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Despite many efforts to identify genes associated with neurodegenerative diseases, the 

disease etiology leading to the formation of protein inclusions and neuronal cell death 

largely remains unclear. This is mainly due to the complexity of both polygenic and 

environmental factors that contribute to the progression of neurodegenerative diseases. 

Expression profiles of samples derived from patients are affected by ongoing inflammation, 

oxidative stress, and other immune mechanisms and it is not known whether such 

molecular mechanisms are a cause or consequence of the disease. By using different 

approaches to combine neuroimaging data with a spatial gene expression atlas of the 

human brain, we revealed healthy state transcriptomic signatures occurring in brain 

regions that are selectively vulnerable in neurodegenerative diseases. We showed that 

structural brain networks that are associated with gray matter loss in PD patients are 

enriched for the expression of cholinergic genes. In structural networks associated with 

gray matter loss in HD, we found strong co-expression between polyglutamine (polyQ) 

genes HTT, ATXN2, and ATN1. Similar relationships were found in anatomical brain 

structures that are known to be affected in HD. In the stress response network of 

individuals at risk of schizophrenia, we found that upregulated genes were associated with 

psychiatric disorders. The integrated analysis of both gene expression data and 

neuroimaging data revealed that the expression of genes involved in cellular maintenance 

mechanisms are correlated with cortical thickness in PD patients. Finally, we identified a 

module of dopaminergic genes for which its expression is correlated with the PD Braak 

staging of brain regions. Overall, we showed how the AHBA can be combined with brain 

phenotypes observed in neurodegenerative diseases such as gray matter loss, neuronal loss, 

accumulation of disease-specific protein aggregates, and changes in functional activity or 

cortical thickness. Our findings point towards local molecular events and enable a better 

understanding of the spatial organization of brain functions that are impaired in 

neurodegenerative diseases. 

7.1 Sampling resolution of brain transcriptomic data 
Spatial transcriptomics can reveal gene expression patterns that are indicative of local gene 

functions. Although case-control studies are important to understand gene expression 

changes in health and disease, more profound differences in gene expression are found 

between brain regions than between disease conditions [1]. This supports the idea that 

genes fulfill specific functions in different brain regions. The AHBA allows analyzing gene 

expression at an unprecedented spatial resolution. Yet, due to this high resolution, results 

cannot be directly compared to other datasets with a case-control setting, since these 

datasets usually lack this high sampling resolution. This emphasizes the need for high-

resolution sampling datasets in both control and patient data. The unavailability of high-

resolution gene expression data from PD patients makes it difficult to compare expression 

patterns from the AHBA to data from PD patients. Nevertheless, in Chapter 6, we analyzed 

two datasets of healthy individuals and two datasets of PD patients that had samples from 

several brain regions associated with Braak stages. Here, we also found more differentially 

expressed genes between brain regions than between disease conditions in two PD datasets 
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with samples from several brain regions that are involved in the Braak staging scheme. 

Interestingly, this is still true when correcting the analyses for cell-type composition. 

While neurodegenerative diseases are age-related diseases, we did not take the age 

difference between elderly with PD and healthy adult donors from the AHBA into account. 

Moreover, the individual variability not only depends on age, but also gender, genetic 

background and other factors that were also not taken into account in our analyses, all 

because of the limited number of brain donors in the AHBA. Finding donors representing a 

healthy brain is challenging and requires thorough screening and quality control tests to 

make sure they are eligible for inclusion. Besides that, some brain regions are also 

vulnerable to neurodegeneration during healthy aging. Hence, to better understand the 

molecular processes underlying neurodegenerative diseases, it is important to understand 

healthy aging in relation to a disease. This will help to even better understand early changes 

in disease and enable diagnosis before disease onset. 

7.2 Imaging cohorts of PD are heterogeneous 
Approaches to combine neuroimaging with brain-wide transcriptomic data allow analyzing 

the functional organization of gene expression across the brain, which is important to better 

understand patterns of neurodegeneration. Although many brain regions have been 

associated with the pathology of PD, it is not well understood what determines the typical 

patterns of atrophy in all PD subtypes or differences in atypical PD. Imaging cohorts of HD 

patients are better characterized genetically, compared to cohorts of PD patients, as HD 

diagnosis is confirmed based on genetic tests to determine whether the CAG-repeat length 

in the HTT gene is expanded. Since the CAG-repeat length determines the age of onset and 

therefore also the severity and progression of the disease, this determines the rate of brain 

atrophy and causes differences in MRI scans of HD patients [2,3]. As such, imaging studies 

should take into account the CAG repeat length. PD cohorts likely have more heterogeneous 

groups of patients, as PD diagnosis cannot be confirmed with genetic tests yet and is 

nowadays based on the observation of clinical symptoms during life. Moreover, PD is a 

complex disorder in which not all patients have the same symptoms and the severity of 

symptoms varies substantially. True PD diagnosis can only be confirmed after death upon 

pathological examination. Interestingly, it may turn out that a patient actually suffered a 

similar but different disease, such incidental Lewy body disease, or dementia with Lewy 

bodies. This impacts the group coherence of a PD cohort and lowers the significance of 

results in an MRI study. Thus, it is important to acknowledge that PD is a complex disorder 

with a wide spectrum of symptoms and that this heterogeneity may influence findings. 

7.3 Study design and interpretation 
To analyze the transcriptome of a group of samples, gene expression levels need to be 

compared to a control group. While this is straightforward in case-control studies, in our 

studies of the healthy human brain, we assessed differential expression between the region 

of interest (associated with the disease) and a control region (assumed to not be associated 

with disease). It is not always clear whether a region is really unaffected in a disease. 

Therefore, choosing the control region for comparison depends on the research question 
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that has to be answered and will influence findings. For example, studies should take into 

account that expression patterns within regions may be dominated by differently sized or 

distinct anatomical structures, such as the cortex or cerebellum being quite different from 

the other brain regions. Hence, it might not be clear whether the comparison with a control 

region might result in biases in the analysis or that the results indeed are biologically 

associated with the disease. One way to solve this is to repeat the analysis with and without 

such regions and find the overlap in results as we did when analyzing the stress network of 

individuals at risk of schizophrenia in Chapter 4. In this study, we also excluded the 

cerebellum from this analysis because it has as transcriptomic signature that is quite 

heterogeneous and very distinct from the rest of the brain. When analyzing polyQ co-

expression patterns in the cerebellum in Chapter 3, we excluded the cerebellar nuclei from 

the cerebellar cortex as these samples showed strong expression differences. Depending on 

the study design, brain regions may be excluded if their distinct expression can cause biases 

in the analysis. 

For functional interpretation of results, we relied on databases with functional annotation 

of genes describing molecular processes, biological components, or pathways. In general, 

we found that genes enriched in brain regions associated with HD and PD were related to 

lysosomal, mitochondrial and DNA repair pathways, ubiquitin, and the cell cycle, which 

have been described before in HD and PD studies. Genes that have been well-studied are 

highly annotated, while other genes received less attention. This annotation inequality may 

lead researchers to focus mostly on richly annotated genes, while other genes with statistical 

significance or large effect sizes may be neglected [4]. In this case, data-driven studies fail to 

identify unknown mechanisms involved in disease. As such, it is good practice that studies 

report all significant findings so these can always be searched for in the future by scientists 

that are interested in unraveling the role of particular genes. 

7.4 Expression of genetic risk factors 
Rare genetic variants that are highly penetrant have been identified in large families with 

PD and more common variants with smaller effect sizes were discovered in genome wide 

association studies (GWAS) of sporadic PD. How these mutation variants lead to the 

molecular consequences observed in PD generally remains unclear. One of the many 

hypotheses is that these mutations result in misfolded toxic proteins that affect other 

proteins and gradually spread through the brain [5]. Analyzing the spatial expression of 

genetic risk factors allows to better understand the consequence of genetic risk variants and 

how they influence the progression to neurodegenerative disease. In our PD studies results, 

we analyzed the whole genome and looked up whether our findings included PD-related 

genes. For some PD-related genes we could indeed find an association with regional 

vulnerability, but for many PD-related genes we could not find interesting expression 

patterns across the brain. One reason for this could be that we looked at gene expression in 

healthy adults and the effects of variants on gene expression may only be apparent in PD 

patients or elderly. On the other hand, it is not known whether the donors from the AHBA 

that were considered neurologically healthy could have developed PD at a later stage in life. 
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Moreover, it is possible that the identified variants in GWAS of PD affect other genes than 

those that were linked in those studies. To pinpoint variants and genes that may be 

associated with a trait, GWAS rely on linkage disequilibrium patterns and information on 

the functional consequences of the variant. During this analysis step, GWAS hits can be 

erroneously mapped to genes. 

Furthermore, GWAS have been mostly facilitated by inexpensive SNP arrays that are 

designed to target common variants across the whole genome [6]. Arrays like the NeuroX-

chip have been designed to also include more rare risk variants that may be related to 

neurodegenerative diseases [7], but these arrays still require predesigned DNA probes to 

target the mutations. Future studies will likely make more use of next-generation 

sequencing techniques, such as whole genome sequencing (WGS) which can cover more 

variation in the genome and also the spectrum of minor allele frequencies of variants. 

GWAS using WGS increases the power and precision of analyses which is likely due to more 

accurate determination of genotypes [8]. 

For complex disorders like PD, many loci contribute to the genetic variation observed in PD 

and the proportion of variance explained by individual variants is small. The polygenic risk 

score is a popular method to assess the status of multiple disease-related variants and the 

aggregated effect size to highlight an individual’s risk to develop a disease [9]. Moreover, 

polygenic risk scores (PRS) can help to better understand the shared genetic architecture of 

neurodegenerative diseases by determining whether variants with pleiotropic effects 

identified in one disease can lead to an increased risk for another disease [10]. It would be 

interesting to see how polygenic effects of common and rare variants can change gene 

expression levels of disease-related tissues. A promising direction is to use RNA-sequencing 

to perform expression quantitative trait loci (eQTL) mapping and find regulatory variants 

that can explain variation in gene expression levels. Future studies may consider using a 

PRS calculated based on effect sizes obtained with eQTL instead of GWAS and assess the 

polygenic effect across populations, multiple tissues, cell-types, or even single cells. In 

addition, an omnigenic model integrating the effect of rare and common variants along 

with gene co-expression networks can aid in better understanding the genetic architecture 

of complex disorders like PD [11]. 

7.5 Gene network analysis 
Co-expression is the correlation between the expression patterns of two genes and can be 

used to construct weighted gene networks that reflect functional associations between 

genes. One of the goals in co-expression analysis is the detection of gene modules that 

represent tightly connected subnetworks of co-expressed genes and allows inferring gene 

function with the guilt-by-association principle. While many studies analyzed gene co-

expression across samples from individuals, here, we exploit the AHBA to analyze spatial 

co-expression across samples from different brain regions. Since gene expression can be 

highly tissue-specific we assessed spatial co-expression patterns that could be indicative of a 

relationship between two genes with different levels of interactions across the brain. 
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In our studies, we used Pearson’s correlation as a measure for co-expression which can 

capture co-expression patterns that are informative, but can only capture monotonic linear 

relationships. Other popular measures of co-expression are Spearman’s rank correlation, 

mutual information and biweight midcorrelation [12,13], but the efficiency of different 

methods depends on the data properties and varies with biological processes [14]. More 

recently, it has been demonstrated that with increasing sample sizes Pearson’s correlation 

coefficient with highest reciprocal ranking is well-suited to create robust gene co-

expression networks [15] and the quality of co-expression networks can be further improved 

by down-sampling the expression dataset and integrating smaller networks into stronger 

networks [16].  

There are several ways to determine the threshold used for constructing gene co-expression 

networks. These include setting a hard threshold at a co-expression cut-off value or 

determining the statistical significance of the correlation and set a P-value cut-off. In both 

cases the cut-off is arbitrary chosen and not necessarily biologically relevant. WGCNA 

proposed a method where the cut-off threshold is selected by choosing a soft thresholding 

power such that the gene network approximates a scale-free topology [17]. It is often 

claimed that real-world networks are scale-free, meaning that a fraction of nodes with 

degree k follows a power-law k-α. However, there is evidence across social, biological, and 

technological domains that scale-free networks are empirically rare and that the power law 

is not a good fit for network degree distribution [18]. Furthermore, the power-

transformation may put more emphasis on stronger associations and mitigate weaker 

associations by raising the co-expression similarity to a power, but we argue that this 

transformation is equivalent to changing the hierarchical tree cutting threshold to obtain 

larger clusters. A higher power applied to the similarity matrix will result in a smaller 

number of clusters, which are essentially superclusters of the clusters obtained with a 

power-transformation. Therefore, we believe that soft-thresholding has no additional value 

to our analyses. 

7.6 Correcting for cell-type composition in bulk tissue 
The expression of cell-type markers can be analyzed to understand the distribution of 

different cell-types across the brain. Here, we have assessed the presence of cell-type 

markers among our results to find out which cell-types are related to the brain region of 

interest. While the AHBA has a high sampling resolution, samples were collected from bulk 

tissues. This means that one sample is characterized by the composition of present cell-

types which likely affects gene expression measurements. Brain regions of patients with 

neurodegenerative diseases show changes in cell-type composition compared to age-

matched controls. During disease progression neurons are lost but other cell-types become 

more abundant such as astrocytes and microglia. Therefore, it is important to find 

differentially expressed genes in case-control studies that do not result from differences in 

cell-type composition between patients and controls. 
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Multiple cell-type deconvolution methods have been proposed to analyze differential 

expression while correcting for cell-type composition between samples from patients and 

controls. We have explored one of these cell-type deconvolution methods to correct for cell-

type composition between different brain regions as the cell-type composition likely differs 

between brain regions according to their structural and anatomical functions. Since the 

cell-type composition is unknown for samples from bulk tissue, the correction methods 

require cell-type markers to estimate the cell-type composition of a sample. The existing 

methods use linear models to correct fold-changes in cell-type specific expression between 

two groups of samples. The proportions of each cell-type can be estimated by taking the 

mean expression of markers for a specific cell-type. Some methods use PCA or SVD to 

calculate the eigengene, but the eigengene expression level of a cell-type cannot be relatively 

compared to the eigengene expression of other cell-types, and therefore the gene expression 

of all cell-types should not be summed in a linear equation. Additionally, cell-type 

proportions should be non-negative and sum up to one. Methods to deal with these 

constrains include non-negative matrix factorization and non-negative least squares [19]. 

Another problem that deconvolution methods deal with is the choice of reference markers. 

There are only few robust cell-type markers for which their exclusive expression in a specific 

cell-type is certain. Finding an optimal set of cell-type markers is not straightforward 

because the definition of a cell-type remains an open question in biological research. Cells of 

the central nervous system are divided into neurons and glia each consisting of many 

subtypes with their own molecular properties. The main cell-types that are recognized have 

been defined based on morphological and physiological features, but more recent studies 

have identified many more subclasses based on the gene expression of groups of cells to 

understand their molecular properties. In our studies with the AHBA, we relied on cell-type 

markers that have been defined in other studies with mouse brains. Cells were disassociated 

and sorted to find sets of cells with a common transcriptomic signature that is different 

from other cells. While most genes may serve as orthologs for other species, some genes 

may be absent or perform different functions in the human brain [20]. Better markers are 

needed that can robustly identify the presence of specific cell-types. Advances in single cell 

technologies enable the transcriptomic analysis of single cells and the growing interest in 

single cell analysis is rapidly leading to the discovery of more cell-types and a better 

understanding the cellular heterogeneity within the brain. Several methods have been 

proposed to infer cell-type composition of RNA-seq bulk tissue using single cell RNA-seq 

(scRNA-seq) data as a reference [21–25]. A benchmarking study of deconvolution methods 

explained relevant factors that should be taken into account when using cell-type 

deconvolution methods, mainly the input data should be kept in a linear scale, and missing 

cell-types in the reference lead to erroneous estimations of cell-type proportions [26]. 

7.7 Single cell transcriptomics 
Single cell transcriptomics can exploit the cellular diversity and unravel the cell-type 

composition of selected brain areas. To identify cell-types and their associated 

transcriptome, most studies look for cell-types that have already been defined in literature. 
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For example, a study that identified cell-types from single cell human data still relied on 

prior knowledge of mouse cell-types [27]. To identify groups of cells with similar 

transcriptomes, clustering methods are used to construct a cell-type taxonomy tree and can 

therefore identify known and new cell-types [28]. Once the cell-types have been established, 

cell-type classifiers can be applied to unseen single cell data to label cells based on their 

transcriptomic signature. Since the advance of scRNA-seq, several classification methods 

for single cell data have been developed that seem to perform well on multiple single cell 

datasets [29]. With these recent advances in single cell analysis, many subclasses of known 

cell-types have been discovered expanding our knowledge on cellular diversity. However, 

subclasses at the bottom of the cell hierarchy are based on the analysis of only few cells, and 

these detailed findings may not be reproducible. In addition, newly identified cell-types 

may be falsely discovered when there are unforeseen biological factors that influence the 

transcriptome of as cell, such as the transitional state during cell cycle processes. For 

example, the transcriptome of cells changes to perform functions related to cell division or 

cell development. The Allen institute for Brain Science (AIBS) provides a cell-type database 

that contains electrophysiological, morphological, and transcriptomic data from single cells 

in the human and mouse brain. This database allows analyzing multiple properties of the 

cell to help researchers gain more insights into cell-types characteristics. 

Single cell studies of PD are mostly done with mouse models of PD or induced pluripotent 

stem cells (iPSC) from PD patients that are differentiated into dopaminergic cells to study 

them in vitro. To date, scRNA-seq data for human striatum or substantia nigra is very 

limited, but more data of disease-related tissues is expected in the near future. Analyzing 

differences in cell-type composition of specific brain regions in PD and control can aid in 

better understanding how different cell-types play a role in neurodegeneration. The analysis 

of transcriptomic data from brain single cells and bulk tissue of case-control studies has led 

to the identification of cell-types that are susceptible in neurological disorders, such as 

epilepsy, schizophrenia and AD [30]. The numerous possibilities of single cell analysis holds 

promise for the future to better understand cellular changes between health and disease and 

we expect that more studies of neurodegenerative diseases will make use of scRNA-seq 

either from patient or healthy controls. Currently, single cell samples are collected from 

selected brain areas to understand the regional diversity of cells. Whole brain single cell 

analysis is not yet feasible as an adult human brain consists of 100 billion cells which will 

generate an enormous amount of data. Most of the data may not even contain any useful 

information for which complex methods are needed to provide useful insights. Although, 

single cell analyses suffers from sparsity and low-throughput, increasing interest and 

research efforts may help to improve the sequencing throughput of single cell analysis in the 

near future. 

7.8 Spatial transcriptomics 
In our studies, we analyzed spatial transcriptomics across the whole brain, however small-

scale spatial expression patterns can provide more detailed analysis of smaller tissues. 

Emerging technologies in the field of spatial transcriptomics extend on microscopy 

methods to study single cells in situ while retaining the spatial context [31–33]. Using these 
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visual methods enables profiling RNA while it is in the tissue to capture spatial 

heterogeneity of smaller pieces of tissue, for example the transcriptomic differences 

between cortical layers. For this purpose, a tissue is cut into sections and slices, stained for a 

specific transcript using fluorescent hybridization probes, and visualized under a 

microscope to localize and quantify gene expression. Combinatorial approaches enable the 

analysis of multiple gene transcripts on one piece of tissue, but hybridization approaches 

are still limited in the number of genes; now up to 10,000 genes can be measured on a single 

tissue [34].Although scRNA-seq can measure gene expression over the whole genome, the 

spatial information is lost when single cells are dissected. To overcome the limitations of 

both scRNA-seq and hybridization technologies in spatial transcriptomics, new 

technologies have been developed to transfer RNA from tissue sections onto a surface with 

DNA barcoded beads for spatial indexing and genome-wide analysis using scRNA-seq 

[35,36]. Moreover, computational methods have been developed to infer the spatial locations 

of dissociated scRNA-seq samples by using information from complementary in situ 

hybridization data [37–39]. Spatial transcriptomics is a fast moving field and continuous 

efforts provide hope for the future to have a spatial gene expression atlas of the human brain 

at the single cell level. Having such information available can help to elucidate brain-wide as 

well as local molecular mechanisms and is a promising direction to study cellular 

differences in neurodegenerative diseases and health. 

7.9 Common mechanisms in neurodegenerative diseases and healthy aging 
Each neurodegenerative disease is characterized by different associated symptoms and 

pathology. But next to the degeneration of neuronal cells, there are also many common 

mechanisms between neurodegenerative diseases. Multiple studies, including our own, 

pointed towards similar functions that are disrupted in neurodegenerative diseases, such as 

ubiquitination, oxidative stress, and mitochondrial dysfunction. Similar deficits in brain 

functions are thought to underlie impaired movement and cognition in HD and PD. One 

thing that is common between our studies in HD and PD and other studies of 

neurodegenerative diseases is that resulting genes are generally associated with DNA repair 

mechanisms and protein degradation pathways. There is also an overlap in symptoms and 

the pathology between neurodegenerative diseases, e.g., Lewy bodies have also been found 

in patients with Alzheimer’s disease, and tau and β-amyloid inclusion can also appear in PD. 

In addition, there are co-occurring diseases and deficits such as dementia, mental 

disorders, and cognitive impairments. The term parkinsonism or parkinsonian syndrome 

describes the combination of symptoms of PD that may also occur in other diseases. The 

fact that there is no clear boundary between neurodegenerative diseases, also explains why 

there are different forms of PD with different symptoms. Neurodegenerative diseases may 

have different causes, but the functional organization of the brain may eventually be 

disrupted in similar ways. Future studies should focus on both common mechanisms and 

differences in neurodegenerative and neurological disorders. To do so, studies may rely on 

meta-analysis approaches to combine the analysis of multiple cohorts. Ideally, samples 

should also be collected from both hemispheres, as asymptotic symptoms seem to be 

apparent in all neurodegenerative diseases. 
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Neurodegeneration also occurs during healthy aging and the differences between normal 

aging and neurodegenerative diseases are not fully understood. To further unravel the cause 

of neurodegenerative diseases, future studies may focus on analyzing spatial gene 

expression in brains considered in extremely opposite conditions. More research is being 

conducted into differences between extreme healthy elderly and patients with 

neurodegenerative disease which could better expose genes with a higher significance of 

differential expression. Samples from patients are often derived in the late stage of the 

disease, while PD and HD can also occur at early ages. This is because early symptoms are 

harder to distinguish from normal aging as the decline in motor functions is still relatively 

small. Case-control studies only allow for binary outcomes, but multi-cohort studies may as 

well focus on analyzing the gene expression differences in ordinal groups of individuals: 

early onset, late onset, healthy elderly, and extreme healthy elderly. Ordinal analysis 

approaches may be used for this purpose. While groups should be clearly defined, patients 

with multiple conditions that are considered in between disease boundaries should also be 

included as long as samples are well annotated. This will help to better understand the wide 

spectrum of PD cases. 

7.10 Conclusion and future outlook 
We showed that the AHBA is useful for analyzing the transcriptome of vulnerable brain 

regions in neurodegenerative diseases. How these vulnerable brain regions are defined 

depends on what is currently known about the disease pathology and remains a debatable 

line of topic. Diagnostic gold standards for PD remain an issue and there is a need to extend 

our knowledge about the pathology to be able to intervene early in the course of the disease. 

Future studies will make more use of multi-omics data to reveal better insights into the 

different molecular mechanism, such as the integration of transcriptomics with proteomics 

and epigenomics. This holds promise for the future to have such technologies and methods 

available. Large projects like these require collaborations with experts from different fields 

of neurobiology and computational biology. To make this possible scientists have to work in 

close collaboration and have to be multidisciplinary to allow for effective communication 

between different fields. Furthermore, emerging technologies such as scRNA-seq and 

machine learning will take its place in PD research. By analyzing the spatial transcriptomics 

of the healthy brain we revealed known and new genes that may be involved in 

neurodegenerative diseases, but to confirm a relationship to PD or HD, results need to be 

validated in wet-lab experiments with samples that represent health and disease conditions. 

While post-mortem human tissues are scarce and animal models and cell lines of PD do not 

well translate to human PD, studies will make more use of brain organoids that are three-

dimensional structures generated from iPSC. Finally, by combining spatial transcriptomics 

of the healthy brain with neuroimaging data, we revealed that molecular mechanisms such 

as mitochondrial function and cellular stress response may be involved in 

neurodegenerative diseases, but may also be essential for maintaining health and increased 

longevity. 
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