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Abstract 
The biological mechanisms underlying inter-individual differences in human stress 

reactivity remain poorly understood. We aimed to identify the molecular underpinning of 

neural stress sensitivity. Linking mRNA expression data from the Allen Human Brain Atlas 

to task-based fMRI revealed 201 differentially expressed genes in cortex-specific brain 

regions differentially activated by stress in individuals with low or high stress sensitivity. 

These genes are associated with stress-related psychiatric disorders (e.g., schizophrenia 

and anxiety) and include markers for specific neuronal populations (e.g., ADCYAP1, 

GABRB1, SSTR1, and TNFRSF12A), neurotransmitter receptors (e.g., GRIN3A, SSTR1, 

GABRB1, and HTR1E), and signaling factors that interact with the corticosteroid receptor 

and hypothalamic-pituitary-adrenal axis (e.g., ADCYAP1, IGSF11, and PKIA). Overall, the 

identified genes potentially underlie altered stress reactivity in individuals at risk for 

psychiatric disorders and play a role in mounting an adaptive stress response, making them 

potentially druggable targets for stress-related diseases. 
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4.1 INTRODUCTION 
Stress is a major risk factor for the development of a wide range of psychiatric disorders, 

including schizophrenia and depression [1]. Inter-individual differences in how the brain 

responds to stress depend on intrinsic (e.g., genetic and developmental) as well as on 

extrinsic (e.g., hormonal) factors [2]. The neural correlates underlying stress reactivity are 

currently a growing topic of investigation [3–5]. In healthy individuals, acute stress causes a 

shift in neural networks by suppressing the executive control network and activating the 

salience network and default mode network (DMN) [6]. One hypothesis is that stress 

vulnerability is the result of maladaptive changes in the dynamic response of these neural 

networks, either during the acute phase, during the recovery period in the aftermath of 

stress, or both[2]. Moreover, acute social stress deactivates the DMN in the aftermath of 

stress during emotion processing in healthy controls but not in siblings of schizophrenia 

patients who are at-risk for several psychiatric disorders [7][8]. Yet, the molecular 

mechanisms underlying differences in brain reactivity to stress in humans remain unknown 

as access to the tissue of interest in humans is limited.  

Nevertheless, stress-related brain regions and networks as identified by fMRI can be further 

characterized based on transcriptomic signatures. Mapping gene expression atlases of the 

healthy brain to imaging data allows the identification of the molecular mechanisms 

underlying imaging phenotypes. Previous studies have identified gene expression patterns 

associated with structural brain changes in autism spectrum disorders, Huntington’s 

disease and the onset of schizophrenia [9–12]. Similarly, mapping resting-state fMRI and 

connectivity data onto gene expression atlases has led to identification of molecular profiles 

underlying these fMRI networks [13–15]. 

In this study, we examined the putative molecular signatures of brain regions linked to 

stress reactivity. We linked gene expression data from the Allen Human Brain Atlas (AHBA) 

to an fMRI-stress network (Figure 4.1). In short, we found that the stress network was 

enriched for genes associated to specific subtypes of neurons (i.e. components of the cortical 

circuitry) with genetic relevance for psychiatric disorders, and for signaling factors and 

proteins that interact with the activation of the Hypothalamic-Pituitary-Adrenal axis (HPA-

axis) and response to glucocorticoids. These all constitute potential targets for directed 

pharmacotherapy in stress related disorders. 
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Figure 4.1 Study overview. (A) Cortical brain regions vulnerable to stress (= stress network) during an 

emotion processing task were assessed in an fMRI study. All brain regions showed higher stress-

induced brain activity following an acute social stressor in at risk individuals (healthy siblings of 

schizophrenia patients). The fMRI data was mapped to the AHBA resulting in an overlay of the fMRI 

and gene expression data. (B) With this overlay, differential gene expression between the brain regions 

vulnerable to stress and the rest of the cortex were assessed. (C) Differentially expressed genes were 

consequently characterized by identifying enrichment for gene ontology and cell type markers, 

associations with stress-related diseases and enrichment for cortisol responsive genes. (D) Information 

provided by the previous analyses was used to build a model of a molecular pathway underlying human 

stress reactivity. 
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4.2 METHODS 

 Defining the stress network 4.2.1
Based on a previous study, we selected brain regions that were differentially affected by 

stress in individuals with high and low stress sensitivity [6]. In this study, there were four 

experimental groups: control-no-stress (n=19), control-stress (n=20), sibling-no-stress 

(n=20) and sibling-stress (n=19) (Table 4.1). Before scanning, participants in the stress 

groups underwent a Trier Social Stress Test [16] and 30 minutes after the onset of the test, 

participants performed an emotion-processing task in the magnetic resonance imaging 

(MRI) scanner based on the International Affective Picture System [17] during which 

pictures were presented that had to be rated as either neutral, positive or negative. All 

participants in this experiment gave written informed consent and the experiment was 

approved by the Utrecht Medical Center ethical review board and performed according to 

the guidelines for Good Clinical Practice and the declaration of Helsinki. Based on a 2×2 

ANOVA (control/sibling × stress/no-stress) voxel-wise analysis, several brain regions that 

responded differently to all pictures after acute social stress in siblings compared to healthy 

individuals were identified. These regions include key nodes of the DMN (posterior 

cingulated cortex/precuneus and medial prefrontal cortex) and salience network (anterior 

insula), as well as the superior temporal gyrus, middle temporal gyrus, middle cingulate 

gyrus, ventrolateral prefrontal cortex, precentral gyrus and cerebellar vermis (Figure 4.2A). 

We selected and present in the figures the cortex-specific brain regions for the initial 

analyses to prevent that our results are being driven by differences between the cortex and 

subcortex. Analyses on all brain regions in the stress network can be found in the 

supplementary text. 

Table 4.1 Group characteristics of fMRI study  

 Con-no-stress Con-stress Sib-no-stress Sib-stress P-value 

N 19 20 20 19  

Age (years) 32.6 (8.5) 34.8 (9.1) 33.8 (10.8) 32.5 (7.4) 0.836a 

Handedness (% right) 89.5 95 70 89.5 0.194b 

Educational level 7.6 (2.7) 7.1 (1.9) 7.0 (1.6) 7.4 (1.5) 0.688a 

Body Mass Index 24.1 (2.7) 24.2 (2.1) 24.0 (3.0) 24.9 (3.9) 0.774a 

Ethnicity (% Caucasian) 84.2 90 90 84.2 0.900b 

Smoker (% yes) 5.3 35 30 31.6 0.132b 

 

Con = control; sib = sibling of schizophrenia patient. 

Mean values (SD) are denoted for age, education, and body mass index. All other values are reported in 

frequency. 

a = one-way-ANOVA 

b = chi square test 
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 Allen Human Brain Atlas (AHBA) 4.2.2
Gene expression data from six healthy brains were acquired from the AHBA [18]. In this 

microarray dataset, probes were mapped to genes as previously described [19]. Z-scores for 

normalized gene expression levels from the AHBA were calculated separately for each of the 

six individual brains. Gene expression data were linked to an fMRI-based stress network 

according to the MNI coordinate system, such that samples of the AHBA exactly overlap 

with the corresponding fMRI voxels. For all samples in the AHBA, we determined whether 

they were located in the cortical stress network for all six donors separately. The gene 

expression levels of the AHBA samples were extracted and resulted in expression data of 

19,992 genes in 111 and 1839 brain samples in- and outside the cortical stress network, 

respectively.  

 Differential gene expression in the cortical stress network 4.2.3
To identify genes differentially expressed between the cortical stress network and the rest of 

the cortex, we analyzed each of the six brain donors separately. Differential expression was 

determined for the cortical stress network altogether as one mask. For each gene, we 

combined effect sizes (difference in mean expression between the brain stress network and 

the rest of the brain) across donors using a meta-analysis approach from the ‘metafor’ 2.0-0 

R-package. In brief, a random effects model was used, taking into account the within-brain 

and between-brain variance, which was estimated with the Dersimonian-Laird model. 

Variances and confidence intervals needed for the meta-analysis were calculated using the 

escalc-function. Genes were considered to be differentially expressed at a Benjamini-

Hochberg (BH) adjusted P-value < 0.05. 

We also performed analysis on the whole brain (differentially expressed genes BH-adjusted 

P-value < 0.05 and log2 fold-change (FC) > |1|). Given the large difference in the 

transcriptional profile of the cerebellum compared to the rest of the brain [20], we excluded 

the cerebellum from the whole brain analysis. In addition, we performed the differential 

expression analysis between samples inside and outside the stress network for each of the 

following brain regions separately: cerebral cortex (Cx), frontal gyrus (FG), cingulate gyrus 

(CgG), cerebellum (Cb), and the hippocampal formation (HiF). Other anatomical regions 

contained too few samples (< 2 in the mask) to perform the analysis on these particular 

structures separately. 

We used a bootstrapping approach to assess the robustness of our results with respect to the 

imbalance between the number of AHBA samples inside and outside the cortical stress 

network (111 inside and 1839 outside). We randomly selected 111 samples from the whole 

cortex, regardless of their location inside or outside the stress network and compared gene 

expression profiles of these brain samples with the original set of 111 samples inside the 

cortical stress network. We repeated this process 1000 times to assess the reproducibility of 

the differentially expressed genes. 
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 Gene Ontology (GO) enrichment analysis 4.2.4
To characterize the functionality of the differentially expressed genes, a GO enrichment 

analysis was performed. The list of unranked differentially expressed genes was uploaded to 

GOrilla (Gene Ontology Enrichment Analysis and Visualization Tool) [21]. As a background 

list, the top 20% of genes with the highest expression level in the cortex was used, to correct 

for non-selective ontologies. GO terms were considered significant when the P-values < 

0.001 (Fisher’s exact test) after BH-correction. 

  Cell type enrichment analysis 4.2.5
We assessed whether the differentially expressed genes were enriched for cell type markers 

[22]. Genes with a 20-fold higher expression in neurons (628 marker genes), 

oligodendrocytes (186 marker genes), astrocytes (332 marker genes), microglia (520 marker 

genes) and endothelial cells (456 marker genes) were considered to be markers for that cell 

type. Since most of our AHBA samples were located inside the cortex, we used a set of brain-

region-specific markers and focused on 18 cortical cell types [23]. Details on markers can be 

found on https://pavlab.msl.ubc.ca/data-and-supplementary-information/supplement-to-

mancarci-et-al-neuroexpresso. Finally, to assess which neuronal cell types might be 

involved in stress sensitivity, single cell RNA sequencing data of the middle temporal gyrus 

of the human neocortex from the Allen Brain Institute [24] (http://celltypes.brain-

map.org/rnaseq/human) were used. The sum of the log10 values of the counts per 

differentially expressed gene were calculated for each cell cluster separately.  

 Enrichment analysis of disease-associated genes 4.2.6
To assess whether the differentially expressed genes are associated to stress-related 

psychiatric disorders, a disease-associated gene enrichment analysis was performed based 

on existing Genome-Wide Association Studies (GWAS) including schizophrenia [25,26], 

Bipolar Disorder [27], and Major Depressive Disorder [28], and stress-related diseases such 

as Post-Traumatic Stress Disorder, as well as non-stress-related diseases (e.g., Huntington 

and osteoporosis) based on disease gene sets from DisGeNET [29]. As non-disease control 

conditions, genes associated to height and waste-hip ratio were included in the analysis 

[30,31]. The schizophrenia, MDD and BP GWAS loci were considered to be associated if they 

reached genome-wide significance of P < 5*10-8. Intersections of loci based on GENCODE 

with UCSC hg19/NCBI build 37 position were used to map loci to risk genes by the authors of 

the GWAS [25,27,28]. These annotations were used for the enrichment analyses. All genes 

assessed in the AHBA that were not associated to a disease or trait were used as background 

test in the Fisher-test. FDR-correction was applied over the amount of enrichment tests. 

To assess the enrichment of disease-related gene sets in intercellular signaling genes, 

neuropeptides and receptor genes were selected from the differentially expressed genes. 

Odds ratios (ORs) were calculated for the set of neuropeptides and receptors for each 

disease as a measurement of effect size, (i.e. the increased chance of a peptide or receptor 

being present in the set of differentially expressed genes). For this, the number of receptors 

found within the trait was compared to all the receptors that were measured in the AHBA 

(1203 receptors), based on the gene annotation of the AHBA. Gene names that included the 
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word ‘receptor’ were selected and this list was manually verified whether the gene was a 

receptor or a modulator. The ORs for the neuropeptides were calculated in the same way, 

based on a list of neuropeptides available from NeuroPep [32]. 

 Mineralocorticoid and glucocorticoid DNA binding loci 4.2.7
MR and GR DNA binding loci under stress in the rat hippocampus were previously assessed 

[33]. We identified sets of genes with GR-specific, MR-specific and GR-MR-overlapping 

DNA binding loci, i.e. potential target genes. To predict glucocorticoid sensitivity of our 

differentially expressed genes, we assessed whether these sets of targets were enriched 

among the differentially expressed genes. 

 Enrichment statistics for GO, cell type, disease-associated genes and receptor 4.2.8
binding 
Enrichments were assessed based on Fisher’s Exact Tests and odds ratios (ORs) were 

calculated as a measurement of effect size for the enrichments. An OR of 1 indicates no 

effects, whereas an OR > 1 and 0 < OR < 1 reflects enrichment and depletion, respectively. All 

P-values were corrected for multiple testing using the Benjamini-Hochberg (BH) method 

and a BH corrected P-value < 0.05 was considered to be significant, unless stated otherwise. 

4.3 Results 

 Differentially expressed genes in the stress network 4.3.1
We identified the gene expression signatures of the cortical stress network with altered 

stress-induced activity by determining which genes are differentially expressed in the stress 

network compared to the rest of the cortex. Using a meta-analysis approach to combine 

results across all donors of the AHBA (n = 6), we identified 201 differentially expressed genes 

(BH-adjusted P < 0.05, Figure 4.2B; Supplementary Table 1). Among those genes, 177 were 

higher expressed, while the other 24 genes were lower expressed in the cortical stress 

network compared to the rest of the cortex (Figure 4.2C). Using a bootstrapping approach 

(see 2.3), we found the identified set of genes to be highly robust to the imbalance between 

the number of AHBA samples inside and outside the stress network (in 83% of our 1000 

iterations, only genes out of our initial 201 differentially expressed gene list were found). 

We also identified the gene expression signatures of the stress network with altered stress-

induced activity by determining which genes are differentially expressed in the stress 

network compared to the rest of the brain minus the cerebellum. Using the same meta-

analysis approach, we identified 261 differentially expressed genes (BH-adjusted P < 0.05 

and log2 FC > |1|). A full description of the results, including tables and figures, can be found 

in the supplementary text. However, due to the higher representation of cerebral cortex 

samples in the brain regions vulnerable to stress (109 out of 127; 91%) compared to the rest of 

the brain minus the cerebellum (1,950 out of 3,225; 60%), differentially expressed genes in 

the whole brain stress network were also differentially expressed between cortical and non-

cortical samples (222 out of 261 genes were also differentially expressed in the top 10% 

difference between cortex and non-cortex, P < 0.00001). Therefore, we chose to focus on the 

cortex-specific stress network. 
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The differentially expressed genes in the cortical stress network generally showed high 

expression values in the cortex but not the hippocampus, and mostly low expression levels 

in non-cortical areas (Figure 4.2D). The two most differentially expressed genes in the 

stress-specific cortical regions are Tumor necrosis factor receptor superfamily member 12A 

(TNFRSF12A) (BH-adjusted P-value = 0.006, log2(FC) = -0.24) and Exosome Component 6 

Pseudogene (LOC392145) (BH-adjusted P-value = 0.009, log2(FC) = 0.38). TNFRSF12A may 

module cellular adhesion to matrix proteins, whereas LOC392145 is an mRNA transport 

regulator. 

 Functionality and cell-type specificity of differentially expressed genes in the 4.3.2
stress network 
A GO term enrichment analysis was performed to assess whether the differentially 

expressed genes in the stress network are enriched for specific functions. The differentially 

expressed genes were enriched for GO terms involved in neuronal development and 

neurogenesis, synaptic signal transmission, and glutamate receptor signaling (Figure 4.3A 

and Supplementary Table 1). Genes involved in most processes based on GO terms (at least 

assigned to five out of ten GO terms) include SHANK, GRIN3A, CNTN4 and ADCYAP1. 

Enrichment analysis for cellular components indicated that the proteins coded by the 

differentially expressed genes were mainly found at the synapse, reflecting both the high 

expression of the genes in the synapse-dense cerebral cortex, and a potential role for 

synaptic proteins as determinants for the differential activation. 

Next, we identified the specific cell types underlying the differential gene expression levels 

in the cortical stress network using enrichment analysis of cortical cell-type markers [22]. 

Enrichment was found for neuronal cell markers (BH-adjusted P = 5*10-5), including 

ADCYAP1, DPYSL3, INSM1, PKIA, SSTR1, NOL4, BAIAP3, KCNB2, FAM65B, ABLIM3, TEKT2, 

SHANK1, DACT1, PCBP3, SCN3B, LMO3, CA10, LRRTM4, SYT16, GPRIN1, TMEM200A, LRRC3B, 

GRIN3A, and PNCK. However, no specific subtype of neuron was in particular enriched. 

Enrichment was also found for astrocytes (ATP2B4, PTCH1, FABP7, IGSF11, KCNN3, GRM3, 

GABRB1, PTX3, BH-adjusted P = 0.024). The list of differentially expressed genes included a 

few microglia (TMEM52, F13A1, MSH5, ARHGAP4, NOD2, and TNFRSF12A), endothelial cell 

(LAMA1, LAMB1, C1orf115, DOK4, and MICB), and oligodendrocyte markers (EFNB3 and 

TYRO3), although not significantly enriched (BH-adjusted P = 0.924). Moreover, we found 

that neuronal markers showed a partially overlapping distribution in a t-Distributed 

Stochastic Neighbor Embedding (t-SNE) map of all genes across the whole brain as the 

differentially expressed genes in, indicating that neuronal markers and the differentially 

expressed genes show the same expression patterns across cortical areas (Figure 4.3B) and 

thus differential activity may depend on neuronal gene expression. 

Using a human-specific single cell RNA-sequencing data of the medio-temporal gyrus [24], 

we found the differentially expressed genes to be mainly enriched in glutamatergic 

excitatory neurons compared to GABAergic and non-neuronal cells, using a Wilcoxon rank 

test (P-value = 2.2*10-16, Figure 4.3C). 
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Figure 4.2 Differentially expressed genes in brain regions vulnerable to stress can be identified using 

gene expression atlases. (A) Brain regions in the stress network are present throughout the brain 

(including cerebellum, cingulate gyrus, frontal gyrus, temporal gyrus, and hippocampal formation). For 

the analysis, all regions in the cortex were combined. (B) Differential gene expression was determined 

for the cortical stress network compared to the rest of the cortex. Significant genes (BH-adjusted P-

value < 0.05 have higher expression in the stress network. Grey dots represent non-significant genes 

and brown dots represent significant genes based on meta-analysis across all six AHBA donors. (C) The 

box plots show the expression of the higher (left) and lower (right) expressed genes compared to the rest 

of the cortex in the brain regions of interest from the stress network. (D) In the whole brain, 

differentially expressed genes show mostly high expression levels in the cortex and low expression levels 

in non-cortical brain regions. In the heatmap, each row represents a gene and each column represents a 

sample and all samples of the AHBA are illustrated here. On the right, coronal brain sections for the 

genes SSTR1, GABRB1, ADCYAP1, and DOC2A are presented. Colors indicates high (red) and low (blue) 

expression levels. 
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Figure 4.3 Functionality of differentially expressed genes in the stress network. (A) Differentially 

expressed genes annotated to one of the GO terms were assigned to multiple GO terms and thus 

involved in multiple processes. Between parentheses, the total number of genes assigned to the GO 

term is depicted. On the right side of the graph, ORs are displayed per GO term. (B) Differentially 

expressed genes (brown), neuronal marker genes (purple) and overlapping genes (yellow) are plotted in 

a t-SNE plot generated using BrainScope.nl [20], where points close together represent genes with 

similar gene expression profiles. The differentially expressed genes show a similar profile in the t-SNE 

plot as neuronal cell markers (purple). (C) The sum of the log10 values of the counts per gene is plotted 

for each cell cluster. Green clusters belong to GABAergic cells, purple clusters to glutamatergic cells and 

red clusters to non-neuronal cells. 

 

 Differentially expressed genes in stress network are associated to stress-4.3.3
related diseases 
We hypothesized that the differentially expressed genes in the stress network would be 

associated to the genetic background of psychiatric disorders, particularly for stress-related 

brain disorders, as stress plays a major role in the development of these disorders. Using 

genetic variants from GWAS of the Genomics of Psychiatry Consortium [25,26], we assessed 

whether schizophrenia-associated risk loci are enriched in the set of differentially expressed 

genes. Indeed, schizophrenia risk genes were enriched in the differentially expressed genes 

in the stress network (Fisher Exact test, BH-adjusted P-value = 0.015). The schizophrenia 

risk genes CNTN4, GRM3, FUT9, SATB2, GPM6A, COQ10B, DOC2A, and NISCH were present in 

our differentially expressed genes, and all except one (COQ10B) were higher expressed in the 

cortical brain regions vulnerable to stress. Based on a recent GWAS across multiple 
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psychiatric disorder, multiple pleiotropic risk genes were identified [34]. Furthermore, 

gene-disease associations from DisGeNet, a manually curated database, were used to assess 

risk gene enrichment for psychiatric, brain and non-brain diseases and non-disease traits. 

Enrichment was found for neuropsychiatric disorders (schizophrenia, bipolar disorder, and 

autism spectrum disorder) and other brain diseases (Parkinson’s disease). However, no gene 

enrichment was found for non-brain diseases (e.g., osteoporosis) and non-disease traits 

(e.g., height and waste-hip-ratio; Figure 4.4). Thus, differentially expressed genes in the 

stress network are predominantly involved in genes relevant for stress-related diseases but 

not in non-brain-related disorders and traits. 

Interestingly, the set of 201 differentially expressed genes in the stress network included a 

considerable number of receptors. Apart from their use as markers for specific cell types 

(e.g., ADCYAP1, GABRB1, SSTR1, and TNFRSF12A), these are important for signaling in the 

brain (e.g., ADCYAP1 modulates glutamatergic signaling [35] and the HPA-axis response 

[36]) and some of them are known to be involved in the regulation of stress [36,37]. 

Therefore, we assessed whether there were more receptors in our set of genes associated to 

psychiatric disorders than you would expect by chance. We found higher odds ratios for 

brain and psychiatric disorders, with the biggest effect sizes in psychiatric disorders (Figure 

4.4). Effect sizes for receptor enrichment in Epilepsy (P-value < 1*10-5, OR = 9.07), 

Huntington (P-value = 0.007, OR = 5.18), Obsessive Compulsive Disorder (P-value = 0.004, 

OR = 7.18), Major Depressive Disorder (P-value = 1*10-5, OR = 13.5), Bipolar Disorder (P-value 

= 1*10-5, OR = 26.8), and Schizophrenia (P-value = 0.03, OR = 3.82) were significant. 

 Cortisol sensitivity of the stress network 4.3.4
The enrichment of the neuronal GO terms in our set of genes and the association with 

stress-related diseases indicates that the differentially expressed genes in the stress network 

are relevant for stress and may be responsive to the pivotal stress hormone cortisol. To 

investigate glucocorticoid sensitivity, we compared our list of differentially expressed genes 

with genes that show a DNA binding site for the glucocorticoid- and/or mineralocorticoid 

receptors (GR and MR) in the rat hippocampus by Chromatin Immunoprecipitation 

sequencing after stimulation with the endogenous steroid corticosterone [33]. Differentially 

expressed genes that showed DNA binding loci for both the GR and MR are: SLC26A4, 

IGSF11, GRIK4, SCN3B, GABRB1, CCDC85A, KIRREL3, HECW2 and PKIA (9/459 genes with 

binding sites, BH-adjusted P-value for enrichment = 0.038). There was no significant 

enrichment for either GR binding (OPRM1, PTER, FUT9, EPB41L4B, PKLR, GPM6A, and GSC; 

7/704 genes with binding sites, BH-adjusted p- value = 0.98) or MR binding exclusively 

(ADCYAP1, LAMA1, CNTN4, XPO1, RGS12, MGRN1, CHST15, and ANKLE2; 8/1247 genes with 

binding sites, BH-adjusted P-value = 0.18). These results indicate that differentially 

expressed genes in brain the stress network are enriched for DNA-binding loci of that (in the 

rat) can be bound by both the GR and the MR. 
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4.4 Discussion 
In this study, we identified genes and pathways in the cortical stress network based on an 

fMRI-based study involving acute stress exposure. By combining fMRI data to gene 

expression data, we found 201 differentially expressed genes involved in neuronal processes 

and enriched in stress-related psychiatric disorders. Moreover, the enriched genes included 

several neuropeptides and neurotransmitter receptors with regulation by both the GR and 

MR and substantial links to HPA-axis activity. This gene set uncovered by combining 

human gene expression and neuroimaging results give important new insights into the 

putative neural populations and mechanisms underlying stress vulnerability in humans. 

Our results point to the involvement of (cortical) cell type markers in differential stress 

reactivity. For example, we found enrichment for some astrocyte markers, which among 

others modulate glutamate metabolism and transmission [38]., and there is evidence from 

both human and rodent models that they may play a role in stress-related disorders [39]. 

Moreover, the differentially expressed genes are in general highly expressed in excitatory 

glutamatergic compared to inhibitory GABAergic neurons [24]. Thus, glutamate signaling 

seems to be involved in a more global level, whereas GABA-related mechanisms that may 

underlie differential reactivity to stress are limited to a specific subset of GABA-ergic 

neurons. Specific targeting of these GABAergic populations, based on their receptor 

repertoire, may help to separate primary from secondary changes in the cortical circuitry. 

For genes that do not represent specific neuronal subtypes, changed expression levels may 

reflect differential responsiveness based on more generic signaling pathways. This may, in 

particular, be the case for the identified stress-related genes with a genetic association to 

schizophrenia. OPRM1 encodes for a mu-opioid receptor, which has been shown to interact 

with glutamate to adapt to chronic drug abuse, a stress-related disorder [40]. Moreover, 

mu-opioid receptors are known to modulate the HPA-axis [41]. 

Genes with high expression levels in the regions vulnerable to stress include neuropeptides 

and neurotransmitter receptors, which may be directly targeted to modify the activity of 

these brain regions. SST1 codes for the somatostatin receptors, a neuropeptide produced in 

the hypothalamus. This neuropeptide is known to attenuate the stress response, by 

counteracting CRH signaling via the SST1 receptor [42]. Also a number of serotonergic, 

GABAergic, and glutamatergic receptors are differentially represented in the stress 

network. All these factors may well have a role in regulating neuronal network activity 

during maladaptive stress responses [43–45]. Of note, the excitatory 5-HT1E receptors are 

overrepresented in brain regions that failed to shut off after stress in at-risk subjects. 

Antagonism of 5-HT2A is common between several antipsychotic and antidepressant drugs, 

and normalizing the activity of these brain regions after stressor exposure may be part of 

their therapeutic mechanism. However, the exact function of the 5-HT1E receptors are 

unknown, but HTR1E is a candidate gene for several stress-related disorders [46–48]. 

The enrichment analysis of gene ontology terms suggests that the list of differentially 

expressed genes play a role in stress vulnerability and risk for psychiatric disorders. For 
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example, prenatal chronic stress has consequences on nervous system development as 

shown in mice [49–51]. Moreover, disruption of neuronal plasticity [52]. is induced by a 

prolonged stressor and is a common symptoms of stress-related psychiatric disorders [53]. 

Furthermore, we found that differentially expressed genes in the stress network are 

enriched for DNA-binding loci of both the GR and the MR based on experimental data in 

rats. GR is thought to facilitate recovery and adaptation in the aftermath of stress [54] and 

polymorphisms as well as post-translational modifications alter susceptibility for stress-

related psychiatric disorders [55,56]. The MR has been shown to facilitate stress reactivity 

[57]. The link with GR and MR suggests that it related to factors related to systemic 

adaptations, even though we cannot know to what extent these loci actually reflect target 

genes. 

We found a significant overlap between the genes found to be differentially expressed in the 

whole stress network and those found to be differentially expressed in the region-specific 

stress-network analysis of which some are known to be involved in stress-related 

phenotypes [58,59]. The differences between the results obtained in these experiments can 

be partially explained by the fact that the AHBA samples were collected using bulk 

sequencing which does not allow the detection of differences across individual cell 

populations [60]. With the increasingly availability of single cell data we will have enough 

resolution to detect more subtle differences within the cortex, but for now, human brain 

single cell data is very limited [24,61–63]. Moreover, previous studies has shown that 

structures within the cortex are relatively similar in terms of gene expression [14]. 

Therefore, the finding of 201 differentially expressed genes, point out to a true difference in 

the cortical stress-network and all other cortical brain regions. The non-overlapping genes 

from the combined analysis of cortical and non-cortical samples might be driven by 

anatomical differences, although it is complex to entangle the true biological signals from 

anatomy-driven signals. 

We do not know whether the differentially expressed genes are subject to genetic regulation 

and whether they show differential translational responses. Furthermore, we could not 

infer causality, but rather association of genes with stress-sensitivity. In this regard, it will 

be of considerable interest to further study the genes that have been linked to psychiatric 

disorders, as genetic variation may, in fact, lead to abnormal expression of the genes we 

identified. It will also be of interest to study epigenetic regulation of the genes of interest 

and gene-environment interactions [64–67]. 

Given that we assessed gene expression levels in the healthy brain, it is challenging to 

interpret the differences in high and low expression levels and the meaning in diseased 

brains. High expression levels of the genes in the stress network do not necessarily mean 

that stress sensitivity is a result of the high gene expression per se. It might be the ability to 

regulate neurobiological processes via direct neurotransmitter and receptor signaling or the 

ability to indirectly regulate changes in gene expression [68]. Moreover, we have to take into 
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consideration that we identified genes that already show low baseline expression levels in 

the brain. 

Another limitation of this study is that the low number of samples in some brain regions did 

not allow the analysis of differential expression within these regions. For example, the 

precuneus and the angular gyrus were underrepresented in the AHBA (n = 7 for both 

regions), but harbored great changes according to the fMRI signal. However, there were 

sufficient brain samples available from the AHBA to analyze brain regions vulnerable to 

stress altogether. Moreover, the stress-network we defined was based on 78 males. Given 

the relatively small sample size, replication in a bigger independent cohort should be 

awaited. Furthermore, the six donors were five males and one female. It is important to 

take donor’s sex effect into account, since there is a sex difference in the development and 

symptoms of stress-related diseases [69,70]. Therefore, we checked whether gene 

expression levels were different for the female donor compared to the male donors. We did 

not find gender effects of gene expression levels of the differentially expressed genes. To 

maximize the number of samples, we decided to include the female donor in our analyses. It 

has to be taken into account, however, that the outcome of the performed task might be 

different across the genders [71]. This implies that our results cannot be generalized over the 

whole population, but are rather reflective for males, since the stress-network we identified 

could also be male-specific. We also acknowledge that we do not know how the stress 

network would look like in individuals at risk for other psychiatric disorder. Moreover, 

brain regions differentially activated by acute stress are specific for the emotion processing 

task. Therefore, we might have missed some relevant brain structures, and thus genes, that 

might have become active during another task under stressful conditions. Lastly, the stress 

network that was used in this paper was based on data from siblings of patients with 

schizophrenia. Even though stress is a transdiagnostic factor and relevant for all psychiatric 

disorders [72], we cannot directly extrapolate the stress network to other psychiatric 

disorders such as depression and bipolar disorder. There is increasing research into risk 

groups for these disorders, but to our knowledge, direct comparisons on brain-related 

stress sensitivity between (risk groups of) across psychiatric disorders are lacking. 

To our knowledge, this is the first study to map gene expression atlases to task-based fMRI 

data in order to identify the molecular mechanisms underlying human stress reactivity in 

relation to the risk to develop psychiatric disorders. Here, we show that this method can aid 

in disentangling the molecular underpinnings of specific tasks and traits. We showed that 

genes possibly underlying stress reactivity are also associated with neuronal cell type 

markers (e.g., glutaminergic excitatory neurons), stress-related disease, GR and MR 

responsiveness and HPA-axis activity. We identified several neuropeptides and receptors as 

important players. These identified systems are not only important to understand the 

underlying mechanisms of stress vulnerability, but can also be used to develop new drug 

targets. Therefore, identification of novel drug targets involved in stress vulnerability would 

be of great interest for the development of new therapies in stress-related psychopathology. 
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