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INTRODUCTION

In our actions with other individuals, we often design strategies to achieve our
goals at minimum cost to ourselves and others. Is it better to take the train or
the car at this time of the day? Should I express my opinion openly and risk
that it is not heard, or first hear out my colleagues to find out if they agree with
me? Should I do my shoppings for Christmas dinner early and risk that some
ingredients will spoil, or should I wait to do them at the last minute and risk that
some ingredients are sold out? How successful my strategy is, depends on what
strategy you have chosen. What strategy you choose, depends on what strategy
you think I will choose. Strategy dynamics studies how the strategies chosen in a
population change over time, and is the subject of this thesis. It can be conceived
on two levels, which we shall both explore:

- the population-dynamical level, on which we deal with changes in the
densities of support of strategies in a community due to interactions of
individuals of;

- the evolution-dynamical level, where the interest lies in explaining from
population-dynamical arguments how a strategy becomes present,
disappears, or coexists with other strategies.

On the population-dynamical level we analyse strategy dynamics where
strategies occur as opinions are present as opinions in a community of two
populations. In each population all individuals adhere (at least momentarily) to a
certain opinion, which differs from the opinion supported in the other population.
We follow the densities of support for the two opinions in time when the
individuals of the two populations repeatedly meet in small groups. Under the
influence of a local majority rule and depending on individual behaviour
individuals may change their opinion, and we shall study the generated dynamics
in opinion support. Opinion dynamics comprises Part I of the thesis.

Part II of the thesis focuses on strategies on the evolution-dynamical level. Here
strategies are phenotypic traits such as they are studied in biology. We consider
communities of populations in which the individuals of each populations carry the
same trait (expressed as a numerical scalar value), and trait values are supposed
to differ between the populations. For convenience we assume that all individuals
are haploids and that reproduction is clonal. If one of the individuals generates a
mutant individual with a slightly different phenotype, this individual, depending
on the environment it encounters, either will be able to increase the presence of its
phenotype by means of reproduction or it will not and therefore will disappear
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and go unnoticed on the evolutionary timescale. In case of increase of the presence
of the mutant phenotype, in general the population with the individual that
generated the mutant will disappear and be replaced by the mutant population.
The number of phenotypes present in the community then remains unaltered, but
one of their values is slightly changed. However, under specific conditions the
mutant phenotype is able to coexist with all the phenotypes originally present in
the community, and the number of phenotypes present in the community then
is increased by 1. We shall also derive that in case the mutant phenotype differs
sufficiently enough from that of its progenitor, the mutant type and the progenitor
type may disappear from the community, thus causing a decrease in the number
of phenotypes present in the community. Phenotypic trait dynamics is also known
as adaptive dynamics.

Phenotypic changes are underpinned by changes in alleles, while this is clearly
not the case for changes in opinion. Despite these differences opinion dynamics
and adaptive dynamics have much in common, and the concept strategy is central
to both. Before we introduce opinion dynamics and adaptive dynamics in more
detail we shall therefore first in a few words focus on the notion of strategy in
general.

1.1 THE NOTION OF STRATEGY

Historically, strategies are mental constructions related to warfare. A strategy then
is a plan, conceived by a ruler, about how to achieve a specific goal, e.g. to win
a war or to conquer a certain piece of land. Considerations on the different ways
to achieve this goal and the decision-making on which specific way to choose
are called tactics. These concepts are reflected e.g. in the ancient game of chess,
which abstracts warfare and in which a player uses a strategy (e.g. directing pieces
towards the enemy king) and tactics (e.g. winning a pawn on the way) to reach the
final goal, which is to mate the opponent’s king. Given the connection of strategies
with warfare one might be inclined to think that strategies are stated in terms of
contrasts, but this is not necessarily the case: in order to reach a certain goal it may
well be useful to seek for (temporary) support from or co-operation with other
individuals and go to the battlefield together.

Taking an instant leap from ancient times into modern societies one observes
that the notion of strategy, now often less bellicose but still concerned with a
plan to reach a predetermined goal, is present everywhere: from the world of
business to politics, and from sports to science. A main part of the planning has
to do with overcoming problems that obstruct the path to the goal. The causes
of these problems, or anything that interferes with any path to reach the goal, is
considered to belong to the environment of the strategy or the strategist, i.e., the
entity (a person, animal, plant, robot) that tries to reach the goal. As such executing
a strategy may be conceived as a struggle (but one that may be less dramatic than
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it sounds), which resonates e.g. in the "survival of the fittest’ characterisation of
Charles Darwin’s theory of evolution by natural selection.

The entity that executes the strategy may have a mental representation of the
strategy. This will be the case for a general engaged in warfare, a chessplayer
trying to win a game, a soccer trainer composing a team for the next match, or an
executive of a company who aims to maximise profits. But such an internal mental
representation is not a requirement in order to talk about strategies. Consider
for instance bees that extract nectar from the flowers they visit. One strategy
may involve visiting flowers of a single flowering plant species, whereas another
strategy involves visiting flowers of many different flowering plant species. The
bees are executing a strategy that is partly learned and partly genetically-based.
They will be unaware of their strategy. Also plants are clearly unaware of the
strategy they play. Examples of strategies executed by plants are: producing many
small seeds for reproduction, or producing only a few large seeds for reproduction.
Other strategies involve dealing with stress caused by external disturbances such
as predators or lack of food or space. (The discussion of plant behaviour in terms
of strategies gained impetus in the 1970s with the publications by Harper and
Ogden [44] and Grime [43].) In what follows we shall drop the distinction between
entities that are mentally aware of the strategies they execute and those that lack
this awareness. By doing so we allow ourselves to use the statement that an entity
has, carries, executes or performs a strategy. For convenience we shall also loosely
switch between the use of "strategy” and those that execute, carry or perform the
strategy.

As stated above, in trying to reach the goal as planned by a strategy in general
obstructions have to be tackled. These obstructions belong to the environment in
which the strategy is executed, and in this environment entities executing other
strategies may be present, thus leading to various possible interactions of strategies.
In general this interaction will change the density of support for both strategies. In
case that two strategies interact, the most extreme cases are complete competition,
in which both strategies go for their own goal with disadvantage for the other
strategy (i.e. a decline in density or per capita growth rate for the support of both
strategies), or a complete co-operation in which each strategy profits from the
presence of the other strategy (expressed by an increase in density or per capita
growth rate for support of both strategies). Any other form of interaction classifies
as exploitation, in which one strategy profits at the cost of the presence of the other
strategy.

Interaction, e.g. competition, of strategies may lead to the replacement of a
strategy by one that is more capable or more effective (taking into account certain
criteria) to deal with the environment, i.e. the obstructions encountered in realising
its goal. It is also possible that under certain conditions two competing strategies
coexist. Coexistence of strategies as well as replacement of a strategy due to
interaction and the resulting dynamics will be discussed in detail in this thesis.
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Mathematicians J. von Neumann and J. Nash formalised thinking about
strategies in the so-called game theory, see e.g. [79]. Game-theoretical concepts
initially were applied in economics, but turned out to be useful in many fields of
science. Maynard Smith applied similar concepts to the field of biology [69], [70].
He introduced the term Evolutionarily Stable Strategy (ESS), which is a strategy
which, when common, cannot be beaten by any other strategy. We shall encounter
this type of strategy as well as other ones in the discussions of opinion dynamics
and adaptive dynamics.

1.2 OPINION DYNAMICS

The first strategies that we are considering are opinions. The field of ‘opinion
dynamics’ originated from sociophysics, which applies methods originally used to
model physical phenomena to explain social processes. Two early approaches that
yielded insight in this respect were lattice models, already used in the 1940s to
study social segregation, and the Ising model for ferromagnetism as a first
application to understand opinion dynamics (see e.g. [88]). Nowadays
sociophysics is a growing field of research with applications covering different
such as strike behaviour [31], flock behaviour [19] and fluctuating financial
markets (as a specialisation of sociophysics called econophysics; see also [30] and
e.g. [88] and [86] for recent overviews). Within the field of sociophysics, opinion
dynamics deals with the behaviour of opinion support in communities (see e.g.
[10], [21], [24] to get an impression on the subject). In particular we consider
communities in which two opinions are present, and we are interested in the
dynamics of the support as generated by individuals who have different attitudes
with respect to the opinion they support.

In the first chapter of Part I on opinion dynamics a supporter of an opinion may
be an inflexible or a floater. An inflexible always maintains the supported opinion,
independent of the circumstances encountered. A floater changes opinion in case
the initially supported opinion has the minority in the environment it finds itself in.
Here the environment consists of groups of three individuals. This environment is
repeatedly locally updated by randomly regrouping all individuals into groups of
size 3. Thus, due to application of the local majority rule all individuals in a group
adopt the opinion that has the local majority in that group. In case all individuals
in the community are floaters, the opinion that initially has the majority in the
community will fully take over, with opinion support of 50% in the community
being a repellor for both opinions. In case only one of the two opinions is supported
by inflexibles with sufficiently small density, the outcome of the dynamics due
to repeated local updates is governed by two local attractors. On one of these
attractors both opinions are present, with the one supported by inflexibles being
the minority. On the other attractor the opinion supported by the inflexibles is the
only opinion present. This implies that the outcome for the dynamics depends
on the initial condition, and we derive that the basin of attraction for the mixed
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local attractor is relatively small compared to that for the single opinion attractor.
Furthermore we show that in case the density of inflexibles becomes sufficiently
large (approximately 17%), the mixed attractor disappears and the single state
attractor becomes global.

In case both opinions are supported by equally small densities of inflexibles,
there are two mixed local attractors for the dynamics, separated by a repellor
on which both opinions are supported by half of the population. As soon as the
density of inflexibles become different this symmetry disappears. A sufficiently
large increase in density for one of the opinions may lead to a global attractor on
which the opinion with the larger density of inflexibles has the majority.

In the second chapter on opinion dynamics we take floaters to show either
non-contrarian or contrarian behaviour. A non-contrarian shows the behaviour of a
floater as described before, whereas a contrarian floater goes against the grain and
subsequently changes its opinion to the alternative one. Contrarian behaviour may
represent various kinds of attitudes against one’s environment, e.g. an expression
for individualisation by adolescents, especially in the presence of inflexible opinion
supporters, or an expression of conformity with a minority. We again determine the
dynamics of the support for the two opinions, now under repeated local updates
for group sizes 1, 2 and 3. Given fixed densities of inflexibles for the two opinions,
and fixed fractions of contrarians among the floaters for the two opinions, we
derive the dynamics in case individuals meet in groups of either size 1, 2 or 3. We
again state conditions, now in terms of these densities of inflexibles and fractions
of contrarians, that determine if an opinion will eventually gain the majority. It
is shown that relatively small densities of inflexibles allow for various qualitative
outcomes (in terms of number of equilibria and monotone vs. alternating dynamics
with respect to attractors or repellors), and that an increase in the densities of
inflexibles diminishes this variation in dynamics.

1.3 ADAPTIVE DYNAMICS

In biology, differences between organisms with different phenotypic traits, for
instance offspring size or sex ratio of the offspring, are also referred to as differences
between strategies. Phenotypic traits are genetically based, and occasionally new
phenotypic traits are produced due to mutations in the DNA. In what follows we
shall call a phenotypic trait simply a phenotype.

Alleles present in the individuals of a population will by means of reproduction
become available in the next generation. The frequency of an allele in the next
generation is determined by its allele fitness, i.e, the relative increase in frequency
of the allele from one generation to the next one, and will depend on the selection
that the genotypes in which the allele participates experience in the environment
these genotypes encounter. A simple population-genetical model illustrates this.
Suppose that two alleles A and a are present in a population of diploid organisms,
with initial frequencies 0.5 for the homozygotes AA, 0 for the heterozygotes Aa,
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and 0.5 for the homozygotes aa. Assuming that AA has the highest fitness, and
that aa has the lowest fitness, allele A will outcompete a as expected. If however
the heterozygotes have the highest fitness, all three genotypes and therefore also
both alleles will remain present in the population.

In practice allele frequencies and allele fitness as well as the phenotypic
realisation of a genotype are hard to quantify. Most of the insights in population
genetics and evolutionary genetics are therefore obtained from theoretical
mathematical models in which selection is directly on the genotypes under
assumption on allele fitness. Also, one could argue that selection is done on
phenotypes that are expressions of alleles, and causes changes in phenotype
densities in a population and consequently also on allele frequencies. The
awareness of this short-cut lead to evolutionary game theory (the ‘game’-part gets
involved to explain how a strategy in a game should evolve to eventually give
optimal profit; e.g. in a strongly female-biased population it would be good for
maintenance of the population to produce many sons, whereas in a strongly
male-biased population the same strategy will not be successful) and phenotypic
optimisation theory, and later to adaptive dynamics (see e.g. [8], [73], [39]). These
approaches try to overcome the intricacies of evolutionary genetics by focusing on
the changes of phenotypes in time. The advantage obtained by leaving out genetic
details is that it facilitates the mathematical analysis of these changes.

Adaptive dynamics assumes a community of populations that is assumed to
reside on a community-dynamical attractor in which each population consists of
individuals that all have the same strategy, and with different strategies for the
individuals of different populations. The phenotypes of the various populations
determine the phenotypic trait composition of the community, and are called the
resident phenotypes. In such a community of populations a mutant population
may occur, generated by one of the populations present in the community. The
mutants’ strategy therefore is close to that of its progenitor population. An
important notion in adaptive dynamics is the invasion fitness of a phenotype. In
case the mutant’s phenotype has a non-positive invasion fitness it is not capable of
increasing its initially infinitesimally small density in the environment as set by
the community-dynamical attractor in which it appears and goes extinct,
unnoticed on the evolutionary timescale and leaving the community-dynamical
attractor unaltered. A positive invasion fitness implies a positive probability for
the mutant population to increase its density and to invade the environment as set
by the community-dynamical attractor. In case a mutant population invades, its
strategy as well as the mutants that carry this strategy are called successful. In
case the mutant population does invade, there are three, mutually exclusive,
outcomes possible:

1. the mutant population replaces its progenitor population, and together with
the remaining populations settles on a new community-dynamical attractor
which has a slightly different composition in terms of the phenotypic traits
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present on it, thus implying a small shift in the phenotypic trait composition
of the community;

2. the appearance of the mutant population causes the extinction of the mutant
population as well as of its progenitor population, and on the attractor the
community eventually will reach the number of phenotypes present then
will be reduced by 1 compared to that number for the invaded attractor®

3. the mutant population is able to coexist with all the resident populations. In
this case the number of distinct phenotypic trait values present on the
community-dynamical attractor eventually reached by the mutant and
resident populations is increased by 1 with respect to that number for the
invaded attractor.

The assumption made above that a successful mutant population appears in a
community that resided on a community-dynamical attractor is motivated by
the fact that evolutionary time as set by the pace of the occurrence of successful
mutants is much slower than community-dynamical time as set by the times
communities need to reach an attractor.

Plotting the phenotypic trait compositions of subsequent community-dynamical
attractors on an evolutionary timescale results in a picture that resembles an
evolutionary tree. Figure 1.1 shows an example of such a picture for scalar
phenotypic trait values. The replacement of a progenitor population by a mutant
population corresponds to the growth of a branch of the tree, extinction of the
mutants and the progenitor population as a result of invasion agrees with pruning
of a branch, and coexistence of the resident populations together with the mutant
population corresponds to branching of the tree. E.g., in Figure 1.1 halfway the
evolutionary timescale the tree shows that four resident trait values are present,
resulting from three branching events in the past. This implies that the community
resides on a community-dynamical attractor on which four populations are
present, each represented by its phenotypic trait value (which are called here the
resident trait values). With the increase of time the branches grow due to
subsequent replacements in one of the branches, leaving the other branches
unaffected. Eventually one of the branches is pruned, resulting in a community of
three populations that continues evolving.

1.4 OVERVIEW

After this introduction, the thesis continues with Part I, in which opinion dynamics
is discussed. Chapter 2 considers the effect of inflexibles and floaters on the

It is to be noted here that the extinction of one population may also cause a cascade of extinctions
of other populations present in the community; this is however not the rule. Furthermore, in
host-parasite models it may occur that the invasion of a mutant host population does not cause the
extinction of its progenitor population but of the parasite population; see e.g. [99].
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evolutionary time

resident trait values 7

Figure 1.1: Phenotypic trait composition of subsequent community-dynamical
attractors plotted against evolutionary time.

densities of two opinions under the local majority rule in groups of size 3. In
Chapter 3 this model is extended to include inflexibles as well as non-contrarian
and contrarian floaters, and considers besides groups of size 3 also groups of sizes
1 and 2.

Part II turns to adaptive dynamics. As follows from the introduction above,
adaptive dynamics studies the subsequent phenotypic trait compositions of
attractors that a community visits, where the change from one attractor to the
other is caused by the invasion of a successful mutant population. Chapter 4
presents a notion of community-dynamical attractor, and we derive that for a large
class of community-dynamical models such an attractor exists. Chapter 5 then
discusses adaptive dynamical processes based on Lotka-Volterra
community-dynamics. The phenotypic traits are taken to be scalar values and
appear as arguments in so-called interaction functions that determine the strength
of interaction between individuals of interacting populations. It is derived that in
the context of Lotka-Volterra community-dynamics the invasion fitness function
can be calculated explicitly, and many results dealing with the outcome of a
mutant population invasion can be stated in terms of invasion fitnesses. The three
processes that shape the evolutionary tree (trait substitution, evolutionary pruning
and evolutionary branching) are analysed in terms of invasion fitness. We also
derive that permanence (i.e. the property that all densities in a community of
populations stay sufficiently far away from 0 to be present permanently in time) is
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maintained under sufficiently small mutational steps. This result implies that for
evolutionary pruning to occur a sufficiently large mutational step is required.

The thesis ends with Part III, in which Chapter 6 summarises Parts I and II and
discusses a number of open questions.
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THE ROLE OF INFLEXIBLE MINORITIES IN THE BREAKING
OF DEMOCRATIC OPINION DYNAMICS

This chapter is based on:

S. Galam and F. Jacobs, The role of inflexible minorities in the breaking of democratic
opinion dynamics, Physica A 381, 366-376, 2007

ABSTRACT

We study the effect of inflexible agents on two state opinion dynamics. The model
operates via repeated local updates of random grouping of agents. While floater
agents do eventually flip their opinion to follow the local majority, inflexible
agents keep their opinion always unchanged. It is a quenched individual opinion.
In the bare model (no inflexibles), a separator at 50% drives the dynamics towards
either one of two pure attractors, each associated with a full polarisation along
one of the opinions. The initial majority wins. The existence of inflexibles for only
one of the two opinions is found to shift the separator at a lower value than 50%
in favour of that side. Moreover it creates an incompressible minority around the
inflexibles, one of the pure attractors becoming a mixed phase attractor. In
addition above a threshold of 17% inflexibles make their side sure of winning
whatever the initial conditions are. The inflexible minority wins. An equal
presence of inflexibles on both sides restores the balanced dynamics with again a
separator at 50% and now two mixed phase attractors on each side. Nevertheless,
beyond 25% the dynamics is reversed with a unique attractor at a fifty-fifty stable
equilibrium. But a very small advantage in inflexibles results in a decisive
lowering of the separator at the advantage of the corresponding opinion. A few
percent advantage does guarantee to become majority with one single attractor.
The model is solved exhaustedly for groups of size 3.

Keywords: Sociophysics, majority rule, opinion dynamics
PACS numbers: 02.50.Ey, 05.45.-a, 9.65.-s, 87.23.Ge
2.1 INTRODUCTION

Opinion dynamics has become a very active subject of research [2,58,62,75,89,91,
94,96,98] in sociophysics [22,31]. Most works consider two state models which
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Separator p_=1/2

v

I

172

Attractor pp =0 Attractor D, =1

The A opinion has disappeared The B opinion has disappeared

Figure 2.1: The bare model with only floaters. The initial majority is conserved
and increased to eventually invade the whole population.

lead to the disappearance of one of the two opinions. They use local updates in
odd size groups which result in the initial majority victory. A unifying frame was
shown to include most of these models [26]. Continuous extensions [15,56] and
three state models [37] have been also investigated.

However, including an inertia effect in even size local updates groups, the initial
minority may win the competition spreading over the entire population. The
inertia effect means that in an update even size group at a tie, the opinion which
preserves the Status Quo is selected locally by all the group members [21, 25].
When an opinion represents a vote intention, the model allows to make successful
prediction in real voting cases like for the 2005 french referendum [27].

At contrast it is found that including contrarian behaviour leads to the reversal
of the dynamics with a stable equilibrium at exactly fifty-fifty whatever the initial
conditions are. A contrarian is an agent who makes up its opinion by choosing
the one minority opinion, either the local minority within its update group [23] or
the global minority according to polls [6]. It was used to explain and predict the
occurrence of a recent series of hung elections in democratic countries [23].

In addition to contrarian behaviour [6,20,23,93], another type of behaviour is
also quite current while dealing with real opinion dynamics, it is the inflexible
attitude. At contrast to floater agents who do eventually flip their opinion to follow
the local majority, inflexible agents keep their opinion always unchanged. The
inflexible attitude is a quenched individual state. Surprisingly, it has not been
studied so far. It is the subject of this article to investigate the inflexible effect
on the associate opinion dynamics. To confront our results to any real situation
requires to have an estimate of the various densities of inflexibles, which could be
extracted in principle from appropriate polls.

In the bare model, where no inflexible is present, denoting A and B the two
competing opinions and p; the density of A at time ¢, the flow diagram of the
dynamics is monitored by a separator at p. = 50%. it drives the dynamics towards
either one of two pure attractors, pg = 0 where the A opinion has totally
disappeared, and p4 = 1 where the A opinion has totally invaded the whole
population. It is shown in Fig. 2.1. The initial majority always wins.

The existence of inflexibles for only one of the two opinions, for instance opinion
A, is found to shift the separator at a lower value than 50% in favour of that side.
Moreover it creates an incompressible minority around the inflexibles, one of the
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Separator p, <1/2

1/2

Attractor Dy # 0 Attractor D, =1

The A opinion stabilizes at un The B opinion has disappeared
uncompressible minority, B

holds the majority

172

The B opinion eventually
always disappeared
Figure 2.2: One side inflexibles at low density. In the upper part inflexibles shift
the separator to a lower value than 50% at the advantage of their side.
Moreover, the associated opinion never disappears but at minimum
stabilises at some stable minority value pp ,. The associated opinion can
now invade the whole population even when it starts at an initial value
lower than 50% within some appropriate range. The lower part shows
that beyond 17% in the density of inflexibles, the separator and the
mixed phase attractor have vanished after they have coalesced. At any
initial condition, A wins and eventually invades the whole population.

pure attractors, here pg, becoming a mixed phase attractor, where opinion B holds
the majority but with a stable A minority, pg = 0 — pp, # 0. See the upper
part of Fig. 2.2. In addition, increasing the one side inflexible density above some
threshold (17% for update group of size 3) inflexibles make the separator and the
mixed phase attractor to coalesce and thus cancel each other to both disappear.
Their side becomes certain of winning whatever the initial conditions are. The
inflexible minority wins as illustrated in the lower part of Fig. 2.2.

However an equal presence of inflexibles on both sides is shown to restore the
balanced dynamics with again the separator at p. = 50% and now two mixed
phase attractors pp, # 0 and p4;, # 1 on each side as seen in the upper part of Fig.
2.3. Nevertheless, beyond 25% the dynamics is reversed with a unique attractor at
a fifty-fifty stable equilibrium. See the lower part of Fig. 2.3.

But again, a very small advantage in inflexibles results in a decisive lowering of
the separator at the advantage of the corresponding opinion as shown in the upper
part of Fig. 2.4. In addition the lower part of Fig. 2.4 shows that a few percent
advantage does grant the victory.

2.2 GROUP SIZE 3

We now solve analytically the problem for local update groups of size 3. Initial
proportions at time t of both opinion are respectively p; and (1 — p;) where each
agent does have an opinion. On the A side, at any time the associated agents are
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Separator p, =1/2

1/2

The B opinion stabilizes at un
uncompressible minority, A
holds the majority

Attractor pDp , # 0

The A opinion stabilizes at un
uncompressible minority, B
holds the majority

Attractor p, =1/2

172

Figure 2.3: Equal presence of inflexibles on both sides. In the upper part the
balanced dynamics is restored with the separator back at p. = 50%.
Now two mixed phase attractors pg, # 0 and p4;, # 1 are located
on each side of the separator. Nevertheless, in the lower part, beyond
25% they both coalesce with the separator, which at once becomes the
unique attractor. The dynamics is reversed with a coexistence of both
opinions at a fifty-fifty stable equilibrium.

divided among a fixed and constant proportion of inflexibles 4, they always keep
on opinion A, and a varying density of floaters p; — a. The floaters do shift opinion
depending on their local update group composition. Similarly, on the opposite
side B, the agent holder contains a fixed and constant proportion of inflexibles b
with a density of (1 — p; — b) floaters.

Dealing with densities we have the constraints 0 < a2 < 1,0 < b < 1,0 <
a+b<1landa < p; <1-b. To make the notations more practical we introduce
the difference in inflexible densities x to write a = b + x with —b < x < 1 — 2b.
The value of x may be negative to account for an advantage to the B opinion. A
positive value corresponds to an advantage to A. The two external parameters of
the problem are thus b and x.

Then at time ¢ people are grouped randomly by three and a local majority rule
is applied separately within each local group. At time t + 1 within each group all
floaters who held the minority opinion do shift to the local majority one. However
inflexibles do not shift their opinion. Dealing with three agents, the only subtle
cases are the ones where 2 agents sharing the same opinion are against the third
who holds the other one. In case it is a floater the minority agent joins the majority,
otherwise being an inflexible, it does shift opinion and keeps the minority opinion.
A detailed counting of all cases leads to write at time t + 1 for the new proportion
of opinion A,

2 1
pe1 = pi +3p; ((1 —pt—b)+ §b> +3(1—p1)? <§a> / (2.1)
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Figure 2.4: Unequal densities of inflexibles. The upper part shows a rather small
difference in inflexibles, which results in a decisive lowering of the
separator at the advantage of the corresponding larger side. The lower
part shows the case of a few percent advantage, which does grant the
victory.

which simplifies to
pri1 = —2p2 +pr(3+x) —2(b+x)p; + b+ x. (2.2)

After one update, all agents are reshuffled before undergoing a second
redistribution among new random groups of three agents each. Now p;;1 plays
the role of p; before, and a new density p;» is obtained. The process is repeated
some number 7 of times leading to the density p;;, of agents sharing opinion A
and 1 — p;,, of agents sharing opinion B. It is worth to stress that the respective
proportions of inflexibles a and b are unchanged and independent of the value of
n.

While the reshuffling frame has been viewed as belonging to a mean field
treatment [89, 96, 98], it has demonstrated to indeed create a new universality class
[92].

Before proceeding we review the bare model, i.e., no inflexible is present (a2 =
b = 0) and all agents are floaters. From Eq. (2.2) one cycle of local opinion updates
via three persons grouping leads to the new distribution of vote intention as,

pri1 = p; +3p;(1—ps), (2.3)

whose dynamics is monitored by the unstable fixed point separator located at
pc = 3. It separates the respective basins of attraction of the two pure phase stable
point attractors at p4, = 1 and pp = 0. Accordingly p;+1 > p: if pr > % and
pry1 < prif pr < % as shown in Fig. 2.1. The initial majority wins.

For instance starting at p; = 0.45 leads successively after 5 updates to the series

pr+1 = 043, pryo = 0.39, pry3 = 0.34, pr1a = 0.26, pry5 = 0.17 with a continuous
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decline in A support. Adding 3 more cycles would result in zero A support with
pt+6 = 0.08, pt4+7 = 0.02 and p¢4g = 0.00. Given any initial distribution of opinions,
the random local opinion update leads toward a total polarisation of the collective
opinion. Individual and collective opinions stabilise simultaneously along the same
and unique vote intention either A or B.

The update cycle number to reach either one of the two stable attractors can be
evaluated from Eq. (2.2). It depends on the distance of the initial densities from the
unstable equilibrium. However, every update cycle takes some time length, which
may correspond in real terms to some number of days. Therefore, in practical
terms the required time to eventually complete the polarisation process is much
larger than any public debate duration, thus preventing it to occur. Accordingly,
associate elections never take place at the stable attractors. From the above example
at py = 0.45, two cycles yield a result of 39% in favour of A and 61% in favour of B.
One additional update cycle makes 34% in favour of A and 66% in favour of B.

We can now insert the existence of inflexibles. To grasp fully its social meaning
we will introduce it in several steps. For the first one, inflexibles are present only
on one side, say A. We thus have b = 0 which yields a = x. Eq. (2.2) becomes

pee1 = —2p; + pr(3+x) — 2xp; + x. (2.4)

Solving the associated fixed point equation p;;1 = p; yields the three solutions

pB,a:}L<1+x—\/l—6x—|—x2>, (2.5)

po=L(1+x+ VimET ), 6

and p4 = 1 to be compared to the bare results (x = 0) pg =0, pc = 1 and p4 = 1.
While pp and p. have been shifted toward one another, p4 stayed unchanged as in
the upper part of Fig. 2.2.

From above expressions an increase in x gets closer the attractor pp, and the
separator p, before they coalesce at x. = 3 —2v/2 ~ 0.17, and there disappear as
seen in Fig. 2.5. The attractor p,4 stays independent of x. Therefore for x > 0.17
the unique fixed point of the dynamics is the attractor p4 = 1. Any initial support
in A leads to its victory.

Fig. 2.6 shows the variation of p;;1 as a function of p; for these two regimes. It
is worth to note that in the second regime the dynamics of the winning inflexible
minority is slowed down in some window of support before it starts to increase at
a speedy path.

For instance p; = 0.20 leads successively to the series p;y1 = 0.23, ps12 = 0.25,
pi+3 = 027, prya = 029, pres = 030, prye = 0.32, pry7 = 0.33, pryg = 0.34,
Pt+9 = 0.36, Pt+10 = 0.38, Pt+11 = 0.40, Pt+12 = 0.42, Pt+13 = 0.45, Pt+14 = 0.49,
Pt+15 = 0.53, Pt+16 = 0.59, Pt+17 = 0.67, Pt+18 = 0.77, Pt+19 = 0.87, Pt+20 = 0.96,
pr+21 = 1.00, with a continuous increase in A support. However 15 updates are
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Figure 2.5: One sided inflexibles fixed points as a function of their density x. One
line of attractors p4 = 1. In the regime x < 0.17 the left upper part of
the curved line is a line of separator (Eq. (2.5)) while the lower part is a
line of attractor (Eq. (2.6)). Both are symmetrical with respect tot the
line 1% at which they eventually coalesce at x. = 3 —21/2 ~ 0.17. The
diagonal line delimits the floater region for A holders since p > x. As
soon as x > (.17 the victory is granted for opinion A.

necessary for A to reach the majority from its initial 20%. Before, at x = 0, 8
updates were reducing a 45% support to zero while now 15 are required to gain
30%.

In terms of real time durations, a number of 15 updates may imply many months.

Fig. 2.7 shows two initial supports p; = 0.20 and p; = 0.52 for respectively x = 0
and x = 0.20. The differences in the associated dynamics are drastic.
We note that setting x = —b defines the symmetric situation with inflexibles

only on side B. We then have 2 = 0 and b for the respective densities of inflexibles.
Above results then apply to the B opinion with the variable b playing the role of x.

At this point to have inflexibles on its side appears to be a decisive step towards
leading the opinion competition. Accordingly both opinions are expected to have
inflexibles. in case of a symmetric presence of inflexibles on both sides with x = 0
and b # 0, i.e., a = b # 0. In addition, since the total density of both side inflexibles
is 2b, the variable b must obeys b < 1. Eq. (2.2) becomes

Pre1 = —2p} +3p} = 2bp +b, (27)
whose fixed points are
1
Poa =5 (1 V1o 4b> ) (2.8)
pan= (1+VI—4D) (2.9)
s 2 4
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p at t+1 p at t+1

1 1 o

i yos
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0l2  o0l4 o0l6 ols 1 poatt 0l2 ol4 ole ols 1 patt

Figure 2.6: One sided inflexibles. The left part corresponds to x < 0.17 of
inflexibles in favour of opinion A. The right part shows the case of
x > 0.17, which does grant the victory to opinion A.

and p. = % The symmetry restoring has put back the separator at % independently
of b. The two mixed phase attractors pp, and pp, are now symmetric and move
towards p. as a function of increasing b. It is again the initial majority which wins
the competition.

Nevertheless at a = b = } the dynamics is turned up side down with pg, and
pa, merging at p. = 5, which at once becomes an attractor and the unique fixed
point of the dynamics. Any initial condition leads to a hung equilibrium with an
identical support of 50% for both opinions.

The topology of the fixed points as a function of the common density b of
both side inflexibles is shown in Fig. 2.8. It is rather different from the one sided
inflexibles of Fig. 2.5.

The variation of p;; as a function of p; is shown in Fig. 2.9 for the two regimes
b < 411 and b > 411' It is worth to notice that the presence of contrarians leads to
the same scenario [23]. However, the bare mechanism and its psycho-sociological
meaning are quite different. In addition, while 17% of contrarians are necessary to
reverse the dynamics, 2 x 25% = 50% of inflexibles are needed to accomplish the
same reversal. A thorough study of the combined effect of simultaneous contrarians
and inflexibles is under investigation [51]. Nevertheless, it is shown below that this
similarity holds only for the case of equal densities of inflexibles for each opinion.

It is certainly realistic to consider inflexibles on both sides, but the symmetric
hypothesis is peculiar. To account for the numerous situations, which exhibit
different densities of inflexibles, we now study the effect of a discrepancy in a and
b.

It is thus the general form of Eq. (2.2) which has to be solved to determine its
associated fixed points. It yields the cubic equation

yi+ Ay +B =0, (2.10)
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Figure 2.7: Comparison of the update series from two initial supports p; = 0.52
and p; = 0.48 for the pure floater case x = 0 and one sided inflexible
with a density x = 0.20 above the threshold x, ~ 0.17. In the latter case
the victory is granted for opinion A although it starts from such a lower
support of 20%. Nevertheless the process is rather slow.

which can be solved analytically with y; = p; — 3+Tx' = 1+23+2x — (3’;; 2 and

B = —HTX + 5 (11;2“2’() - (3;6?3. The solution depends on the sign of the
discriminant s )
A° B

D= 7 + R (2.11)

Being interested in the nature of the associated dynamics what matters is
the number of real roots. Their respective formulations being rather anaesthetic
formulas in b and x, we do not explicit them. But we note that for D < 0 there
exists three distinct real solutions, for D = 0 there are three real solutions of
which at least two are equal, and for D > 0 there are one single real root and two
imaginary roots.

(1) The first case of three real solutions (D < 0) corresponds to the existence of
a separator and two attractors as shown in the left part of Fig. 2.10. Any
positive x (more inflexibles in favour of opinion A), shifts the separator below
50% as in the case of one sided inflexible. For instance b = 0.15 and x = 0.02
yield pg, = 0.22, p. = 0.47 and p,4 ), = 0.82. A 2% difference in inflexible
produces a substantial unbalance of the democratic frame of the public debate
since the A opinion needs to start with an initial support larger than 47% to
be sure to win an associated election provided the campaign duration is long
enough.
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Figure 2.8: Two side symmetric inflexibles fixed points as a function of their
density b. The first part of the line p, = % till b = 411 is a separator. From
there, it becomes the unique attractor of the dynamics. The left curved
line is a line of mixed phase attractors p 4, (upper part, Eq. (2.5)) and
pB.a (lower part, Eq. (2.6)). Both are symmetrical with respect tot the
line § at which they eventually coalesce at b. = . The two lines b and
(1 —b) delimits the floater region for A holders since p > b with b < 1.

As soon as b > ; no opinion wins.
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Figure 2.9: Two sided inflexibles. The left part corresponds to x = 0 and b < 0.25
of inflexibles for each of the two opinions. The two arrows along the
diagonal show the directions in which the two attractors move when
the equal densities of inflexibles are increased. The right part shows the
case of x = 0 and b > 0.25, which always yields a stable hung fifty-fifty
equilibrium.
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Figure 2.10: Two side asymmetric inflexibles. The left part corresponds to b =
0.15, x = 0.02 with three fixed points pp, = 0.22 (attractor), p. = 0.47
(separator) and p,, = 0.82 (attractor). The two arrows along the
diagonal show the directions in which the two attractors move when
the difference x in densities of inflexibles is increased. In the middle
part b = 0.15 and x = 0.10 > x. = 0.055 putting the dynamics in
the case with the single fixed point p 4 ; (attractor). The flow is very
slow. The right part shows a larger value x = 0.15 with still b = 0.15,
which accelerates the converging towards the unique attractor of the
dynamics.

For instance, an initial p; = 0.48 leads to the series p;1 = 0.481, p;4p = 0.483,
pi+3 = 0.485, pryy = 0487, pris = 0490, pri6 = 0.493, pry7 = 0497 and
pr+8 = 0.502. Eight updates are necessary to cross the winning bar of fifty
percent, i.e. to gain 2.2%. To reach a higher score requires more updates with
the follow up of Pt+9 = 0.507, Pt+10 = 0.513, Pt+11 = 0.521, Pt+12 = 0.529,
Pt+13 = 0.539, Pt+14 = 0.551, Pt+15 = 0.566, Pt+16 = 0.582, Pt+17 = 0.601.
Nine additional updates makes the support in favour of A to exceed sixty
percent. The majority reversal is here much slower than in the precedent
cases.

It is worth to emphasise that the initial value p; = 0.46 < p. leads to the
victory of the B opinion since it starts below the separator located at p. = 0.47.
By symmetry, a negative value x = —0.02 with the initial value p; = 0.52
yields the advantage to opinion B which wins the majority with the same
above dynamics.

(r1) Furthermore, given b and increasing x > 0 results in a continuous shrinking
of the distance between the separator p. and the mixed phase attractor pp .
At some threshold value x. both fixed points coalesce. We are then in the
second case with two real solutions whose one is double (D = 0). At reverse,
for x < 0itis p. and p,4, which coalesce at x = —x.. Above choice b = 0.15
yields x. = 0.055.

(1) Afterwards for x > x. the two fixed points which have coalesced disappear
leaving p 4 as the single attractor of the dynamics. To disappear means
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Figure 2.11: Evolution of an initial A support p; = 0.48 (ordinate) as a function of
repeated updates whose number is put on the abscis. Three different
series are shown for respectively x = 0.02,0.10,0.15 with b = 0.15. The
two extreme cases x = 0.02 and x = 0.15 yields a similar dynamics.
However in the first case an initial p; = 0.46 would lead the the B
victory at contrast with the second case where A wins always.

they became imaginary, we are in the third case D > 0 with one single real
solution p 4 j.

For x > x,, in the vicinity of x, the flow is very slow as seen in the middle
part of Fig. 2.10 where we have the set (b = 0.15,x = 0.10). The dynamics
in the third case with only one unique fixed point, an attractor and above
initial value p; = 0.48 yields now the series p;11 = 0.503, p;1p = 0.528,
pi+3 = 0.556, pra = 0.587, pyy5 = 0.620.

One single update is now sufficient to rise the minority opinion A to the
status of majority as compared to eight updates above. Only four additional
updates reach the sixty percent bar instead of the previous nine. The majority
reversal has been accelerated.

Going to the set (b = 0.15, x = 0.15) makes the dynamics faster as exhibited in
the right part of Fig. 2.10. We now have from p; = 0.48 the series p;11 = 0.517,
pr+2 = 0.555, py13 = 0.595, pria = 0.637, pr15 = 0.679.

As soon as £x, are reached the dynamics ineluctably leads the opinion which
have the surplus of inflexibles to invade the majority of the population (A
for x; and B when +x.). The above three different series for b = 0.15 and
x = 0.02,0.10,0.15 are reproduced in Fig. 2.11.

It thus appear to be of a central importance to determine the value of x. given
the value of b. Once the associated opinion reached a surplus of inflexibles x. it
eventually wins the election with certainty. To achieve this goal, we need to solve
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Figure 2.12: The dynamics map. The white triangle delimited by 0 < b < 1 and
—b < x <1 — 2b shows the accessible range for the respective values
of b and x. Within the accessible area, the left aqua-coloured area
corresponds to region where D < 0, and the dynamics is monitored
by a separator and two attractors with x.» < x < x,; where x <0
and x, > 0. Outside this closed area, the dynamics is driven by a
single attractor.

the equation D = 0 as a function of the variable x, b being a fixed parameter,
where D is given by Eq. (2.11).
Performing a Taylor expansion of Eq. (2.11) in power of x at order 2 leads to the

solutions
 3-24b+ 4802 F2(—1+4b)3/2V/ -2 + b + b2
tele2 = 1— 320 + 412 /
which are shown in Fig. 2.12 together with the available values for (b, x) constrained
by the frontiers 0 < b <1 and —b < x <1 — 2b. The positive value x.; exists for
the range 0 < b < 1" while for the negative value x; it is the range 3 — 22 ~
017 <b <.

In the region x» < x < x.1, D < 0 which yields a separator and two attractors.
At odd, outside this closed area and with —b < x < 1 —2b, we have D < 0 with
one single attractor. The case x > 0 guarantees the A victory while x < 0 grants
the B victory. The various domains are shown in Fig. 2.12. It appears that D > 0
for b > %. A positive x yields a A victory while a negative x a B victory. The three
fixed points coalesce at the unique set b = 1,x = 0.

(2.12)
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2.3 CONCLUSIONS

We have singled out the effect of inflexible choices on the democratic opinion
forming. An inflexible being an agent who always sticks to its opinion without any
shift. At low and equal densities, they prevent the trend towards a total polarisation
of floaters along one unique opinion. The opinion dynamics is found to lead to a
mixed phase attractor with a clear cut majority-minority splitting. Below 25% of
equal density inflexibles for both opinions, the initial majority opinion wins the
public debate. At contrast, beyond 25% the dynamics is reversed and converge
towards a fifty-fifty attractor. Therefore an equal density of inflexibles produces
effects which can also be achieved by sufficiently low densities of contrarians [23].

However, even a very small asymmetry in the respective inflexibles densities
upsets the balanced character of above results. At a very low difference, the main
effect is to shift the separator from fifty percent to a lower value at the advantage of
the larger inflexible opinion. It also increases its incompressible minority support.
Moreover, an excess in inflexibles beyond some small threshold x., which depends
on b, grants the victory to the beneficiary opinion. In this regime there exists only
one single attractor, which drives the corresponding opinion to an overwhelming
majority. Nevertheless it is worth to emphasise that the associated dynamics may
become rather slow.

Fig. 2.12 sums up our results. It allows to determine which strategy is best for a
given opinion to win the public debate competition. It appears that the decisive
goal should be to get a lead, even small, in the respective inflexible densities. It
immediately produces the substantial advantage to lower the separator from 50%.
A larger difference in inflexibles, whose amplitude varies as a function of the other
opinion support, guarantees the winning of the campaign, and eventually the
follow up election.

On this basis we plan to extend our study to larger size update groups. We also
plan to combine both effects of contrarians and inflexibles to study the dynamics
of floaters [51].
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non-contrarian and contrarian floaters, Advances in Complex Systems, Volume 22 No. 04,
1950008, 2019

ABSTRACT

We assume a community whose members adopt one of two opinions A or B. Each
member appears as an inflexible, or as a non-contrarian or contrarian floater. An
inflexible sticks to its opinion, whereas a floater may change into a floater of the
alternative opinion. The occurrence of this change is governed by the local
majority rule: members meet in groups of a fixed size, and a floater then changes
its opinion provided it is a minority in the group. Subsequently, a non-contrarian
floater keeps the opinion as adopted under the local majority rule, whereas a
contrarian floater adopts the alternative opinion. Whereas the effects of on the one
hand inflexibles and on the other hand non-contrarians and contrarians have
previously been studied separately, the current approach allows us to gain insight
in the effect of their combined presence in a community. Given fixed proportions
of inflexibles (a4, ap) for the two opinions, and fixed fractions of contrarians
(7va,7vB) among the A and B floaters, we derive the update equation p;;; for the
overall support for opinion A at time t + 1, given p;. The update equation is
derived respectively for local group sizes 1, 2 and 3. The associated dynamics
generated by repeated local updates is then determined to identify its asymptotic
steady configuration. The full opinion flow diagram is thus obtained, showing
conditions in terms of the parameters for each opinion to eventually win the
competing dynamics. Various dynamical scenarios are thus exhibited, and it is

derived that relatively small densities of inflexibles allow for more variation in the
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qualitative outcome of the dynamics than higher densities of inflexibles.

Keywords: Sociomathematics, sociophysics, opinion dynamics, local majority rule,

contrarian behaviour, floating behaviour

PACS Classification: 05.70.Jk; 89.65.Cd; 89.65.Ef

3.1 INTRODUCTION

Within the growing field of sociophysics (see [31] for the defining paper and [30],
[80], [88] for an impression of the state of the art), a great deal of work has been
devoted to opinion dynamics [10]. The seminal Galam models of opinion
dynamics [21,24] and their unification [26] play a guiding role in analysing the
process of opinion spreading in communities and in providing possible
explanations for the outcome of elections. These models are centred around the
local majority rule (lLm.r.), which is applied either in a deterministic or a
probabilistic way. In the basic deterministic case, supporters of the two opinions
present in a community are randomly distributed over groups of a fixed size L.
Within each group members adopt the opinion that has the majority in that group,
after which all group members are recollected again. In case there is no majority
in a group, its members stick to their own opinion (i.e., neutral treatment; the
probabilistic treatment in case of a tie assigns opinions to the group members
according to a certain probability distribution). Repeated application of this
principle generates what is called randomly localised dynamics with a local majority
rule. In the basic probabilistic case, the community members are divided among
groups of various sizes according to some probability distribution, and within
each group all members adopt one of the possible opinions with either certainty
(majority rule) or probability (at a tie in even-sized groups) [21] .

In the basic deterministic two states opinion model, fast dynamics occurs in
which the opinion that originally has the majority eventually will obtain complete
presence at the cost of the alternative opinion. In the probabilistic two states
opinion model, the final outcome depends on the probability distributions for

group sizes and local adaptation. Eventually the state of the community can be
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either one in which only the opinion with initial majority or minority remains,
or one with a perfect consensus on both opinions (see [26], which unifies basic
probabilistic two states opinion models).

In [37] a three states opinion model is introduced in which the community members
are randomly distributed over groups of size 3. Within each group the l.m.r. is
applied, with the additional rule that in case of a tie all members of the group
adopt one of the three opinions according to some probability distribution. It is
shown that the dynamics quickly converges to a state in which only one of the three
opinions is present, which may be an opinion that initially has a minor presence in
the community. In addition, the effect of non-voting persons (abstention, sickness,
apathy) was shown to have drastic effect on the asymmetry of the threshold value
to power [33].

As a next step to gain a better insight into opinion dynamics, in [23] the basic
deterministic two states Galam opinion model is extended by the introduction
of so-called contrarians. A contrarian is a community member who, instead of
keeping the opinion it adopted under the 1. m.r., switches to the alternative opinion.
Contrarian behaviour can manifest itself in various ways, e.g. in adolescents as
a strive for individualisation, especially in an environment of inflexible opinion
supporters (see below), as an expression of conformity with the minority, and
as negative voting in order to diminish the support for a majority. Depending
on the density" of contrarians as well as on group size, their presence either
leads to a stabilisation of the opinion dynamics in which one opinion (the one
with the lower density of contrarians) dominates the other, to an equilibrium
in which neither opinion dominates (in case both opinions have equal densities
of contrarians), or (in case of relatively large densities of contrarians for both
opinions) to a dynamics in which the dominating opinion constantly alternates
between the two opinions. The incorporation of contrarians in opinion dynamics
models was a step towards a possible explanation of the “hung elections” outcome
in the U.S. presidential elections in 2000. Although introducing contrarians to

explain “hung elections” at the time may have been a bit speculative (and being

All opinion dynamics models considered in this article are understood to refer to large communities
and sub-communities (e.g. contrarians) in which the size of a sub-community can effectively be
described by its density (the part of the sub-community’s size with respect to the whole community)
instead of by discrete whole numbers.
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aware that possible other influences such as finite population sizes and exogenous
factors influencing opinion dynamics have not been considered), it was concluded
that if the assumption was sound, under similar conditions the phenomenon
should repeat itself in the following years in democratic countries. And indeed,
“hung elections” occurred again several times as with the German elections in
2002 and 2005 as well as the 2006 Italian elections [28]. The origin of contrarian
behaviour as well as its implications have been the focus of numerous studies
[7,12,20,36,65-67,76—78,87,93,95,97,100,101].

In addition to the incorporation of contrarian behaviour, the basic deterministic
two states Galam model has been modified introducing opinion supporters that
express what in politics (and other games) is called inflexible behaviour [32,34]. An
inflexible community member is a supporter that under all conditions sticks to
its opinion. Under this terminology supporters that switch opinion when in the
minority then classify as floaters, and we shall use this distinction in what follows.
In [34] the effect of inflexible behaviour on opinion dynamics is studied for the case
that opinion supporters repeatedly meet in groups of fixed size 3. It is shown that a
small density of inflexibles for only one of the two opinions allows for the existence
of two local attractors. One of these local attractors is a mixed one, on which both
opinions are present and on which the opinion that is supported by inflexibles is a
minority. The other attractor is a single state attractor, on which the opinion that is
supported by inflexibles has complete majority, i.e., its density equals 1, the other
opinion being absent. Due to the presence of these two attractors, the outcome of
the opinion dynamics thus depends on the initial condition, the basin of attraction
for the mixed local attractor being relatively small compared to that for the single
state attractor. If the density of inflexibles is sufficiently large (approximately 17%),
the mixed attractor disappears and the single state attractor becomes global. In
case both opinions have small and equal densities of inflexibles there are two
mixed local attractors. These two attractors are symmetrically situated with regard
to a separator on which both opinions are present with density 0.5.

A change in the density of inflexibles for one of the opinions breaks this symmetry,
and a sufficiently large increase may lead to a global attractor on which the opinion
with the larger density of inflexibles has the majority [34]. The inflexible effect

could provide for some counter-intuitive explanation to real paradoxical situations
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[29]. The effect of inflexibles and floaters on opinion dynamics has also been
studied extensively in recent years, as seen in [3,5,9,42,55,63,64,74,81-83,90].

In this paper we combine the approaches presented in [23] and [34], by allowing
for groups composed of inflexibles as well as contrarian and non-contrarian
opinion supporters. For clarity we restrict ourselves to groups of fixed size 1, 2
and 3. For both opinions we assume fixed densities for the inflexibles. Also, we
consider the contrarians to be part of the floaters, i.e., in a given group the
contrarians first determine their opinion according to the 1.m.r., and subsequently
change to become a floater (not necessarily a contrarian) for the alternative
opinion (which thus may be the opinion that the contrarian initially was
supporting). The presence of contrarians for each opinion is quantitatively
expressed as a fixed fraction of the density of floaters of the respective opinion. In
case of a tie in groups of size 2 we apply the neutral treatment. After an opinion
update, all supporters for both opinions are recollected and then are redistributed
again, either as an inflexible or as a non-contrarian or contrarian floater, according
to the fixed densities for inflexibles and the fixed fractions of contrarians for the
two opinions. We study qualitative characteristics of the opinion dynamics
generated by repeated updates. In particular we study changes in the number of
equilibria, and changes from monotone to alternating dynamics, due to changes in
parameter combinations. The opinion dynamics thus obtained reflects the
behaviour of the support for opinions as it is influenced by individuals that for
various (e.g. psychological, political) reasons go against the grain as they find
themselves in a background consisting of individuals with a clear conviction. A

detailed mathematical extension to groups of size 4 will be given in a forthcoming

paper [35].

Notation

We denote the two opinions by A and B. The densities of inflexibles for the A and
B opinion are denoted by a4 and ap respectively, with 0 < a4 < 1 as well as
0 < ap <1, and in addition 0 < a4 + ag < 1. Since the roles of the A and B

opinion are interchangeable in deriving the opinion dynamics, we may without

loss of generality assume that 0 < a4 < 0.5, and we shall do so in what follows.
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The fraction of contrarians among the A floaters is denoted by 74, and yg denotes
the fraction of contrarians among the B floaters, with both 0 < 74 < 1 and
0 < g < 1. The size of the groups in which opinion supporters meet is denoted
by L. The density of the A opinion at time t =0,1,2,--- (or after t updates) shall
be denoted as p;. Note that for given a4 and ap the density p; necessarily lies in
the interval [n4,1 — ap] (independent of L, y4 or vg). With fr., apiyss We
denote the function that determines the density of the A opinion after application
of the Ilmr followed by the switch of the contrarians. Thus,
Pr+1 = fLiuaugiyas(Pr)- Setting 4 = v8 =0, P11 = fLinyap00(pr) then gives the
density obtained from p; when the L m.r. is applied without being followed by the
switch of the contrarians. In the Appendix tables are given, presenting all possible
group compositions in terms of inflexibles and non-contrarian and contrarian
floaters for group sizes L = 1 to 3, together with the effects of the L m.r. and the
opinion changes of contrarians. It is assumed that the community is sufficiently
large and well-mixed to allow for the derivation of the density of each possible
group composition in the ensemble of all groups of a fixed size from the densities
in the community of the constituents of a group. From these tables the expressions
for f1.u ,ap;v4,5 are obtained.

With f1.4 , ap;v4,05 We denote the dynamics generated by repeated application of
fLianapivays N subsequent timesteps. Furthermore, pi.u,ap;y, denotes an
asymptotically stable equilibrium for m, and py., refers to an

XByYA/YB
asymptotically stable periodic point.

We now turn to the treatment of the opinion dynamics for group sizes L = 1,2
and 3.

3.2 GROUP SIZE 1

The case L = 1 resembles a community in which each member is unaffected
by other community members in determining its opinion, and the only changes
in opinion come from the contrarians. The contributions to the A density after
application of the local majority rule is obtained from the second column in Table 1

in Appendix 3.6.1. This column obviously is equal to the first one, since in groups
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of size 1 local majority is automatically obtained, but is without effect on the
opinion densities. These contributions are: a4 for the A inflexibles, and p — a4 for
the (non-contrarian and contrarian) A floaters. Their sum is p, and we obtain for

the update rule of the local majority rule that

Pt+1 = franap00(Pt) = pi; (3.1)

consequently, each p € [w4,1 — ap] is a neutrally stable equilibrium for the opinion
dynamics generated by the 1. m.r..

In case only (non-contrarian and contrarian) floaters are involved both a4 and
ap are equal to 0, and we restrict ourselves to the contributions from the second,
third, fifth and sixth line in the table. Since the 1. m.r. leaves each group of size
1 unaffected, a switch by a contrarian in this case necessarily implies a change
to the opinion it initially does not support. Thus, here also a contribution to the
A density comes from the group that initially consists of only B contrarians, as
these will turn into A floaters. In this case we obtain for the contribution to the A

density:

Pt = froomam(pt) = (L= 1a)pr+ 51— p) = 1+ (1= (va+78) ) pr- 3:2)

The effect of both inflexibles and non-contrarian as well as contrarian floaters is
obtained by adding all the expressions in the last column: the contributions a4 due
to the invariant density of A inflexibles, (1 —y4)(p: — a4) from the non-contrarian

A floaters, and yp(1 — ap — p¢) from the contrarian B floaters. This yields:

Pi+1 = franapyans(Pt) =&a+ (1 —va)(pr —aa) + (1 —ap —pt) =

apava+ (1—ap)ys+ (1 —(ya+ 73))1% (33)
It follows that if y4 4+ g > 0, then

waya+ (1 —ap)yB
YA+ B

p= (3-4)

is the unique equilibrium for the opinion dynamics f1.4 , 4z ,,75- Due to its linearity
as a function of p;, expression (3.3) implies that the dynamical characteristics

of this equilibrium are governed solely by the frequencies of the contrarians.
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The equilibrium is asymptotically stable if and only if 0 < ¢4 + g < 2. For
0 < 74 + B < 1 the equilibrium is approached monotonically, with an increase in
the A density if and only if its initial value is less than the equilibrium value. For
Y4+ 7B = 1, the function fi,, ap:y 4+, 1S cOnstant and equals a4y 4 + (1 — ap)yp;
the opinion dynamics then reaches its equilibrium in one iteration. For 1 <
Y4 + vB < 2, the equilibrium is approached alternately. For y4 + yp = 2, i.e., both
74 = 1and yp = 1, the equilibrium equals 0.5(1 + a4 — ap) and is neutrally stable;
each p € [a4,1 — ap| different from 0.5(1 + a4 — ap) generates a neutrally stable
cycle of length 2.

On the equilibrium, the A opinion has the majority if and only if the inequality

(0.5 — DCA)’)/A < (05 — DéB)’)/B (35)

holds. Thus, for an opinion to achieve the majority it is required that it is being
supported by a sufficiently large density of inflexibles, and/or a sufficiently small
frequency of contrarians among the floaters.

Given densities a4 and ap of inflexibles for the two opinions, a change in the
frequencies of contrarians from 0 into small values 74 and 7p causes the
bifurcation from a collection of neutrally stable equilibria for m into a
unique stable equilibrium for ]m. The opinion which has the majority on
this equilibrium is determined by inequality (3.5). In case a4 = ap = a, the
opinion with the smaller frequency of contrarians obtains the majority. Conversely,

given different frequencies <y 4 and <yp of contrarian floaters for the two opinions,

YB
YATYB

stable equilibrium, on which the opinion with the smaller frequency of contrarians

in the absence of inflexibles the dynamics m has p = as its unique
has the majority. Fixing sufficiently small densities « 4 and ap of both opinions as
inflexibles, this equilibrium slightly shifts but leaves the majority unaltered. In
case Y4 = 7B, in the absence of inflexibles the equilibrium p equals 0.5, and the
introduction of small densities of inflexibles for both opinions changes this
equilibrium into one on which the opinion with the larger density of inflexibles
takes the majority. Figure 3.1 illustrates these conclusions.

Figure 3.2 gives a qualitative overview of the outcomes of the possible opinion

dynamics fl;“A/‘xB;’YAr'YB'
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By changing the frequencies of contrarians from (y4,vp) = (0,0) into
(7va,7v8) = (0.075,0.05), the collection of neutrally stable equilibria (the
diagonal) bifurcates into a unique stable equilibrium p = 0.44 on which
the B opinion has the majority. Figure b shows the diagonal together

//////

on [0.15,0.8], both as functions of p. The dashed lines indicate the
boundaries of the interval [0.15,0.8]. The graphs of the two functions
almost coincide on this interval and are parallel (due to the equal
frequencies of contrarians for both cases). The dynamics generated by
these two functions have p = 0.5 and p = 0.475 as their respective
stable equilibria.

3.3 GROUP SIZE 2

In groups of size 2 the number of members that support the A or B opinion may
be equal, in which case a tie occurs. We shall deal with the neural treatment in
case of a tie, in which each supporter keeps its own opinion.

Table 2 in Appendix 3.6.2 is related to groups of size 2. We obtain

Pie1 = frana500(Pt) = Pt (3.6)

which is obvious, since in groups of size 2 no majorities can occur, and, in case

of a tie, the neutral application of the local majority rule does not have any effect.

Incorporating the effect of non-contrarian as well as 