
Analyzing spatial transcriptomics and neuroimaging data in
neurodegenerative diseases
Keo, D.

Citation
Keo, D. (2020, December 3). Analyzing spatial transcriptomics and neuroimaging data in
neurodegenerative diseases. Retrieved from https://hdl.handle.net/1887/138480
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/138480
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/138480


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/138480 holds various files of this Leiden University 
dissertation. 
 
Author: Keo, D. 
Title: Analyzing spatial transcriptomics and neuroimaging data in neurodegenerative 
diseases 
Issue Date: 2020-12-03 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/138480
https://openaccess.leidenuniv.nl/handle/1887/1�


5 

 

Chapter 1 

Introduction 

  



Chapter 1 

6 

 

1.1 Molecular mechanisms of neurodegenerative diseases 

 Neurodegenerative diseases 1.1.1
The life expectancy of the global population is expected to keep increasing, especially in the 

western world where people live longer due to better health care and improved living 

conditions [1]. The downside is that increased age comes with age-related 

neurodegenerative diseases [2] that are characterized by the progressive loss of neurons in 

the central nervous system, eventually leading to deficits in brain functions affecting 

movement and cognition [3]. Parkinson’s disease (PD) is the second most common 

neurodegenerative disorder after Alzheimer’s disease (AD) and affects 1% of the population 

at the age of 65 years [4]. Recently, it has been reported that PD is the fastest growing 

neurological disorder in the world and the number of cases is expected to keep increasing 

[5]. PD is characterized by the loss of dopaminergic neurons in the substantia nigra leading 

to motor dysfunction e.g., slowness, and rigidity. Currently available treatments help to 

control motor symptoms, but cannot slow down disease progression [6]. It is well-

recognized that alterations within the basal ganglia neuronal circuit play a role in the 

etiology of PD, but the basal ganglia is also involved in the etiology of Huntington’s disease 

(HD) [7,8]. Due to cell loss in the basal ganglia, both neurodegenerative diseases may be 

accompanied by neuropsychiatric symptoms including depression and schizophrenia, 

which drastically impacts the quality of life [9,10]. Computational tools enable the analysis 

of large biological datasets to better understand the molecular and clinical traits of 

neurodegenerative diseases. In this thesis, we mainly focused our research on PD, but we 

also studied HD and the risk to develop schizophrenia. Our research findings can aid to 

provide new insights into the etiology of PD and other neurodegenerative diseases with an 

outlook to improved treatment and preferably the early prevention of PD. 

 Aging versus neurodegeneration 1.1.2
Healthy aging and neurodegenerative diseases are generally associated with a decline in 

resistance to cellular stress that may lead to cell death affecting brain function [11]. Initially, 

PD patients show similar rates of dopaminergic cell loss as to healthy individuals, but as 

time progresses neurodegeneration is accelerated and the first signs of motor symptoms 

start to appear (Figure 1.1) [12]. The pre-motor stage is associated with mild motor 

symptoms, but non-motor features may also occur early in the course of the disease, e.g., 

symptoms of pain, depression, cognitive dysfunction, dementia, sleep disturbance, and 

constipation [13,14]. In the early stage of PD, symptoms are often confused with signs of 

aging and may therefore go unnoticed. As the disease progresses and symptoms start to 

impair daily activities, PD patients are diagnosed based on clinical assessment scores for 

motor and non-motor symptoms [15,16]. Generally, when a patient is first diagnosed, a 

substantial proportion of dopaminergic neurons in the substantia nigra has already been 

lost, and neurodegeneration has also spread to other regions of the central nervous system 

[6]. Findings over the past years have revealed that PD is a complex disease with some 

clinical challenges, for example the inability to make a definitive diagnosis at the early 

stages of PD and difficulties in managing the symptoms at later stages [17]. In general, the 
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pathogenesis of PD is multifactorial and results from a combination of aging, and genetic 

and environmental factors [18].  

 

Figure 1.1 Schematic representation of the progression of the level of dopaminergic neurons during 

normal aging versus aging in Parkinson’s disease (PD). 

 Neuropathology and cause of Parkinson’s disease 1.1.3
PD diagnosis is essentially clinical but has to be confirmed upon post-mortem 

neuropathological examination by confirming the loss of dopaminergic neurons in the 

substantia nigra and the presence of protein inclusions called Lewy bodies (LBs) [19]. The 

Braak staging scheme has been proposed to assess the staging of the brain pathology in PD 

for neuropathological diagnosis [20]. According to Braak’s theory, LBs first appear in the 

brainstem and then spread to selective brain regions during the course of the disease, 

manifesting in motor and non-motor symptoms (Figure 1.2). PD comprises a spectrum of 

disorders with different subtypes, for which most also share the LB pathology [21]. LBs are 

composed mainly of α-synuclein proteins encoded by the gene SNCA that plays a regulatory 

role in dopamine homeostasis [22]. There are also PD cases where LBs are not found in the 

brain. These patients were usually early-onset (before the age of 40 years), slow progressing, 

and neuronal loss was mostly restricted to the substantia nigra [23]. Aside from PD, there 

are a number of other atypical parkinsonian syndromes (e.g., dementia with Lewy bodies, 

multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration) 

that show abnormal protein depositions of α-synuclein or tau together with parkinsonism; a 

combination of PD-related symptoms, namely bradykinesia with rigidity, tremor, or 

postural instability [24]. Point mutations in the SNCA gene as well as duplication and 

triplication variants have been associated with familial PD, but how these genetic variants 

results in LB pathology remains unclear [25]. It has been suggested that the spreading of LB 

pathology seems to occur across anatomical brain networks and is mostly explained by α-

synuclein expression [26]. Mutations in SNCA are involved in both familial and sporadic PD, 

but it is unclear whether SNCA has a causative role or it is just a bystander of disease 
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mechanisms [21]. Other genetic mutations in more than 20 genes have been identified in 

familial and population studies of PD patients, including rare monogenic causes [27–30], 

however only 10% of PD cases is ascribed to monogenic mutations [31]. The heritability of 

risk to develop PD is 60% which can be partly explained by pathogenic mutations and the 

major risk genes, but the remaining 40% is due to yet unidentified genes [32]. 

 

Figure 1.2 Braak staging scheme of Parkinson’s disease. The six Braak stages describe the spread of 

Lewy bodies from the brainstem to limbic and cortical regions and are associated with the progression 

of clinical symptoms. Image adapted from Doty (2012) [33]. 

 Genetic cause of Huntington’s disease 1.1.4
HD may serve as a model to study neurodegenerative diseases as it is monogenic, 

dominantly inherited, and also a disorder of protein misfolding [34]. The striatum is most 

severely affected in HD, but other brain areas also show neuronal loss [35]. Interestingly, 

HD and PD are characterized by opposite movement disorders: slowness and rigidity are 

symptoms observed in PD, while excessive and uncontrolled movements are typical in HD 

[36]. The nigrostriatal circuit, connecting the striatum and substantia nigra, plays a role in 

the initiation or termination of voluntary movements and is impaired in disorders like PD 

and HD (Figure 1.3) [37]. The cause of HD is a CAG-trinucleotide repeat expansion in the 

HTT gene coding for polyglutamine (polyQ) amino acids in the huntingtin protein and leads 

to improper folding of mutant huntingtin proteins (Figure 1.4) [38]. The CAG-trinucleotide 

normally occurs with up to 35 repeats in tandem, while an increased number of repeats of 40 

or more causes HD [39]. Interestingly, the size of the repeat expansion has a strong negative 

correlation with the age at onset of the disease [40] and the expanded CAG-repeat length in 

other genes also determines the age at onset of a wide spectrum of other neurodegenerative 

diseases including multiple spinocerebellar ataxias (SCAs), dentatorubralpallidoluysian 

atrophy (DRPLA), and spinobulbar muscular atrophy (SBMA) which are also characterized 

by progressive motor and cognitive deficits [41]. Furthermore, it has been shown that the 

age of onset in HD is also influenced by the CAG-repeat variations in other genes associated 

with polyQ diseases suggesting that there are interactions between polyQ genes [42]. 

Defects in DNA repair mechanisms are thought to underlie the age at onset of HD and SCAs 
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[43]. In addition, movement disorders that appear in PD and HD, including parkinsonism 

and chorea, are also frequent in SCAs [44]. This suggests that PD and polyQ diseases share 

common disease mechanisms and that genetic factors can influence disease onset.  

 

Figure 1.3 The nigrostriatal pathway is one of the four dopamine pathways and connects the striatum 

to the substantia nigra. Image credit: Pharmwiki [45]. 

 

Figure 1.4 CAG-trinucleotide repeat expansions in polyglutamine (polyQ) diseases. (A) CAG-repeats 

are translated to polyglutamine amino acids, but an expansion in the number of repeats causes the 

misfolding of proteins. (B) Age at onset is strongly influenced by the CAG-repeat size in the causative 

gene of nine polyQ diseases. Circles depict the mean age at onset for a given expansion size based on 

multiple cohorts of patients. Image adapted from Kuiper et al. (2017) [46]. 

1.2 Spatial transcriptomics to study neurodegenerative diseases 

 Transcriptomics of Parkinson’s disease 1.2.1
Although several genetic and environmental factors have been associated with the 

development of PD, the underlying pathobiology remains poorly understood. 

Transcriptomics can yield new insights into the disease mechanism by measuring genome-

wide expression profiles of samples derived from brain tissue. The whole human genome is 

estimated to have ~20,000 protein encoding genes for which the amount of RNA transcripts 

per gene can be measured with microarray chips or RNA-sequencing techniques. The goal 

of most transcriptomic studies in PD is to find genes that are differentially expressed 

between PD patients and age-matched controls and assess whether they are enriched for 

genes associated with known biological pathways. The majority of these studies analyzed 

samples from the substantia nigra; a structure of the basal ganglia that shows loss of 
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dopaminergic neurons in PD. Transcriptomic studies of PD have been limited by the small 

number of samples (less than 40 PD cases) due to difficulties in sample selection, namely the 

limited availability of well-characterized patients, and cases and controls that should be well 

matched based on age, ethnicity, and gender [47]. To overcome this limitation, animal 

models have been developed to mimic the clinical symptoms of PD, however it remains 

unclear to what extent the underlying gene expression patterns reflect those in human PD 

or how well these animal models mimic phenotypes observed in PD [48,49]. Gene expression 

profiles have also been retrieved from blood samples of patients, however these samples do 

not reflect the transcriptomic signatures of the brain [47,50–52]. Furthermore, researchers 

have used induced pluripotent stem cells (iPSC) from patients to generate specific neuronal 

cell-types, such as dopaminergic cells, but iPSC technology is still challenging and poorly 

understood by scientists [53,54]. Another limitation of transcriptomic studies of PD is that 

brain samples are derived from patients in the late stage of the disease and therefore they 

cannot investigate the early changes that lead to the development of PD [55]. Improving our 

understanding of PD in its prodromal phase during midlife is essential to enable early stage 

PD diagnosis [14]. Finally, transcriptomic data from PD brains that are currently available 

do not cover many brain regions, and there are only few PD studies that analyzed multiple 

brain regions from the same donors [56]. Taken together, more extensive brain-wide gene 

expression analyses can help to understand the spatial context of gene expression and their 

functions that may be dysregulated in neurodegenerative diseases. 

 Transcriptome map of the healthy brain 1.2.2
Spatial transcriptomics is a method where gene expression is analyzed in a spatial context to 

understand how gene transcription activity is organized across a tissue or organ, such as the 

brain. Generally, it seems that gene expression varies more between brain regions than 

between individuals [57]. The Allen Human Brain Atlas (AHBA) is a high resolution gene 

expression atlas covering the whole brain [58]. It was established by collaborative efforts of 

multi-disciplinary scientists and made publicly available for neurobiological research. 

Almost 4,000 samples were collected from post-mortem brains of six healthy adult donors 

without a neurological or neuropsychiatric history (Figure 1.5). To map brain-wide 

transcriptomic profiles, brains were carefully dissected while keeping track of anatomical 

annotations and spatial coordinates based on magnetic resonance imaging (MRI) scans. 

This brain-wide gene expression dataset helps to unravel functions of different brain 

structures and their spatial organization. Since its publication the AHBA has been used 

extensively to yield new insights into diseases of the central nervous system such as 

migraine [59], schizophrenia [60,61], and AD [62–65]. By analyzing the transcriptome of 

brain regions that are vulnerable in disease, studies were able to establish the expression 

patterns of disease-implicated genes and provide new insights into disease mechanisms. In 

studies of neurodegenerative diseases, brain regions of interest were defined based on the 

vulnerability to neurodegeneration and/or protein aggregation from imaging studies or 

pathological findings. Altogether, the AHBA has offered new opportunities to link molecular 

function to brain organization and defects in neurological diseases and can also be of great 

value to unravel the molecular mechanisms underlying vulnerable brain regions in PD or 

HD.  
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Figure 1.5 Allen Human Brain Atlas. Gene expression map of the healthy human brain. Image credit: 

Shen et al. (2012) [66]. 

1.3 Computational approaches in integrating genomics with neuroimaging  

 Phenotypic information from neuroimaging 1.3.1
Neuroimaging is a method to study functional neuroanatomy, brain-behavior relationships 

and the pathophysiology of brain disorders [67], and thus provides useful phenotypic 

features of the brain. It allows detecting differences in imaging features between a group of 

patients and controls in vivo to assess, for example, the loss of gray matter in PD brains. 

Differences between disease cases and controls are statistically assessed to highlight brain 

areas with significant structural or functional changes associated with the disease. The two 

main imaging techniques are structural MRI, that measures morphological properties of the 

brain (e.g., cortical thickness and volume), and functional MRI (fMRI), that measures blood 

oxygen flow to identify functionally connected brain regions based on their activity during 

task-based performance or in resting state. In PD imaging studies, the region of interest 

often includes anatomical structures of the basal ganglia, nigrostriatal projections, the 

cortex and other regions involved in the motor circuit [68,69]. Some MRI studies did not 

focus only on specific anatomical structures, but analyzed the entire brain to unbiasedly 

identify new brain regions vulnerable to atrophy in PD [70]. Structural covariance is an MRI 

method to identify anatomical networks of the brain based on gray matter variation across a 

population of individuals [71]. The co-varying regions in structural covariance networks 
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(SCNs) are thought to arise from functionally connected brain regions. Both functional and 

structural networks define a set of connected brain regions that can be compared between 

PD and controls to find associations with gray matter loss that is indicative of atrophy 

within such networks. Interestingly, several PD imaging studies highlighted relationships 

between structural or functional MRI changes in PD and the severity of clinical symptoms 

[72–78]. In addition, neuroimaging genetics studies analyzed MRI differences between 

groups of patients with different mutations associated with subtypes of PD [79–81] or AD 

[82]. It would be interesting to combine spatial transcriptomics with neuroimaging of PD 

brains to reveal deeper insights into the molecular mechanisms; however transcriptomic 

studies of PD have been limited to few selected brain regions. 

 Neuroimaging and transcriptomics to study neurodegenerative diseases 1.3.2
Analyzing the transcriptional activity of structural or functional brain networks could reveal 

new insights into the molecular organization of the brain. Single photon emission 

computed tomography (SPECT) and positron emission tomography (PET) allow whole brain 

imaging of molecular changes in patients in vivo, but are limited to the analysis of a single 

receptor, transporter, or enzyme [83]. The AHBA provides a whole-genome expression map 

of the healthy brain that can be combined with neuroimaging data to correlate 

transcriptomic signatures with phenotypic features of the brain. Each sample in the AHBA 

is annotated with spatial MNI coordinates that can be used to map the gene expression 

samples to brain regions defined by MRI, for example to determine which samples fall 

within or outside a region of interest. In recent years, studies have used varying approaches 

to combine neuroimaging data with the AHBA, but the processing of gene expression data 

has been highly variable [84]. In general, the AHBA is used to examine gene expression 

profiles across brain regions or networks that were identified in neuroimaging studies to 

find correlations with imaging features, such as network function or gray matter loss. In 

studies of neurological disorders, genes may behave differently across disease-related 

regions compared to control regions that are considered unaffected. The control region can 

be the whole brain, or a region known to not be involved in the disease. The differential 

activity of these genes that are correlated with imaging features inform about the cellular 

mechanisms that may be involved in disease. Gene co-expression analysis is a powerful 

robust method to understand transcriptomic organization [85]. Co-expression of samples 

across genes has revealed a network of samples that mimicked a network detected with 

fMRI [86]. Alternatively, the correlation between genes across a set of samples measures 

whether two genes behave similarly. This information can be used to create a network of 

putative gene interactions. Commonly, gene co-expression patterns have been analyzed in 

samples from specific tissues across individuals, but can also be examined spatially across 

samples from different brain regions. Analyzing spatial gene co-expression patterns in 

selected brain regions informs about the spatial organization of molecular pathways and on 

how gene interactions are regulated differently in different brain regions. Based on their co-

expression similarity, genes may be clustered into groups referred to as co-expression 

modules. Whole brain analysis of both imaging features and gene expression patterns 

allows finding correlations between two data modalities [87–89]. Previous studies that 

combined neuroimaging data with spatial transcriptomics have shown that there are 
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multiple ways to analyze gene expression patterns in brain regions defined by imaging 

technologies (Figure 1.6). In other words, analyzing the healthy transcriptome of brain 

regions associated with neurodegenerative diseases have shown to improve our 

understanding of genes and their role in disease pathology. 

 Functional interpretation of findings 1.3.3
Genes resulting from computational analyses need to be investigated for the presence of 

interesting genes for which a functional role has been earlier described. Functional 

enrichment analysis assesses whether there is an overrepresentation of groups of genes 

associated with specific functions, pathways, diseases, or cell-types. There exists multiple 

curated databases with gene annotations that can be used for gene set enrichment analysis 

(the Gene Ontology resource [90,91], Reactome pathway database [92], KEGG [93], 

DisGENet [94], etc.) to aid in the functional interpretation of transcriptomic findings. Gene 

markers that are known to be uniquely expressed in specific cell-types can be used to 

identify the presence of cell-types. Immunohistochemical staining of cell-type markers is 

extensively used to reveal the presence and abundance of specific cell-types in brain slices, 

such as staining for TH (tyrosine hydroxylase) to reveal the loss of dopaminergic cells in PD 

[95]. In neurodegenerative diseases like PD and HD there is remarkable loss of neuronal 

cells compared to healthy individuals [96]. Interestingly, cell-types associated with immune 

responses (e.g., astrocytes, microglia) are more abundant in the neurodegenerative brain. 

Therefore, studies that perform transcriptomic analysis of bulk tissue samples between 

patients and controls have to be aware of the different cell populations within samples. Also, 

when comparing tissues from different brain regions, an overrepresentation of cell-type 

markers may reflect the anatomical organization of brain regions, for example gene 

markers for neuronal cells are highly expressed in the synapse-dense cortex. The cell-type 

composition has, with no doubt, an influence on the measured gene expression profile, but 

normally the true cell-type compositions of bulk tissue samples are unknown. Several 

methods have been proposed that use cell-type markers to estimate cell-type composition 

and correct differential expression analysis results based on these estimations [97–100].  

While there are many genetic risk factors associated with PD, their functional role in the 

development of PD remains unclear. Several studies that combined neuroimaging data with 

the AHBA focused on the brain-wide expression of genetic risk factors and revealed regional 

gene activity that was correlated with imaging features in PD [101,102]. The expression 

pattern of genetic risk factors can aid to better understand how genetic mutations lead to 

molecular deficits in affected brain regions [103]. While genetic risk factors provide a direct 

link to the disease, whole transcriptomic analysis reveals more interesting genes that can 

explain the molecular mechanisms underlying neurodegenerative diseases. Previous studies 

have shown the various possibilities to analyze neuroimaging data with brain-wide 

transcriptomic data, and provide examples of how to use similar computational tools to 

unravel molecular mechanisms underlying brain regions and networks that are vulnerable 

to PD and HD. 
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Figure 1.6 An overview of computational approaches to combine neuroimaging data with spatial 

transcriptomics from the AHBA to study neurodegenerative diseases. Neuroimaging provides 

phenotypic information and can be used to create structural or functional networks and find changes 

between disease cases and controls. Combining neuroimaging data with spatial transcriptomics 

enables the analysis of gene expression in brain regions that are vulnerable in disease. Brain samples 

from the AHBA were collected according to a hierarchical ontology. The whole brain is on top of the 

hierarchy and splits into more detailed brain structures. Common methods to analyze neuroimaging 

with spatial transcriptomics are differential gene expression in regions of interest (MRI mask), gene co-

expression across selected samples, and whole brain analysis of both data modalities using an 

integrated approach. For functional interpretation, findings are assessed for the overrepresentation of 

known gene sets and/or genetic risk factors associated with the disease. 

1.4 Contribution of thesis 
This thesis describes our research on exploring the relationship between the gene 

expression profile of different brain regions and age-related neurodegenerative disorders. 

We mainly focused our research on PD, but also used similar computational tools to 

understand molecular mechanism underlying HD and polyQ genes, as well as 

schizophrenia. Our main hypothesis is that certain genes are important to maintain normal 

molecular functions in the healthy state, while dysfunctioning of these genes may underlie 

the vulnerability to neurodegeneration in specific brain regions. We sought to answer 

multiple research questions to detect such genes and consequently improve our 

understanding of PD, and other neurodegenerative diseases:  

 Which genes are differentially expressed in brain regions associated with disease?  

 Which biological functions or pathways are associated with these genes?  

 How is the spatial expression of genetic risk factors involved in disease?  

 Which molecular interactions are associated with specific brain regions?  

We used and developed various bioinformatics tools to combine neuroimaging data with 

spatial transcriptomic data to reveal genes of interest and its associated functions that may 
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be involved in the pathology of neurodegenerative diseases. In each chapter, we exploited 

the AHBA to understand gene expression patterns across the healthy brain as a guide to 

better understand the molecular mechanisms underlying neurodegenerative diseases. With 

this approach, we rely on previous studies that have shown that spatial gene expression 

patterns can reveal new insights into the functional organization of the brain, and how 

dysfunctional regulation may lead to the development of neurodegenerative diseases.  

In Chapter 2, we used spatial transcriptomics to study molecular functions of structural 

brain networks that may explain patterns of neurodegeneration in PD. Comparative 

analysis between the transcriptomics signatures of multiple SCNs obtained from MRI 

revealed the presence of cholinergic genes that may be associated with patterns of atrophy 

in PD. 

In Chapter 3, we proposed that polyQ genes likely interact because CAG-repeat lengths 

within these genes strongly influences the age at onset of HD. We revealed co-expression 

between HTT and polyQ genes ATN1 and ATXN2 in anatomical structures involved in HD 

and a region associated with neurodegeneration in HD based on MRI images of patients. 

The co-expression patterns suggest potential interactions between the three polyQ genes in 

brain regions that are vulnerable in HD and the shared co-expressed genes among the three 

polyQ genes suggests the involvement of DNA repair pathways. 

In Chapter 4, we used similar computational tools to investigate the molecular mechanisms 

underlying a stress network defined by task-based fMRI in individuals at risk of 

schizophrenia. Genes differentially expressed within the network showed associations with 

stress-related psychiatric disorders, neuronal cell populations, and neurotransmitter 

receptors. Many of the differentially expressed genes have been described to interact with 

the HPA-axis, a neuro-endocrine system that controls hormonal stress.  

In Chapter 5, we propose that brain-wide gene expression patterns can predict cortical 

atrophy in PD brains and possibly the relationship between cortical atrophy and the severity 

of clinical symptoms. In this study, we used a multimodal approach to understand the 

behavior of groups of genes instead of individual genes and their correlation with patterns 

of neurodegeneration. Regional cortical thickness changes in PD were correlated with 

pathways associated with the maintenance of cellular health. Without any assumptions on 

the involvement of genes and vulnerable brain regions in PD, our findings highlight the 

activity of biological pathways across the cortex that are correlated with cellular 

maintenance mechanisms that previously have been associated with PD. 

In Chapter 6, we used the Braak staging scheme for PD to define a set of brain regions that 

are known to be progressively affected during the different clinical stages of PD. The 

gradual spreading of Lewy bodies might be explained by the underlying molecular 

mechanisms of the involved brain regions. We revealed genes, including SNCA and other 

genetic risk factors, for which their healthy expression pattern correlated with the Braak 

stages of brain regions. These correlation patterns were not preserved in Braak stage-
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involved regions of PD patients. Additionally, we highlighted two co-expression modules 

involved in dopamine biosynthesis and blood-oxygen control whose expression signature 

was shown to be correlated with Braak stages. Understanding the transcriptomic 

differences between brain regions with different vulnerabilities to PD provided new insights 

into the progression of PD. 

Each chapter helps to understand the spatial organization of gene transcription activity and 

how dysregulation of molecular processes may lead to symptoms apparent in 

neurodegenerative diseases. Finally, we discuss the contribution of our work to HD and PD 

research and our perspective on future research to improve our understanding of 

neurodegenerative diseases.  
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