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Abstract 
Cortical atrophy is a common manifestation in Parkinson’s disease (PD), particularly in later 

disease stages. Here, we investigated patterns of cortical thickness using T1-weighted 

anatomical MRI data of 149 PD patients and 369 controls. To elucidate the molecular 

underpinnings of cortical thickness changes in PD, we performed an integrated analysis of 

brain-wide healthy transcriptomic data from the Allen Human Brain Atlas and 

neuroimaging features. For this purpose, we used partial least squares regression to 

identify gene expression patterns correlated with cortical thickness changes. In addition, 

we identified gene expression patterns underlying the relationship between cortical 

thickness and clinical domains of PD. Our results show that genes whose expression in the 

healthy brain is associated with cortical thickness changes in PD are enriched in biological 

pathways related to sumoylation, regulation of mitotic cell cycle, mitochondrial translation, 

DNA damage responses, and ER-Golgi traffic. The associated pathways were highly related 

to each other and all belong to cellular maintenance mechanisms. The expression of genes 

within most pathways was negatively correlated with cortical thickness changes, showing 

higher expression in regions associated with decreased cortical thickness (atrophy). On the 

other hand, sumoylation pathways were positively correlated with cortical thickness 

changes, showing higher expression in regions with increased cortical thickness 

(hypertrophy). Our findings suggest that alterations in the balanced interplay of these 

mechanisms play a role in changes of cortical thickness in PD and possibly influence motor 

and cognitive functions. 
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5.1 Introduction 
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a progressive loss 

of dopaminergic and non-dopaminergic neurons in the brain and peripheral and autonomic 

nervous system [1]. Cortical atrophy occurs during the later disease stages and has been 

associated with cognitive decline, including executive, attentional, memory, and 

visuospatial deficits [2,3]. Although MRI studies of patient brains have tried to link regional 

cortical atrophy to clinical features of the disease [4–8], little is known about the 

pathobiology that underlies the selective cortical vulnerability in PD. 

Analyzing the transcriptome in vulnerable cortical regions may aid in better understanding 

the underlying molecular mechanisms of atrophy in PD. Although gene expression data of 

human post-mortem PD brains is available, most findings relate to studies that focused only 

on one or few coarse brain regions [9]. To perform whole brain analysis of both gene 

expression and imaging data, studies turn to the Allen Human Brain Atlas (AHBA), a high 

resolution gene expression atlas covering the entire brain of six adult donors without any 

history of neurological disorders [10,11]. The AHBA has been combined with functional MRI 

data of PD patients and revealed that the regional expression of MAPT, but not SNCA, 

correlated with the loss of regional connectivity [12]. Using a similar approach, correlations 

were identified between a cortical atrophy pattern and the regional expression of 17 genes 

implicated in PD [13]. Although both studies used spatial transcriptomics to explore gene 

expression across the whole brain, they only analyzed the expression of a limited set of 

genes that are of interest to PD, e.g., those that are known as genetic risk factors. 

To investigate the relationship between high dimensional genome-wide expression patterns 

and imaging data, multivariate analysis methods are required. Partial least squares (PLS) 

regression has been used to perform simultaneous analysis of brain-wide gene expression 

from the AHBA and neuroimaging data of adolescents, healthy adults, and Huntington’s 

disease [14–16]. The PLS approach allows the linking of multiple predictor variables (genes) 

and multiple response variables (imaging features) and deals with multicollinearity by 

projecting variables to a smaller set of components that are maximally correlated between 

both datasets. Thus, PLS is an attractive model to identify gene expression patterns 

associated with imaging features.  

Here, we exploited PLS regression to find transcriptomic signatures that are related to 

changes in cortical thickness (CT) in PD. MRI data was obtained from patients and age-

matched controls to find CT changes across all cortical regions. Gene expression samples 

from healthy donors in the AHBA were anatomically mapped to the cortical regions to find 

brain-wide gene expression patterns predictive of the CT changes observed in PD patients. 

In addition, we assessed the relationships between CT and clinical scores in PD patients and 

used a second PLS model to find expression patterns associated with these relationships 

across all cortical regions. With these models we address three research questions: (1) Which 

cortical regions show CT changes in PD, (2) Which genes and biological pathways show 

expression patterns associated with these regional changes, and (3) Which molecular 

mechanisms underlie the relationships between CT and clinical scores in PD. To answer 
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these questions, we explored the whole transcriptome in cortical regions of the healthy 

brain to find expression signatures predictive of imaging features in PD. 

5.2 Materials and methods 

 MRI data acquisition 5.2.1
MRI images of 149 PD patients (mean age = 64.8 years; 65.7% male) were obtained from a 

cross-sectional cohort study and is part of the ‘PROfiling PARKinson's disease’ (PROPARK) 

study [17]. PD patients were recruited from the outpatient clinic for Movement Disorders of 

the Department of Neurology of the Leiden University Medical Center and nearby university 

and regional hospitals. All participants fulfilled the United Kingdom Parkinson's 

Disease Society Brain Bank criteria for idiopathic PD [18]; written consent was obtained 

from all participants. The Medical Ethics Committee of the LUMC approved the study. 

Three-dimensional T1-weighted anatomical images were acquired on a 3 Tesla MRI scanner 

(Philips Achieva, Best, the Netherlands) using a standard 32-channel whole-head coil. 

Acquisition parameters were: repetition time = 9.8 ms, echo time = 4.6 ms, flip angle = 8°, 

field of view 220 × 174 × 156 mm, 130 slices with a slice thickness of 1.2 mm with no gap 

between slices, resulting in a voxel size of 1.15 mm × 1.15 mm × 1.20 mm. 

Three‐dimensional T1‐weighted images from 369 controls (mean age = 65.7 years; 48.1% 

male) were acquired in a different cohort [19], where all imaging was performed on a whole 

body 3 Tesla MRI scanner (Philips Medical Systems, Best, the Netherlands), using the 

following imaging parameters: TR = 9.7 ms, TE = 4.6 ms, FA = 8°, FOV = 224 × 177 × 168 mm. 

The anatomical images covered the entire brain with no gap between slices resulting in a 

nominal voxel size of 1.17 × 1.17 × 1.4 mm. Acquisition time was approximately 5 min. 

 Cortical thickness changes in segmented cortical regions 5.2.2
CT in cortical regions of PD patients and controls was determined using cortical parcellation 

implemented in FreeSurfer version 5.3.0 [20]. The FreeSurfer algorithm automatically 

parcellates the cortex and assigns a neuroanatomical label to each location on a cortical 

surface model based on probabilistic information. The parcellation scheme of the Desikan–

Killiany atlas was used to divide the cortex into 34 regions per hemisphere [21]. 

To assess CT changes between patients (149) and controls (369), a two-tailed t-test assuming 

unequal variances was applied in SPSS Statistics version 23. P-values were corrected for 

multiple testing across 68 cortical regions using the Benjamini-Hochberg (BH) method. A 

two-tailed t-test was also used to assess CT differences between the left and right 

hemisphere for each one of the 34 cortical regions, with P-values being BH-corrected across 

the 34 cortical regions. 

 Clinical scores 5.2.3
All patients underwent standardized assessments, and an evaluation of demographic and 

clinical characteristics [17]. MDS-UPDRS is a clinical rating scale consisting of four parts: (I) 

Non-motor Experiences of Daily Living; (II) Motor Experiences of Daily Living; (III) Motor 

Examination; (IV) Motor Complications [22]. UPDRSTOTSCR is the total score of all four 
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parts. The SENS-PD scale is a composite score of non-dopaminergic symptoms [23], LED is 

the levodopa equivalent dose [24], and MMSE is the mini-mental state examination [25]. 

 Relationship between CT and clinical scores 5.2.4
We used CT data and clinical scores from 149 PD patients to determine the relationships 

between CT and clinical domains. We selected 9 clinical features with numeric (non-

nominal) values for which scores were available for 82-123 patients: AGEONSET, 

SENSPDSC, MDS_UPDRS_3, MMSE, LED, MDS_UPDRS_1, MDS_UPDRS_2, 

MDS_UPDRS_4, and UPDRSTOTSCR (Supplementary Figure 1). 

The correlation between CT and the scores of each clinical feature individually was 

determined across patients by applying linear regression. To obtain maximum correlation, 

separate linear regression models were used for each combination of a region and clinical 

feature: 

 ��� = � + ���� + ����� +  �  (1) 

where ��� is the CT of one region � across patients, ��  is the score of one clinical feature � 

across patients. ��� is taken into account to correct for the age of patients. � is the 

background term, �� is the regression coefficient for ��, �� is the regression coefficients for 

���, and � is the residual. The regression coefficient �� was used to determine the 

relationship between CT and clinical domain scores, and assessed for statistical significance 

where P-values were BH-corrected for 34 regions and 9 clinical features (t-test, H0: �� = 0, P 

< 0.05). 

 Mapping transcriptomic data to cortical regions  5.2.5
We downloaded normalized gene expression data from the Allen Human Brain Atlas (AHBA; 

http://human.brain-map.org/), a microarray data set of 3,702 anatomical brain regions 

from six non-neurological individuals (5 males and 1 female, mean age 42, range 24–57 years 

[10]). To analyze the transcriptome in the cortical regions, we used the mapping of AHBA 

samples to cortical regions in neuroimaging data proposed in [11], where they applied 

Freesurfer on T1 MRIs of the six donors in the AHBA to segment the cortical regions 

according to the Desikan-Killiany atlas. AHBA samples were mapped to 34 cortical regions 

from the left hemisphere, since for only two out of six brains samples were collected from 

both hemispheres and for four brains they only sampled from the left hemisphere. By only 

analyzing the left hemisphere, we assumed that there are small to no differences in gene 

expression between the left and right hemisphere [10]. Samples were assigned to a 

segmented cortical region when their MNI coordinates corresponds to a voxel within a 

parcel, including samples that are up to 2 mm away from any voxel in the parcel. In total 

1,284 samples from the AHBA were assigned to the 34 cortical regions. 

 Partial least squares (PLS) model-1 and model-2 5.2.6
We used PLS regression (R-package pls 2.7) to find gene expression patterns across the 34 

cortical regions that are predictive of gray matter atrophy and possibly their relationship to 

scores of nine clinical domains (Supplementary Methods). PLS regression and principal 

component analysis regression are both methods where the original measurements are 
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projected to latent variables to study the data in reduced dimensions (Figure 5.1A). PLS 

however, projects variables from each dataset to latent variables such that they are 

maximally correlated between two datasets � and � (Figure 5.1B). In this study, the 

predictor � is a gene expression matrix of 34 regions (�) in the left hemisphere and all 20,017 

genes (�) and is used to predict imaging variables (�) in the same set of 34 cortical regions. 

For each cortical region and each gene, expression levels were averaged across samples that 

fall within that cortical region and then averaged across the six donors from the AHBA, such 

that the input matrix of predictor variables contains one expression value for every gene per 

cortical region. We implemented two PLS models (Figure 5.1C): one single-response PLS 

model, model-1, to predict CT changes, measured as the t-statistics of ΔCT between PD 

patients and controls, and one multi-response PLS model, model-2, to predict the correlation 

between CT and clinical scores in PD patients, measured as the t-statistics of the 

coefficients �� in Equation 1. 

 

Figure 5.1 Principal of partial least squares regression (PLS). (A) Principal component analysis (PCA) 

and PLS project measurements to a new latent space. Unlike PCA, PLS tries to find a latent space that is 

maximally correlated with another measurement � from dataset � on the same samples. (B) The first 

latent component �� of dataset � is maximally correlated with the first latent factor �� of dataset �. � 

and � scores determine the outer relations of individual datasets in the model. The coefficient � 

determines the inner relation between both datasets X and Y in the model (more details in 

Supplementary Methods). (C) In PLS model-1, we used regional gene expression as input to predict the 

regional t-statistics of ΔCT. Given the PLS model, � in Equation 5 and 6 in Supplementary Methods is 

used as gene weights. In PLS model-2, we used the same input to predict the t-statistics of correlation 

coefficients �� of clinical features from Equation 1. 
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 Pathway enrichment 5.2.7
Pathway enrichment analysis was done using gene set enrichment analysis (GSEA) and 

2,225 pathways from the Reactome database in ReactomePA R-package version 1.28. Genes 

were ranked based on their weights to each PLS component; � in Equation 5 and 6 in 

Supplementary Methods. Pathways were significant when the FDR-adjusted P < 0.05.  

 Data and code availability 5.2.8
Transcriptomic data from the AHBA is available at http://human.brain-map.org/. All scripts 

were run in R version 1.6 and can be found online at https://github.com/arlinkeo/pd_pls.  

5.3 Results 

 CT changes between PD patients and controls 5.3.1
We analyzed CT changes between PD patients and healthy controls (ΔCT) as a measure for 

gray matter loss (Figure 5.1C). Each of the 68 cortical regions from both hemispheres was 

assessed, for which ΔCT was statistically significant in 10 cortical regions (t-test, BH-

corrected P < 0.05; Figure 5.2A and Supplementary Table 1). The lateral occipital cortex 

showed decreased CT in patients compared to controls in both the left hemisphere and right 

hemisphere. The left caudal anterior cingulate, right isthmus cingulate, and right 

pericalcarine also showed decreased CT in patients. Cortical regions with increased CT in 

patients included the pars opercularis from both the left hemisphere and right hemisphere, 

the right rostral middle frontal cortex, right temporal pole, and right superior temporal 

cortex. In general, we observed more decreased CT (atrophy) in caudal regions of the cortex 

compared to rostral regions that showed increased CT (hypertrophy). 

 CT changes between hemispheres in PD 5.3.2
Clinical symptoms appear asymmetrical at disease onset with the left hemisphere being 

more susceptible to degeneration than the right [26]. To assess whether this asymmetry is 

reflected also in the observed atrophy patterns, we compared the CT between the left and 

right hemisphere for each of the 34 cortical regions in PD patients. We found six cortical 

regions that showed significant hemispheric differences (BH-corrected P < 0.05; Figure 5.2B 

and Supplementary Table 2). For five out of six significant regions, CT was indeed smaller in 

the left hemisphere compared to the right: banks of superior temporal sulcus, entorhinal 

cortex, temporal pole, medial orbitofrontal cortex, and lateral occipital cortex. For the 

lateral orbitofrontal cortex, the CT was larger in the left hemisphere compared to the right.  

 Gene expression patterns predictive of CT changes in PD patients 5.3.3
To identify the molecular mechanisms underlying CT changes in PD, we integrated the 

imaging features with brain-wide gene expression profiles from the AHBA (Figure 5.1C). 

Using PLS model-1 (see Methods), the expression of all 20,017 genes in 34 brain regions from 

the left hemisphere was used as predictor variables and we used the t-statistics of ΔCT 

between PD patients and controls in the 34 regions (Supplementary Table 1) as a single 

response variable. The number of AHBA samples varied between 0 and 92 for each one of 

the six brain donors and 34 cortical regions (Supplementary Table 3).  
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Figure 5.2 t-Statistics of cortical thickness changes (ΔCT) across cortical regions. (A) CT was assessed 

between PD patients and healthy controls. Higher t-statistics (red) indicate a larger CT in controls 

compared to the CT in patients and thus corresponds to cortical atrophy. (B) CT in the left hemisphere 

compared to the right hemisphere in PD patients. Higher t-statistics (red) indicate a larger CT in the 

right hemisphere compared to the left hemisphere and thus corresponds to cortical atrophy in the left 

hemisphere. P-values are BH-corrected and significant regions (P < 0.05) are labeled. 

 

The PLS components that explain maximum covariance between the input space and the 

response variable are derived from successively deflated predictor and response matrices. 

Hence, the first component of the predictor matrix, component-1, has maximum covariance 

with the first component of the response matrix, and the second component of the predictor 

matrix, component-2, has maximum covariance with the second component of the response 

matrix, etc. Since PLS model-1 has a single response variable, component-1 of the response 
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matrix is equal to a scaled version of the single response variable. As such, we only examined 

PLS component-1 of the predictor matrix (additional checking with leave-one-out cross-

validation showed that the optimal number of components is indeed one, Supplementary 

Figure 2).  

The scores of PLS component-1 of the predictor variables (genes) showed a caudal-to-rostral 

expression pattern (Figure 5.3A) that was correlated with CT changes in PD brains (Figure 

5.3B), i.e. gene expression of PLS component-1 was high in caudal regions associated with 

atrophy and low in regions associated with hypertrophy. The Pearson correlation between 

the PLS component-1 scores of the predictor variables (gene expression) and the response 

variable (t-statistics of ΔCT) was 0.58, and explained 20.5% of the variance in gene 

expression and 34.2% of the variance in CT changes. Cortical atrophy was highest in the 

lateral occipital cortex and related to high PLS component-1 scores. The pericalcarine showed 

the highest PLS component-1 score. These results showed that the expression profiles of a 

weighted combination of genes can be predictive of CT changes in PD. 

 Functionality of genes predictive of CT changes 5.3.4
A PLS component of the predictor variables is a linear combination of weighted gene 

expression. We used the gene weights of PLS component-1 to perform GSEA analysis and 

revealed significant enrichment of 90 pathways, which were among others involved in DNA 

damage checkpoints, stabilization of p53, regulation of apoptosis, mitochondrial 

translation, and SUMOylation of chromatin organization proteins (Supplementary Table 4). 

High overlap of genes between the enriched pathways suggested that these functional 

processes are highly related to each other (Supplementary Figure 3).  

Significant pathways are either positively or negatively correlated with CT changes based on 

the median weight of genes within pathways. Out of the 90 pathways that were significantly 

enriched, three pathways were positively correlated with the t-statistic of ΔCT. These 

included SUMOylation of chromatin organization proteins, signaling by cytosolic FGFR1 

fusion mutants, and class C/3 (Metabotropic glutamate/pheromone receptors). Higher 

mean expression of genes within these three pathways is related to cortical atrophy (higher 

t-statistics of ΔCT); as apparent in the lateral occipital cortex (Figure 5.3C and 

Supplementary Figure 4). The positive correlation also indicates that a lower expression of 

these pathways is related to cortical hypertrophy (lower t-statistics of ΔCT). We found 87 

negatively correlated pathways (median gene weight < 0). These pathways seem to play a 

role in the mitochondrial regulation of mitosis as we found pathways for mitochondrial 

translation, the regulation of mitotic cell cycle, p53-(in)dependent DNA damage 

checkpoints, and the degradation of mitotic proteins, such as cyclins A, and D. In general, 

the mean expression of genes in the negatively correlated pathways was high in cortical 

regions that showed hypertrophy, such as the pars opercularis or the entorhinal cortex. 
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Figure 5.3 Transcriptional signatures to predict t-statistics of ΔCT between PD patients and controls 

in PLS model-1. (A) PLS component-1 scores of predictor variables (gene expression) visualized in 

cortical regions (lateral and medial view of the left hemisphere). (B) Regression fit of the latent predictor 

variable, PLS component-1 scores, with the single response variable, CT changes in PD measured as the 

t-statistics of ΔCT between PD patients (149) and controls (369) across the 34 cortical regions. (C) Mean 

expression of genes in the top 30 significant pathways (rows) across cortical regions (columns). A 

complete heatmap with all significant pathways is given in Supplementary Figure 4. The correlation 

between transcriptomic signatures and CT changes in PD across cortical regions is predicted by the 

gene weights for PLS component-1 shown in boxplots for each pathway where the median weight is 

either negative or positive. Negatively correlated pathways show high gene expression in regions with 

low t-statistics of ΔCT and gene expression decreases in regions with higher t-statistics of ΔCT. In our 

analysis, negative t-statistics correspond to increased CT (cortical hypertrophy) and positive t-statistics 

of ΔCT correspond to decreased CT (cortical atrophy). Positively correlated pathways show low 

expression in regions with low t-statistics of ΔCT and expression increases in regions with higher t-

statistics of ΔCT. * = APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of the 

cell cycle checkpoint. ** = APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted 

proteins in late mitosis/early G1. 
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 Relationships between clinical scores and cortical thickness 5.3.5
Next, we set to understand the relationship between CT in 34 cortical regions and clinical 

scores of PD patients. Linear regression was used to predict clinical scores from CT across 

patients and obtain regression coefficients, ��, for each cortical region and clinical domain 

(Equation 1). We assessed the t-statistics of the regression coefficients instead of the 

coefficients �� themselves (H0: �� = 0) (Figure 5.4). Negative t-statistics showed that most 

combinations of cortical regions and clinical features are negatively correlated. For all 

clinical features, higher scores also indicate more severe symptoms, except for MMSE 

scores where lower scores indicate more severe symptoms, and thus showed positive 

relationships with CT. In most regions, age at onset (AGEONSET) also showed positive 

relationships with CT, indicating that age at onset has an effect on the loss of CT. While 

these general interpretations apply to most cortical regions, some regions showed different 

relationships with CT. For example, CT in the rostral anterior cingulate is negatively related 

to age at onset, and positively related to MDS-UPDRS 4 scores. 

 

Figure 5.4 Relationship between clinical scores and CT across PD patients. Linear regression was used 

to predict clinical scores from CT across at most 123 PD patients (Supplementary Figure 1). Separate 

models were used for each clinical feature (row) and cortical region (column) to obtain regression 

coefficients, see Equation 1. The heatmap shows the two-sided t-statistics of the regression coefficient 

when tested for H0: �� = 0. Regions (columns) are clustered based on complete linkage of the Euclidean 

distance of the t-statistics of ��. 

 Genes predictive of relationships between clinical scores and cortical thickness 5.3.6
With PLS model-2, we examined gene expression patterns that are predictive of the 

relationship between CT and clinical scores measured as t-statistics of the correlation 

coefficients �� in Equation 1 (Figure 5.1C). We selected the first two PLS components for 

further analysis, which explained 36% of the variance of the predictor variables and 37% of 

the variance of the response variables (Supplementary Figure 5). PLS component-1 scores of 

the predictor variables showed a ventral-to-dorsal gene expression pattern (Figure 5.5A) that 

is correlated with the PLS component-1 scores of the response variables (Pearson r = 0.76, 



Chapter 5 

94 

 

Figure 5.5B). The dorsal regions include the postcentral gyrus which is part of the primary 

somatosensory cortex. PLS component-2 scores of the predictor variables showed a caudal-

to-rostral gene expression pattern (Pearson r = 0.56, Figure 5.6A) that is correlated with the 

PLS component-2 scores of the response variables (Figure 5.6B). Moreover, we assessed PLS 

component-3 (Pearson r = 0.76 between the predictors and response variables), which 

additionally explained 9% variance of the predictor variables and 11% variance of the 

response variables. However, further analysis revealed there were no enriched pathways for 

component-3 limiting the functional interpretation of this component. 

PLS component-1 and component-2 of the predictor variables showed 144 and 230 significantly 

enriched pathways, respectively, with 54 overlapping pathways between the two 

components (Supplementary Table 5 and 6). Both components showed a cluster of related 

pathways involved in anterograde and retrograde transport between Golgi and endoplasmic 

reticulum (ER), and asparagine N-linked glycosylation (Supplementary Figure 6 and 7). 

Other pathways that overlapped between the two components included macroautophagy, 

mitochondrial translation, mitochondrial biogenesis, mitochondrial protein import, DNA 

damage/telomere stress induced senescence, oxidative stress induced senescence, and 

protein localization.  

Furthermore, PLS component-1 showed enrichment of pathways involved in tRNA and rRNA 

processing in the nucleus and mitochondrion, voltage-gated potassium channels, uptake 

and actions of bacterial toxins, and interleukin signaling. PLS component-2 showed strong 

enrichment of neutrophil degranulation, DNA replication, p53-(in)dependent DNA damage 

response, and chaperonin-mediated protein folding, and tubulin folding. Notably, the gene 

expression pattern of PLS component-2 was also associated with several sumoylation 

pathways and pathways involved in mitotic cell cycles and the degradation of mitotic 

proteins (Supplementary Table 6). 

The enriched pathways for PLS component-1 and component-2 either showed negative or 

positive median gene weights that inform about the sign of the correlation between genes 

within a pathway and the PLS component score of the response variables (Figure 5.5C, 

Figure 5.6C, Supplementary Figure 8 and 9). For example, the expression of genes within 

pathways relating to mitochondrial processes increases for higher PLS component-1 scores of 

the response variables. We further assessed PLS component-1 and component-2 scores of the 

predictor variables and their correlation with each individual response variable, which are 

the clinical features and their relationship with CT in PD patients (Figure 5.7). The rostral-

to-dorsal expression pattern of PLS component-1 is highly predictive of the relationship 

between CT and MMSE score in patients (Pearson’s r = 0.71). Thus, pathways associated with 

PLS component-1 may play an important role in cognitive circuits, which seems to be 

apparent based on their expression in the postcentral gyrus, but also the entorhinal cortex. 

PLS component-2 scores showed low correlations with the clinical features and their relation 

with CT across cortical regions, and suggests weak associations between the expression 

patterns of PLS component-2 and the response variables. 
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Figure 5.5 Transcriptional signatures of PLS component-1 in PLS model-2 predictive of the relationship 

between cortical thickness (CT) and clinical scores. (A) PLS scores for PLS component-1 of the predictor 

variables (gene expression) and (B) its correlation with PLS component-1 of the response variables (t-

statistic of �� in Equation 1). Axes show the percentage of explained variance for each component; r 

indicates the Pearson correlation. (C) Mean expression across cortical regions (columns) of genes in the 

top 30 significant pathways (rows). A complete heatmap with all significant pathways is given in 

Supplementary Figure 8. * = Respiratory electron transport, ATP synthesis by chemiosmotic coupling, 

and heat production by uncoupling proteins. 
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Figure 5.6 Transcriptional signatures of PLS component-2 in PLS model-2 predictive of the relationship 

between cortical thickness (CT) and clinical scores. (A) PLS scores for PLS component-2 of the predictor 

variables (gene expression) and (B) its correlation with PLS component-1 of the response variables (t-

statistic of �� in Equation 1). Axes show the percentage of explained variance for each component; r 

indicates the Pearson correlation. (C) Mean expression across cortical regions (columns) of genes in the 

top 30 significant pathways (rows). A complete heatmap with all significant pathways is given in 

Supplementary Figure 9. 
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Figure 5.7 Correlations between PLS model-2 component-1 and component-2 scores of the predictor 

variables and individual response variables. Each plot shows the correlation between the predictor 

variables of gene expression (x-axis) and the response variables which are the relationships between CT 

and scores of a clinical feature across cortical regions (y-axis). On top of each plot, the Pearson 

correlation and the Y-loadings (Q in Eq. 4 and 8) are shown; both values tell something about the sign (-

/+) and magnitude (high/low) of the correlation. Each point or sample is one of the 34 cortical regions. 

Regions are labeled for those with minimum or maximum value along one of the axes. 

5.4 Discussion 
We found a caudal-to-rostral gene expression pattern that was correlated with CT changes 

in PD (PLS model-1); cortical atrophy was found in caudal regions while rostral regions 

showed cortical hypertrophy. This transcriptional signature was highly enriched for genes 

in biological pathways associated with mitochondrial translation and mitotic cell cycle 

regulation. We also found a ventral-to-dorsal and caudal-to-rostral gene expression pattern 

that was correlated with the relationship between CT and clinical domains of PD (PLS model-
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2). Both transcriptional signatures were associated with similar pathways, including 

macroautophagy and Golgi-ER trafficking, and may be involved in the effect of CT on 

clinical scores, namely MMSE scores for cognitive assessment.  

The CT analyses between disease conditions and hemispheres in patients revealed cortical 

regions that are susceptible to atrophy. Cortical atrophy in PD commonly occurs 

asymmetrical, with a preference for the left hemisphere, particularly in the early disease 

stages [26–29]. Here, we showed that five out of six regions with significant CT changes 

between hemispheres, indeed revealed more atrophy in the left hemisphere. Two cortical 

regions that showed significant changes between patients and controls, also showed 

changes between the left and right hemisphere. Our findings are in line with those of a 

previous study showing that cortical atrophy in PD most prominently affects the lateral 

occipital cortex, particularly in the left hemisphere [13]. The temporal pole showed 

hypertrophy in patients compared to controls, which was only significant in the right 

hemisphere. However, our analysis between hemispheres of PD brains suggests that the left 

temporal pole is more susceptible to CT loss than the right hemisphere. The remaining 

regions that were susceptible to CT changes showed atrophy in either the left or right 

hemisphere; however differences between hemispheres in patients could not be confirmed. 

All 10 regions that were different between patients and controls, except the pericalcarine, 

were earlier identified as part of two structural covariance networks that were related to 

gray matter atrophy in the same PD dataset as in this study [17]. Overall, we observed 

atrophy in caudal regions, which earlier has been associated with late stage PD [26].  

With our findings of the PLS models we interpret gene expression patterns of the healthy 

brain in relation to imaging features observed in PD. The six adult donors of the AHBA had 

no known neuropsychiatric or neuropathological history [30], however it is unknown 

whether these individuals could have developed neurodegenerative diseases later in life. The 

observed spatial gene expression patterns reflect the physiological conditions in the adult 

healthy brain and are informative of important molecular mechanisms that are vulnerable 

in PD. The biological pathways found for PLS model-1 were closely related as they shared 

many similar genes. These interrelated pathways suggest a strong functional relationship 

between molecular processes involving mitotic cell cycle, mitochondrial translation, 

transport between ER and Golgi, DNA damage checkpoints, and sumoylation. We found 

that differential regulation of these molecular processes across the brain was associated 

with CT changes observed in PD. Similar pathways were found in PLS model-2 with multiple 

response variables corresponding to the relationships between CT and nine clinical domain 

scores in PD.  

There is evidence that impaired cell cycle control plays a role in the pathogenesis of 

neurodegenerative diseases. In healthy conditions, differentiated neuronal cells become 

quiescent cells that cannot re-enter the cell cycle, however in neurodegenerative diseases 

they are reactivated which is associated with increased cell death [31]. Cell cycle checkpoints 

are controlled by cyclins that guide the cell from one phase to the next phase and its 

expression can induce cell cycle re-initiation [32]. Here, we found that regional expression 
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of pathways associated with the degradation of cell cycle proteins in healthy conditions were 

negatively correlated with CT changes in PD, i.e. higher expression was associated with 

cortical hypertrophy in rostral regions such as the pars opercularis and temporal pole. 

Reversely, we observed low expression of protein degradation pathways in caudal regions 

that were associated with atrophy, and therefore suggests that regions with low expression 

are more vulnerable to improper degradation of cell cycle proteins leading to cell cycle 

initiation. This indicates that regions with low expression of such essential pathways are 

predisposed to neurodegeneration. 

We found that the expression of several pathways associated with DNA replication and p53-

(in)dependent DNA damage responses and checkpoints were correlated with CT changes. 

DNA replication during the S-phase may control the survival of post-mitotic cells by DNA 

repair mechanisms or apoptosis followed by DNA damage, which seems to be the case in 

neurodegenerative diseases [33]. Furthermore, DNA damage response signaling can be 

modulated by tumor suppressor p53 and may also contribute to apoptosis in aging and age-

related neurodegenerative disorders [34]. These pathways showed similar expression 

patterns as those associated with the mitotic cell cycle, and therefore a lower expression of 

these DNA damage response pathways in caudal regions is related to cortical atrophy in PD. 

Similar caudal-to-rostral expression patterns were found for pathways associated with 

mitochondrial translation. Increased risk for PD has been associated with mutations in 

SNCA, PARK2 (parkin), PINK1, DJ-1, and LRRK2 which have been linked to mitochondrial 

function and oxidative stress [35]. PINK1 and parkin mediates clearance of damaged 

mitochondria by mitophagy and may therefore influence mitotic cell cycle progression [36]. 

PINK1 also regulates both retrograde and anterograde axonal transport of mitochondria via 

axonal microtubules [37] The interaction between PINK1 and parkin is likely involved in 

mitochondrial quality control mechanisms, where anterograde transport of damaged 

mitochondria is reduced and retrograde transport is enhanced for elimination by 

mitophagy in the neuronal cell body [38].  

A cluster of pathways involved in ER-Golgi traffic were found enriched for PLS model-2 

component-1 and component-2, and involved both ER-to-Golgi anterograde and Golgi-to-ER 

retrograde transport. Component-1 showed a ventral-to dorsal gene expression pattern that 

was associated with higher correlations between CT and clinical scores, namely, the mental 

state of PD patients and the performance of motor functions. The pathways involved in ER-

Golgi traffic were notably high expressed in the postcentral gyrus which contains the 

somatosensory cortex that is known for its role in processing sensory information and the 

regulation of emotion [39]. Our results suggest that genes in ER-Golgi traffic pathways are 

important for cognitive functions controlled by the postcentral gyrus. Genes involved in ER-

Golgi vesicle trafficking have the ability to modify α-synuclein toxicity in yeast [40]. 

Moreover, fragmentation to the Golgi apparatus has been associated with the accumulation 

of aberrant proteins in neurodegenerative diseases, including α-synuclein [41]. A study in 

yeast models has showed that α-synuclein expression modulates ER stress signaling 

response and inhibits viral infections and viral replication [42]. We found several pathways 
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associated to HIV and influenza infections that were correlated to the relationship between 

CT and clinical scores. Another pathway that shared overlapping genes with those involved 

in ER-Golgi traffic was asparagine N-linked glycosylation, which is a biochemical linkage 

important for the structure and function of proteins. The N-glycosylated proteins are 

synthesized essentially in the ER and Golgi through sequential reactions and aberrant 

glycolysation of proteins may lead to inflammation and mitochondrial dysfunction in PD 

and consequently to a cellular overload of dysfunctional proteins [43]. 

We found that the expression of genes involved in sumoylation of chromatin organization 

proteins was correlated with CT changes, i.e. higher expression within caudal brain regions, 

such as the pericalcarine and the lateral occipital cortex, was associated with greater 

atrophy in PD. Therefore, higher activity of sumoylation events may play a role in the 

regional vulnerability to neurodegeneration observed in PD. On the other hand, lower 

expression of these pathways, such as in the pars opercularis, was associated with 

hypertrophy in rostral regions, suggesting that lower expression of sumoylation pathways 

has a protective effect. Additionally, the higher expression of sumoylation pathways was 

associated with higher correlations between CT and clinical scores as projected by PLS 

component-2 in model-2. Sumoylation involves small ubiquitin-like modifier (SUMO) proteins 

that increase in response to cellular stress, such as DNA damage and oxidative stress, and 

can promote α-synuclein aggregation and Lewy body formation [44–46]. Several proteins 

associated with inherited forms of PD are targets modified by SUMO regulating 

mitochondrial processes, these include α-synuclein, DJ-1, and parkin [47]. Sumoylation has 

been associated with several diseases, including cancers, cardiac diseases, and 

neurodegenerative diseases [48]. In cancer, sumoylation mediates cell cycle progression and 

plays an essential role during mitosis [49]. SUMO seems to promote cell death mediated by 

the p53 tumor suppressor protein, which may be responsible for the cell death of 

dopaminergic neurons in PD [44]. Our findings are in support of these hypotheses, and 

further suggest that sumoylation is important in specific cortical regions that are atrophic 

in PD, such as the lateral occipital cortex. 

Spatial gene expression data from PD brains are limited in the number of brain donors and 

brain regions, which is mainly due to the limited availability of well-defined post-mortem 

PD patients. Therefore, we used healthy gene expression from the AHBA to perform 

unbiased whole brain and whole transcriptome analysis. Gene expression for all the six 

healthy adult donors in AHBA was only available for the left hemisphere. Therefore, this 

study was restricted to the analysis of the left hemisphere when combining gene expression 

with MRI data. Furthermore, it is generally assumed that gene expression changes with age, 

however due to the limited number of brain donors in the AHBA, age-related differences in 

gene expression were not taken into account. In addition, MRI data from the patient and 

control groups were collected in different cohorts where different MRI scanners were used. 

However, both datasets were processed separately to obtain CT measurements per region. 

Thus, these morphological features could be directly compared between the two groups. 

Finally, to determine whether genes and pathways truly have predictive power of imaging 

features, both PLS models need to be validated with independent imaging cohorts of PD. 
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5.5 Conclusion 
We set out to find biological explanations for the selective regional vulnerability in PD by 

correlating healthy gene expression in cortical regions with CT changes in PD observed as 

atrophy and hypertrophy in neuroimaging data. We found genes that point towards 

pathways involved in cellular maintenance mechanisms that are well known in PD and other 

neurodegenerative diseases, but were shown to be differently regulated across the brain. 

Sumoylation pathways showed opposite expression patterns across the brain compared to 

pathways associated with the regulation of mitotic cell cycle, p53-(in)dependent DNA 

damage response, mitochondrial translation, and ER-Golgi trafficking (Figure 5.8). 

Nevertheless, all the enriched pathways were highly interconnected as shown by the number 

of shared genes and suggest a balanced interplay between sumoylation events and the other 

molecular mechanisms that seem to be important in controlling CT in different cortical 

regions. Moreover, we propose that dysfunctions of these pathways may impair motor and 

cognitive functions in PD as a consequence of cortical atrophy.  

 

Figure 5.8 Schematic overview of the balance between biological pathways and their influence on CT 

across cortical brain regions. The big arrow indicates the caudal-to-rostral (red-to-blue) or rostral-to-

caudal (blue-to-red) change in CT across cortical brain regions of PD patients with red indicating 

decreased CT (atrophy) in caudal regions and blue indicating increased CT (hypertrophy) in rostral 

regions. Genes within pathways associated with sumoylation showed that the expression of these genes 

within the pathways increases from rostral to caudal regions. Other biological pathways that were 

correlated with CT changes in PD included regulation of mitotic cell cycle, mitochondrial translation, 

DNA damage responses, and ER-Golgi traffic, and the involved genes showed decreasing expression 

patterns from rostral to caudal regions (or increasing from caudal to rostral regions). All enriched 

pathways shared many common genes and were generally associated with cellular maintenance 

mechanisms. Literature studies suggest that these biological pathways may be involved in the 

pathobiology of PD through their interaction with genetic risk variants. 
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