ)

a(τ, τ)
. (5.11)

2. For k = 2, the community-dynamical differential equations become
d
dt

x1 = x1(r(τ1) + a(τ1, τ1)x1 + a(τ1, τ2)x2)

d
dt

x2 = x2(r(τ2) + a(τ2, τ1)x1 + a(τ2, τ2)x2)

(5.12)
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Straightforward analysis tells that there exists a unique c-attractor 〈τ1, τ2〉 in

the interior of the community state space if and only if τ1 and τ2 satisfy the

following three constraints:
r(τ1)a(τ2, τ1) > r(τ2)a(τ1, τ1),
r(τ2)a(τ1, τ2) > r(τ1)a(τ2, τ2),
|A(τ1, τ2)| > 0, i.e., a(τ1, τ1)a(τ2, τ2) > a(τ1, τ2)a(τ2, τ1).

This c-attractor is a point-attractor, its basin of attraction is int(R2
+). Thus,

A2 = {(τ1, τ2) ∈ T2|r(τ1)a(τ2, τ1) > r(τ2)a(τ1, τ1),

r(τ2)a(τ1, τ2) > r(τ1)a(τ2, τ2), |A(τ1, τ2)| > 0}. (5.13)

At 〈τ1, τ2〉 the equilibrium densities are

(x̂1〈τ1, τ2〉, x̂2〈τ1, τ2〉) =

(
−r(τ1)a(τ2, τ2) + r(τ2)a(τ1, τ2)

a(τ1, τ1)a(τ2, τ2)− a(τ1, τ2)a(τ2, τ1)
,

r(τ1)a(τ2, τ1)− r(τ2)a(τ1, τ1)

a(τ1, τ1)a(τ2, τ2)− a(τ1τ2)a(τ2, τ1)

)
.

(5.14)

Figure 5.1 shows for T = [−1, 1] the non-empty set A2 in (−1, 1)2, for

r(τ) = 1− τ2, and a(τ1, τ2) = −
e−3(τ1−τ2)

2

1− 0.5τ2
1

. The set A1 in this case is equal

to (−1, 1) and is embedded in the main diagonal in T2. Note that A2 is

symmetric under reflection over the diagonal τ1 = τ2 of T2, in agreement with

the phenotypic equivalence under permutations of LV2(τ1, τ2) and LV2(τ2, τ1).

For 〈τ1, τ2〉 ∈ A2 we find that

s2(τ1, τ2; ν) = r(ν) + a(ν, τ1)x̂1〈τ1, τ2〉+ a(ν, τ2)x̂2〈τ1, τ2〉, (5.15)

with x̂1〈τ1, τ2〉 and x̂2〈τ1, τ2〉 as in expression (5.14). Note that for each ν the

equality s2(τ1, τ2; ν) = s2(τ2, τ1; ν) holds, and that the equilibrium densities

follow from the two equations s2(τ1, τ2; τ1) = 0 and s2(τ1, τ2; τ2) = 0. A little

algebra shows that for (τ1, τ2) ∈ A2 ∩ (A1 ×A1) expression (5.14) equals

(x̂1〈τ1, τ2〉, x̂2〈τ1, τ2〉) = −
1

|A(τ1, τ2)|
(a(τ2, τ2)s1(τ2; τ1), a(τ1, τ1)s1(τ1; τ2)) ,

(5.16)
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Figure 5.1: For T = [−1, 1] and functions r(τ) = 1− τ2, a(τ1, τ2) = −
e−3(τ1−τ2)

2

1− 0.5τ2
1

,

the main diagonal in T2 contains the embedded set of monomorphisms
A1 = (−1, 1). The green region (in (−1, 1)2) shows the set A2 of
dimorphisms. In this region both s1(τ1; τ2) and s1(τ2; τ1) are positive.
On the main diagonal and on the black curves either s1(τ1; τ2) or
s1(τ2; τ1) equals 0. In the red region at least one of s1(τ1; τ2) and
s1(τ2; τ1) is negative.

and that expression (5.15) is equal to

s2(τ1, τ2; ν) =

r(τ1)s1(τ1; τ2)s1(τ2; ν) + r(τ2)s1(τ2; τ1)s1(τ1; ν)−
r(ν)s1(τ1; τ2)s1(τ2; τ1)

r(τ1)s1(τ1; τ2) + r(τ2)s1(τ2; τ1)− s1(τ1; τ2)s1(τ2; τ1)
. (5.17)

The last expression can be rewritten as

s2(τ1, τ2; ν) =

∣∣∣∣∣∣
 0 s1(τ1; τ2) s1(τ1; ν)

s1(τ2; τ1) 0 s1(τ2; ν)
r(τ1) r(τ2) r(ν)

∣∣∣∣∣∣∣∣∣∣∣∣
 0 s1(τ1; τ2) 1

s1(τ2; τ1) 0 1
r(τ1) r(τ2) 1

∣∣∣∣∣∣
. (5.18)
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Remark 5.

1. From Examples 1.1 and 1.2 and expression (5.11) it follows that the set of

dimorphisms A2 ∩ (A1 ×A1) can be characterised as:

A2 ∩ (A1 ×A1) = {(τ1, τ2) ∈ T2|r(τ1) > 0, r(τ2) > 0,

s1(τ1; τ2) > 0, s1(τ2; τ1) > 0, |A(τ1, τ2)| > 0}. (5.19)

Thus, A2 ∩ (A1 ×A1) can be constructed by taking the intersection of the

set of points (τ1, τ2) in A1 ×A1 for which s1(τ1; τ2) > 0 with its reflection

over the diagonal τ1 = τ2 and with the set of points on which the interaction

matrix has a positive determinant. Intersections of regions of positive fitness

with their reflections over diagonal hyperplanes will turn out to play an

important role in deriving the sets Ak, as we shall derive in the second part

of the paper.

2. Examples show that A2 may extend beyond A1 ×A1, and contain points

(τ1, τ2) ∈ T2 for which r(τ1) ≤ 0 and r(τ2) > 0, or for which r(τ1) > 0

and r(τ2) ≤ 0. In the first case τ1 /∈ A1, in the second case τ2 /∈ A1. This

is illustrated by the class of predator-prey models given by the differential

equations 
d
dt

x1 = x1(r(τ1) + a(τ1, τ1)x1 + a(τ1, τ2)x2)

d
dt

x2 = x2(r(τ2) + a(τ2, τ1)x1 + a(τ2, τ2)x2)

, (5.20)

with x1 denoting the density of the predator population, x2 the density

of the prey population, and with r(τ1) < 0, r(τ2) > 0, and a(τ1, τ2) > 0,

a(τ2, τ1) < 0 (and a(τ1, τ1) < 0 and a(τ2, τ2) < 0, as usual). Then there exists

a globally attracting interior equilibrium if (and only if) the three conditions

|A(τ1, τ2)| > 0, s1(τ2; τ1) > 0 and r(τ2) − r(τ1)
a(τ2, τ1)

a(τ1, τ1)
> 0 hold. (In the

second part of the paper we shall extend the invasion fitness function in

such a way that the third of these three conditions can also be expressed as

s1(τ1; τ2) > 0.)

3. Expressions (5.16) above shows that the dimorphic equilibrium densities can

be expressed in terms of the functions s1(τ1; .) and s1(τ2; .). The invasion
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fitness function s2(τ1, τ2; .) can be expressed in terms of a fraction of

determinants of matrices with s1(τ1; .) and s1(τ2; .) as coefficients, as (5.18)

shows. These properties hold for all equilibrium densities x̂i(τ1, . . . , τk),

i = 1, . . . , k, and functions sk(τ1, . . . , τk; .) given by (5.9); they will be stated in

full generality in Lemmas 5 and 8.

The following Corollary provides a way to construct monomorphic c-attractors

and invasion fitness functions on these attractors.

Corollary 5. Let a function u : T2 → R be given such that for all τ ∈ T:

u(τ, τ) = 0. For each τ1 ∈ T, let u(τ1, .) : T→ R denote the function that assigns

to τ ∈ T the value u(τ1, τ). Let A ⊂ T be a non-empty open set. Then there

exists a family of Lotka-Volterra models LV1(τ), τ ∈ T, for single populations

such that A1 = A. The family of invasion fitness functions {s1(τ; .)}τ∈A1 precisely

comprises the family of functions {u(τ, .)}τ∈A.

The proof of this statement is as follows: Urysohn’s Lemma (see e.g. [57]) implies

that there exists a continuous function r : T→ R which is strictly positive on A

and equal to 0 on T \ A. For τ ∈ T define the Lotka-Volterra model LV1(τ) by the

differential equation
d
dt

xτ = xτ(r(τ)− xτ). Then LV1(τ) has a c-attractor 〈τ〉 (with

positive density r(τ)) if and only if τ ∈ A. Consequently, A1 = A. Next construct a

Lotka-Volterra model for two populations with an interaction function a : T2 → R

given by a(τ1, τ2) =
u(τ2, τ1)− r(τ1)

r(τ2)
. The invasion function for 〈τ1〉 ∈ A1 then

is s1(τ1; τ2) = r(τ2) + a(τ2, τ1)r(τ1) = u(τ1, τ2), and the validity of the statement

follows.

After invasion of a c-attractor 〈τ1, . . . , τk〉 by a mutant population with trait

value ν = τk+1, the residents and mutants home in on a (possibly unique)

c-attractor for LVk+1(τ1, . . . , τk, τk+1), or on a c-attractor for a LVl(τi1 , . . . , τil), with

{i1, . . . , il} ⊂ {1, . . . , k + 1}. This outcome generically will depend on the trait

values of the resident populations as well as that of the mutant population. Unless

LVk+1(τ1, . . . , τk, τk+1) has a unique c-attractor to which the dynamics after

invasion converges, the outcome furthermore depends on the orbit that the

residents and mutants follow. This orbit in turn may depend on the specific

c-attractor that became invaded, and on the point on that c-attractor where the

mutants emerged. Outcomes after invasion will be discussed further in section 5.3,
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but a first straightforward result can already be mentioned here. Suppose a

mutant population with trait value ν emerges from a c-attractor 〈τ1, . . . , τk〉. If

LVk+1(τ1, . . . , τk, ν) is permanent, then necessarily the community of residents and

mutants eventually will reach a c-attractor 〈τ1, . . . , τk, ν〉. We shall introduce the

following notation for the family of permanent Lotka-Volterra models:

Notation 7. Pk = {〈τ1, . . . , τk〉 ∈ Ak|LVk(τ1, . . . , τk) is permanent}

An element of P1 is called a protected monomorphism; an element in P2 is called a

protected dimorphism, and an element in P3 is called a protected trimorphism. In

general an element of Pk, k > 1, is called protected polymorphism or protected

k-morphism. An element of Ak \ Pk is called an unprotected polymorphism or

unprotected k-morphism. The characterisation ’protected’ in protected

polymorphism generalises, on the phenotypic level, the notion of protectedness

against extinction as it originally was introduced in the literature on evolutionary

genetics, see e.g. [45] and [71]. Permanence implies (in general) the existence of a

c-attractor, and therefore (in the case of a Lotka-Volterra community dynamics) of

a unique interior rest point (see also e.g. Theorem 13.5.1 in [49]). Later

(Corollary 12) we shall derive for a subclass of Lotka-Volterra models that,

provided the mutational steps are sufficiently small, permanence is maintained

under trait substitutions and evolutionary branching. It then follows for this

subclass that an evolutionary path that starts on a monomorphism (which is

protected, since obviously P1 = A1) and proceeds by trait substitutions or

evolutionary branching, or starts on a polymorphism that under small mutational

steps can be reached from a protected polymorphism, is solely composed of

protected k-morphism, for suitable values of k.

So far we have introduced c-attractors and invasion fitness functions on these

attractors. The invasion fitness function determines whether or not a mutant

population is able to invade a resident community attractor. Before we study the

consequences of invasion for the community of residents and mutants in detail, we

introduce in an informal way additional notions of adaptive dynamics; we do this

by focusing on phenotypic trait evolution related to mono-, di- and trimorphisms.
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5.2.5 Mono-, di- and trimorphisms: first steps towards a generalisation

In this subsection we analyse phenotypic trait evolution related to mono-, di- and

trimorphisms. We recall a number of known results (see e.g. [73]), and present

some new ones. In doing so we introduce ideas that we shall develop further

in forthcoming sections in a more formal manner. The analysis will be based on

three types of figures: the Pairwise Invadability Plot (abbreviated to PIP), the

Mutual Invadability Plot (or MIP for short), and the Trait Evolution Plot (TEP). For

convenience we shall restrict our analysis with respect to dimorphisms to the subset

of A2 that intersects with A1 ×A1 (i.e., we restrict ourselves to dimorphisms that

are characterised by expression (5.19)).

Graphical devices: PIP, MIP and TEP

A PIP for s1 is simply a sign plot of s1. Since s1(τ; τ) = 0 for all τ ∈ A1, the main

diagonal {(τ, τ)|τ ∈ A1} belongs to the zero set of s1. We assume the factorisation

s1(τ; ν) = (ν− τ)z1(τ; ν), (5.21)

with z1 a function A1 ×A1 → R whose zero set has no self-intersection, and

which is assumed to change sign at its zero set. The sign pattern in a PIP of a

function s1 thus is determined by the main diagonal and the function z1. Figure 5.2

is an example of a PIP.

As our analysis of phenotypic trait evolution will show, the intersection of the

zero set of z1 with the main diagonal in A1 ×A1 yields the monomorphic

singular points for the adaptive dynamics. At such a point a change from a strictly

monomorphic to a dimorphic adaptive dynamics may happen, causing the

occurrence of a trait increment. A trait increment that is locally enduring on the

evolutionary timescale is called evolutionary branching. The local adaptive

dynamics in a neighbourhood of a monomorphic singular point can be classified,

and the generic classification is done in terms of the first and second-order

derivatives of the function s1, on the assumption that the zero set of z1 has no

self-intersection at the singularity. To avoid intricacies for the adaptive dynamics

away from a singularity, we assume no self-intersection of the zero set of z1

everywhere.
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Figure 5.2: PIP for the function

s1(τ; ν) = 1 − ν2 − e−3(τ−ν)2

1− 0.5ν2 (1 − 0.5τ2)(1 − τ2) on [−1, 1]2. (I.e.,

the function s1 is derived from the functions r and a as given in
Example 1.2). The green region represents positive values, the main
diagonal and the black curve represent the zero set of s1, and the red
region the negative values.

A MIP or Mutual Invadability Plot for s1 is a plot that indicates the region

of points (τ, ν) ∈ A1 ×A1 that show mutual invadability, i.e., it indicates those

points (τ, ν) for which both s1(τ; ν) > 0 and s1(ν; τ) > 0 hold good. It is obtained

from the PIP of s1 by taking in this PIP the intersection of the region of points (τ, ν)

for which s1(τ, ν) > 0 and its reflection over the main diagonal. As a consequence,

the region of mutual invadability is symmetric under reflection over the main

diagonal. Figure 5.1 gives the MIP based on the PIP of Figure 5.2.

A TEP or trait evolution plot for s1 shows A1 ×A1, and within this region

A1 represented by its embedding in the main diagonal of A1 ×A1, as well as

the set A2. (From (5.19) it follows that within A1 ×A1 the set A2 is obtained by

taking the intersection of the set of mutually invadable points with the collection

of points for which the interaction matrix has a positive determinant.) In addition

in a TEP the directions of the monomorphic and dimorphic adaptive dynamics are

indicated, as well as their rest points and adaptive-dynamical isoclines.
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Remark 6.

1. By representing A1 by its embedding in the main diagonal in A1 ×A1, a

monomorphic community dynamics parametrised by τ is split into a

phenotypically equivalent dimorphic dynamics parametrised by (τ, τ).

Although (τ, ν) (with ν a mutant of τ) lies close (in a metric sense) to (τ, τ),

the dynamical behaviour of a community parametrised by (τ, ν) generically

differs from that of a community parametrised by (τ, τ): the

(τ, ν)-community generically shows competitive exclusion, whereas the

(τ, τ)-community exhibits neutral coexistence. The embedding of Ak into

4k+1
i,k+1, i = 1, . . . , k is taken for granted in all studies of adaptive dynamics.

2. To avoid densities from becoming infinite (which is a required constraint in

any biologically inspired model involving population densities) it follows

from (5.16) that within the region of mutually invadable points no points

(τ, ν) are allowed to occur in which the determinant of the interaction matrix

|A(τ, ν)| becomes 0. I.e. (by (5.19)), in A2 the interaction matrix determinant

must be strictly positive.

3. We shall use the following color codes in PIP, MIP and TEP. In a PIP a

point (τ1, τ2) is coloured red if s1(τ1; τ2) < 0; it is coloured green in case

s1(τ1; τ2) > 0, and black if s1(τ1; τ2) = 0. In a MIP or TEP, a point (τ1; τ2) is

coloured red if either s1(τ1; τ2) < 0 or s1(τ2; τ1) < 0; it is coloured green if it

belongs to A2, and black if either s1(τ1; τ2) = 0 or s1(τ2; τ1) = 0. In addition

in A2 the 1- and 2-isocline (see below) will be represented by a solid and

dotted black curve, respectively.

Before we continue with an analysis of the monomorphic and dimorphic

adaptive dynamics, we shall first provide an example of a TEP and explain how to

read this figure. Figure 5.3 shows the TEP for the function s1 (i.e., the function that

also underlies Figures 5.1 and 5.2). The whole main diagonal corresponds to A1,

and the green region represents A2. The main diagonal is divided in two sections

by the intersection of the zero set of the function z1 with the diagonal. The

intersection point (0, 0) (i.e. the diagonal point corresponding to the

monomorphic trait value τ = 0) is the rest point for the monomorphic dynamics
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(but not necessarily for adaptive dynamics as a whole due to the rare but ongoing

occurrence of successful mutants, as in this specific configuration as we shall soon

derive), and in the Figure is indicated by the black dot on the main diagonal. The

two arrows on the main diagonal indicate the directions of monomorphic adaptive

dynamics in these two sections. In the section of points (τ, τ) with τ < 0 the

direction is upwards. Here only a mutant population with trait value ν > τ is able

to invade (as follows from the corresponding PIP in Figure 5.2). If such a ν is

sufficiently close to τ then its invasion causes a trait substitution: the density of

the mutant population increases and reaches a stable equilibrium on which the

resident τ-population is replaced by the mutant population. For points (τ, τ) with

τ > 0 the monomorphic direction is downwards: here the τ-population gets

replaced by an invading mutant population whose trait ν is sufficiently close to τ

and satisfies ν < τ. Monomorphic dynamics for this specific s1-function therefore

is directed towards the rest point τ = 0. Trait values τ and ν both sufficiently close

to 0 which satisfy s1(τ, ν) > 0 and s1(ν, τ) > 0 are mutually invadable. For such τ

and ν, invasion of the monomorphic τ-population by the ν-mutant population

leads to coexistence on the c-attractor 〈τ, ν〉, and results in a trait increment. The

adaptive dynamics then leaves A1 and enters A2. Once in A2, the dimorphic

dynamics is directed away from the monomorphic rest point, as can be seen from

the two arrows in A2 close to the monomorphic singularity. These arrows indicate

the directions of dimorphic dynamics due to mutations in either one of the two

traits present at elements of A2. In this specific configuration the direction of trait

dynamics sustains on the evolutionary timescale, and evolutionary branching

occurs. (How the directions of these arrows can be derived will soon be

discussed.)

Notation 8. For notational convenience we shall refer to the adaptive dynamics

at a point (τ1, . . . , τk) ∈ Ak due to only mutations in the τi-trait as i-AD.

In A2 the two solid curves together form the so-called 1-isocline. The points (τ, ν)

on these curves are rest points for the 1-AD, and the 1-AD generically changes

direction at the 1-isocline. The dotted curves compose the 2-isocline, and consist

of the rest points of the 2-AD, at which 2-AD generically changes direction. The

1- and 2-isoclines divide the part of A2 above the main diagonal in four sections,
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and in each section the directions of adaptive dynamics due to a mutation in either

the τ- or ν-trait have been indicated. Note that a rest point for the 1-AD or 2-AD

generically is not a rest point for the adaptive dynamics as a whole; this is only the

case in an intersection point of the 1- and 2-isocline. Rest points for the 1-AD may

be locally attracting or repelling for the 1-AD, and a similar statement holds for rest

points for the 2-AD. In Figure 5.3 all rest points on the 1-isocline as well as on the

2-isocline are locally attracting for their respective adaptive dynamics. At points

within specific regions of either the 1- or the 2-isocline in A2 an increment in the

number of trait values present may occur due to the entering into A3. Depending

on the configuration of the local adaptive dynamics in A3, this may or may not

lead to evolutionary branching from A2 into A3.
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Figure 5.3: The TEP for the function

s1(τ; ν) = 1− ν2− e−3(τ−ν)2

1− 0.5ν2 (1− 0.5τ2)(1− τ2) on [−1, 1]2. (The PIP in

Figure 5.2 and the MIP in Figure 5.1 are also based on this function
s1.) The arrows on the main diagonal, i.e., A1, indicate the direction of
monomorphic adaptive dynamics; the arrows in the green region, i.e.
A2, indicate the directions of dimorphic dynamics. The solid curves
in A2 form the 1-isocline, and the dotted curves in A2 comprise the
2-isocline. The points a up to (and including) j are referred to in the
main text.
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Due to phenotypic equivalence, the part of A2 below the main diagonal yields

the same information as the part of A2 above the main diagonal. Below the main

diagonal, the direction of 2-AD in a point (ν, τ) is equal to the the direction of

1-AD in the point (τ, ν). E.g., if the 1-AD in (τ, ν) is directed leftwards (causing

the decrease of trait value), then in (ν, τ) the 2-AD is directed downwards. A

similar statement holds for the direction of 2-AD. As a consequence, the part of

the 2-isocline below the main diagonal is obtained by reflection over the main

diagonal of the part of the 1-isocline that lies above the main diagonal. Likewise,

the part of the 1-isocline below the main diagonal is obtained by reflection over

the main diagonal of the part of the 2-isocline that lies above the main diagonal.

We shall now provide more details concerning monomorphic and dimorphic

adaptive dynamics, in particular their directions and adaptive-dynamical rest

points.

Monomorphic dynamics

Analysis of (5.12) shows that in LV(τ, ν) with ν sufficiently close to τ, invasion of

the monomorphic attractor 〈τ〉 by a mutant population with trait ν, i.e., in case

s1(τ; ν) > 0, will cause the ousting of the resident population by the mutant

population if in addition s1(ν; τ) < 0 holds. Under these conditions on the

evolutionary timescale there thus appears a phenotypic trait substitution from 〈τ〉
to 〈ν〉, indicated in a TEP by a small arrow going from (τ, τ) to (ν, ν) on the main

diagonal. With the assumption of small mutational steps the occurrence of the two

inequalities s1(τ; ν) > 0 and s1(τ; ν) < 0 is governed by the sign pattern of the

function z1 in the neighbourhood of the main diagonal element (τ, τ), which in

turn generically is determined by the (monomorphic) invasion fitness gradient

Γ(τ) = ∂0,1s1(τ; τ), (5.22)

(which equals -∂1,0s1(τ; τ), since s1(τ; τ) = 0 for all τ).2 In case the invasion

gradient is non-zero, the function ν 7→ s1(τ; ν) changes sign at ν = τ, and

2 For convenience we use the following shorthand notation for derivatives: for a function f :
Rk → R, f : (x1, . . . , xk) 7→ f (x1, . . . , xk), the expression ∂i1,...,ik f (τ1, . . . , τk) denotes the partial

derivative
∂i1+···+ik

∂xi1
1 . . . ∂xik

k

f (x1, . . . , xk)
∣∣∣
(x1,...,xk)=(τ1,...,τk)

. For derivatives of degree 1 (with respect to the

i-th variable), ∂0,...,0,1,0,...,0 f (τ1, . . . , τk) may also be denoted as ∂xi f (τ1, . . . , τk). (For k = 1, the usual
notation f ′ is used for the first derivative of f , and f (n) for the n-th derivative.)
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depending on whether the sign of the invasion gradient is negative or positive, a

small mutational step will cause the replacement of τ by ν < τ or ν > τ. If

Γ(τ) = 0, the trait value τ as well as its corresponding c-attractor are called

singular, or an evolutionary singular strategy (ess). We shall indicate a singular trait

value τ as τ∗. The local behaviour of the function ν 7→ s1(τ
∗; ν) in a

neighbourhood of an ess τ∗ is determined by the derivative ∂0,2s1(τ
∗; τ∗). In case

this second-order derivative at a singular trait value is positive, s1(τ
∗; ν) is

positive for ν sufficiently close to τ∗. If in addition also ∂2,0s1(τ
∗; τ∗) > 0, then for

values of ν sufficiently close to τ∗ the traits τ∗ and ν are mutually invadable, and

also |A(τ∗, ν)| > 0 holds. (The latter statement follows from the equality

|A(τ, ν)| = a(τ, τ)

r(τ)
a(ν, ν)

r(ν)

∣∣∣∣∣∣
 0 s1(τ; ν) 1

s1(ν; τ) 0 1
r(τ) r(ν) 1

∣∣∣∣∣∣, which in turn follows from

the proof of Lemma 8 below; it also follows from Lemma 9.2 below. This

expression also shows that if both τ and ν belong to A1, and (τ, ν) is such that

s1(τ, ν) = 0 as well as s1(ν; τ) = 0, then |A(τ, ν)| = 0, and (τ, ν) then cannot

belong to A2.) Invasion of 〈τ∗〉 by a mutant population with trait value ν then

will lead to coexistence on the dimorphic attractor 〈τ∗, ν〉 ∈ A2. If

∂0,2s1(τ
∗; τ∗) < 0, the function ν 7→ s1(τ

∗; ν) has a local maximum at ν = τ∗, and

〈τ∗〉 is (at least) locally uninvadable for values ν close to τ∗. In this case τ∗ is

called a locally evolutionarily stable strategy or lESS; in case s1(τ
∗; ν) < 0 for any

value ν, τ∗ is an evolutionarily stable strategy or ESS.

From the expression

s1(τ; ν) = (ν− τ)z1(τ; ν), (5.23)

with

z1 : T2 → R, (5.24)

it follows straightforwardly that a trait value τ is singular if and only if z1(τ; τ) = 0,

i.e., if and only if (τ, τ) belongs to the intersection of the main diagonal in A1×A1

with the zero set of the function z1.
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Dimorphic invasion fitness gradients

In A2 the direction of evolution generically follows from the two dimorphic

invasion fitness gradients

Γ1(τ1, τ2) = ∂0,0,1s2(τ1, τ2; τ1), (5.25)

called the 1-invasion fitness gradient at 〈τ1, τ2〉, and

Γ2(τ1, τ2) = ∂0,0,1s2(τ1, τ2; τ2) (5.26)

or the 2-invasion fitness gradient at 〈τ1, τ2〉. A non-zero value for the 1-invasion

fitness gradient determines the direction of evolutionary movement when the

mutant population is generated by the resident population carrying trait τ1. In

this case, the function ν 7→ s2(τ1, τ2; ν) changes sign at ν = τ1. If the sign of the

1-invasion fitness gradient is negative, for mutant trait values ν sufficiently close

to and smaller than τ1, s2(τ1, τ2; ν) > 0 and s2(ν, τ2; τ1) < 0. Analysis of (5.1) for

k = 3 then again implies that invasion of the mutant population will lead to a

replacement of the τ1-population by the mutant population, and evolutionarily the

invasion leads to a trait substitution in the first variable, changing 〈τ1, τ2〉 to 〈ν, τ2〉.
In a TEP this replacement is represented by a small horizontal arrow starting at

〈τ1, τ2〉 and pointing to the left. A positive sign of the 1-invasion fitness gradient

leads to a trait substitution in which the trait in the first variable increases; in a

TEP this corresponds to a small horizontal arrow pointing to the right. A similar

argument holds for the 2-trait in relation to a non-zero 2-invasion fitness gradient

in case the mutants are generated by the τ2-resident population. In a TEP a negative

2-invasion fitness gradient corresponds with a downward pointing arrow, and

a positive 2-invasion fitness gradient with an upward pointing arrow. Since we

assume rare mutational events and scalar traits, each trait substitution will be in

either one of the two possible directions for evolution (and not in both directions

simultaneously). Note that in Figure 5.3 invasion of the monomorphic singular

trait leads to coexistence of the resident and mutant population on a dimorphic

attractor. Since the dimorphic dynamics is directed away from the singularity

further into A2, the dimorphic dynamics is locally sustaining, and evolutionary

branching occurs.
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Generically the 1-invasion fitness gradient changes sign at the 1-isocline

I1 := {〈τ1, τ2〉 ∈ A2|Γ1(τ1, τ2) = 0}, (5.27)

i.e., the collection of c-attractors 〈τ1, τ2〉 for which τ1 is singular. Likewise, the

2-invasion fitness gradient generically changes sign at the 2-isocline

I2 := {〈τ1, τ2〉 ∈ A2|Γ2(τ1, τ2) = 0}, (5.28)

and for 〈τ1, τ2〉 on the 2-isocline trait value τ2 is singular.

If (τ1, τ2) is such that s1(τ1; τ2) = 0 and s1(τ2; τ1) > 0, then (τ1, τ2) belongs to

the boundary of A2.

Definition 5. A boundary point (τ1, τ2) for A2 such that s1(τ1; τ2) = 0 and

s1(τ2; τ1) > 0 is called a boundary point of A2 of the first kind. A boundary point

(τ1, τ2) of A2 such that s1(τ1; τ2) > 0 and s1(τ2; τ1) = 0 is called a boundary point of

A2 of the second kind.

A boundary point (τ1, τ2) of A2 such that both s1(τ1; τ2) = 0 and s1(τ2; τ1) = 0 is

called degenerate.

In Figure 5.3, points a up to f are boundary points of the first kind, and points

g up to j are boundary points of the second kind.

By expression (5.17) in a boundary point of the first kind s1(τ1, τ2; ν) = s1(τ1; ν).

The point (τ1, τ2) then inherits the invasion properties from τ1. (Intuitively, these

conclusion are obvious: if the τ2-population cannot invade the environment

generated by 〈τ1〉, the attractor 〈τ1, τ2〉 generates an environment that consists

solely of τ1-individuals; the mutants therefore effectively invade a monomorphic

〈τ1〉-attractor. Formally the statement is however not correct at this point in the

text, since (τ1, τ2) then does not belong to A2, but to its boundary. The function

s2 : A2 × T → R can however be extended to such boundary points. The

construction of this extension will be discussed in the second part of the paper.

The following lines on properties of s2, invasion fitness gradients and isoclines

have to be read with this extension in mind.). In particular,

∂0,0,1s2(τ1, τ2; ν) = ∂0,1s1(τ1; ν), and consequently Γ1(τ1, τ2) = Γ1(τ1), and

Γ2(τ1, τ2 = ∂0,1s1(τ1; τ2).

In point a, Γ1(τ1, τ2) < 0, and in point d Γ1(τ1, τ2) > 0. From continuity

arguments it then follows that for either of these points there exists a
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neighbourhood in A2 in which the 1-invasion fitness gradient at each point

inherits the sign of Γ(τ1). This neighbourhood is bounded by the 1-isocline, and

on passing through this isocline the 1-invasion fitness gradient generically

switches sign. Furthermore, in a Γ2(τ1, τ2) > 0, because the function τ 7→ s1(τ1; τ)

is increasing on a neighbourhood of τ2. (We assume here the absence of the

non-generic case of inflection at τ = τ2.) Similarly, (τ1, τ2) then has a

neighbourhood in A2 in which the 2-isocline is positive, and this neighbourhood

is bounded by the 2-isocline. By the same argument, point d has a neighbourhood

in A2 in which the 2-isocline is negative.

If a boundary point of the first kind lies ’above’ (i.e., in the 2-direction) the

monomorphic singular point (points c and f in Figure 5.3) Γ1(τ1, τ2) necessarily

equals 0. Such points therefore belong to (the extension of) the 1-isocline. With

respect to mutants generated by the τ1-population, (τ1, τ2) inherits the invasion

properties from the monomorphic singularity. For the configuration in Figure 5.3,

it then follows that points c and f are invadable for mutants generated by the

τ1-population. (Actually, they are invadable by any mutant population whose trait

ν satisfies τ1 < ν < τ2 (point a) or τ2 < ν < τ1 (point f ).) Consequently also points

〈τ′1, τ
′
2〉 on the 1-isocline sufficiently close to either c or f ) are invadable for mutants

generated by the τ
′
1-population. (For a discussion on how isoclines connect to the

boundary of A2 see also the Appendix in [40].)

If a boundary point of the first kind satisfies ∂0,1s1(τ1; τ2) = 0, then its tangent to

the boundary of A2 is parallel to the τ2-direction, see points b and e in Figure 5.3.

In such a point Γ2(τ1, τ2) = 0, and it therefore belong to (the extension of) the

2-isocline. From the local configuration in Figure 5.3 it follows that in points b

and e the function ν 7→ s2(τ1, τ2; ν) has a local maximum at ν = τ2. (E.g., in point

b this function equals the function ν 7→ s1(τ1; ν), which becomes 0 in ν = τ2,

and for values of ν 6= τ2 sufficiently close to τ2 s1(τ1; ν) < 0.) Consequently,

points 〈τ′1, τ
′
2〉 ∈ A2 on the 2-isocline that are sufficiently close to either b or e are

uninvadable for mutants generated by the τ
′
2-population: τ

′
2 then is a lESS for the

local 2-AD at 〈τ′1, τ
′
2〉.

In a boundary point of the second kind s2(τ1, τ2; ν) = s2(τ2, τ1; ν) = s1(τ2; ν), and

therefore it inherits the invadability properties of τ2. Consequently, Γ1(τ1, τ2) =

∂0,1s1(τ2, τ1), and Γ2(τ1, τ2) = Γ1(τ2). In Figure 5.3 points g and i belong to the
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1-isocline and are uninvadable for mutants generated by the τ1-population. In both

points the tangent to the boundary of A2 is parallel to the τ1-direction. Points h

and j belong to the 2-isocline, and both are invadable for mutants generated from

the τ2-population.

Note that for the configuration shown in Figure 5.3, on the 1-isocline the invasion

fitness for mutants generated by the τ1-population at 〈τ1, τ2〉 changes between the

endpoints of the isocline; the same property holds for the invasion fitness of the

mutants generated by the τ2-population at τ1τ2〉 on the 2-isocline. In the section

Dimorphic and trimorphic dynamics we shall relate this property to the zero set of

the function s2.

Remark 7. The function s1(τ1; τ2) = 1− τ2
2 −

e−3(τ1−τ2)
2

1− 0.5τ2
2
(1− 0.5τ2

1 )(1− τ2
1 ) on

[−1, 1]2, for which the TEP in Figure 5.3 is drawn, is such that within the part

of A2 that lies above the main diagonal in A1 ×A1, the 1-isocline connects the

boundary point of the first kind above the monomorphic singularity with the

boundary point of the second kind in which the tangent to A2 is parallel to the

τ2-direction. Similarly, the 2-isocline connects the boundary point of the first kind

in which the tangent to the boundary of A2 is parallel to the τ1-direction with the

boundary point of the second kind ’above’ the monomorphic singularity. Without

further detail we mention here that although the (extensions to the boundary of

A2 of the) isoclines necessarily pass through these characteristic points, they do

not necessarily have to connect these points.

Classifying monomorphic singularities

Under the assumption that (τ, ν) 7→ s1(τ; ν) is a C2-function on a neighbourhood

of (τ∗, τ∗), for a singular trait τ∗, we may express s1(τ; ν) according to its Taylor

formula around (τ∗, τ∗). For notational convenience we shall from now on assume

that τ∗ = 0. By using the notation:

si,j =
1

i!j!
∂i,js1(0; 0) (5.29)

we then may write

s1(τ; ν) = s1,0τ+ s0,1ν+ s2,0τ2 + s1,1τν+ s0,2ν2 + o(‖(τ, ν)‖2) ((τ, ν)→ (0, 0)),
(5.30)
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which, by using the equality s1(τ; τ) = 0, can be rewritten as

s1(τ; ν) = (ν − τ)(−s2,0τ + s0,2ν + o(‖(τ, ν)‖)) ((τ, ν) → (0, 0)). (5.31)

Under the assumption that (τ1, τ2, ν) 7→ s2(τ1, τ2; ν) is also a C2-function on a

neighbourhood of (0, 0, 0), the consistency conditions s2(τ1, τ2; ν) = s2(τ2, τ1; ν),

s2(τ1, τ2; τ1) = 0, and s2(0, 0; ν) = s1(0; ν) imply that we may write

s2(τ1, τ2; ν) = (ν − τ1)(ν − τ2)(s0,2 + o(1)) ((τ1, τ2, ν) → (0, 0, 0)). (5.32)

(Such degree of differentiability of (τ1, τ2, ν) 7→ s2(τ1, τ2; ν) does not have to

hold true in general. Away from (τ1, τ2) = (τ∗, τ∗), for community-dynamical

point attractors the issue is settled by invocation of the inverse function theorem.

However, this technique fails in (τ1, τ2) = (τ∗, τ∗). In a paper in preparation on

bifurcation analysis for adaptive dynamics [54] the first author of the current

text derives that for adaptive dynamics for Lotka-Volterra community dynamics,

the function (τ1, τ2, ν) 7→ s2(τ1, τ2; ν) is Ck−2 on a neighbourhood of (τ∗, τ∗, τ∗)

if (τ1, τ2) 7→ s1(τ1; τ2) is at least C4 and s2,0 + s0,2 6= 0.) It follows that in a

sufficiently small neighbourhood of (0, 0) the monomorphic fitness gradient at τ

generically can be approximated by −(s2,0 − s0,2)τ, and the dimorphic 1- and 2-

invasion fitness gradients at (τ1, τ2) generically can be approximated by s0,2(τ1− τ2)

and −s0,2(τ1 − τ2), respectively. The different possible adaptive dynamics in a

sufficiently small neighbourhood of an ess generically can be classified in terms of

s2,0 and s0,2, i.e., in case not both derivatives are equal to 0 nor satisfy s2,0± s0,2 = 0.

The following classifications for an ess can now be made in terms of s2,0 and

s0,2 in case both s0,2 6= 0 and s2,0 6= 0, and furthermore s0,2 ± s2,0 6= 0 holds, and is

graphically presented in Figure 5.4; see also [73] and [16, 18, 39, 70]. (If one of these

conditions is not satisfied adaptive dynamics in the neighbourhood of (τ∗, τ∗)

depends also on the coefficients of the third-order terms in the Taylor expansion

of the function (τ, ν)→ s1(τ; ν). The resulting scenarios will be discussed in the

paper on bifurcation analysis mentioned above ([54]).) An ess at 0 is a lESS if

s0,2 < 0. (5.33)

An ess at 0 is a convergence stable strategy (i.e., a strategy which is a local attractor

for monomorphic trait evolution) if

s2,0 > s0,2. (5.34)
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A convergence stable strategy at 0 which is a repeller for dimorphic trait evolution

is an Evolutionary Branching Point (EBP). Evolutionary branching occurs if

s2,0 > s0,2 > 0 (5.35)

holds. A monomorphic population whose trait value is sufficiently close to τ∗ then

by trait substitutions is driven towards the monomorphic singularity. Sufficiently

close to this singularity, invasion of a mutant population will lead to coexistence

of the resident and mutant population on a dimorphic c-attractor. Subsequent trait

substitutions will cause the coalition to evolve away from the singularity.

The adaptive dynamics determined by the constraints s2,0 > −s0,2 > 0 is such

that in the dimorphic region a community will be driven towards the narrow end

of the coexistence wedge. Eventually the width of the wedge will be sufficiently

small for a sufficiently large (but still small) mutational step to push the

community over the boundary of the coexistence region, making it monomorphic.

The monomorphic evolution which follows is directed towards the ess. A

sufficiently large mutation may cause the evolution to become dimorphic again,

thereby starting a cyclus of repeated monomorphic and dimorphic evolution close

to the singularity, in which the maximum distance to the singularity keeps

decreasing.

In case s2,0 and s0,2 are such that s0,2 > |s2,0| the ess is a repeller for

monomorphic as well as dimorphic trait evolution. In case s0,2 > −s2,0 > 0, a

mutational step may push dimorphic evolution over the boundary of the

coexistence region into the monomorphic region, thus reducing the number of

traits from 2 to 1, at least locally on the evolutionary timescale. This is an example

of so-called evolutionary pruning. (Note however that the dimorphic evolution

cannot have originated from a local evolutionary branching event since the ess is a

repeller for the monomorphic dynamics; the dimorphic evolution may be the

result of evolutionary pruning that originated in the trimorphic region.)

In all the other cases where there is a region of coexistence attached to the

monomorphic singularity, evolution in both the monomorphic as well as the

dimorphic case is away from the singularity. Adaptive dynamics thus models the

evolutionary process of the regular replacement of phenotypic trait values,

possibly interspersed with evolutionary branching and pruning events. In the
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latter case, when plotted against evolutionary time the occurring trait values take

the characteristic shape of a tree (see Figure 1.1).

Remark 8.

1. Note that in i.a. the case that A2 is not attached to A1 (which is the case

if s1 changes sign everywhere on the main diagonal in A1 ×A1, as in the

PIP in Figure 5.5), it may occur that a dimorphic coalition by evolutionary

dynamics is driven towards the boundary of A2. Close to the boundary a

sufficiently large (but still small) mutation may cause the coalition to become

monomorphic. Since in this case stepping back from A1 into A2 cannot

happen under small mutational steps, trait evolution will proceed in A1,

i.e., evolutionary pruning occurs. In case subsequent mutations in A2 drive

the adaptive dynamics to the 2-isocline (in the upper left part of A2 in

Figure 5.5(b)), it depends on the local dynamics at the 2-isocline how the

evolutionary process will proceed: a mutation in the 1-trait will bring the

dynamics closer to the boundary of A2, and thus to pruning, whereas a

mutation in the 2-trait may possibly cause evolutionary branching to occur

(although this is excluded in a neighbourhood of either one of the endpoints

(τ1, τ2) of the 2-isocline, since in such a point s2(τ1, τ2; ν) < 0 for a mutant

trait ν generated by τ2).

2. The case where evolution in A2 is towards the monomorphic singularity

and evolution in A1 is away from that singularity requires a TEP that in our

framework is excluded by the condition on non-self-intersection of the zero

set of the function z1 in (0, 0). Figure 5.6 shows a configuration of a TEP

that allows for this scenario, with s1(τ; ν) = (ν− τ)(ν + 0.8τ)(ν + 4τ). In

the left upper part of A2, sufficiently close to the monomorphic singularity

a mutation in either the τ1- or τ2-population will cause the community to

become monomorphic, and subsequent mutations will cause a dynamics in

the upwards direction in A1 (possibly first passing through the monomorphic

singularity, depending on where the monomorphic dynamics starts). Note

that the singularity in this configuration is unstable with respect to small

perturbations: generically a small perturbation will result in a dynamics

in the neighbourhood of a singularity that resembles one for a non-self-
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Figure 5.4: The classification of PIPs (a) and TEPS (b) in a sufficiently small
neighbourhood of an ess in terms of s2,0 and s0,2 in case both s2,0 6= 0
and s0,2 6= 0, and furthermore s2,0 ± s0,2 6= 0 holds.
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Figure 5.5: Figure (a) shows a PIP, and Figure (b) its corresponding TEP. In the
upper left part of A2 there is no 1-isocline, and in the lower right part
of A2 the 2-isocline is absent.

intersecting z1. [59] gives an example of an A2 attached to A1 which allows

for evolutionary pruning followed by a monomorphic dynamics evolving

towards an ESS.
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Figure 5.6: Figure (a) shows the PIP for s1(τ; ν) = (ν− τ)(ν + 0.8τ)(ν + 4τ) on
[−0.5, 0.5]2, and Figure (b) its corresponding TEP. In the upper left part
of A2 there is no 1-isocline; equivalently in the lower right part of A2
the 2-isocline is absent. The arrows on the main diagonal indicate the
direction of the monomorphic dynamics, and the arrows within A2
indicate the directions of 1-AD and 2-AD.

Since a TEP is determined by z1, which in turn depends on the functions r and

a, a change of parameters in these functions generically will cause a change in the

regions of coexistence. It thus may happen due to a change in parameters that
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a coalition goes extinct, or that an lESS turns into an invadable singularity. The

evolutionary implications of parameter changes at a monomorphic singularity are

studied in the bifurcation analysis paper [54].

Dimorphic and trimorphic dynamics

After this analysis of evolutionary dynamics at a monomorphic singularity we

shall now address the topic of adaptive dynamics in A2 away from a

monomorphic singularity. In particular we are interested in the dynamics in the

neighbourhood of a 1- or 2-isocline. Here the possibility may occur that the

evolutionary trajectory proceeds by entering the region of trimorphisms. The set

A2 is symmetric under reflection over the main diagonal in A1 ×A1, and

therefore we can restrict our attention to dimorphisms 〈τ1, τ2〉 ∈ A2 ∩V2,σ0 (with

V2,σ0 as introduced in Notation 1), i.e., to dimorphisms 〈τ1, τ2〉 ∈ A2 for which

τ1 < τ2 holds. For notational convenience we shall indicate the set A2 ∩ V2,σ0

simply by A2. We assume the factorisation

s2(τ1, τ2; ν) = (ν− τ1)(ν− τ2)z2(τ1, τ2; ν), (5.36)

with z2(τ1, τ2; ν) = z2(τ2, τ1; ν), and the zero set of z2 again having no

self-intersection.

As discussed earlier in this section (under the heading Dimorphic invasion

gradients), generically trait evolution in A2 is by trait substitutions as determined

by the signs of the invasion gradients Γ1(τ1, τ2) and Γ2(τ1, τ2), i.e, by the sign

pattern of the function s2 in the ν-direction at (τ1, τ2, τ1) ∈ 43
1,3 and at

(τ1, τ2, τ2) ∈ 43
2,3. This sign pattern in turn is determined by the function z2. For

deriving the directions of adaptive dynamics it is thus convenient to embed A2 in

the two hyperplanes 43
1,3 and 43

2,3. The factorisation (5.36) implies that

Γ1(τ1, τ2) = ∂0,0,1s2(τ1, τ2; τ1) = −(τ2 − τ1)z2(τ1, τ2; τ1), (5.37)

and

Γ2(τ1, τ2) = ∂0,0,1s2(τ1; τ2, τ2) = (τ2 − τ1)z2(τ1, τ2; τ2). (5.38)

Therefore, at a point (τ1, τ2, τ1) ∈ 43
1,3 (with τ1 < τ2) the gradient Γ1(τ1, τ2) is

positive (negative) if and only if z2(τ1, τ2; τ1) is negative (positive). Similarly, at

a point (τ1, τ2, τ2) ∈ 43
2,3 the gradient Γ2(τ1, τ2) is positive (negative) if and only
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if z2(τ1, τ2; τ2) is positive (negative). A trait substitution due to a mutation in the

1-trait then corresponds to a step in the 1-direction (or, more precisely, in the

1, 3-direction, i.e., the direction of the vector (1, 0, 1) in T3) in the embedding of

A2 in 43
1,3, in a process similar to stepping along the diagonal 42

1,2 due to trait

substitutions in the embedded A1. A trait substitution in the 2-trait corresponds

to a step in the 2, 3- or (0, 1, 1)-direction in the embedding of A2 in 43
2,3. The

evolutionary path followed by the dimorphic community in A2 then can be

represented in two ways: in 43
1,3 as well as in 43

2,3. A trait substitution 〈τ1, τ2〉 →
〈τ′1, τ2〉 is represented in 43

1,3 by stepping from (τ1, τ2, τ1) to (τ
′
1, τ2, τ

′
1), and in

43
2,3 by stepping from (τ1, τ2, τ2) to (τ

′
1, τ2, τ2). Similarly, the trait substitution

〈τ1, τ2〉 → 〈τ1, τ
′
2〉 in43

1,3 is indicated by the change from (τ1, τ2, τ1) into (τ1, τ
′
2, τ1),

and in 43
2,3 by the change from (τ1, τ2, τ2) into (τ1, τ

′
2, τ

′
2).

Trait substitutions in the 1-direction in A2 come to a halt either by crossing the

boundary of A2, or at the 1-isocline I1. At the boundary the evolutionary path

becomes monomorphic, and proceeds in A1. We focus here at the dynamics locally

at the 1-isocline. From (5.37) it follows that the embedding of I1 in 43
1,3 is obtained

as the intersection of the (2-dimensional) zero set of z2 with the embedding of A2

in 43
1,3; the embedded 2-isocline I2 is obtained as the intersection of the zero set of

z2 with the embedding of A2 in 43
2,3. Figure 5.7 illustrates this.

For convenience we shall denote the embedded isocline I1 in 43
1,3 also as I1, the

I2 embedded in 43
2,3 shall simply be denoted as I2. Locally at (τ1, τ2, τ1) ∈ I1, the

sign of the invasion fitness of a mutant trait ν generated by the τ1-population can

be read off from the sign pattern of the function s2 restricted to the 2-dimensional

slice

C1,3(τ1, τ2) = {(τ1 + τ, τ2, τ1 + ν)|τ, ν such that τ1 + τ, τ1 + ν ∈ T} (5.39)

attached to the point (τ1, τ2, τ1). (Note that the coordinates (τ, ν) form a local

coordinate system in this slice, for which the origin (0, 0) coincides with the point

of juncture (τ1, τ2, τ1).) In this slice the sign pattern of s2 essentially is a PIP for

the function {τ ∈ T|(τ1 + τ, τ2) ∈ A2} ×T → R, (τ, ν) 7→ s2(τ1 + τ, τ2; τ1 + ν),

and is determined by the zero set of the restriction of z2 to the slice. In the slice

information on the mutual invadability conditions s2(τ1 + τ, τ2; τ1 + ν) > 0 and

s2(τ1 + ν, τ2; τ1 + τ) > 0 can be obtained. In the second part of the paper we shall
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Figure 5.7: Figure (a) shows the zero set of z1 and the PIP obtained from it. The
regions were s1 is positive are indicated by a + sign, and the regions
were s1 is negative are indicated by a - sign (instead of by green and
red regions respectively, as in previous Figures). The zero set has been
divided into several coloured parts in such a way that parts of the same
color lie above each other with respect to the τ2-direction. Figure (b)
shows the TEP obtained from the PIP in Figure (a); the A2-region above
the main diagonal is enclosed by the coloured zero sets of the first
and second kind. In Figure (c) coloured points (τ1, τ2, τ3) are indicated
that belong to the zero set of z2 and that satisfy either s1(τ1; τ2) = 0
and s1(τ1; τ3) = 0, or s1(τ2; τ1) = 0 and s1(τ2; τ3) = 0. Such a point
(τ1, τ2, τ3) inherits the color code from (τ1, τ2) as shown in the PIP in
Figure (a). A2 can be embedded in 43

1,3 and 43
2,3. The intersection of

the zero set of z2 with these two embeddings yields the 1-isocline in
43

1,3 and the 2-isocline in 43
2,3.
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derive that if 〈τ1, τ2〉 (not necessarily on the 1-isocline) gets invaded by a mutant ν

generated by the τ1-population, coexistence on a trimorphism 〈τ1, τ2, ν〉 requires

that the mutual invadability conditions s2(τ1, τ2; ν) > 0 and s2(ν, τ2, τ1) > 0 are

being satisfied, but that these conditions are however not a priori sufficient. (In

particular, additional information on s2(τ1, ν; τ2) is needed. Since (τ1, ν, τ2) lies

close to 43
1,2, and (τ1, ν) generically is not a dimorphic attractor, in the next part

of the paper the function s2 will be extended to 43
1,2 and its neighbourhood in

order to give meaning to the expression s2(τ1, ν; τ2). More generally we formulate

conditions that are required to hold in order that invasion of a k-morphism

〈τ1, . . . , τk〉 by a mutant ν-population leads to coexistence on the k + 1-morphism

〈τ1, . . . , τk, ν〉. We then derive that these conditions are satisfied in case 〈τ1, . . . , τk〉
belongs to one of the isoclines Ii = {(τ1, . . . , τk)|∂0,...,0,1sk(τ1, . . . , τk; τi) = 0}, i =

1, . . . , k. The necessary conditions that we derive are however not sufficient to

conclude coexistence on the k + 1-morphism.)

In C1,3(τ1, τ2) the points (τ1 + τ, τ2, τ1 + ν) that satisfy the mutual invadability

conditions s2(τ1 + τ, τ2; τ1 + ν) > 0 and s2(τ1 + ν, τ2; τ1 + τ) > 0 can be represented

by means of the MIP derived from the PIP in this slice. (Note that, due to the

possible decentral location of the point (τ1, τ2, τ1) on the diagonal in C1,3(τ1, τ2),

this MIP by construction is restricted to points (τ1 + τ, τ2, τ1 + ν) for which τ and

ν satisfy the following constraint: |τ|, |ν| ≤ min(|τ1 −min(T)|, |τ1 −max(T)|).)
This MIP is bounded by those elements (τ1 + τ, τ2, τ1 + ν) ∈ C1,3(τ1, τ2) for which

either z2(τ1 + τ, τ2; τ1 + ν) = 0 or z2(τ1 + ν, τ2; τ1 + τ) = 0. The points in this MIP

that represent trimorphic attractors are denoted by A1,3(τ1, τ2):

A1,3(τ1, τ2) = C1,3(τ1, τ2) ∩A3. (5.40)

Note that A1,3(τ1, τ2) does not necessarily lie close to (τ1, τ2, τ1), and may be

empty for specific values of (τ1, τ2). The dynamics due to mutations in the 1- and

3-populations in A1,3(τ1, τ2) are restricted to the slice C1,3(τ1, τ2), whereas the

dynamics due to mutations in the 2-population is directed perpendicular to the

slice. By indicating the directions of the trimorphic evolution within A1,3(τ1, τ2)

a TEP is obtained for the restriction of s3 to C1,3(τ1, τ2). In case A1,3(τ1, τ2) is

attached to (τ1, τ2, τ1), the resulting TEP can again generically be classified in

terms of s2,0 and s0,2.
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With A1,3 we denote the union of the A1,3(τ1, τ2) for all the (τ1, τ2) belonging to

I1:

A1,3 =
⋃

(τ1,τ2)∈I1

A1,3(τ1, τ2). (5.41)

In case A1,3 is attached to I1 in a 1-singular point from which A1,3 can be entered

by invasion, adaptive dynamics proceeds in A3. In A3 there are three directions in

which the evolutionary path may proceed. In case the trimorphic dynamics is

directed away from the 1-isocline into A3, evolutionary branching from

dimorphisms into trimorphisms occurs. Depending on the mutants that occur and

the shape of A3, it may however happen that shortly (on the evolutionary

timescale) after entering A3 subsequent mutations drive the path again out of A3

to proceed in A2.

Similar conclusions can be made with respect to the dynamics locally at the

2-isocline I2. For invasion of 〈τ1, τ2〉 ∈ I2 by a mutant ν-population generated by

the τ2-population to lead to coexistence on a trimorphism 〈τ1, τ2, ν〉, it is required

that the mutual invadability conditions s2(τ1, τ2; ν) > 0 and s2(τ1, ν; τ2) > 0 hold.

These invadability conditions are again not a priori sufficient. Here in addition

information on s2(τ2, ν; τ1) is required, which is derived from the extension of s2

to 43
1,2. To 〈τ1, τ2〉 ∈ I2 we attach the slice

C2,3(τ1, τ2) = {(τ1, τ2 + τ, τ2 + ν)|τ, ν such that τ1 + τ, τ1 + ν ∈ T}, (5.42)

and by means of the MIP for the restriction of s2 to this slice the points (τ1, τ2 +

τ, τ2 + ν) that satisfy the mutual invadability conditions s2(τ1, τ2 + τ; τ2 + ν) > 0

and s2(τ1, τ2 + ν; τ2 + τ) > 0 can be obtained. This MIP is bounded by the elements

(τ1, τ2 + τ, τ2 + ν) for which either z2(τ1, τ2 + τ; τ2 + ν) = 0 or z2(τ1, τ2 + ν; τ2 +

τ) = 0 holds. With

A2,3(τ1, τ2) = C2,3(τ1, τ2) ∩A3 (5.43)

we denote the trimorphims in the slice C2,3(τ1, τ2). Indicating the directions of the

dynamics in A2,3(τ1, τ2) yields again a TEP. The direction of the dynamics due to

mutations in the 1-population now is perpendicular to the slice; the directions due

to mutations in the 2- and 3-populations are confined to A2,3(τ2, τ3). The set

A2,3 =
⋃

(τ1,τ2)∈I2

A2,3(τ1, τ2) (5.44)
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denotes the union of trimorphisms in the slices attached to the 2-isocline. Note

that by following the 1- or the 2-isocline the TEPs in the slices attached to them

generically will change, and the resident trait coordinates (τ1, τ2) therefore can be

considered as a bifurcation parameter for the local adaptive dynamics in the TEPs

along these isoclines.

Properties of A3 and Ak, k ≥ 4

Due to phenotypic equivalence it follows that in A1,3 we can confine ourselves to

those trimorphic attractors 〈τ1, τ2, τ3〉 for which τ1 < τ3 holds. Similarly, in A2,3

it is sufficient to assume that τ3 < τ2. Together with the restriction τ1 < τ2 that

we adopted earlier with respect to the dimorphic attractors, we conclude that we

may take τ1 < τ3 < τ2. Thus, (τ1, τ2, τ3) ∈ A3 lies above (τ1, τ2, τ1) ∈ 43
1,3 and

below (τ1, τ2, τ2) ∈ 43
2,3, with τ1 < τ2. We shall now point to some properties of

the adaptive dynamics in A3 in relation to the geometry of the zero set of z2. This

discussion is not intended to be exhaustive, nor is it a classification of the possible

dynamics that may occur in A3.

The area of trimorphisms A3 is composed of two parts, with one part attached

to A2 along (parts of) the 1-isocline, and the other part attached to A2 along (parts

of) the 2-isocline. It is composed of the trimorphisms within each of the slices

at the elements (τ1, τ2, τ1) of the 1-isocline in 43
1,3, and within each of the slices

at the elements (τ1, τ2, τ2) of the 2-isocline in 42
2,3, respectively. Note that for the

trimorphisms 〈τ1, τ2, τ3〉 in the slices attached to the 1-isocline we may, due to the

requirement of mutual invadability with respect to τ1 and τ3, restrict ourselves

to those trimorphisms for which the inequality τ1 < τ3 holds (besides τ1 < τ2).

Likewise we may assume for 〈τ1, τ2, τ3〉 in the slices attached to the 2-isocline that

τ3 < τ2 (and τ1 < τ2). The parts of A3 attached to the two isoclines intersect in

case a trimorphism in a slice attached to a point of the 1-isocline belongs also to

a slice attached to a point of the 2-isocline, and a trimorphism 〈τ1, τ2, τ3〉 in the

intersection may be taken to satisfy τ1 < τ2 < τ3. Within each slice generically

the directions of evolutionary dynamics at 〈τ1, τ2, τ3〉 due to a mutation in one of

the resident populations can again be derived from these directions at boundary

elements (τ1, τ2, τ3) for which s2(τ1, τ2; τ3) = 0 (in a way similar to that which
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yields information of the directions of dynamics at 〈τ1, τ2〉 by considering the

dynamics at boundary elements of A2).

Similar to adaptive dynamics in A1 and A2 as governed by the functions s1

and s2, respectively, trait evolution in Ak, k ≥ 3 is derived from the sign pattern

of the functions sk : Ak × T → R, (τ1, . . . , τk, ν) 7→ sk(τ1, . . . , τk; ν). Factorising

sk by the function zk as sk(τ1, . . . , τk; ν) = (ν− τ1) . . . (ν− τk)zk(τ1, . . . , τk; ν), we

obtain k isoclines. The i-isocline is obtained as the intersection of the zero set

of zk with 4k+1
i,k+1, and is the set of k-morphisms on which the i-invasion fitness

gradient Γi(τ1, . . . , τk) = ∂0,...,0,1sk(τ1, . . . , τk; τi) equals 0. To derive the direction of

phenotypic trait substitution in Ak, we embed Ak in the diagonal hyperplanes

4k+1
i,k+1. The local sign structures of sk at each of these hyperplanes determine

the directions of evolution due to mutations in the diverse i-traits, and mutual

invadability of the i-trait and a mutant it generates is governed by the sign structure

of sk at the i-isocline. The evolutionary steps possible at each of the hyperplanes

together determine the evolutionary path in Ak, and the local structures at the

isoclines determine the local conditions for a possible branching into Ak+1. If the

invasion gradients in Ak are such that they drive a coalition towards the boundary

of Ak, then close to this boundary a sufficiently large mutation may cause a trait

substitution out of Ak, resulting in evolutionary pruning by extinction of one (or

more) populations.

The second part of the paper provides for more mathematical detail for these

processes. In particular we derive necessary conditions for evolutionary branching

to occur. As a first step we therefore generalise the invasion function.

5.3 adaptive dynamics: the mathematical framework

Whereas the previous section could be read as an introduction to adaptive

dynamics, with adaptive dynamics based on Lotka-Volterra community dynamics

serving as an example to illustrate the concepts introduced, the discussion that

follows will become typical for Lotka-Volterra community dynamics.

For (τ1, . . . , τk) ∈ R(Tk), we assume the set of differential equations (5.1) for

LVk(τ1, . . . , τk) now to be defined not solely on Rk
+ but on the whole of Rk. (We

maintain however the assumption that the interaction matrix A(τ1, . . . , τk) is a
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B-matrix, which guarantees that the orbits of LVk(τ1, . . . , τk) remain uniformly

bounded in Rk
+; outside Rk

+ orbits may well wander off to infinity.) We then

extend the interpretation of the invasion fitness function sk(τ1, . . . , τk; .) beyond

(τ1, . . . , τk) ∈ Ak to (τ1, . . . , τk) ∈ R(Tk). By doing so we leave the realm where

the notions introduced so far have a biological meaning. This is however not a

mathematical exercise on its own, but eventually (see Corollary 7) will have its

consequences for the theory of phenotypic trait evolution: by stepping out of the

domain of biologically interpretable notions, we shall deduce what characterises

these notions (at least in the context of adaptive dynamics with an underlying

Lotka-Volterra community dynamics).

5.3.1 A generalisation of the invasion function and its consequences

Expression (5.9) for sk(τ1, . . . , τk; ν) is not restricted to 〈τ1, . . . , τk〉 ∈ Ak, and is

well-defined for any (τ1, . . . , τk) ∈ R(Tk). The solution of the k linear equations

r(τi) +
k

∑
j=1

a(τi, τj)xj = 0, i = 1, . . . , k, in this case does not necessarily have to be

positive in all its coordinates.

Notation 9. Let k ≥ 1. Similar to the case (τ1, . . . , τk) ∈ Rint(T
k), we denote for

(τ1, . . . , τk) ∈ R(Tk) the solution to the k linear equations r(τi) +
k

∑
j=1

a(τi, τj)xj = 0,

i = 1, . . . , k, by x̂(τ1, . . . , τk) = (x̂1(τ1, . . . , τk), . . . , x̂k(τ1, . . . , τk)).

Besides this extension of the notation of x̂(τ1, . . . , τk), we remind the reader that in

Definition 4 we already defined x̂(λ) = 0.

Definition 6. For k ≥ 1 the function sk : R(Tk) × T → R is defined by

sk(τ1, . . . , τk; ν) = r(ν) +
k

∑
i=1

a(ν, τi)x̂i(τ1, . . . , τk), with x̂(τ1, . . . , τk) as in

Notation 9.

Together with the definition of s0 (Definition 4), we thus have defined

sk : R(Tk)×T → R for any k ≥ 0. The mathematical properties of the invasion

fitness functions derived in the previous section in case k ≥ 1 extend

straightforwardly to the functions sk for all (τ1, . . . , τk) ∈ R(Tk) (with the

exception, already mentioned above, that now x̂(τ1, . . . , τk) does not have to
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belong to the interior of the community state space). In particular we have for

each (τ1, . . . , τk) ∈ R(Tk) and for all i ∈ {1, . . . , k} that sk(τ1, . . . , τk; τi) = 0 (see

also Remark 9 below). For any permutation σ ∈ Σk:

sk(τ1, . . . , τk; ν) = sk(τσ(1), . . . , τσ(k); ν). Furthermore, for any k, l ∈ N, l ≤ k and

{i1, . . . , il} ⊂ {1, . . . , k} a subset of distinct elements such that

(τ1, . . . , τk \ τi1 , . . . , τil) ∈ R(Tk−l), the notation sk−l(τ1, . . . , τk \ τi1 , . . . , τil ; ν)

makes sense.

Remark 9. The property that sk(τ1, . . . , τk; τi) = 0 for (τ1, . . . , τk) ∈ R(Tk) follows

immediately from Definition 6, and not from the proof of the same statement,

in Lemma 3, for the case that (τ1, . . . , τk) ∈ Rint(T
k). That proof is valid only for

orbits (xt)t≥0 restricted to a closed and bounded subset in the interior of Rk
+. This

confinement does not hold in general in case the state space is taken to be Rk.

Lemma 4. Let k ≥ 1, and l ∈ {1, . . . , k}. Let (τ1, . . . , τk) ∈ R(Tk), and let

{j1, . . . , jl} denote a subset of distinct elements of {1, . . . , k} such that

(τ1, . . . , τk \ τj1 , . . . , τjl) ∈ R(Tk−l). Suppose that for all α = 1. . . . , l:

x̂jα(τ1, . . . , τk) = 0, or that for all α = 1. . . . , l: sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τjα) = 0.

Then

1. if l = k, then for all j = 1, . . . , k: x̂j(τ1, . . . , τk) = x̂(λ) = 0;

2. if 1 ≤ l ≤ k− 1 and i ∈ {1, . . . , k} \ {j1, . . . , jl}:
x̂i(τ1, . . . , τk) = x̂i(τ1, . . . , τk \ τj1 , . . . , τjl);

3. sk(τ1, . . . , τk; ν) = sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; ν).

The statement of this Lemma is a straightforward consequence of the fact that

x̂(τ1, . . . , τk) is the unique solution of (5.4), and the definition of the functions

sk and sk−l. The third conclusion can be interpreted as being a consequence of

reduction by absence, although in the present context the reduced coalition of

traits (τ1, . . . , τk \ τj1 , . . . , τjl) does not have to refer to a c-attractor, but simply to

a trait combination for which the function sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; .) is defined.

Lemma 7, which we state below, places this Lemma in a broader context.

Example 2. From expression (5.16) it follows that at a boundary point (τ1, τ2)

of A2 ∩ (A1 ×A1) for which s1(τ1; τ2) = 0 and s1(τ2, τ1) > 0, x̂1(τ1, τ2) > 0 and
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x̂2(τ1, τ2) = 0. The previous Lemma then implies that at this point x̂2(τ1, τ2) =

x̂(τ1), and s2(τ1, τ2; ν) = s1(τ1, ν). The latter equality also follows from (5.17) by

substituting s1(τ1; τ2) = 0. A similar statement holds for points (τ1, τ2) for which

s1(τ1; τ2) > 0 and s1(τ2; τ1) = 0. A point (τ
′
1, τ

′
2) at which both s1(τ

′
1; τ2

′) = 0

and s1(τ
′
2; τ

′
1) = 0 is degenerate: the determinant of the interaction determinant

A(τ
′
1, τ2

′) equals 0. In case τ
′
1 6= τ

′
2, in such a point lim

(τ1,τ2)→(τ
′
1,τ′2)

s2(τ1, τ2; .) does not

exist. This can be seen by approaching (τ
′
1, τ

′
2) along the boundary points (τ1, τ2)

for which s1(τ1; τ2) = 0 and s1(τ2; τ1) > 0. The limit then equals the function

s1(τ1; .). Approaching the degeneracy along the boundary points (τ1, τ2) for which

s1(τ1; τ2) > 0 and s1(τ2; τ1) = 0 yields as its limit the function s1(τ2; .). Similar

discontinuities hold at degenerate k-morphisms for k > 2, as we shall derive.

The functions sk are now further generalised.

Definition 7. Let k ≥ 1, and let (τ1, . . . , τk) ∈ Tk, ν ∈ T. We define the (r, A)-

invasion fitness matrix of LVk(τ1, . . . , τk) with regard to ν to be the (k + 1)× (k + 1)

matrix

a(τ1, τ1) a(τ1, τ2) · · · a(τ1, τk) r(τ1)
a(τ2, τ1) a(τ2, τ2) a(τ2, τ3) · · a(τ2, τk) r(τ2)
· · · · · · ·
· · · · · · ·
· · · · · · ·

a(τk, τ1) · · · a(τk, τk−1) a(τk, τk) r(τk)
a(ν, τ1) · · · · a(ν, τk) r(ν)


. (5.45)

The reason to call this matrix ’invasion fitness matrix’ will become clear after

Lemma 5.

Notation 10. The (r, A)-invasion fitness matrix of LVk(τ1, . . . , τk) with regard to ν

will for short be denoted by Fk(τ1, . . . , τk; ν). It may be abbreviated to

Fk(τ; ν) =

(
A(τ) r(τ)T

a(ν, τ) r(ν)

)
,

with τ denoting the vector of trait values (τ1, . . . , τk), A(τ) the interaction matrix

A(τ1, . . . , τk), r(τ)T the transpose of the (row)vector r(τ) = (r(τ1), . . . , r(τk)), and

a(ν, τ) the vector (a(ν, τ1), . . . , a(ν, τk)).
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Invasion fitness matrices are now used to define functions Sk.

Definition 8. Let k ≥ 1. The function Sk : Tk ×T→ R is defined as:

Sk(τ1, . . . , τk; ν) = |Fk(τ1, . . . , τk; ν)|. (5.46)

In addition we define S0 = s0.

Before we proceed with a number of straightforward properties we introduce

the following notation.

Notation 11. Let M denote a matrix. With M(i,j) we denote the matrix obtained

from the matrix M by deleting its i-th row and j-th column.

Corollary 6. Let k ≥ 1.

1. The functions Sk inherit the differentiability properties of the functions r and

a.

2. For all σ ∈ Σk: Sk(τ1, . . . , τk; ν) = Sk(τσ(1), . . . , τσ(k); ν).

3.

Sk(τ1, . . . , τk; ν) = r(ν)|A(τ1, . . . , τk)| −
k

∑
i=1

a(ν, τi)Sk−1(τ1, . . . , τk \ τi; τi).

(5.47)

4. For each i ∈ {1, . . . , k}: Sk(τ1, . . . , τk; τi) = 0, and consequently

r(τi)|A(τ1, . . . , τk)| =
k

∑
j=1

a(τi, τj)Sk−1(τ1, . . . , τk \ τj; τj). (5.48)

5. If (τ1, . . . , τk) ∈ 4k, then for all ν ∈ T: Sk(τ1, . . . , τk; ν) = 0.

6. If for all i ∈ {1, . . . , k}: Sk−1(τ1, . . . , τk \ τi; τi) = 0, and for at least one

j ∈ {1, . . . , k}: r(τj) 6= 0, then |A(τ1, . . . , τk)| = 0, and consequently for all

ν ∈ T: Sk(τ1, . . . , τk; ν) = 0.

The first two of these statements are trivially obtained. The third one follows

from developing |Fk(τ1, . . . , τk; ν)| with regard to the elements of the (k + 1)-th row,

and permuting the rows in the submatrices Fk−1(τ1, . . . , τk; ν)(k+1,i), i = 1, . . . , k, to
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bring the i-th row to the last position without changing the order of the remaining

rows. In the fourth statement the first property follows from the fact that in the

fitness matrix Fk(τ1, . . . , τk; τi) the i-th and (k + 1)-th row are identical. The second

property then follows from the first one in combination with the third statement.

The fifth statement follows from the fact that if (τ1, . . . , τk) ∈ 4k, the fitness matrix

Fk(τ1, . . . , τk; ν) has at least two identical rows among the first k rows, for any value

of ν ∈ T. The two properties in the last statement follow from the third and fourth

statement.

We now mention several implications of the previous Corollary. The third

statement in Corollary 6 implies the following expression for non-trivial

equilibrium densities.

Lemma 5. Let k ≥ 1 and (τ1, . . . , τk) ∈ R(Tk). The solution x̂(τ1, . . . , τk) =

(x̂1(τ1, . . . , τk), . . . , x̂k(τ1, . . . , τk)) of the k linear equations

r(τi) +
k

∑
j=1

a(τi, τj)xj = 0, i = 1, ..., k,

satisfies:

x̂i(τ1, . . . , τk) = −
Sk−1(τ1, . . . , τk \ τi; τi)

|A(τ1, . . . , τk)|
. (5.49)

Consequently,

1.

sk(τ1, . . . , τk; ν) = r(ν)−
k

∑
i=1

a(ν, τi)
Sk−1(τ1, . . . , τk \ τi; τi)

|A(τ1, . . . , τk)|
. (5.50)

2.

Sk(τ1, . . . , τk; ν) = |A(τ1, . . . , τk)|sk(τ1, . . . , τk; ν). (5.51)

The last expression in this Lemma justifies the name ‘invasion fitness matrix’ for

the matrix Fk(τ1, . . . , τk; ν) on R(Tk), since

sk(τ1, . . . , τk; ν) =
Sk(τ1, . . . , τk; ν)

|A(τ1, . . . , τk)|
=
|Fk(τ1, . . . , τk; ν)|
|A(τ1, . . . , τk)|

. (5.52)

As a consequence of expression (5.52) we now can also extend the notion of

invasion fitness gradient from Ak to R(Tk): for (τ1, . . . , τk), and for i = 1, . . . , k,
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the i-invasion fitness gradient Γi(τ1, . . . , τk) equals ∂0,...,0,1sk(τ1, . . . , τk; τi). In R(Tk),

the i-isocline then is defined as to consist of those (τ1, . . . , τk) ∈ R(Tk) for which

Γi(τ1, . . . , τk) equals 0.

Lemma 5 implies

Lemma 6. Let k ≥ 1 and let (τ1, . . . , τk) ∈ R(Tk). The equations (5.1) allow for a

unique interior rest point in the community state space if and only if

for all i ∈ {1, . . . , k} :
Sk−1(τ1, . . . , τk \ τi; τi)

|A(τ1, . . . , τk)|
< 0. (5.53)

In other words, for k ≥ 1 the inequalities (5.53) are necessary conditions for

〈τ1, . . . , τk〉 to belong to Ak. Stated for k + 1 instead of k, this result together

with (5.51) has the following implication for phenotypic trait evolution:

Corollary 7. Let k ≥ 1 and let 〈τ1, . . . , τk〉 ∈ Ak. Suppose a mutant population

with phenotypic trait value ν = τk+1 emerges from population i with positive

fitness. For invasion of 〈τ1, . . . , τk〉 to lead to coexistence on a c-attractor

〈τ1, . . . , τk, τk+1〉 ∈ Ak+1, the following conditions are necessary:

1. For all j = 1, . . . , k:
Sk(τ1, . . . , τk+1 \ τj; τj)

|A(τ1, . . . , τk+1)|
< 0, and therefore, for all j =

1, . . . , k: |A(τ1, . . . , τk+1 \ τj)| as well as sk(τ1, . . . , τk+1 \ τj; τj) must be unequal

to 0, and sk(τ1, . . . , τk+1 \ τj; τj) > 0 if and only if sign(|A(τ1, . . . , τk+1)|) =

−sign(|A(τ1, . . . , τk+1 \ τj)|);

2. sign(|A(τ1, . . . , τk+1)|) = −sign(|A(τ1, . . . , τk)|).

Since in the previous Corollary (under the assumption of small mutational steps)

sign(|A(τ1, . . . , τk, τk+1 \ τi)|) = sign(|A(τ1, . . . , τk)|), it follows that for invasion

of 〈τ1, . . . , τk〉 to lead to coexistence on 〈τ1, . . . , τk, τk+1〉 ∈ Ak+1 in particular

sk(τ1, . . . , τk, τk+1 \ τi; τi) > 0 must hold.

At the end of the first part of this paper we argued that the adaptive-dynamical

scenario that occurs due to the generation of mutants by population i on an

attractor 〈τ1, . . . , τk〉 on the i-isocline depends on the local configuration of the

zero set of the function zk at (τ1, . . . , τk, τi) ∈ 4k+1
i,k+1. The Corollary shows that

necessary conditions for the coexistence of mutants and residents are obtained
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from the mutual invasion fitnesses sk(τ1, . . . , τk; τk+1) and sk(τ1, . . . , τk, τk+1 \ τi; τi)

in the Ci,k+1(τ1, . . . , τk+1)-slice. These conditions have to be combined with

conditions on the signs of the determinants |A(τ1, . . . , τk+1)| and

|A(τ1, . . . , τk+1 \ τj)|, and conditions on the signs of the expressions

sk(τ1, . . . , τk+1 \ τj; τj), with j ∈ {1, . . . , k} \ {i}. For these values of j the points

(τ1, . . . , τk+1 \ τj) as well as (τ1, . . . , τk+1) lie close to diagonal hyperplanes, on

which the determinants become 0 and on which sk(τ1, . . . , τk+1 \ τj; τj) is not

defined. In the next subsection we shall derive the required signs by means of

Lemma 7, that we state after the following Example.

Example 3.

1. From expression (5.53) and the assumption that for all τ ∈ T : a(τ, τ) < 0

(Assumption 2) it follows that necessary conditions for the existence of an

attractor 〈τ1, τ2〉 ∈ A2 are:

s1(τ1; τ2)

|A(τ1, τ2)|
> 0,

s1(τ2; τ1)

|A(τ1, τ2)|
> 0. (5.54)

With the results from Example 1 these necessary conditions can be sharpened

to the following necessary and sufficient ones:

s1(τ1; τ2) > 0, s1(τ2; τ1) > 0 and |A(τ1, τ2)| > 0. (5.55)

(By reversing all inequality signs in (5.55), the necessary conditions in (5.54)

are also satisfied, but a unique interior unstable equilibrium is obtained

rather than an interior attractor.)

2. With Corollary 7 the necessary and sufficient conditions mentioned in

Remark 5.2, for the existence of a globally attracting interior equilibrium for

a predator-prey model, can now be rewritten as |A(τ1, τ2)| > 0, s1(τ2; τ1) > 0

and s1(τ2; τ1) > 0, although the predator dynamics has no c-attractor.

The following lemma for generalised invasion fitness functions puts the second

statement of Lemma 4 in a more general context.
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Lemma 7.

1. Let k ≥ 2, and let (τ1, . . . , τk) ∈ R(Tk). Let l ∈ {1, . . . , k − 1}, and let

{j1, . . . , jl} denote a subset of distinct elements of {1, . . . , k} such that

j1 < · · · < jl and (τ1, . . . , τk \ τj1 , . . . , τjl) ∈ R(Tk−l). Then for all

i ∈ {1, . . . , k} \ {j1, . . . , jl}:

|A(τ1, . . . , τk \ τj1 , . . . , τjl)| Sk−1(τ1, . . . , τk \ τi; τi) −

|A(τ1, . . . , τk)| Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τi; τi) =

l

∑
α=1

(−1)jα−i|A(τ1, . . . , τk)(jα,i)|Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τjα). (5.56)

2. Let k ≥ 1, and let (τ1, . . . , τk) ∈ R(Tk). Furthermore, for l ∈ {1, . . . , k}
let {j1, . . . , jl} denote a subset of distinct elements of {1, . . . , k} such that

j1 < · · · < jl and (τ1, . . . , τk \ τj1 , . . . , τjl) ∈ R(Tk−l). Then for all τk+1 ∈ T:

|A(τ1, . . . , τk \ τj1 , . . . , τjl)| Sk(τ1, . . . , τk; τk+1) −

|A(τ1, . . . , τk)| Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τk+1) =

l

∑
α=1

(−1)jα−(k+1)|A(τ1, . . . , τk+1)(jα,k+1)|Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τjα).

(5.57)

A proof of this theorem is given in Appendix 5.5.1. If both determinants

|A(τ1, . . . , τk)| 6= 0 and |A(τ1, . . . , τk \ τj1 , . . . , τjl)| 6= 0, then it follows from (5.56)

that

Sk−1(τ1, . . . , τk \ τi; τi)

|A(τ1, . . . , τk)|
−

Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τi; τi)

|A(τ1, . . . , τk \ τj1 , . . . , τjl)|
=

l

∑
α=1

(−1)jα−i |A(τ1, . . . , τk)(jα,i)|
|A(τ1, . . . , τk)|

Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τjα)

|A(τ1, . . . , τk \ τj1 , . . . , τjl)|
, (5.58)
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i.e., by (5.49) and (5.52),

x̂i(τ1, . . . , τk) = x̂i(τ1, . . . , τk \ τj1 , . . . , τjl) +

l

∑
α=1

(−1)jα−i−1 |A(τ1, . . . , τk)(jα,i)|
|A(τ1, . . . , τk)|

sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τjα). (5.59)

This expression relates the equilibrium density of population i for the set of

equations (5.4) for (τ1, . . . , τk) to that of the same population for the reduced

collection (τ1, . . . , τk \ τj1 , . . . , τjk). We call (5.59) the closed relation for (τ1, . . . , τk)

and (τ1, . . . , τk \ τj1 , . . . , τjk) with respect to i.

Similarly we obtain from (5.57) that if |A(τ1, . . . , τk)| 6= 0 and |A(τ1, . . . , τk \
τj1 , . . . , τjl)| 6= 0, then

sk(τ1 . . . , τk; τk+1) = sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τk+1) +

l

∑
α=1

(−1)jα−(k+1) |A(τ1, . . . , τk+1)(jα,k+1)|
|A(τ1, . . . , τk)|

sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τjα). (5.60)

In biological terms this expression relates invasion fitness on a c-attractor

〈τ1, . . . , τk〉 to invasion fitness on a c-attractor 〈τ1, . . . , τk \ τj1 , . . . , τjl〉. We

call (5.60) the open relation for (τ1, . . . , τk) and (τ1, . . . , τk \ τj1 , . . . , τjk).

From (5.59) and (5.60) it follows that if (in addition to the two constraints

|A(τ1, . . . , τk)| 6= 0 and |A(τ1, . . . , τk \ τj1 , . . . , τjl)| 6= 0) for each α = 1, . . . , l:

sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τjα) = 0, then

x̂i(τ1, . . . , τk) = x̂i(τ1, . . . , τk \ τj1 , . . . , τjl),

and

sk(τ1, . . . , τk; τk+1) = sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τk+1),

i.e., we obtain the statement of Lemma 4 for this case.
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The following lemma generalises expression (5.18); it states how sk can be

expressed in terms of the function s1.

Lemma 8. Let r have isolated zeros. Then sk : R(Tk)×T→ R satisfies:

sk(τ1, . . . , τk; ν) =

∣∣∣∣∣∣∣∣∣∣∣∣



0 s1(τ1; τ2) · · s1(τ1; τk) s1(τ1; ν)
s1(τ2; τ1) 0 · · s1(τ2; τk) s1(τ2; ν)
· · · · · ·
· · · · · ·

s1(τk; τ1) s1(τk; τ2) · · 0 s1(τk; ν)
r(τ1) r(τ2) · · r(τk) r(ν)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0 s1(τ1; τ2) · · s1(τ1; τk) 1
s1(τ2; τ1) 0 · · s1(τ2; τk) 1
· · · · · ·
· · · · · ·

s1(τk; τ1) s1(τk; τ2) · · 0 1
r(τ1) r(τ2) · · r(τk) 1



∣∣∣∣∣∣∣∣∣∣∣∣

. (5.61)

The proof of this Lemma makes use of generalised invasion functions, and will

be given in Appendix 5.5.2. (Note that the property of isolated zeros of r has

already been stated in Assumption 1. We mention it here again as a mathematical

necessity: if r is allowed to be identical to 0 on a neighbourhood, then there exists

a neighbourhood of (τ1, . . . , τk) ∈ R(Tk) on which both the numerator and the

denominator of (5.61) become equal to 0. In the case of isolated zeros of r, zero

values in numerator and denominator can however be canceled by means of

l’Hôpital’s argument.)

5.3.2 A closer look at the mathematical conditions for coexistence

We now take a closer look at Corollary 7. Let k ≥ 1, and assume that a mutant

population with trait value ν = τk+1 is generated by population i, with trait

value τi, on 〈τ1, . . . , τk〉 ∈ Ak which belongs to the i-isocline, i.e., Γi(τ1, . . . , τk) = 0.

Without loss of generality we may assume that i = k, and we shall do so here. From

Corollary 7 it follows that in case the mutant trait has a positive invasion fitness

sk(τ1, . . . , τk; τk+1) > 0, then for invasion to lead to coexistence of the resident

populations together with the mutant population on 〈τ1, . . . , τk, τk+1〉 ∈ Ak+1 it is

required that
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1. for all j = 1, . . . , k− 1: x̂j(τ1, . . . , τk+1) > 0, i.e.

Sk(τ1, . . . , τk+1 \ τj; τj)

|A(τ1, . . . , τk+1)|
< 0; (5.62)

2.

sk(τ1, . . . , τk+1 \ τk; τk) > 0; (5.63)

3.

sign(|A(τ1, . . . , , τk, τk+1)|) = −sign(|A(τ1, . . . , τk)|). (5.64)

We shall analyse these requirements in more detail. First we focus on the

requirements as expressed by (5.63) and (5.64).

Lemma 9.

1. The function Tk+1 → R: (τ1, . . . , τk, τk+1) 7→ |A(τ1, . . . , τk, τk+1)| satisfies

∂0,...,0,1|A(τ1, . . . , τk, τk)| = 0.

2. Let 〈τ1, . . . , τk〉 ∈ Ak belong to the k-isocline, and let a mutant population

with trait value ν = τk+1 be generated by population k. Then the condition

∂0,...,0,2sk(τ1, . . . , τk; τk) + ∂0,...,0,2,0sk(τ1, . . . , τk−1, τk; τk) > 0 implies that for

values τk+1 sufficiently close to τk:

sign(|A(τ1, . . . , τk, τk+1)|) = −sign(|A(τ1, . . . , τk)|).

The proof of this Lemma is given in Appendix 5.5.3

It thus follows that if 〈τ1, . . . , τk〉 lies on the i-isocline, then the third necessary

condition as mentioned in Corollary 7 generically is implied by the mutual invasion

condition sk(τ1, . . . , τk; τk+1) > 0 and sk(τ1, . . . , τk, τk+1 \ τi; τi) > 0.

We now turn to necessary condition (5.62). Since τk+1 lies close to τk, for j ∈
{1, . . . , k− 1} the point (τ1, . . . , τk, τk+1 \ τj; τj) lies close to 4k+1

k−1,k, on which the

numerator of
Sk(τ1, . . . , τk+1 \ τj; τj)

|A(τ1, . . . , τk+1)|
equals 0 (Corollary 6.5). Also, (τ1, . . . , τk, τk+1)

lies close to 4k+1
k,k+1, on which |A(τ1, . . . , τk+1)| equals 0. We determine the sign

of
Sk(τ1, . . . , τk+1 \ τj; τj)

|A(τ1, . . . , τk+1)|
by applying a l’Hôpital argument to this fraction. By

Lemma 9.1 we have that ∂0,....,0,1|A(τ1, . . . , τk, τk)| = 0.

Lemma 10. Let j ∈ {1, . . . , k− 1}. Then ∂0,...,0,1,0Sk(τ1, . . . , τk, τk \ τj; τj) = 0.
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Appendix 5.5.4 gives a proof for this Lemma. Since both

∂0,...,0,1,0Sk(τ1, . . . , τk, τk \ τj; τj) = 0 and ∂0,....,0,1|A(τ1, . . . , τk, τk)| = 0 we do not get

insight in how
Sk(τ1, . . . , τk+1 \ τj; τj)

|A(τ1, . . . , τk+1)|
behaves for values of τk+1 close to τk, so we

take the second-order derivatives with respect to τk+1 at τk+1 = τk in numerator

and denominator.

Lemma 11. Let 〈τ1, . . . , τk〉 ∈ Ak belong to the k-isocline.

1. For j ∈ {1, . . . , k}:

sign
(
∂0,...,0,1Sk−1(τ1, . . . , τk \ τj; τk)

)
=

− sign
(
(−1)j−k d|A(τ1, . . . , τk+1)(j,k+1)|

dτk+1

∣∣∣
τk+1=τk

)
. (5.65)

2. Let j ∈ {1, . . . , k− 1}. Let in addition

∂0,...,0,2sk(τ1, . . . , τk; τk) + ∂0,...,0,2,0sk(τ1, . . . , τk−1, τk; τk) > 0 hold. Then

∂0,...,0,2,0Sk(τ1, . . . , τk, τk \ τj; τj)

∂0,...,0,2|A(τ1, . . . , τk, τk)|
< 0. (5.66)

We prove the statements in this Lemma in Appendix 5.5.5. With this Lemma we

can formulate the following Corollary.

Corollary 8. Let k ≥ 1 and let 〈τ1, . . . , τk〉 ∈ Ak belong to the i-isocline. Suppose

a mutant population with phenotypic trait value ν = τk+1 emerges from

population i with positive fitness. If both

∂0,...,0,2,0,...,0sk(τ1, . . . , τi−1, τi, τi+1, . . . , τk; τi) > 0 and ∂0,...,0,2sk(τ1, . . . , τk; τi) > 0

hold, then for τk+1 sufficiently close to τi the conditions mentioned in Corollary 7

necessary for invasion to lead to coexistence on 〈τ1, . . . , τk, τk+1〉 ∈ Ak+1 are

satisfied.
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5.3.3 Permanence

In this subsection we discuss permanence in the context of adaptive dynamics. We

start with the following definition on s-permanence, inspired by Exercise 13.6.3

in [49].

Definition 9. Let (τ1, . . . , τk) ∈ Tk. The Lotka-Volterra community-dynamical

system LVk(τ1, . . . , τk) with uniformly bounded orbits is called s-permanent if there

exists a vector p ∈ int(Rk
+) (depending on (τ1, . . . , τk)) such that

∑
i;xi=0

pi(r(τi) + (A(τ1, . . . , τk)x)i) > 0, (5.67)

with summation over all boundary rest points x.

The motivation for introducing the expression s-permanence for Lotka-Volterra

models that satisfy the properties as stated in the previous definition follows from

equation (5.68) below.

Corollary 9. Let LVk(τ1, . . . , τk) be s-permanent. Then LVk(τ1, . . . , τk) is permanent.

This Corollary follows from Theorem 13.6.1 and Exercise 13.6.3 in [49].

In treating permanence we shall restrict ourselves to so-called fully subregular

Lotka-Volterra systems, which are defined as follows.

Definition 10. Let (τ1, . . . , τk) ∈ Tk. The Lotka-Volterra community-dynamical

system LVk(τ1, . . . , τk) is called fully subregular if for each l = 1, . . . , k and each

subset {i1, . . . , il} ⊂ {1, . . . , k} (with the i1, . . . , il mutually distinct) the

determinant of the principal minor A(τ1, . . . , τk \ τi1 , . . . , τil) satisfies

|A(τ1, . . . , τk \ τi1 , . . . , τil)| 6= 0.

Assuming that a Lotka-Volterra system is fully subregular guarantees that if, for

l ∈ {1, . . . , k} and {i1, . . . , il} ⊂ {1, . . . , k}, the boundary component bdi1,...,il(R
k
+)

contains a rest point for LVk−l(τ1, . . . , τk \ τi1 , . . . , τil), then this rest point is

unique.

For a fully subregular Lotka-Volterra model (with uniformly bounded orbits), the

notion of s-permanence can be expressed in terms of invasion fitness functions as

follows:



150 adaptive dynamics

a fully subregular Lotka-Volterra model LVk(τ1, . . . , τk) is s-permanent if there

exist k (or less) positive numbers p1, . . . , pk such that for each l ∈ {1, . . . , k} and

each subset {i1, . . . , il} ⊂ {1, . . . , k} (with mutually distinct elements i1, . . . , il) for

which x̂(τ1, . . . , τk \ τi1 , . . . , τil) ∈ int(bdi1,...,il(R
k
+)) exists, the inequality

l

∑
α=1

piα sk−l(τ1, . . . , τk \ τi1 , . . . , τil ; τiα) > 0 (5.68)

holds.

Since permanence of LVk(τ1, . . . , τk) implies the existence of a c-attractor

〈τ1, . . . , τk〉 and therefore also the existence of a unique interior rest point for

LVk(τ1, . . . , τk), it follows that for a fully subregular and s-permanent

LVk(τ1, . . . , τk), not only all principal minors of A(τ1, . . . , τk) have a non-zero

determinant but also A(τ1, . . . , τk) itself.

Lemma 12. Let (τ1, . . . , τk) ∈ Tk be such that LVk(τ1, . . . , τk) is fully subregular

and s-permanent. Then there exists a neighbourhood U of (τ1, . . . , τk) such that

for each (τ′1, . . . , τ′k) ∈ U, LVk(τ
′
1, . . . , τ′k) is fully subregular and s-permanent.

A proof of this Lemma is given in Appendix 5.5.6

Corollary 10. Let LVk(τ1, . . . , τk) be a fully subregular and s-permanent Lotka-

Volterra model. If ∂0,...,0,1sk(τ1, . . . , τk; τi) 6= 0, then for τk+1 sufficiently close to

τi and such that sk(τ1, . . . , τk; τk+1) > 0, LVk(τ1, . . . , τi−1, τk+1, τi+1, . . . , τk) is fully

subregular and s-permanent.

Lemma 13. Let LVk(τ1, . . . , τk) be fully subregular and s-permanent. In addition,

let (τ1, . . . , τk) belong to the i-isocline, and let both

∂0,...,0,2,0,...,0sk(τ1, . . . , τi−1, τi, τi+1, . . . , τk; τi) > 0 and ∂0,...,0,2sk(τ1, . . . , τk; τi) > 0.

Then for τk+1 ∈ T sufficiently close to τi and such that LVk+1(τ1, . . . , τk, τk+1) is

fully subregular, LVk+1(τ1, . . . , τk, τk+1) is s-permanent.

The assumption that LVk+1(τ1, . . . , τk, τk+1) is fully subregular is hardly a

constraint on the applicability of this lemma. It is being made to guarantee that,

for τk+1 6= τi, in particular the determinants |A(τ1, . . . , τk, τk+1 \ τi1 , . . . , τil)|, with
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{1, . . . , il} ⊂ {1, . . . , k + 1} \ {i, k + 1}, are non-zero, which generically will be the

case. Appendix 5.5.7 gives a proof of this Lemma.

Corollary 11. Let LVk(τ1, . . . , τk) be fully subregular and s-permanent. In

addition, let 〈τ1, . . . , τk〉 belong to the i-isocline, and let both

∂0,...,0,2,0,...,0sk(τ1, . . . , τi−1, τi, τi+1, . . . , τk; τi) > 0 and ∂0,...,0,2sk(τ1, . . . , τk; τi) > 0.

Suppose a mutant population with trait value ν = τk+1 emerges from population i

on 〈τ1, . . . , τk〉, with positive fitness. Then for τk+1 sufficiently close to τi, invasion

will lead to coexistence on 〈τ1, . . . , τk+1〉 ∈ Pk+1.

The s-permanence of a Lotka-Volterra model LVk(τ1, ,̇τk) does not necessarily

imply s-permanence of a submodel LVk−l(τ1, . . . , τk \ τi1 , . . . , τil), for a {i1, . . . , il} ⊂
{1, . . . , k}, and l ∈ {1, . . . , k}. As a consequence, evolutionary pruning caused by

the invasion of a mutant population does not necessarily maintain s-permanence.

Corollary 12. Consider the collection of Lotka-Volterra models that are fully

subregular.

1. An evolutionary path which starts in a trait combination whose

corresponding Lotka-Volterra model is s-permanent and which consists of

sufficiently small mutational steps will end in a s-permanent Lotka-Volterra

model.

2. To reach a non-s-permanent Lotka-Volterra model from a s-permanent Lotka-

Volterra model by means of a sequence of mutational steps requires at least

one sufficiently large mutational step.

Remark 10. Note that the mutational step size required to maintain s-permanence

due to trait substitution by or coexistence with the invading mutant population

depends on the resident community, and does not need to hold uniformly for an

infinite number of mutational steps.

5.4 discussion

On the previous pages we have analysed scalar phenotypic trait evolution

generated by the occurrence of successful mutants in a Lotka-Volterra
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community-dynamical system of populations that reside on a c-attractor. Many of

the results obtained depend on the interaction matrix for the Lotka-Volterra

community dynamics. We derived necessary conditions that must be satisfied for

invasion of 〈τ1, . . . , τk〉 ∈ Ak by a mutant population with trait value τk+1 ≈ τk to

lead to coexistence on 〈τ1, . . . , τkτk+1〉 ∈ Ak+1 (Corollary 7) and criteria that

guarantee that these conditions are satisfied (Corollary 8). In addition we showed

that in the family of fully subregular Lotka-Volterra models, sufficiently small

mutational steps maintain permanence. As a consequence, invasion of a c-attractor

〈τ1, . . . , τk〉 for a fully subregular and s-permanent LVk(τ1, . . . , τk) by a mutant

population with trait value τk+1 sufficiently close to τi will lead to a coexistence on

〈τ1, . . . , τk, τk+1〉 ∈ Pk+1 if 〈τ1, . . . , τk〉 belongs to the i-isocline and both

∂0,...,0,2,0,...,0sk(τ1, . . . , τi−1, τi, τi+1, . . . , τk; τi) > 0 and ∂0,...,0,2sk(τ1, . . . , τk; τi) > 0

(Corollary 11).

It must be noted here that the classification of the monomorphic ess is done

for infinitesimally small mutational steps. For an ess that allows for evolutionary

branching this process will also occur for small mutational steps when the resident

community is not present exactly in the ess but near to it. In that case a sufficiently

large mutational step allows to step from A1 into A2, as follows from Fig. 5.4.

Also, evolutionary pruning will occur close to the boundary of A2 to which the

evolutionary traject approaches in case a sufficiently large mutational step occurs.

In the same vein the necessary conditions for coexistence that have been derived

must be understood. As formulated these necessary conditions deal with

coexistence of a successful mutant population with the resident populations

whose phenotypes belong to an isocline. Generically, coexistence of successful

mutants and a resident community will also be possible under slightly modified

necessary conditions in case the resident phenotypes are sufficiently close to an

isocline. Figure 5.5 illustrates this. From this Figure it will be clear that there are

non-singular monomorphic populations and successful mutant populations that

can coexist in A2. The necessary conditions for this to occur can be derived from

those for coexistence in case a singularity is created by letting the A2-region make

an intersection with A1.

Although we restricted ourselves to scalar phenotypic traits, various results

also hold for trait vectors. In particular we may in expression (5.61) substitute
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trait vectors instead of scalars for the various symbols τi, i = 1, . . . , k and ν,

and it easily follows that the necessary conditions (5.62), (5.63) and (5.64) must

be satisfied for invasion to lead to coexistence of the mutant population with

all resident populations in case of trait vectors. Expressions and results that

involve differentiation are however restricted to scalar traits. In case of trait vectors

the invasion fitness function can be obtained as a matrix expression, and in a

sufficiently small neighbourhood of a singular trait vector adaptive-dynamical

properties can be characterised in terms of matrix properties, see e.g. [41].

The presented framework for phenotypic trait evolution raises many interesting

questions. A main open problem deals with the topological and geometrical

structures of the sets Ak, k ≥ 1. For a closed interval T the structure of A1 and

A2 can easily be deduced (at least in case of a single singularity; in case the zero

set of z1 consists of several disjoint subsets there will be multiple monomorphic

singularities in A1 that will lead to more intricate structures for A2). A3 lies ”in

between” 43
1,3 and 43

2,3, and generically (for convenience keeping out of mind

”isolated” A3 configurations similar to the A2 configuration as shown in Figure 5.5)

is attached to parts of both the 1-isocline embedded in 43
1,3 and the 2-isocline

embedded in 43
2,3 in T3. Similar descriptions hold for Ak, k ≥ 4, but a detailed

analysis remains to be done.

A second question concerns the representation of the evolutionary path

followed by a community, here for simplicity understood to be a community of

two populations. Subsequent steps in A2 occur due to 1- and 2-AD replacements.

A 1-AD replacement is governed by local properties of the invasion fitness

function on A2 embedded in 43
1,3, and similarly a 2-AD replacement follows from

the local behaviour of this function on A2 embedded in 43
2,3. This implies that the

trajectory of the growing evolutionary path (focusing only on replacements for the

moment) is determined by what happens in the two diagonal planes, and these

two sequences of replacements (due to either 1- or 2-AD replacements) need to be

combined to describe the evolutionary path which the community of two

populations follows in T2. Defining a new space based on an equivalence relation

between A2 ⊂ 43
1,3 and A2 ⊂ 43

2,3 may be a step towards a solution of this

problem.
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In a forthcoming article [54] a bifurcation analysis for adaptive dynamics based

on Lotka-Volterra community dynamics shall be presented. In this text we shall

classify bifurcations of adaptive dynamics for singular traits in terms of the

coefficients of the underlying community dynamics. This enables the study of

possible evolutionary consequences due to changes in community-dynamical

parameters.
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5.5 appendices

Due to the length of various expressions occurring in Appendices 5.6.1 - 5.6.5 and

5.6.7, these Appendices are presented in landscape mode.
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5.5.1 Proof of Lemma 7

5.5.1.1 Proof of Lemma 7.1

Without loss of generality we can assume that j1 < j2 < · · · < jl . We start with rewriting the left hand side of expression (5.56)

as:

|A(τ1, . . . , τk \ τj1 , . . . , τjl)| |Fk−1(τ1, . . . , τk \ τi; τi)| − Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τi; τi) |A(τ1, . . . , τk)|. (5.69)

In this expression, |Fk−1(τ1, . . . , τk \ τi; τi)| equals (−1)k−i|Fk−1(τ1, . . . , τk−1; τk)| by making the last row in Fk−1(τ1, . . . , τk \
τi; τi)| the i-th one and shifting all subsequent rows one row downward. Also, |A(τ1, . . . , τk)| equals (−1)k−i|A(τ1, . . . , τk \
τi; τi)| by shifting the i-th column in A(τ1, . . . , τk) to make it the last one. Multiplying the last column in Fk−1(τ1, . . . , τk−1; τk)

with |A(τ1, . . . , τk \ τj1 , . . . , τjl)|, and multiplying the last column in A(τ1, . . . , τk \ τi; τi) with Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τi; τi),

yields that (5.69) equals
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(−1)k−i ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



a(τ1, τ1) · a(τ1, τi−1) a(τ1, τi+1) · a(τ1, τk) r(τ1)|A(τ1, . . . , τk \ τj1 , . . . , τjl)|

· · · · · · ·

a(τj, τ1) . a(τj, τi−1) a(τj, τi+1) . a(τj, τk) r(τj)|A(τ1, . . . , τk \ τj1 , . . . , τjl)|

· · · · · · ·

a(τk, τ1) · a(τk, τi−1) a(τk, τi+1) · a(τk, τk) r(τk)|A(τ1, . . . , τk \ τj1 , . . . , τjl)|



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

(−1)k−i ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



a(τ1, τ1) · a(τ1, τi−1) a(τ1, τi+1) · a(τ1, τk)
a(τ1, τi)×

Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τi; τi)

· · · · · · ·

a(τj, τ1) · a(τj, τi−1) a(τj, τi+1) · a(τj, τk)
a(τj, τi)×

Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τi; τi)

· · · · · · ·

a(τk, τ1) · a(τk, τi−1) a(τk, τi+1) · a(τk, τk)
a(τk, τi)×

Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τi; τi)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
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(−1)k−i ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



a(τ1, τ1) · a(τ1, τi−1) a(τ1, τi+1) · a(τ1, τk)
r(τ1)|A(τ1, . . . , τk \ τj1 , . . . , τjl)| −

a(τ1, τi)×
Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τi; τi)

· · · · · · ·

a(τj, τ1) · a(τj, τi−1) a(τj, τi+1) · a(τj, τk)
r(τj)|A(τ1, . . . , τk \ τj1 , . . . , τjl)| −

a(τj, τi)×
Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τi; τi)

· · · · · · ·

a(τk, τ1) · a(τk, τi−1) a(τk, τi+1) · a(τk, τk)
r(τk)|A(τ1, . . . , τk \ τj1 , . . . , τjl)| −

a(τk, τi)×
Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τi; τi)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In the last column in the matrix in this expression, the element in the j-th row by means of (5.47) equals

Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τj) +
k

∑
α=1

α 6=j1,...,jl ,i

a(τj, τα) Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τα; τα), and so the previous expression equals
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(−1)k−i ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



a(τ1, τ1) · a(τ1, τi−1) a(τ1, τi+1) · a(τ1, τk)

Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τ1) +
k

∑
α=1

α 6=j1,...,jl ,i

(
a(τ1, τα)×

Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τα; τα)
)

· · · · · · ·

a(τj, τ1) · a(τj, τi−1) a(τj, τi+1) · a(τj, τk)

Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τj) +
k

∑
α=1

α 6=j1,...,jl ,i

(
a(τj, τα)×

Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τα; τα)
)

· · · · · · ·

a(τk, τ1) · a(τk, τi−1) a(τk, τi+1) · a(τk, τk)

Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τk) +
k

∑
α=1

α 6=j1,...,jl ,i

(
a(τk, τα)×

Sk−l−1(τ1, . . . , τk \ τj1 , . . . , τjl , τα; τα)
)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In the last column in the matrix of this expression, the summation in each row contributes the same linear combination of

corresponding row elements of other columns, and therefore does not affect the determinant. We thus obtain that the

expression is equal to
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(−1)k−i ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



a(τ1, τ1) · a(τ1, τi−1) a(τ1, τi+1) · a(τ1, τk) Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τ1)

· · · · · · ·

a(τj, τ1) · a(τj, τi−1) a(τj, τi+1) · a(τj, τk) Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τj)

· · · · · · ·

a(τk, τ1) · a(τk, τi−1) a(τk, τi+1) · a(τk, τk) Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τk)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In the matrix of the expression thus obtained, in the last column Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τj) equals 0 in case

j 6∈ {j1, . . . , jl}. The expression itself therefore is equal to
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

a(τ1, τ1) · · a(τ1, τi−1) a(τ1, τi+1) · · a(τ1, τk) 0
· · · · · · · · ·
· · · · · · · · ·

a(τj1 , τ1) · · a(τj1 , τi−1) a(τj1 , τi+1) · · a(τj1 , τk)
Sk−l(τ1, . . . , τk\

τj1 , . . . , τjl ; τj1)
· · · · · · · · ·
· · · · · · · · ·

a(τjm , τ1) · · a(τjm , τi−1) a(τjm , τi+1) · · a(τjm , τk)
Sk−l(τ1, . . . , τk\

τj1 , . . . , τjl ; τjm)
· · · · · · · · ·
· · · · · · · · ·

a(τi, τ1) · · a(τi, τi−1) a(τi, τi+1) · · a(τi, τk) 0
· · · · · · · · ·
· · · · · · · · ·

a(τjm+1 , τ1) · · a(τjm+1 , τi−1) a(τjm+1 , τi+1) · · a(τjm+1 , τk)
Sk−l(τ1, . . . , τk\
τj1 , . . . , τjl ; τjm+1)

· · · · · · · · ·
· · · · · · · · ·

a(τjl , τ1) · · a(τjl , τi−1) a(τjl , τi+1) · · a(τjl , τk)
Sk−l(τ1, . . . , τk\

τj1 , . . . , τjl ; τjl)
· · · · · · · · ·
· · · · · · · · ·

a(τk, τ1) · · a(τk, τi−1) a(τk, τi+1) · · a(τk, τk) 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
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(−1)k−i
l

∑
α=1

(−1)jα+kSk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τjα)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



a(τ1, τ1) · · a(τ1, τi−1) a(τ1, τi+1) · · a(τ1, τk)
· · · · · · · ·
· · · · · · · ·

a(τjα−1, τ1) · · a(τjα−1, τi−1) a(τjα−1, τi+1) · · a(τjα−1, τk)
a(τjα+1, τ1) · · a(τjα+1, τi−1) a(τjα+1, τi+1) · · a(τjα+1, τk)

· · · · · · · ·
· · · · · · · ·

a(τk, τ1) · · a(τk, τi−1) a(τk, τi+1) · · a(τk, τk)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

l

∑
α=1

(−1)jα−iSk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τjα) |A(τ1, . . . , τk)(jα,i)|, which completes the proof of Lemma 7.1.
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5.5.1.2 Proof of Lemma 7.2

To proof the validity of expression (5.57) we rewrite its left hand side as

|A(τ1, . . . , τk \ τj1 , . . . , τjl)|

∣∣∣∣∣∣∣∣∣∣


a(τ1, τ1) · · a(τ1, τk) r(τ1)
· · · · ·
· · · · ·

a(τk, τ1) · · a(τk, τk) r(τk)
a(τk+1, τ1) · · a(τk+1, τk) r(τk+1)


∣∣∣∣∣∣∣∣∣∣
−

Sk−l(τ1, . . . , τk \ τj1 , . . . , τjl ; τk+1)

∣∣∣∣∣∣∣∣∣∣


a(τ1, τ1) · · a(τ1, τk) 0
· · · · ·
· · · · ·

a(τk, τ1) · · a(τk, τk) 0
a(τk+1, τ1) · · a(τk+1, τk) 1


∣∣∣∣∣∣∣∣∣∣

and continue in a manner similar as that in the proof of the first statement.
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5.5.2 Proof of Lemma 8

The denominator in the right hand side of expression (5.61),

∣∣∣∣∣∣∣∣∣∣∣∣



0 s1(τ1; τ2) · · s1(τ1; τk) 1
s1(τ2; τ1) 0 · · s1(τ2; τk) 1
· · · · · ·
· · · · · ·

s1(τk; τ1) s1(τk; τ2) · · 0 1
r(τ1) r(τ2) · · r(τk) 1



∣∣∣∣∣∣∣∣∣∣∣∣
, can be rewritten by

subtracting the last row from each of the other rows in the matrix. This yields the following determinant:

∣∣∣∣∣∣∣∣∣∣


−r(τ1) s1(τ1; τ2)− r(τ2) · · s1(τ1; τk)− r(τk)

s1(τ2; τ1)− r(τ1) −r(τ2) · · s1(τ2; τk)− r(τk)
· · · · ·
· · · · ·

s1(τk; τ1)− r(τ1) s1(τk; τ2)− r(τ2) · · −r(τk)


∣∣∣∣∣∣∣∣∣∣
. Since, by Definition 6, s1(τ; ν) = r(ν)− r(τ)

a(ν, τ)

a(τ, τ)
, the

previous determinant is equal to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−r(τ1) −a(τ2, τ1)
r(τ1)

a(τ1, τ1)
· · −a(τk, τ1)

r(τ1)

a(τ1, τ1)

−a(τ1, τ2)
r(τ2)

a(τ2, τ2)
−r(τ2) · · −a(τk, τ2)

r(τ2)

a(τ2, τ2)
· · · · ·
· · · · ·

−a(τ1, τk)
r(τk)

a(τk, τk)
−a(τ2, τk)

r(τk)

a(τk, τk)
· · −r(τk)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)k|A(τ1, . . . , τk)|

k

∏
i=1

r(τi)

a(τi, τi)
. (5.70)
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Next we show that the numerator of the right hand side of (5.61) is equal to (−1)kSk(τ1, . . . , τk; ν)
k

∏
i=1

r(τi)

a(τi, τi)
. This is done

by means of induction on k.

For k = 1 we have
∣∣∣∣( 0 s1(τ1; ν)

r(τ1) r(ν)

)∣∣∣∣ = −r(τ1)s1(τ1; ν) = − r(τ1)

a(τ1, τ1)
S1(τ1; ν), since by (5.51) S1(τ1; ν) = a(τ1, τ1)s1(τ1; ν).

The induction hypothesis states that

∣∣∣∣∣∣∣∣∣∣∣∣



0 s1(τ1; τ2) · · s1(τ1; τk−1) s1(τ1; ν)
s1(τ2; τ1) 0 · · s1(τ2; τk−1) s1(τ2; ν)
· · · · · ·
· · · · · ·

s1(τk−1; τ1) s1(τk−1; τ2) · · 0 s1(τk−1; ν)
r(τ1) r(τ2) · · r(τk−1) r(ν)



∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)k−1Sk−1(τ1, . . . , τk−1; ν)

k−1

∏
i=1

r(τi)

a(τi, τi)
.

The numerator of (5.61),

∣∣∣∣∣∣∣∣∣∣∣∣



0 s1(τ1; τ2) · · s1(τ1; τk) s1(τ1; ν)
s1(τ2; τ1) 0 · · s1(τ2; τk) s1(τ2; ν)
· · · · · ·
· · · · · ·

s1(τk; τ1) s1(τk; τ2) · · 0 s1(τk; ν)
r(τ1) r(τ2) · · r(τk) r(ν)



∣∣∣∣∣∣∣∣∣∣∣∣
, then is equal to
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0 s1(τ1; τ2) · · s1(τ1; τk) r(ν)− a(ν, τ1)
r(τ1)

a(τ1, τ1)

s1(τ2; τ1) 0 · · s1(τ2; τk) r(ν)− a(ν, τ2)
r(τ2)

a(τ2, τ2)
· · · · · ·
· · · · · ·

s1(τk; τ1) s1(τk; τ2) · · 0 r(ν)− a(ν, τk)
r(τk)

a(τk, τk)
r(τ1) r(τ2) · · r(τk) r(ν)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣



0 s1(τ1; τ2) · · s1(τ1; τk) r(ν)
s1(τ2; τ1) 0 · · s1(τ2; τk) r(ν)
· · · · · ·
· · · · · ·

s1(τk; τ1) s1(τk; τ2) · · 0 r(ν)
r(τ1) r(τ2) · · r(τk) r(ν)



∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0 s1(τ1; τ2) · · s1(τ1; τk) −a(ν, τ1)
r(τ1)

a(τ1, τ1)

s1(τ2; τ1) 0 · · s1(τ2; τk) −a(ν, τ2)
r(τ2)

a(τ2, τ2)
· · · · · ·
· · · · · ·

s1(τk; τ1) s1(τk; τ2) · · 0 −a(ν, τk)
r(τk)

a(τk, τk)
r(τ1) r(τ2) · · r(τk) 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.71)

The first of the last two determinants equals r(ν)× (the denominator), and therefore by (5.70) is equal to

(−1)kr(ν)|A(τ1, . . . , τk)|
k

∏
i=1

r(τi)

a(τi, τi)
. The second determinant in the last expression by the induction hypothesis equals
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k

∑
i=1

(−1)k+ia(ν, τi)
r(τi)

a(τi, τi)
(−1)k−i(−1)k−1Sk−1(τ1, . . . , τk \ τi; τi)

k

∏
j=1
j 6=i

r(τj)

a(τj, τj)
=

(−1)k−1
k

∑
i=1

a(ν, τi)Sk−1(τ1, . . . , τk \ τi; τi)
k

∏
j=1

r(τj)

a(τj, τj)
.

With (5.71) it then follows that the numerator of (5.61) equals

(−1)k
k

∏
j=1

r(τj)

a(τj, τj)

(
r(ν)|A(τ1, . . . , τk)| −

k

∑
i=1

a(ν, τi)S(τ1,...,τk\τi)
(τi)

)
,

which by (5.47) is equal to (−1)kSk(τ1, . . . , τk; ν)
k

∏
j=1

r(τj)

a(τj, τj)
. This result together with expressions (5.70) for the denominator

and (5.51) in Lemma 5 now yield the validity of the statement for the case that all r(τi) 6= 0. By applying l’Hôpital’s argument

the result can be extended to cases in which (τ1, . . . , τk) is such that r has isolated zeros at on or more of the τi, i = 1, . . . , k.
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5.5.3 Proof of Lemma 9

5.5.3.1 Proof of Lemma 9.1

Let Di(A(τ1, . . . , τk, τk)) denote the matrix obtained by differentiating each element in the i-th column of A(τ1, . . . , τk+1) with

respect to τk+1, and subsequently taking τk+1 = τk. Then for i = 1, . . . , k− 1, the determinant |Di(A(τ1, . . . , τk, τk))| = 0, since

the k-th and k + 1-th column in Di(A(τ1, . . . , τk, τk)) are equal. Therefore

∂0,...,0,1|A(τ1, . . . , τk, τk)| = |Dk(A(τ1, . . . , τk, τk))|+ |Dk+1(A(τ1, . . . , τk, τk))|,

with

|Dk(A(τ1, . . . , τk, τk))| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



a(τ1, τ1) · · · a(τ1, τk−1) 0 a(τ1, τk)
· · · · · · ·
· · · · · · ·
· · · · · · ·

a(τk−1, τ1) · · · a(τk−1, τk−1) 0 a(τk−1, τk)
a(τk, τ1) · · · a(τk, τk−1) 0 a(τk, τk)
a(τk, τ1) · · · a(τk, τk−1) ∂1,0a(τk, τk) a(τk, τk)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.72)

and

|Dk+1(A(τ1, . . . , τk, τk))| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



a(τ1, τ1) · · · a(τ1, τk−1) a(τ1, τk) ∂0,1a(τ1, τk)
· · · · · · ·
· · · · · · ·
· · · · · · ·

a(τk−1, τ1) · · · a(τk−1, τk−1) a(τk−1, τk) ∂0,1a(τk−1, τk)
a(τk, τ1) · · · a(τk, τk−1) a(τk, τk) ∂0,1a(τk, τk)
a(τk, τ1) · · · a(τk, τk−1) a(τk, τk) ∂1,0a(τk, τk) + ∂0,1a(τk, τk)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.73)
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Exchanging the two last columns in the matrix of (5.72) yields a matrix whose first k columns are equal to that in the matrix

in (5.73), and whose determinant equals −|Dk(A(τ1, . . . , τk, τk))|. So ∂0,...,0,1|A(τ1, . . . , τk, τk)| equals∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



a(τ1, τ1) · · · a(τ1, τk−1) a(τ1, τk) ∂0,1a(τ1, τk)
· · · · · · ·
· · · · · · ·
· · · · · · ·

a(τk−1, τ1) · · · a(τk−1, τk−1) a(τk−1, τk) ∂0,1a(τk−1, τk)
a(τk, τ1) · · · a(τk, τk−1) a(τk, τk) ∂0,1a(τk, τk)
a(τk, τ1) · · · a(τk, τk−1) a(τk, τk) ∂0,1a(τk, τk)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (5.74)

since the last two rows in the matrix are equal.

5.5.3.2 Proof of Lemma 9.2

In (5.56) we replace k by k + 1, set l equal to 1 and take j1 = k, and take i equal to k + 1. We then obtain that

|A(τ1, . . . , τk+1 \ τk)| Sk(τ1, . . . , τk; τk+1) − |A(τ1, . . . , τk+1)| Sk−1(τ1, . . . , τk+1 \ τk, τk+1; τk+1) =

− |A(τ1, . . . , τk+1)(k,k+1)| Sk(τ1, . . . , τk+1 \ τk; τk),

i.e.,

|A(τ1, . . . , τk−1, τk+1)| Sk(τ1, . . . , τk; τk+1)− |A(τ1, . . . , τk+1)| Sk−1(τ1, . . . , τk−1; τk+1) =

− |A(τ1, . . . , τk+1)(k,k+1)| Sk(τ1, . . . , τk−1, τk+1; τk). (5.75)
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Differentiating the left- and right hand side of this expression with respect to τk+1 yields

∂0,...,0,1|A(τ1, . . . , τk−1, τk+1)| Sk(τ1, . . . , τk; τk+1) + |A(τ1, . . . , τk−1, τk+1)| ∂0,...,0,1Sk(τ1, . . . , τk; τk+1) −

∂0,...,0,1|A(τ1, . . . , τk+1)| Sk−1(τ1, . . . , τk−1; τk+1) − |A(τ1, . . . , τk+1)| ∂0,...,0,1Sk−1(τ1, . . . , τk−1; τk+1) =

− ∂0,...,0,1|A(τ1, . . . , τk+1)(k,k+1)| Sk(τ1, . . . , τk−1, τk+1; τk) − |A(τ1, . . . , τk+1)(k,k+1)| ∂0,...,0,1,0Sk(τ1, . . . , τk−1, τk+1; τk).

Taking variable τk+1 equal to τk makes Sk(τ1, . . . , τk; τk+1) as well as Sk(τ1, . . . , τk−1, τk+1; τk) equal to 0. Also,

|A(τ1, . . . , τk, τk+1)| and, by the first part of the Lemma, ∂0,...,0,1|A(τ1, . . . , τk+1)| become 0. Furthermore,

|A(τ1, . . . , τk+1)(k,k+1)| becomes equal to |A(τ1, . . . , τk)|. We obtain that

|A(τ1, . . . , τk−1, τk)| ∂0,...,0,1Sk(τ1, . . . , τk; τk) = − |A(τ1, . . . , τk)| ∂0,...,0,1,0Sk(τ1, . . . , τk−1, τk; τk), which also follows from the

fact that the function τ 7→ Sk(τ1, . . . , τk−1, τ; τ) is identical to the zero function (Corollary 6, fourth statement), and therefore

∂0,...,0,1,0Sk(τ1, . . . , τk−1, τk; τk) + ∂0,...,0,1,0Sk(τ1, . . . , τk−1, τk; τk) = 0.

Differentiating the left- and right hand side of (5.75) twice with respect to τk+1 yields
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∂0,...,0,2|A(τ1, . . . , τk−1, τk+1)| Sk(τ1, . . . , τk; τk+1) + 2 ∂0,...,0,1|A(τ1, . . . , τk−1, τk+1)| ∂0,...,0,1Sk(τ1, . . . , τk; τk+1) +

|A(τ1, . . . , τk−1, τk+1)| ∂0,...,0,2Sk(τ1, . . . , τk; τk+1) − ∂0,...,0,2|A(τ1, . . . , τk+1)| Sk−1(τ1, . . . , τk−1; τk+1) −

2∂0,...,0,1|A(τ1, . . . , τk+1)| ∂0,...,0,1Sk−1(τ1, . . . , τk−1; τk+1) − |A(τ1, . . . , τk+1)| ∂0,...,0,2Sk−1(τ1, . . . , τk−1; τk+1) =

− ∂0,...,0,2|A(τ1, . . . , τk+1)(k,k+1)| Sk(τ1, . . . , τk−1, τk+1; τk) −

2 ∂0,...,0,1|A(τ1, . . . , τk+1)(k,k+1)| ∂0,...,0,1,0Sk(τ1, . . . , τk−1, τk+1; τk) − |A(τ1, . . . , τk+1)(k,k+1)| ∂0,...,0,2,0Sk(τ1, . . . , τk−1, τk+1; τk).

Again setting τk+1 equal to τk and using ∂0,...,0,1|A(τ1, . . . , τk, τk)| = 0, we get the equality

2
d|A(τ1, . . . , τk−1, τk)|

dτk
∂0,...,0,1Sk(τ1, . . . , τk; τk) + |A(τ1, . . . , τk−1, τk)| ∂0,...,0,2Sk(τ1, . . . , τk; τk) −

∂0,...,0,2|A(τ1, . . . , τk, τk)| Sk−1(τ1, . . . , τk−1; τk) =

− 2
d|A(τ1, . . . , τk+1)(k,k+1)|

dτk+1

∣∣∣
τk+1=τk

∂0,...,0,1,0Sk(τ1, . . . , τk−1, τk; τk) − |A(τ1, . . . , τk)| ∂0,...,0,2,0Sk(τ1, . . . , τk; τk).
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Since |A(τ1, . . . , τk)| 6= 0 (because 〈τ1, . . . , τk〉 ∈ Ak) we may write (see (5.49)) x̂k(τ1, . . . , τk) = −
Sk−1(τ1, . . . , τk−1; τk)

|A(τ1, . . . , τk)|
. The

previous expression then can be rewritten as

− 2
|A(τ1, . . . , τk)|

×
(d|A(τ1, . . . , τk+1)(k,k+1)|

dτk+1

∣∣∣
τk+1=τk

∂0,...,0,1,0Sk(τ1, . . . , τk−1, τk; τk) +

d|A(τ1, . . . , τk−1, τk)|
dτk

∂0,...,0,1Sk(τ1, . . . , τk; τk)
)
−

∂0,...,0,2|A(τ1, . . . , τk, τk)| x̂k(τ1, . . . , τk) = ∂0,...,0,2,0Sk(τ1, . . . , τk−1, τk; τk) + ∂0,...,0,2Sk(τ1, . . . , τk; τk). (5.76)

Since (see (5.51)) Sk(τ1, . . . , τk; τk+1) = |A(τ1, . . . , τk)| sk(τ1, . . . , τk; τk+1), and the function τ 7→ Sk(τ, . . . , τk−1, τ; τ) equals the

zero function, it follows, since 〈τ1, . . . , τk〉 belongs to the k-isocline, i.e., ∂0,...,0,1sk(τ1, . . . , τk; τk) = 0, that both

∂0,...,0,1Sk(τ1, . . . , τk; τk) = 0 and ∂0,...,0,1,0Sk(τ1, . . . , τk−1, τk; τk) = 0 hold. Furthermore, because by the first part of this Lemma

∂0,...,0,1|A(τ1, . . . , τk, τk)| = 0, the equality ∂0,...,0,2,0Sk(τ1, . . . , τk−1, τk; τk) = |A(τ1, . . . , τk)| ∂0,...,0,2,0sk(τ1, . . . , τk−1, τk; τk) holds.

Finally, ∂0,...,0,2Sk(τ1, . . . , τk; τk) = |A(τ1, . . . , τk)| ∂0,...,0,2sk(τ1, . . . , τk; τk). Equality (5.76) then becomes

− ∂0,...,0,2|A(τ1, . . . , τk, τk)| x̂k(τ1, . . . , τk) = |A(τ1, . . . , τk)| (∂0,...,0,2,0sk(τ1, . . . , τk−1, τk; τk) + ∂0,...,0,2sk(τ1, . . . , τk; τk)) (5.77)

Since by assumption both x̂k(τ1, . . . , τk) > 0 and ∂0,...,0,2,0sk(τ1, . . . , τk−1, τk; τk) + ∂0,...,0,2sk(τ1, . . . , τk; τk) > 0, it follows for

values τk+1 sufficiently close to τk that sign(|A(τ1, . . . , τk, τk+1)|) = −sign(|A(τ1, . . . , τk)|).
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5.5.4 Proof of Lemma 10

The validity of the Lemma is derived by means of induction. We first prove that for k = 2 the equality ∂0,1,0S2(τ1, τ1, ν) = 0

holds. By (5.47) we have that S2(τ1, τ2; ν) = r(ν)|A(τ1, τ2)| − a(ν, τ1)S1(τ2; τ1)− a(ν, τ2)S1(τ1; τ2). Differentiating with respect

to τ2 yields that

∂0,1,0S2(τ1, τ2; ν) = r(ν)∂0,1|A(τ1, τ2)| − a(ν, τ1)∂1,0S1(τ2; τ1)− ∂0,1a(ν, τ2)S1(τ1.τ2)− a(ν, τ2)∂0,1S1(τ1; τ2).

By taking τ2 equal to τ1, and using that ∂0,1|A(τ1, τ1)| = 0 (Lemma 9.1) and S1(τ1; τ1) = 0 we obtain that ∂0,1,0S2(τ1, τ1; ν) =

−a(ν, τ1)(∂1,0S1(τ1; τ1) + ∂0,1S1(τ1; τ1)) = 0, since the function τ 7→ S1(τ; τ) is equal to the zero function.

The induction hypothesis states that ∂0,...,0,1,0Sk−1(τ1, . . . , τk−2, τk−2; ν) = 0. Writing (again by (5.47))

Sk(τ1, . . . , τk; ν) = r(ν)|A(τ1, . . . , τk)| −
k

∑
i=1

a(ν, τi)Sk−1(τ1, . . . , τk \ τi; τi) and differentiating with respect to τk we get that

∂0,...,0,1,0Sk(τ1, . . . , τk; ν) =

r(ν)∂0,...,0,1|A(τ1, . . . , τk)| −
k−2

∑
i=1

a(ν, τi)∂0,...,0,1,0Sk−1(τ1, . . . , τk \ τi; τi)− a(ν, τk−1)∂0,...,0,1,0Sk−1(τ1, . . . , τk−2, τk; τk−1) −

∂0,1a(ν, τk)Sk−1(τ1, . . . , τk−1; τk)− a(ν, τk)∂0,...,0,1Sk−1(τ1, . . . , τk−1; τk). (5.78)

Taking τk = τk−1 sets ∂0,...,0,1|A(τ1, . . . , τk−1, τk)| equal to 0 (Lemma 9.1), as well as ∂0,...,0,1,0Sk−1(τ1, . . . , τk \ τi; τi) for i =

1, . . . , k− 2 (induction hypothesis) and Sk−1(τ1, . . . , τk−1; τk). The remaining part in the right hand side of (5.78) becomes
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−a(ν, τk−1)(∂0,...,0,1,0Sk−1(τ1, . . . , τk−2, τk−1; τk−1) + ∂0,...,0,1Sk−1(τ1, . . . .τk−1; τk−1)), which again equals 0 since

τ 7→ Sk−1(τ1, . . . , τk−2, τ; τ) is identical to the zero function.
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5.5.5 Proof of Lemma 11

5.5.5.1 Proof of Lemma 11.1

In (5.57) we take l = 1, and j1 = j ∈ {1, . . . , k} and obtain the equality

|A(τ1, . . . , τk \ τj)| Sk(τ1, . . . , τk; τk+1) − |A(τ1, . . . , τk)| Sk−1(τ1, . . . , τk \ τj; τk+1) =

(−1)j−(k+1)|A(τ1, . . . , τk+1)(j,k+1)| Sk−1(τ1, . . . , τk \ τj; τj). (5.79)

Differentiating with respect to τk+1 we get that

|A(τ1, . . . , τk \ τj)| ∂0,...,0,1Sk(τ1, . . . , τk; τk+1) − |A(τ1, . . . , τk)| ∂0,...,0,1Sk−1(τ1, . . . , τk \ τj; τk+1) =

(−1)j−(k+1)∂0,...,0,1|A(τ1, . . . , τk+1)(j,k+1)| Sk−1(τ1, . . . , τk \ τj; τj). (5.80)

Setting τk+1 = τk, and using the fact that 〈τ1, . . . , τk〉 ∈ Ak belongs to the k-isocline yields that

− |A(τ1, . . . , τk)| ∂0,...,0,1Sk−1(τ1, . . . , τk \ τj; τk) = (−1)j−(k+1) d|A(τ1, . . . , τk+1)(j,k+1)|
dτk+1

∣∣∣
τk+1=τk

Sk−1(τ1, . . . , τk \ τj; τj), (5.81)

i.e.,

∂0,...,0,1Sk−1(τ1, . . . , τk \ τj; τk) = (−1)j−(k+1) d|A(τ1, . . . , τk+1)(j,k+1)|
dτk+1

∣∣∣
τk+1=τk

x̂j(τ1, . . . , τk). (5.82)

Since x̂j(τ1, . . . , τk) > 0, it follows that

sign
(
∂0,...,0,1Sk−1(τ1, . . . , τk \ τj; τk)

)
= − sign

(
(−1)j−k d|A(τ1, . . . , τk+1)(j,k+1)|

dτk+1

∣∣∣
τk+1=τk

)
. (5.83)
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5.5.5.2 Proof of Lemma 11.2

In (5.56) we replace k by k + 1, take l = 1 and j1 = j ∈ {1, . . . , k− 1}, and i = k + 1. We obtain the equality

|A(τ1, . . . , τk+1 \ τj)| Sk(τ1, . . . , τk; τk+1) − |A(τ1, . . . , τk+1)| Sk−1(τ1, . . . , τk \ τj; τk+1) =

(−1)j−(k+1)|A(τ1, . . . , τk+1)(j,k+1)| Sk(τ1, . . . , τk+1 \ τj; τj). (5.84)

Differentiating with respect to τk+1 yields that

∂0,...,0,1|A(τ1, . . . , τk+1 \ τj)| Sk(τ1, . . . , τk; τk+1) + |A(τ1, . . . , τk+1 \ τj)| ∂0,...,0,1Sk(τ1, . . . , τk; τk+1) −

∂0,...,0,1|A(τ1, . . . , τk, τk+1)| Sk−1(τ1, . . . , τk \ τj; τk+1) − |A(τ1, . . . , τk+1)| ∂0,...,0,1Sk−1(τ1, . . . , τk \ τj; τk+1) =

(−1)j−(k+1)∂0,...,0,1|A(τ1, . . . , τk+1)(j,k+1)| Sk(τ1, . . . , τk+1 \ τj; τj) +

(−1)j−(k+1)|A(τ1, . . . , τk+1)(j,k+1)| ∂0,...,0,1,0Sk(τ1, . . . , τk+1 \ τj; τj). (5.85)

Taking τk+1 = τk in this expression yields 0 = 0. Differentiating twice with respect to τk+1 in (5.84) renders the equality
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∂0,...,0,2|A(τ1, . . . , τk+1 \ τj)| Sk(τ1, . . . , τk; τk+1) + 2∂0,...,0,1|A(τ1, . . . , τk+1 \ τj)| ∂0,...,0,1Sk(τ1, . . . , τk; τk+1) +

|A(τ1, . . . , τk+1 \ τj)| ∂0,...,0,2Sk(τ1, . . . , τk; τk+1) − ∂0,...,0,2|A(τ1, . . . , τk, τk+1)| Sk−1(τ1, . . . , τk \ τj; τk+1) −

2∂0,...,0,1|A(τ1, . . . , τk, τk+1)| ∂0,...,0,1Sk−1(τ1, . . . , τk \ τj; τk+1) − |A(τ1, . . . , τk, τk+1)| ∂0,...,0,2Sk−1(τ1, . . . , τk \ τj; τk+1) =

(−1)j−(k+1)∂0,...,0,2|A(τ1, . . . , τk+1)(j,k+1)| Sk(τ1, . . . , τk+1 \ τj; τj) +

(−1)j−(k+1) 2∂0,...,0,1|A(τ1, . . . , τk+1)(j,k+1)| ∂0,...,0,1,0Sk(τ1, . . . , τk+1 \ τj; τj) +

(−1)j−(k+1)|A(τ1, . . . , τk+1)(j,k+1)| ∂0,...,0,2,0Sk(τ1, . . . , τk+1 \ τj; τj). (5.86)

Taking τk+1 equal to τk, and making use of Corollary 6.5, Lemmas 9.1 and 10 yields again 0 = 0. We differentiate once more

with respect to τk+1, and obtain
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∂0,...,0,3|A(τ1, . . . , τk+1 \ τj)| Sk(τ1, . . . , τk; τk+1) + 3∂0,...,0,2|A(τ1, . . . , τk+1 \ τj)| ∂0,...,0,1Sk(τ1, . . . , τk; τk+1) +

3∂0,...,0,1|A(τ1, . . . , τk+1 \ τj)| ∂0,...,0,2Sk(τ1, . . . , τk; τk+1) + |A(τ1, . . . , τk+1 \ τj)| ∂0,...,0,3Sk(τ1, . . . , τk; τk+1) −

∂0,...,0,3|A(τ1, . . . , τk, τk+1)| Sk−1(τ1, . . . , τk \ τj; τk+1) − 3∂0,...,0,2|A(τ1, . . . , τk, τk+1)| ∂0,...,0,1Sk−1(τ1, . . . , τk \ τj; τk+1) −

3∂0,...,0,1|A(τ1, . . . , τk, τk+1)| ∂0,...,0,2Sk−1(τ1, . . . , τk \ τj; τk+1) − |A(τ1, . . . , τk, τk+1)| ∂0,...,0,3Sk−1(τ1, . . . , τk \ τj; τk+1) =

(−1)j−(k+1)∂0,...,0,3|A(τ1, . . . , τk+1)(j,k+1)| Sk(τ1, . . . , τk+1 \ τj; τj) +

(−1)j−(k+1) 3∂0,...,0,2|A(τ1, . . . , τk+1)(j,k+1)| ∂0,...,0,1,0Sk(τ1, . . . , τk+1 \ τj; τj) +

(−1)j−(k+1) 3∂0,...,0,1|A(τ1, . . . , τk+1)(j,k+1)| ∂0,...,0,2,0Sk(τ1, . . . , τk+1 \ τj; τj) +

(−1)j−(k+1)|A(τ1, . . . , τk+1)(j,k+1)| ∂0,...,0,3,0Sk(τ1, . . . , τk+1 \ τj; τj). (5.87)
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We again take τk+1 = τk. Using the fact that 〈τ1, . . . , τk〉 ∈ Ak belongs to the k-isocline, as well as Corollary 6.5 and Lemmas 9.1

and 10, reduces the previous equality to

∂0,...,0,2|A(τ1, . . . , τk, τk)| ∂0,...,0,1Sk−1(τ1, . . . , τk \ τj; τk) =

(−1)j−k d|A(τ1, . . . , τk+1)(j,k+1)|
dτk+1

∣∣∣
τk+1=τk

∂0,...,0,2,0Sk(τ1, . . . , τk \ τj; τj). (5.88)

In the first part of the Lemma we derived that

sign
(
∂0,...,0,1Sk−1(τ1, . . . , τk \ τj; τk)

)
= −sign

(
(−1)j−k

d|A(τ1, . . . , τk+1)(j,k+1)|
dτk+1

∣∣∣
τk+1=τk

)
. Since by assumption

∂0,...,0,2sk(τ1, . . . , τk; τk) + ∂0,...,0,2,0sk(τ1, . . . , τk−1, τk; τk) > 0, we know from Lemma 9.2 and its proof that

∂0,...,0,2|A(τ1, . . . , τk, τk)| 6= 0 (see (5.77)). We conclude from (5.88) that

∂0,...,0,2,0Sk(τ1, . . . , τk, τk \ τj; τj)

∂0,...,0,2|A(τ1, . . . , τk, τk)|
= (−1)j−k ∂0,...,0,1Sk−1(τ1, . . . , τk \ τj; τk)

d|A(τ1, . . . , τk+1)(j,k+1)|
dτk+1

∣∣∣
τk+1=τk

< 0. (5.89)
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5.5.6 Proof of Lemma 12

Firstly, given that LVk(τ1, . . . , τk) is fully subregular, the fact that LVk(τ
′
1, . . . , τ′k) is

fully subregular for (τ′1, . . . , τ′k) sufficiently close to (τ1, . . . , τk) follows immediately

from the continuity of the function (τ1, . . . , τk \ τi1 , . . . , τil) 7→
|A(τ1, . . . , τk \ τi1 , . . . , τil)|, for any l = 1. . . . , k and any set {i1, . . . , il} ⊂ {1, . . . , k}.

It remains to be shown that s-permanence of LVk(τ1, . . . , τk) is maintained under

sufficiently small changes of (τ1, . . . , τk) into (τ′1, . . . , τ′k). Let p1, . . . , pk be positive

numbers such that for each l = 1, . . . , k and each subset {i1, . . . , il} ⊂ {1, . . . , k}
(with mutually distinct i1, . . . , il) for which

x̂(τ1, . . . , τk \ τi1 , . . . , τil) ∈ int(bdi1,...,il(R
k
+)) exists, the condition

l

∑
α=1

piα sk−l(τ1, . . . , τk \ τi1 , . . . , τil ; τiα) > 0 (5.90)

holds. We seek positive numbers p′1, . . . , p′k such that for each l = 1, . . . , k and each

subset {i1, . . . , il} ⊂ {1, . . . , k} (with i1, . . . , il again mutually distinct) for which

x̂(τ′1, . . . , τ′k \ τ′i1 , . . . , τ′il) ∈ int(bdi1,...,il(R
k
+)) exists,

l

∑
β=1

p′jβ sk−l(τ
′
1, . . . , τ′k \ τ′i1 , . . . , τ′il ; τ′iβ

) > 0. (5.91)

We consider the generic and the non-generic case.

Case I (The generic case.) For each l = 1, . . . , k and each

{i1, . . . , il} ⊂ {1, . . . , k}, x̂(τ′1, . . . , τ′k \ τ′i1 , . . . , τ′il) ∈ int(bdi1,...,il(R
k
+)) exists if

and only if x̂(τ1, . . . , τk \ τi1 , . . . , τil) ∈ int(bdi1,...,il(R
k
+)) exists. The change

from (τ1, . . . , τk) into (τ′1, . . . , τ′k) then causes a change in the equilibrium

values, but does not cause the appearance of additional equilibria. The

positivity of the numbers p1, . . . , pk, the continuity of the functions

(τ1, . . . , τk) 7→ sk−l(τ1, . . . , τk \ τi1 , . . . , τil ; τiα), α ∈ {1, . . . , l}, and the

positivity of the summation in (5.90) then imply that there is an open

neighbourhood U of (τ1, . . . , τk) in Tk, and an open neighbourhood V of

(p1, . . . , pk) in int(Rk
+), such that for any (τ′1, . . . , τ′k) ∈ U and any

(p′1, . . . , p′k) ∈ V expression (5.91) is satisfied for each l = 1, . . . , k and each

subset {i1, . . . , il} ⊂ {1, . . . , k} for which

x̂(τ′1, . . . , τ′k \ τ′i1 , . . . , τ′il) ∈ int(bdi1,...,il(R
k
+)) exists.
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Case II (The non-generic case.) Let I denote the collection of sets

{i1, . . . , il} ⊂ {1, . . . , k} (for any l = 1, . . . , k) for which

x̂(τ1, . . . , τk \ τi1 , . . . , τil) ∈ int(bdi1,...,il(R
k
+)) exists. Under sufficiently small

changes of (τ1, . . . , τk) into (τ′1, . . . , τ′k), then also the equilibrium

x̂(τ′1, . . . , τ′k \ τ′i1 , . . . , τ′il) ∈ int(bdi1,...,il(R
k
+)) exists. In the non-generic case

in addition there is a sub-collection J of these sets {i1, . . . , il} such that for

each element in J there exists at least one non-empty subset

{j1, . . . , jl′} ⊂ {i1, . . . , il}, with l′ < l, for which the equilibrium

x̂(τ′1, . . . , τ′k \ τ′j1 , . . . , τ′jl′
) ∈ int(bdj1,...,jl′ (R

k
+)) comes into existence due to

the change from (τ1, . . . , τk) into (τ′1, . . . , τ′k) (which implies that {j1, . . . , jl′}
itself does not belong to I). For a given {i1, . . . , il} ∈ J and

{j1, . . . , jl′} ⊂ {i1, . . . , il} this happens if due to this change a bifurcation

occurs in which x̂(τ1, . . . , τk \ τi1 , . . . , τil) ∈ int(bdi1,...,il(R
k
+)) splits into two

equilibria: x̂(τ′1, . . . , τ′k \ τ′i1 , . . . , τ′il) ∈ int(bdi1,...,il(R
k
+)) and

x̂(τ′1, . . . , τ′k \ τ′j1 , . . . , τ′jl′
) ∈ int(bdj1,...,jl′ (R

k
+)). For LVk(τ1, . . . , τk) it then is

required that, with α ∈ {1, . . . , k} \ {i1, . . . , il} and

β ∈ {i1, . . . , il} \ {j1, . . . , jl′}, the restriction to bdj1,...,jl′ (R
k
+) of the isoclines

r(τα) +
k

∑
j=1

a(τα, τj)xj = 0 and r(τβ) +
k

∑
j=1

a(τβ, τj)xj = 0 (i.e.,

r(τα) +
k

∑
j=1

j/∈{j1,...,jl′ }

a(τα, τj)xj = 0 and r(τβ) +
k

∑
j=1

j/∈{j1,...,jl′ }

a(τβ, τj)xj = 0) intersect

in x̂(τ1, . . . , τk \ τi1 , . . . , τil) ∈ int(bdi1,...,il(R
k
+)). Consequently,

sk−l(τ1, . . . , τk \ τi1 , . . . , τil ; τβ) = 0 for β ∈ {i1, . . . , il} \ {j1, . . . , jl′}. (5.92)

In the community state space of LVk(τ
′
1, . . . , τ′k) the equilibrium

x̂(τ′1, . . . , τ′k \ τ′i1 , . . . , τ′il) ∈ int(bdi1,...,il(R
k
+)) then is the intersection of the

restriction to bdj1,...,jl′ (R
k
+) of the isoclines r(τ′α) +

k

∑
j=1

a(τ′α, τ′j )xj = 0,

α ∈ {1, . . . , k} \ {i1, . . . , il}, with bdi1,...,il(R
k
+). The equilibrium

x̂(τ′1, . . . , τ′k \ τ′j1 , . . . , τ′jl′
) ∈ int(bdj1,...,jl′ (R

k
+)) is the intersection of the

isoclines r(τ′α) +
k

∑
j=1

a(τ′α, τ′j )xj = 0, α ∈ {1, . . . , k} \ {i1, . . . , il}, with the

isoclines
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r(τ′β) +
k

∑
j=1

a(τ′β, τ′j )xj, β ∈ {i1, . . . , il} \ {j1, . . . , jl′}, with both collections of

isoclines restricted to bdj1,...,jl′ (R
k
+).

As in the generic case, it follows that there exist a neighbourhood U1 of

(τ′1, . . . , τ′k) in Tk and a neighbourhood V1 of (p′1, . . . , p′k) in int(Rk
+) such

that (5.91) is satisfied for all (τ′1, . . . , τ′k) ∈ U1 and all (p′1, . . . , p′k) ∈ V1, for all

equilibria x̂(τ′1, . . . , τ′k \ τ′i1 , . . . , τ′il) ∈ int(bdi1,...,il(R
k
+)), for all l = 1, . . . , k

and all {i1, . . . , il} ∈ I \ J.

Next, let {i1, . . . , il} ∈ J, and {j1, . . . , jl′} ⊂ {i1, . . . , il}, such that under the

change from (τ1, . . . , τk) into (τ′1, . . . , τ′k) the equilibrium

x̂(τ1, . . . , τk \ τi1 , . . . , τil) ∈ int(bdi1,...,il(R
k
+)) splits into

x̂(τ′1, . . . , τ′k \ τ′i1 , . . . , τ′il) ∈ int(bdi1,...,il(R
k
+)) and

x̂(τ′1, . . . , τ′k \ τ′j1 , . . . , τ′jl′
) ∈ int(bdj1,...,jl′ (R

k
+)). For any such set

{i1, . . . , il} ∈ J expression (5.90) due to (5.92) can be rewritten as

l

∑
α=1

iα∈{j1,...,jl′ }

piα sk−l(τ1, . . . , τk \ τi1 , . . . , τil ; τiα) > 0. (5.93)

For x̂(τ′1, . . . , τ′k \ τ′i1 , . . . , τ′il) it follows (for any numbers p′1, . . . , p′k) that

l

∑
α=1

p′iα sk−l(τ
′
1, . . . , τ′k \ τ′i1 , . . . , τ′il ; τ′iα) =

l

∑
α=1

iα∈{j1,...,jl′ }

p′iα sk−l(τ
′
1, . . . , τ′k \ τ′i1 , . . . , τ′il ; τ′iα) +

l

∑
α=1

iα∈{i1,...,il}\{j1,...,jl′ }

p′iα sk−l(τ
′
1, . . . , τ′k \ τ′i1 , . . . , τ′il ; τ′iα). (5.94)

From (5.93) it follows for (τ′1, . . . , τ′k) sufficiently close to (τ1, . . . , τk) and

(p′1, . . . , p′k) sufficiently close to (p1, . . . , pk), that the first summation in the

right hand side of this expression is positive, for any {i1, . . . , il} ∈ J.

From (5.92) it follows that for (τ′1, . . . , τ′k) sufficiently close to (τ1, . . . , τk) and

(p′1, . . . , p′k) sufficiently close to (p1, . . . , pk), the second summation in (5.94)

can be taken to be arbitrarily small, for any {i1, . . . , il} ∈ J. Therefore, there

exist an open neighbourhood U2 of (τ′1, . . . , τ′k) in Tk and an open

neighbourhood V2 of (p1, . . . , pk) in int(Rk
+) such that (5.91) is satisfied for
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all (τ′1, . . . , τ′k) ∈ U2 and all (p′1, . . . , p′k) ∈ V2, for all equilibria

x̂(τ′1, . . . , τ′k \ τ′i1 , . . . , τ′il) ∈ int(bdi1,...,il(R
k
+)), for all l = 1, . . . , k and all

{i1, . . . , il} ∈ J.

For {j1, . . . , jl′} ⊂ {i1, . . . , il} ∈ J we notice, by Lemma 4 and

expression (5.92), that sk−l′(τ1, . . . , τk \ τj1 , . . . , τjl′ ; τjβ) equals

sk−l(τ1, . . . , τk \ τi1 , . . . , τil ; τjβ), β = 1, . . . , l′. Therefore, with (5.93),

l′

∑
β=1

pβsk−l′(τ1, . . . , τk \ τj1 , . . . , τjl′ ; τjβ) =

l′

∑
β=1

pβsk−l(τ1, . . . , τk \ τi1 , . . . , τil ; τjβ) > 0. (5.95)

It follows that there exist an open neighbourhood U3 of (τ1, . . . , τk) in Tk

and an open neighbourhood V3 of (p1, . . . , pk) in int(Rk
+) such that (5.91)

is satisfied for all (τ′1, . . . , τ′k) ∈ U3 and all (p′1, . . . , p′k) ∈ V3, for all possible

equilibria x̂(τ′1, . . . , τ′k \ τ′j1 , . . . , τ′jl′
) ∈ int(bdj1,...,jl′ (R

k
+)), for all l = 1, . . . , k

and all {j1, . . . , jl′} ⊂ {i1, . . . , il} ∈ J.

By taking (τ′1, . . . , τ′k) ∈ U1∩U2∩U3 and (p′1, . . . , p′k) ∈ V1∩V2∩V3 it follows

that (5.91) holds for any l = 1, . . . , k and any {i1, . . . , il} ⊂ {1, . . . , k} for

which the equilibrium x̂(τ′1, . . . , τ′k \ τi1 , . . . , τil) ∈ int(bdi1,...,il(R
k
+)) exists.

This proves the non-generic case.
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5.5.7 Proof of Lemma 13

Without loss of generality we may assume that i equals k, and we shall do so here.

The s-permanence of LVk(τ1, . . . , τk) implies the existence of k strictly positive numbers p1, . . . , pk such that for each l and

each subset {i1, . . . , il} ⊂ {1, . . . , k} such that x̂(τ1, . . . , τk \ τi1 , . . . , τil) ∈ int(bdi1,...,il(R
k
+)) exists,

l

∑
α=1

piα sk−l(τ1, . . . , τk \ τi1 , . . . , τil ; τiα) > 0. (5.96)

We seek k + 1 strictly positive numbers p′1, . . . , p′k+1 such that for each l = 1, . . . , k + 1 and each subset

{j1, . . . , jl} ⊂ {1, . . . , k + 1} (of mutually distinct elements) for which x̂(τ1, . . . , τk, τk+1 \ τj1 , . . . , τjl) ∈ int(bdj1,...,jl(R
k+1
+ ))

exists, the summation
l

∑
β=1

p′jβ sk+1−l(τ1, . . . , τk, τk+1 \ τj1 , . . . , τjl ; τjβ). (5.97)

is positive.

We first restrict ourselves to the case l = 1. For each j ∈ {1, . . . , k + 1} such that x̂(τ1, . . . , τk, τk+1 \ τj) ∈ int(bdj(R
k+1
+ ))

exists, p′jsk(τ1, . . . , τk, τk+1 \ τj; τj) > 0 then is required to hold. I.e., both

p′ksk(τ1, . . . , τk−1, τk+1; τk) > 0, (5.98)

and

p′k+1sk(τ1, . . . , τk; τk+1) > 0 (5.99)

must hold, and in addition for each j = 1, . . . , k− 1

p′jsk(τ1, . . . , τk, τk+1 \ τj; τj) > 0 (5.100)
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must hold. Since both sk(τ1, . . . , τk−1, τk+1; τk) > 0 and sk(τ1, . . . , τk; τk+1) > 0 for τk+1 sufficiently close (but not equal) to τk, it

follows that in case l = 1, p′k and p′k+1 can taken to be arbitrarily positive numbers. For j = 1, . . . , k− 1, we obtain from (5.66)

that for τk+1 sufficiently close (but not equal) to τk that x̂j(τ1, . . . , τk+1) > 0. With (5.49) and Lemma 9.2 it then follows for

such τk+1 that sk(τ1, . . . , τk, τk+1 \ τj; τj) > 0. This then implies that for l = 1 also the p′j, j = 1, . . . , k− 1, in (5.100) can taken to

be arbitrarily positive numbers. We conclude that there is an open neighbourhood U1 of τk in R such that for each τk+1 6= τk

in U1, expression (5.97) is positive for l = 1 and each j ∈ {1, . . . , k + 1} such that x̂(τ1, . . . , τk+1 \ τj) ∈ int(bdj(R
k+1
+ )) exists,

for arbitrarily positive p′1. . . . , p′k+1

We now consider l = 2, . . . , k + 1. We distinguish four mutually exclusive cases for the summations (5.97), that together

cover all possible summations as determined by the sets {j1, . . . , jl} ⊂ {1, . . . , k + 1}, l = 2, . . . , k + 1. We assume the jβ,

β = 1, . . . , l to satisfy j1 < · · · < jl.

1. jl−1 = k, jl = k + 1. The summation (5.97) then becomes

l−1

∑
β=1

p′jβ sk−(l−1)(τ1, . . . , τk \ τj1 , . . . , τjl−1 ; τjβ) + p′k+1sk−(l−1)(τ1, . . . , τk \ τj1 , . . . , τjl−1 ; τk+1) =

l−1

∑
β=1

p′jβ sk−(l−1)(τ1, . . . , τk \ τj1 , . . . , τjl−1 ; τjβ) + p′k+1sk−(l−1)(τ1, . . . , τk \ τj1 , . . . , τjl−1 ; τk) +

εp′k+1∂0,...,0,1sk−(l−1)(τ1, . . . , τk \ τj1 , . . . , τjl−1 ; τk) + o(ε2) (ε→ 0). (5.101)
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By taking p′jβ to be equal to pjβ , for β = 1, . . . , l − 1, the first summation in the last expression by assumption

becomes positive, for each choice of l ∈ {2, . . . , k + 1} and each {j1, . . . , jl−2} ⊂ {1, . . . , k− 1} such that x̂(τ1, . . . , τk \
τj1 , . . . , τjl−1) ∈ int(bdj1,...,jl−1(R

k
+)) exists. By taking p′k+1 positive and such that

p′k+1 < min
l=2,...,k+1

{j1,...,jl−2}⊂{1,...,k−1}
x̂(τ1,...,τk\τj1

,...,τjl−1
)∈int(bdj1,...,jl−1

(Rk
+))

l−1

∑
β=1

pjβ sk−(l+1)(τ1, . . . , τk \ τj1 , . . . , τjl−1 ; τjβ)

|sk−(l+1)(τ1, . . . , τk \ τj1 , . . . , τjl−1 ; τk)|
, (5.102)

it follows that for τk+1 6= τk sufficiently close to τk, expression (5.97) then is positive. I.e., there is an open neighbourhood

U2 of τk in R such that for each τk+1 6= τk that belongs to U2, expression (5.97) is positive for l = 2, . . . , k + 1 and

{j1, . . . , jl} ⊂ {1, . . . , k + 1}, with jl = k, jl+1 = k + 1, and such that x̂(τ1, . . . , τk+1 \ τj1 , . . . , τjl) ∈ int(bdj1,...,jl(R
k+1
+ ))

exists.

2. k /∈ {j1, . . . , jl−1}, jl = k + 1. We then obtain that (5.97) equals

l−1

∑
β=1

p′jβ sk−(l−1)(τ1, . . . , τk \ τj1 , . . . , τjl−1 ; τjβ) + p′k+1sk−(l−1)(τ1, . . . , τk \ τj1 , . . . , τjl−1 ; τk+1) =

l−1

∑
β=1

p′jβ sk−(l−1)(τ1, . . . , τk \ τj1 , . . . , τjl−1 ; τjβ) + εp′k+1∂0,...,0,1sk−(l−1)(τ1, . . . , τk \ τj1 , . . . , τjl−1 ; τk) + o(ε2) (ε→ 0).

(5.103)

The first summation in the right hand side by assumption becomes positive by replacing p′jβ with pjβ , β = 1, . . . , l − 1,

for each l = 2, . . . , k + 1 and each {j1, . . . , j1−1} ⊂ {1, . . . , k} such that x̂(τ1, . . . , τk \ τj1 , . . . , τjl−1) ∈ int(bdj1,...,jl−1(R
k
+))
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exists. Consequently, there is an open neighbourhood U3 of τk in R such that for each τk+1 6= τk that belongs to U3,

expression (5.97) is positive for l = 2, . . . , k + 1 and {j1, . . . , jl} ⊂ {1, . . . , k + 1}, with k /∈ {j1, . . . , jl−1} and jl = k + 1,

and such that x̂(τ1, . . . , τk+1 \ τj1 , . . . , τjl) ∈ int(bdj1,...,jl(R
k+1
+ )) exists.

3. jl = k (and, consequently, k + 1 /∈ {j1, . . . , jl}). The summation in (5.97) then yields

l−1

∑
β=1

p′jβ sk−(l−1)(τ1, . . . , τk−1, τk+1 \ τj1 , . . . , τjl−1 ; τjβ) + p′ksk−(l−1)(τ1, . . . , τk−1, τk+1 \ τj1 , . . . , τjl−1 ; τk) =

l−1

∑
β=1

p′jβ sk−(l−1)(τ1, . . . , τk−1, τk \ τj1 , . . . , τjl−1 ; τjβ) + ε
l−1

∑
β=1

p′jβ ∂0,...,0,1,0sk−(l−1)(τ1, . . . , τk−1, τk \ τj1 , . . . , τjl−1 ; τjβ) +

εp′k∂0,...,0,1,0sk−(l−1)(τ1, . . . , τk \ τj1 , . . . , τjl−1 ; τk) + o(ε2) (ε→ 0). (5.104)

In the right hand side of (5.104), the first summation by assumption becomes positive by replacing p′jβ by pjβ ,

β = 1, . . . , l − 1, for each l = 2, . . . , k + 1 and each {j1, . . . , jl−1} ⊂ {1, . . . , k− 1} such that x̂(τ1, . . . , τk \ τj1 , . . . , τjl−1) ∈
int(bdj1,...,jl−1(R

k
+)) exists. It follows that here is a neighbourhood U4 of τk in R such that for each τk+1 6= τk that belongs

to U4 expression (5.97) is positive for each l = 2, . . . , k + 1 and {j1, . . . , jl} ⊂ {1, . . . , k}, with jl = k, and such that

x̂(τ1, . . . , τk+1 \ τj1 , . . . , τjl) ∈ int(bdj1,...,jl(R
k+1
+ )) exists.

4. Both k /∈ {j1, . . . , jl} and k + 1 /∈ {j1, . . . , jl}. This case does not have to be taken into account, since generically

x̂(τ1, . . . , τk, τk+1 \ τj1 , . . . , τjl) /∈ int(bdj1,...,jl(R
k+1
+ )). This can be seen from expression (5.49). By this expression
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x̂τk(τ1, . . . , τk, τk+1 \ τj1 , . . . , τjl) = −
Sk−l(τ1, . . . , τk−1, τk+1\, τj1 , . . . , τjl ; τk)

|A(τ1, . . . , τk, τk+1 \ τj1 , . . . , τjl)|
, and

x̂τk+1(τ1, . . . , τk, τk+1 \ τj1 , . . . , τjl) = −
Sk−l(τ1, . . . , τk−1, τk \ τj1 , . . . , τjl ; τk+1)

|A(τ1, . . . , τk, τk+1 \ τj1 , . . . , τjl)|
. It follows that for τk and τk+1 sufficiently

close to each other, the values x̂τk(τ1, . . . , τk, τk+1 \ τj1 , . . . , τjl) and x̂τk+1(τ1, . . . , τk, τk+1 \ τj1 , . . . , τjl) have opposite signs,

and therefore x̂(τ1, . . . , τk, τk+1 \ τj1 , . . . , τjl) /∈ int(bdj1,...,jl(R
k+1
+ )).

We conclude that if τk+1 ∈ U1 ∩U2 ∩U3 ∩U4 and not equal to τk, (5.97) is positive for all l = 1, . . . , k and all {j1, . . . , jl} ⊂
{1, . . . , k} such that x̂(τ1, . . . , τk+1 \ τj1 , . . . , jl) ∈ bd(Rk+1

+ ), with the p′j equal to pj > 0, j = 1, . . . , k, and with p′k+1 > 0

satisfying expression (5.102). Therefore LVk+1(τ1, . . . , τk+1) then is s-permanent.
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6
D I S C U S S I O N

6.1 opinion dynamics

In the first chapter on opinion dynamics we have studied the role of inflexibles
and floaters on the support for two opinions under repeated application of the
local majority rule in groups of size 3. In the second chapter on opinion dynamics
we refined this study by allowing for contrarian and non-contrarian floaters. We
derived several scenarios for the development of opinion support in time. We
shall now point to topics for further research in opinion dynamics. All these
directions for research in opinion dynamics deal with adding more structure to
opinion-dynamical models.

A first and straightforward way to add more realism to opinion-dynamical
models is by allowing groups of varying sizes in which individuals encounter
other opinions. This can be done by means of probability distributions on group
sizes. Also an increase in the number of opinions will be useful in connecting with
real opinion-dynamical processes.

More realism can also be achieved by by incorporation social structures. These
can be of a spatial, economic and/or educational kind. Spatial structure enables to
study the spreading of opinions in both rural and urban areas. In addition it allows
to model a possibly higher abundance of opinions in urban areas compared to
rural areas. Adding economic structure takes into account that support of opinion
may depend on income, whereas educational structure deals with the support of
opinion in relation to educational level. A further realistic extension of opinion
models is to incorporate the role of media in the spreading of opinions, as a global
influence on opinion bearers in contrast to the local influences which individuals
encounter in the groups they repeatedly form.

Apart form inflexibles and (contrarian and non-contrarian) floaters it may be
useful to include a class of neutrals composed of individuals who do not yet have
an opinion, but may develop one by repeated encounters with opinion bearers. A
further extension is the incorporation of a delay effect for floaters, which expresses
that a floater builds up the inclination to change its opinion to that of the majority
instead of making this change at first encounter with a majority. Another extension
of opinion dynamics models is to allow for the change of inflexible into floater or
vice versa. E.g., contrarian behaviour may express the adolescent attitude to strive
for individualisation, which may transform into inflexible behaviour when one
grows older. Fuzzy set theory can be applied to express doubt in supporting an
opinion.

191
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Political parties in general represent a number of political opinions, and part of
these opinions may be characteristic for several political parties. It may therefore
be insightful to model the dynamics of support for vectors of opinions instead
of single opinions. An individual then is characterised by the vector of opinions
he or she supports, and the opinions for which the individual is an inflexible
determines the political party that one associates with. For the opinions for which
an individual is not an inflexible, non-contrarian or contrarian behaviour can be
assumed.

With chapters on opinion dynamics as well as adaptive dynamics in one thesis
it is tempting to reflect on mutual applications. One immediate notion that comes
to mind is to model with adaptive-dynamical means a phenomenon that is well-
known in Dutch politics: the raise and development of a new alternative opinion or
political splinterparty, and to determine under which conditions such an opinion
or party becomes part of the establishment, remains present in a marginal way or
disappears altogether.

6.2 adaptive dynamics

Many works has already been done and published on the theory and applications
of adaptive dynamics (see the site [60] for an overview). However, an extensive
study of adaptive dynamics based on Lotka-Volterra community dynamics had not
yet been performed, and Chapter 5 on adaptive dynamics in this thesis provides
an opening in this direction. As is shown in this chapter, the approach allows for
an explicit expression for the invasion fitness function, which turned out to be
useful in stating various conclusions of adaptive dynamics. We mention several
open problems of adaptive dynamics that follow from this chapter.

A main problem is the determination of the zero sets of the invasion fitness
functions sk(τ1, . . . , τk; ν) for arbitrary k ≥ 1. The intersections of these zero sets
with the diagonal hyperplanes 4k+1

i,k+1 determine the position and shape of the
isoclines. Also, these zero sets determine the local shapes of the sets Ak+1 attached
to the isoclines, and thus the shape of the space into which an evolutionary
trajectory proceeds in an evolutionary branching process. In particular it can be
deduced from these shapes when a trajectory is close enough to the boundary of
an Ak for a sufficiently large step to cause evolutionary pruning.

After evolutionary branching from A1 into A2 the trajectory the evolutionary
path follows can be deduced by embedding A2 into the two hyperplanes 43

1,3 and
43

2,3 and then analyse how the invasion fitness function s2(τ1, τ2; ν) behaves on the
two embeddings of A2. A change in the first trait of a dimorphic community (τ1, τ2)
is determined by the sign pattern of s2 on 43

1,3, and similarly a trait substitution
in the second trait is determined by the pattern on 43

2,3. The combination of
these changes composes the evolutionary path the community follows in T2. To
avoid making these combinations of informations coming from two different local
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patterns it would be useful to have one space available in which conclusions on
how the evolutionary path for a community τ1, τ2 proceeds can be concluded from
the local properties of a suitable function at (τ1, τ2). Similar questions on combining
information from diagonal hyperplanes to conclude how an evolutionary path
proceeds, and overcoming this by means of a suitable representation of course also
hold for evolutionary paths in any Ak, k ≥ 2.

A next question deals with the relation between the function s1 and the
evolutionary trajectories that it allows. What properties must s1 or, more precisely,
the per capita initial growth function r and the interaction function a of a
Lotka-Volterra model, satisfy to enable an evolutionary trajectory with an
arbitrary number of branches, or with a specified number of branches?

A forthcoming paper will discuss bifurcation theory for adaptive dynamics
based on Lotka-Volterra community dynamics. This bifurcation theory studies
in particular if a lESS can change into an evolutionary branching point due to
changes in the values of community-dynamical parameters that appear in the
interaction function a and the per capita initial growth function r as they appear in
the Lotka-Volterra differential equations in the previous chapter. The bifurcation
theory gives insight in the way the set A2 is attached to the 1- and 2-isoclines when
one moves along these isoclines, i.e., about how the local shape of A2 deforms
along these isoclines.
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S A M E N VAT T I N G

Strategiedynamica

inleiding

Dit proefschrift bestudeert het begrip strategie met behulp van wiskundige
modellen vanuit twee perspectieven. Het eerste deel behandelt de
opiniedynamica. Hierin wordt geanalyseerd hoe de steun voor opinies
verandert onder invloed van herhaaldelijke ontmoetingen tussen individuen met
verschillende opinies. Deel 2 van het proefschrift bestudeert de veranderingen
in strategieën als gevolg van evolutie.

opiniedynamica

Opeenvolgende opiniepeilingen zoals die bijvoorbeeld plaatsvinden
voorafgaand aan politieke verkiezingen laten vaak een verandering in
steun aan opinies zien: de steun voor een of meerdere opinies neemt
bijvoorbeeld toe ten koste van de steun aan alternatieve opinies, of de opinie
die de meerderheid heeft is bij een volgende peiling vervangen door een andere
opinie. Opiniedynamica beoogt door het construeren van wiskundige modellen
inzicht te krijgen in het gedrag van steun aan opinies in de loop van de tijd, en
met behulp van deze modellen voorspellingen te kunnen doen over dit gedrag.

In dit proefschrift worden twee modellen voor opiniedynamica onderzocht,
waarbij het aantal opinies wordt beperkt tot twee, hier aangegeven met A
en B. Hierbij kan gedacht worden aan de onderverdeling tussen ’links’ en
’rechts’ voor politieke partijen die onderling in opvattingen verschillen maar
die ieder afzonderlijk in een van deze beide kampen onder te brengen zijn,
of aan de onderverdeling van het politieke spectrum in de Verenigde Staten
in republikeinen en democraten. In beide modellen worden de opiniedragers
herhaaldelijk verdeeld in groepen, en afhankelijk van het type opiniedrager dat
een groepslid is zal hij of zij wel of niet van opinie veranderen. In hoofdstuk 2

wordt voor de grootte van de groep 3 genomen (de kleinste groepsgrootte waarin
voor twee opinies een meerderheid kan optreden); in hoofdstuk 3 worden eerst
groepsgrootten 1 en 2 bestudeerd ter inleiding op het interessantere geval van
groepsgrootte 3.
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In hoofdstuk 2 wordt verondersteld dat voor beide opinies de aanhangers
zijn onder te verdelen in zgn. onbuigzamen (of onwrikbaren; in het Engels
inflexibles genoemd) en zwevers (floaters in het Engels). Een onbuigzame
aanhanger van een opinie is iemand die onder alle omstandigheden bij deze
opinie blijft en nooit van opinie zal veranderen. Een zwever daarentegen
zal van opinie veranderen wanneer deze opinie de minderheid heeft in de
groep waarin de zwever zich bevindt, en volgens het principe van de zgn.
locale meerderheidsregel een zwever worden die de opinie ondersteunt die de
meerderheid heeft in de groep. In hoofdstuk 3 wordt m. b. t. een zwever
onderscheid gemaakt tussen een tegendraadse zwever (contrarian floater) en
een niet-tegendraadse zwever (non-contrarian floater; in feite zijn de zwevers
in hoofdstuk 2 allen niet-tegendraadse zwevers). Een tegendraadse zwever
zal na het toepassen van de locale meerderheidsregel in de groep waarin
deze zwever zich bevindt van opinie veranderen en een zwever voor de
alternatieve opinie worden; de niet-tegendraadse zwever behoudt de opinie
die na het toepassen van de locale meerderheidsregel is aangenomen. (In
geval van groepsgrootte 2 in hoofdstuk 3 wordt er neutraliteit aangenomen en
behoudt een niet-tegendraadse zwever zijn of haar opinie; een tegendraadse
zwever verandert wel van opinie.) Dit tegendraads gedrag van zwevende
opiniedragers modelleert een houding die bijv. voorkomt bij individualistische
adolescenten, i.h.b. in een omgeving waaraan hardnekkig wordt vastgehouden
aan bepaalde opvattingen, bij verzet tegen de opinie met de meerderheid, of bij
individuen die zich conformeren met de minderheid. Tegendraads gedrag van
zwevers werd geı̈ntroduceerd als mogelijke verklaring voor het kleine verschil
in stemmen uitgebracht aan de twee kandidaten G. W. Bush en A. Gore tijdens
de presidentsverkiezingen in de VS van 2000 (en heeft waarschijnlijk ook een
rol gespeeld bij de presidentsverkiezingen in 2020).

Na toepassing van de locale meerderheidsregel gevolgd door de verandering
van opinie door de tegendraadse zwevers (indien aanwezig) worden de
opiniedragers opnieuw verdeeld over groepen (van steeds dezelfde grootte),
waarna de opiniedragers in iedere groep opnieuw hun opinie bepalen. Voor de
groepsvorming wordt steeds aangenomen dat iedereen in de gemeenschap een
opinie heeft en dat de gemeenschap voldoende groot is, zodat het voorkomen
van een bepaalde groepssamenstelling kan worden afgeleid uit de dichtheden
van de onbuigzamen en (tegendraadse en niet-tegendraadse) zwevers in de
gemeenschap. Na verloop van tijd zal in het algemeen een van beide opinies de
meerderheid krijgen, maar welke dit is zal afhankelijk zijn van de dichtheden van
onbuigzamen en zwevers in de gemeenschap en mogelijk van de beginsituatie.

In hoofdstuk 2 wordt aangetoond dat in afwezigheid van onbuigzamen voor
beide opinies de opinie die aanvankelijk de meerderheid heeft deze meerderheid
zal vergroten en de hele gemeenschap zal overnemen. Als er slechts van één van
de twee opinies, zeg opinie A, onbuigzamen in de gemeenschap aanwezig zijn
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met een aandeel in de totale gemeenschap dat lager is dan (ongeveer) 17%, dan
hangt het van de samenstelling van de beginsituatie af welke opinie uiteindelijk
de meerderheid krijgt: bij een voldoende grote aanvangsdichtheid van opinie
B zal deze opinie de meerderheid bereiken en behouden, maar als opinie A
bij aanvang in voldoende grote dichtheid aanwezig is zal A de gemeenschap
volledig overnemen. Bij een aandeel van onbuigzamen voor A van minstens
17% zal opinie B altijd uit de gemeenschap verdwijnen (onafhankelijk van de
beginsituatie).

Als het aandeel onbuigzamen voor opinie A groter is dan voor opinie B maar met
ene voldoende klein verschil tussen deze dichtheden dan zijn er twee coalities
van beide opinies mogelijk: een coalitie waarin opinie B de meerderheid heeft
en de andere waarin opinie A de meerderheid heeft, en het hangt weer van de
beginconditie af welke opinie uiteindelijk de meerderheid zal krijgen. Als het
verschil tussen dichtheden voldoende groot wordt in het voordeel van opinie A
dan is er één enkele coalitie mogelijk waarin opinie A de meerderheid heeft. In
het algemeen is de opinie die gesteund wordt door de grootste dichtheid aan
onbuigzamen in het voordeel om uiteindelijk de meerderheid te bereiken in de
gemeenschap.

In de opinie dynamica voor onbuigzamen en (niet-tegendraadse) zwevers
worden de uiteindelijke dichtheden zgn. monotoon bereikt, waarbij een dichtheid
van een opinie óf altijd kleiner óf altijd groter is dan de uiteindelijke dichtheid.
Als er ook tegendraadse zwevers in de gemeenschap aanwezig zijn (hoofdstuk 3)
is er naast monotoon gedrag ook alternerend gedrag mogelijk, waarbij beide
opinies dichtheden aannemen die afwisselend kleiner en groter zijn dan de
dichtheden die uiteindelijk in coalitie bereikt worden. Dit alternerende gedrag
treedt bijvoorbeeld op als er voor beide opinies relatief lage dichtheden aan
onbuigzamen aanwezig zijn en daarentegen hoge fracties tegendraadsen onder
de zwevers. Als de uiteindelijke opinieverdeling zodanig is dat beide opinies met
dichtheden van ongeveer 0.5 aanwezig zijn, kan zo’n scenario er toe leiden dat
beide opinies op den duur nauwelijks in dichtheid van elkaar verschillen maar
wel afwisselend de meerderheid hebben. Het exacte moment van verkiezing kan
dan bepalend zijn welke opinie met nipte meerderheid wint. In het algemeen zal
een toename in de fractie tegendraadsen onder de zwevers van een opinie tot
een afname van de dichtheid van die opinie leiden in de coalitie die uiteindelijk
bereikt wordt. Een opinie die in coalitie de meerderheid heeft kan deze dus
behouden door de fractie tegendraadsen onder de zwevers beperkt te houden.

adaptieve dynamica

In het deel over adaptieve dynamica verschuift de focus van dichtheden van
strategieën naar het voorkomen van strategieën op de evolutionaire tijdschaal.
In deze context wordt een strategie een fenotypisch kenmerk genoemd. Een
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fenotypisch kenmerk is een eigenschap van organismen, zoals lichaamsgewicht,
voedselkeuze, of een bepaalde vorm van gedrag. We beperken ons hier tot
een strategie die middels een getalswaarde kan worden uitgedrukt. Dat zou
bijvoorbeeld lichaamsgewicht kunnen zijn, of de maximale afstand waarover
roofdieren een prooi kunnen ruiken. We zijn hier dus niet zozeer geı̈nteresseerd
met welke dichtheden bepaalde waarden van een fenotypisch kenmerk in een
gemeenschap voorkomen, maar welke waarden van dat kenmerk voorkomen
en hoe veranderingen in die waarden wiskundig beschreven kunnen worden.

Om dit probleem te kunnen bestuderen worden er een aantal aannamen
gedaan. We beschouwen een gemeenschap van populaties waarbij ieder
individu aanwezig in een populatie dezelfde waarde heeft voor een niet
nader gespecificeerd fenotypisch kenmerk, en waar de kenmerkwaarden tussen
individuen van verschillende populaties van elkaar verschillen. De individuen
in de gemeenschap zijn met elkaar in voortdurende competitie (bijvoorbeeld
om voedsel of leefruimte), en de verschillende kenmerkwaarden bepalen de
onderlinge competitieve sterkte. Er is dus competitie zowel tussen individuen
binnen een populatie als tussen individuen van verschillende populaties. Na
verloop van tijd zal de gemeenschap van populatie een stabiele modus van
samenleven bereiken waarin de dichtheden van de populaties als gevolg van
competitie mogelijk fluctueren in de tijd, maar waarin geen van de populaties
zal uitsterven omdat sterfte van individuen binnen ieder van de populaties
voldoende wordt gecompenseerd door geboorten. De populaties in deze stabiele
modus worden de residente populaties genoemd, en de stabiele modus kan
worden gerepresenteerd door de fenotypische kenmerkwaarden van deze
residente populaties.

Als er ten gevolge van een mutatie in een van de residente populaties in stabiele
modus een mutante populatie wordt voortgebracht, d.w.z. een populatie die in
de waarde van het fenotypische kenmerk een geringe afwijking vertoont t.o.v.
de moederpopulatie, dan kan met de gemeenschap van residente populaties en
de mutante populatie als gevolg van competitie het volgende gebeuren:

- de mutante populatie redt het niet in competitie en zal verdwijnen, en de
residente gemeenschap zal haar bestaan in stabiele modus voortzetten;

- de moederpopulatie zal als gevolg van competitie uitsterven omdat de
individuen van de mutante populatie een iets betere competitieve sterkte
hebben dan de individuen uit de moederpopulatie, en er wordt een nieuwe
stabiele modus van samenleven bereikt door de overgebleven residente
populaties en de mutante populatie;

- als gevolg van competitie zullen er meerdere populaties uit de gemeenschap
uitsterven, en de populaties die overblijven komen uiteindelijk terecht in
een nieuwe stabiele modus;
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- de competitieve sterkte van de individuen in de mutante populatie is
zodanig dat er een nieuwe stabiel modus van samenleven wordt bereikt
van alle residente populaties met de mutante populatie.

Ter verduidelijking van het bovenstaande wordt hier opgemerkt dat het
verschijnen van een mutante populatie met een kenmerkwaarde die de populatie
in staat stelt om toe te nemen in dichtheid in competitie met de residente
populaties relatief zeldzaam is. Het is daarom redelijk aan te nemen dat er
slechts één mutante populatie door de residente populaties wordt voortgebracht,
en dat de residente populaties als dit gebeurt inmiddels hun stabiele modus van
samenleven hebben bereikt. De kenmerkende tijdsduur die populaties nodig
hebben om een stabiele modus te bereiken bepaalt de gemeenschapsdynamische
tijdschaal, en de kenmerkende tijdsduur die verloopt tussen het opeenvolgend
verschijnen van mutante populaties die in dichtheden toenemen en in competitie
gaan met residente populaties bepaalt de evolutionaire tijdschaal.

Voor de hierboven beschreven vier scenarios die mogelijk zijn na het verschijnen
van een mutante populatie kan de uitkomst uitgedrukt worden door middel
van de fenotypische kenmerken die aanwezig zijn in de uiteindelijk bereikte
stabiele modus:

- in het eerste scenario zal er niets veranderen;

- in het tweede scenario wordt het kenmerk van de moederpopulatie
vervangen door het kenmerk van de mutante populatie: er is sprake van
een zgn. kenmerksubstitutie;

- het derde scenario zorgt voor een afname in het aantal kenmerken;

- het laatste scenario zorgt voor een toename in het aantal kenmerken met 1.

Wiskundig kan worden aangetoond dat het tweede scenario, waarbij een
kenmerksubstitutie optreedt, de gebruikelijk gang van zaken is ten gevolge
van het verschijnen van een mutante populatie in een residente gemeenschap.
Als de kenmerkwaarden aanwezig in opeenvolgende stabiele modi worden
uitgezet tegen de evolutionaire tijdschaal ontstaan er patronen die op bomen
lijken: takken groeien als gevolg van kenmerksubstituties, en worden geknot bij
afname in het aantal kenmerkwaarden, en vertakken als gevolg van een toename
in het aantal kenmerkwaarden. (Zie hiervoor Figuur 1.1.)

In hoofdstuk 4, het eerste hoofdstuk in het deel over adaptieve dynamica, wordt
de stabiele modus van samenleven van populaties wiskundig gedefinieerd. De
wiskundige term die uitdrukking geeft aan deze modus is ’ep-chain attractor’.
Een ep-chain attractor is een aanpassing van het chain-attractorbegrip van
Ruelle voor een ecologische gemeenschapsdynamica, en heeft de eigenschappen
die er op grond van ecologische processen redelijkerwijs aan gesteld mogen
worden. In het bijzonder laat een ep-chain attractor niet toe dat een populatie
die op de gemeenschapsdynamische tijdschaal uitsterft op deze tijdschaal weer
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verschijnt en toeneemt in dichtheid. (Op de evolutionaire tijdschaal is dit echter
wel mogelijk, als tenminste de juiste mutatie optreedt.)

In hoofdstuk 5 wordt voor een specifiek klasse van gemeenschapsdynamica (de
klasse van Lotka-Volterra modellen) de zgn. invasiefitness voor een fenotypische
kenmerkwaarde van een mutante populatie die verschijnt in een residente
gemeenschap (in een ep-chain attractor) bepaald. Een positieve invasiefitness
duidt op een toename in dichtheid van de mutante populatie (preciezer gezegd:
op een positieve kans op toename van dichtheid), en een niet-positieve dichtheid
duidt op het uitblijven van deze toename. Voor een mutante populatie die
verschijnt in een enkele residente populatie worden de hierboven beschreven
evolutionaire scenarios kenmerksubstitutie en vertakken (voor knotten zijn
er minstens twee residente populatie nodig) geanalyseerd met behulp van
de invasiefitness. Voor het geval dat de mutante populatie verschijnt in
een residente gemeenschap met meerdere populaties worden noodzakelijke
voorwaarden voor coexistentie van de mutante populatie met de residente
populaties geformuleerd in termen van de invasiefitness.
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