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CHAPTER 1

1.1 MOLECULAR MECHANISMS OF NEURODEGENERATIVE DISEASES

1.1.1 NEURODEGENERATIVE DISEASES

The life expectancy of the global population is expected to keep increasing, especially in the
western world where people live longer due to better health care and improved living
conditions [1]. The downside is that increased age comes with age-related
neurodegenerative diseases [2] that are characterized by the progressive loss of neurons in
the central nervous system, eventually leading to deficits in brain functions affecting
movement and cognition [3]. Parkinson’s disease (PD) is the second most common
neurodegenerative disorder after Alzheimer’s disease (AD) and affects 1% of the population
at the age of 65 years [4]. Recently, it has been reported that PD is the fastest growing
neurological disorder in the world and the number of cases is expected to keep increasing
[5]. PD is characterized by the loss of dopaminergic neurons in the substantia nigra leading
to motor dysfunction e.g., slowness, and rigidity. Currently available treatments help to
control motor symptoms, but cannot slow down disease progression [6]. It is well-
recognized that alterations within the basal ganglia neuronal circuit play a role in the
etiology of PD, but the basal ganglia is also involved in the etiology of Huntington’s disease
(HD) [7,8]. Due to cell loss in the basal ganglia, both neurodegenerative diseases may be
accompanied by neuropsychiatric symptoms including depression and schizophrenia,
which drastically impacts the quality of life [9,10]. Computational tools enable the analysis
of large biological datasets to better understand the molecular and clinical traits of
neurodegenerative diseases. In this thesis, we mainly focused our research on PD, but we
also studied HD and the risk to develop schizophrenia. Our research findings can aid to
provide new insights into the etiology of PD and other neurodegenerative diseases with an
outlook to improved treatment and preferably the early prevention of PD.

1.1.2 AGING VERSUS NEURODEGENERATION

Healthy aging and neurodegenerative diseases are generally associated with a decline in
resistance to cellular stress that may lead to cell death affecting brain function [11]. Initially,
PD patients show similar rates of dopaminergic cell loss as to healthy individuals, but as
time progresses neurodegeneration is accelerated and the first signs of motor symptoms
start to appear (Figure 1.1) [12]. The pre-motor stage is associated with mild motor
symptoms, but non-motor features may also occur early in the course of the disease, e.g.,
symptoms of pain, depression, cognitive dysfunction, dementia, sleep disturbance, and
constipation [13,14]. In the early stage of PD, symptoms are often confused with signs of
aging and may therefore go unnoticed. As the disease progresses and symptoms start to
impair daily activities, PD patients are diagnosed based on clinical assessment scores for
motor and non-motor symptoms [15,16]. Generally, when a patient is first diagnosed, a
substantial proportion of dopaminergic neurons in the substantia nigra has already been
lost, and neurodegeneration has also spread to other regions of the central nervous system
[6]. Findings over the past years have revealed that PD is a complex disease with some
clinical challenges, for example the inability to make a definitive diagnosis at the early
stages of PD and difficulties in managing the symptoms at later stages [17]. In general, the
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pathogenesis of PD is multifactorial and results from a combination of aging, and genetic
and environmental factors [18].
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Figure1.1 Schematic representation of the progression of the level of dopaminergic neurons during
normal aging versus aging in Parkinson’s disease (PD).

1.1.3 NEUROPATHOLOGY AND CAUSE OF PARKINSON’S DISEASE

PD diagnosis is essentially clinical but has to be confirmed upon post-mortem
neuropathological examination by confirming the loss of dopaminergic neurons in the
substantia nigra and the presence of protein inclusions called Lewy bodies (LBs) [19]. The
Braak staging scheme has been proposed to assess the staging of the brain pathology in PD
for neuropathological diagnosis [20]. According to Braak’s theory, LBs first appear in the
brainstem and then spread to selective brain regions during the course of the disease,
manifesting in motor and non-motor symptoms (Figure 1.2). PD comprises a spectrum of
disorders with different subtypes, for which most also share the LB pathology [21]. LBs are
composed mainly of a-synuclein proteins encoded by the gene SNCA that plays a regulatory
role in dopamine homeostasis [22]. There are also PD cases where LBs are not found in the
brain. These patients were usually early-onset (before the age of 40 years), slow progressing,
and neuronal loss was mostly restricted to the substantia nigra [23]. Aside from PD, there
are a number of other atypical parkinsonian syndromes (e.g., dementia with Lewy bodies,
multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration)
that show abnormal protein depositions of a-synuclein or tau together with parkinsonism; a
combination of PD-related symptoms, namely bradykinesia with rigidity, tremor, or
postural instability [24]. Point mutations in the SNCA gene as well as duplication and
triplication variants have been associated with familial PD, but how these genetic variants
results in LB pathology remains unclear [25]. It has been suggested that the spreading of LB
pathology seems to occur across anatomical brain networks and is mostly explained by a-
synuclein expression [26]. Mutations in SNCA are involved in both familial and sporadic PD,
but it is unclear whether SNCA has a causative role or it is just a bystander of disease
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mechanisms [21]. Other genetic mutations in more than 20 genes have been identified in
familial and population studies of PD patients, including rare monogenic causes [27-30],
however only 10% of PD cases is ascribed to monogenic mutations [31]. The heritability of
risk to develop PD is 60% which can be partly explained by pathogenic mutations and the
major risk genes, but the remaining 40% is due to yet unidentified genes [32].
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Figure 1.2 Braak staging scheme of Parkinson’s disease. The six Braak stages describe the spread of
Lewy bodies from the brainstem to limbic and cortical regions and are associated with the progression
of clinical symptoms. Image adapted from Doty (2012) [33].

1.1.4 GENETIC CAUSE OF HUNTINGTON'’S DISEASE

HD may serve as a model to study neurodegenerative diseases as it is monogenic,
dominantly inherited, and also a disorder of protein misfolding [34]. The striatum is most
severely affected in HD, but other brain areas also show neuronal loss [35]. Interestingly,
HD and PD are characterized by opposite movement disorders: slowness and rigidity are
symptoms observed in PD, while excessive and uncontrolled movements are typical in HD
[36]. The nigrostriatal circuit, connecting the striatum and substantia nigra, plays a role in
the initiation or termination of voluntary movements and is impaired in disorders like PD
and HD (Figure 1.3) [37]. The cause of HD is a CAG-trinucleotide repeat expansion in the
HTT gene coding for polyglutamine (polyQ) amino acids in the huntingtin protein and leads
to improper folding of mutant huntingtin proteins (Figure 1.4) [38]. The CAG-trinucleotide
normally occurs with up to 35 repeats in tandem, while an increased number of repeats of 40
or more causes HD [39]. Interestingly, the size of the repeat expansion has a strong negative
correlation with the age at onset of the disease [40] and the expanded CAG-repeat length in
other genes also determines the age at onset of a wide spectrum of other neurodegenerative
diseases including multiple spinocerebellar ataxias (SCAs), dentatorubralpallidoluysian
atrophy (DRPLA), and spinobulbar muscular atrophy (SBMA) which are also characterized
by progressive motor and cognitive deficits [41]. Furthermore, it has been shown that the
age of onset in HD is also influenced by the CAG-repeat variations in other genes associated
with polyQ diseases suggesting that there are interactions between polyQ genes [42].
Defects in DNA repair mechanisms are thought to underlie the age at onset of HD and SCAs
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[43]. In addition, movement disorders that appear in PD and HD, including parkinsonism
and chorea, are also frequent in SCAs [44]. This suggests that PD and polyQ diseases share
common disease mechanisms and that genetic factors can influence disease onset.
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Figure1.3 The nigrostriatal pathway is one of the four dopamine pathways and connects the striatum
to the substantia nigra. Image credit: Pharmwiki [45].
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Figure1.4 CAG-trinucleotide repeat expansions in polyglutamine (polyQ) diseases. (A) CAG-repeats
are translated to polyglutamine amino acids, but an expansion in the number of repeats causes the
misfolding of proteins. (B) Age at onset is strongly influenced by the CAG-repeat size in the causative
gene of nine polyQ diseases. Circles depict the mean age at onset for a given expansion size based on
multiple cohorts of patients. Image adapted from Kuiper et al. (2017) [46].

1.2 SPATIAL TRANSCRIPTOMICS TO STUDY NEURODEGENERATIVE DISEASES

1.2.1 TRANSCRIPTOMICS OF PARKINSON’S DISEASE

Although several genetic and environmental factors have been associated with the
development of PD, the underlying pathobiology remains poorly understood.
Transcriptomics can yield new insights into the disease mechanism by measuring genome-
wide expression profiles of samples derived from brain tissue. The whole human genome is
estimated to have ~20,000 protein encoding genes for which the amount of RNA transcripts
per gene can be measured with microarray chips or RNA-sequencing techniques. The goal
of most transcriptomic studies in PD is to find genes that are differentially expressed
between PD patients and age-matched controls and assess whether they are enriched for
genes associated with known biological pathways. The majority of these studies analyzed
samples from the substantia nigra; a structure of the basal ganglia that shows loss of
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dopaminergic neurons in PD. Transcriptomic studies of PD have been limited by the small
number of samples (less than 40 PD cases) due to difficulties in sample selection, namely the
limited availability of well-characterized patients, and cases and controls that should be well
matched based on age, ethnicity, and gender [47]. To overcome this limitation, animal
models have been developed to mimic the clinical symptoms of PD, however it remains
unclear to what extent the underlying gene expression patterns reflect those in human PD
or how well these animal models mimic phenotypes observed in PD [48,49]. Gene expression
profiles have also been retrieved from blood samples of patients, however these samples do
not reflect the transcriptomic signatures of the brain [47,50-52]. Furthermore, researchers
have used induced pluripotent stem cells (iPSC) from patients to generate specific neuronal
cell-types, such as dopaminergic cells, but iPSC technology is still challenging and poorly
understood by scientists [53,54]. Another limitation of transcriptomic studies of PD is that
brain samples are derived from patients in the late stage of the disease and therefore they
cannot investigate the early changes that lead to the development of PD [55]. Improving our
understanding of PD in its prodromal phase during midlife is essential to enable early stage
PD diagnosis [14]. Finally, transcriptomic data from PD brains that are currently available
do not cover many brain regions, and there are only few PD studies that analyzed multiple
brain regions from the same donors [56]. Taken together, more extensive brain-wide gene
expression analyses can help to understand the spatial context of gene expression and their
functions that may be dysregulated in neurodegenerative diseases.

1.2.2 TRANSCRIPTOME MAP OF THE HEALTHY BRAIN
Spatial transcriptomics is a method where gene expression is analyzed in a spatial context to

understand how gene transcription activity is organized across a tissue or organ, such as the
brain. Generally, it seems that gene expression varies more between brain regions than
between individuals [57]. The Allen Human Brain Atlas (AHBA) is a high resolution gene
expression atlas covering the whole brain [58]. It was established by collaborative efforts of
multi-disciplinary scientists and made publicly available for neurobiological research.
Almost 4,000 samples were collected from post-mortem brains of six healthy adult donors
without a neurological or neuropsychiatric history (Figure 1.5). To map brain-wide
transcriptomic profiles, brains were carefully dissected while keeping track of anatomical
annotations and spatial coordinates based on magnetic resonance imaging (MRI) scans.
This brain-wide gene expression dataset helps to unravel functions of different brain
structures and their spatial organization. Since its publication the AHBA has been used
extensively to yield new insights into diseases of the central nervous system such as
migraine [59], schizophrenia [60,61], and AD [62—65]. By analyzing the transcriptome of
brain regions that are vulnerable in disease, studies were able to establish the expression
patterns of disease-implicated genes and provide new insights into disease mechanisms. In
studies of neurodegenerative diseases, brain regions of interest were defined based on the
vulnerability to neurodegeneration and/or protein aggregation from imaging studies or
pathological findings. Altogether, the AHBA has offered new opportunities to link molecular
function to brain organization and defects in neurological diseases and can also be of great
value to unravel the molecular mechanisms underlying vulnerable brain regions in PD or
HD.
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Figure1.5 Allen Human Brain Atlas. Gene expression map of the healthy human brain. Image credit:
Shen et al. (2012) [66].

1.3 COMPUTATIONAL APPROACHES IN INTEGRATING GENOMICS WITH NEUROIMAGING

1.3.1 PHENOTYPIC INFORMATION FROM NEUROIMAGING

Neuroimaging is a method to study functional neuroanatomy, brain-behavior relationships
and the pathophysiology of brain disorders [67], and thus provides useful phenotypic
features of the brain. It allows detecting differences in imaging features between a group of
patients and controls in vivo to assess, for example, the loss of gray matter in PD brains.
Differences between disease cases and controls are statistically assessed to highlight brain
areas with significant structural or functional changes associated with the disease. The two
main imaging techniques are structural MRI, that measures morphological properties of the
brain (e.g., cortical thickness and volume), and functional MRI (fMRI), that measures blood
oxygen flow to identify functionally connected brain regions based on their activity during
task-based performance or in resting state. In PD imaging studies, the region of interest
often includes anatomical structures of the basal ganglia, nigrostriatal projections, the
cortex and other regions involved in the motor circuit [68,69]. Some MRI studies did not
focus only on specific anatomical structures, but analyzed the entire brain to unbiasedly
identify new brain regions vulnerable to atrophy in PD [70]. Structural covariance is an MRI
method to identify anatomical networks of the brain based on gray matter variation across a
population of individuals [71]. The co-varying regions in structural covariance networks
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(SCNs) are thought to arise from functionally connected brain regions. Both functional and
structural networks define a set of connected brain regions that can be compared between
PD and controls to find associations with gray matter loss that is indicative of atrophy
within such networks. Interestingly, several PD imaging studies highlighted relationships
between structural or functional MRI changes in PD and the severity of clinical symptoms
[72-78]. In addition, neuroimaging genetics studies analyzed MRI differences between
groups of patients with different mutations associated with subtypes of PD [79-81] or AD
[82]. It would be interesting to combine spatial transcriptomics with neuroimaging of PD
brains to reveal deeper insights into the molecular mechanisms; however transcriptomic
studies of PD have been limited to few selected brain regions.

1.3.2 NEUROIMAGING AND TRANSCRIPTOMICS TO STUDY NEURODEGENERATIVE DISEASES

Analyzing the transcriptional activity of structural or functional brain networks could reveal
new insights into the molecular organization of the brain. Single photon emission
computed tomography (SPECT) and positron emission tomography (PET) allow whole brain
imaging of molecular changes in patients in vivo, but are limited to the analysis of a single
receptor, transporter, or enzyme [83]. The AHBA provides a whole-genome expression map
of the healthy brain that can be combined with neuroimaging data to correlate
transcriptomic signatures with phenotypic features of the brain. Each sample in the AHBA
is annotated with spatial MNI coordinates that can be used to map the gene expression
samples to brain regions defined by MRI, for example to determine which samples fall
within or outside a region of interest. In recent years, studies have used varying approaches
to combine neuroimaging data with the AHBA, but the processing of gene expression data
has been highly variable [84]. In general, the AHBA is used to examine gene expression
profiles across brain regions or networks that were identified in neuroimaging studies to
find correlations with imaging features, such as network function or gray matter loss. In
studies of neurological disorders, genes may behave differently across disease-related
regions compared to control regions that are considered unaffected. The control region can
be the whole brain, or a region known to not be involved in the disease. The differential
activity of these genes that are correlated with imaging features inform about the cellular
mechanisms that may be involved in disease. Gene co-expression analysis is a powerful
robust method to understand transcriptomic organization [85]. Co-expression of samples
across genes has revealed a network of samples that mimicked a network detected with
fMRI [86]. Alternatively, the correlation between genes across a set of samples measures
whether two genes behave similarly. This information can be used to create a network of
putative gene interactions. Commonly, gene co-expression patterns have been analyzed in
samples from specific tissues across individuals, but can also be examined spatially across
samples from different brain regions. Analyzing spatial gene co-expression patterns in
selected brain regions informs about the spatial organization of molecular pathways and on
how gene interactions are regulated differently in different brain regions. Based on their co-
expression similarity, genes may be clustered into groups referred to as co-expression
modules. Whole brain analysis of both imaging features and gene expression patterns
allows finding correlations between two data modalities [87-89]. Previous studies that
combined neuroimaging data with spatial transcriptomics have shown that there are
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multiple ways to analyze gene expression patterns in brain regions defined by imaging
technologies (Figure 1.6). In other words, analyzing the healthy transcriptome of brain
regions associated with neurodegenerative diseases have shown to improve our
understanding of genes and their role in disease pathology.

1.3.3 FUNCTIONAL INTERPRETATION OF FINDINGS

Genes resulting from computational analyses need to be investigated for the presence of
interesting genes for which a functional role has been earlier described. Functional
enrichment analysis assesses whether there is an overrepresentation of groups of genes
associated with specific functions, pathways, diseases, or cell-types. There exists multiple
curated databases with gene annotations that can be used for gene set enrichment analysis
(the Gene Ontology resource [90,91], Reactome pathway database [92], KEGG [93],
DisGENet [94], etc.) to aid in the functional interpretation of transcriptomic findings. Gene
markers that are known to be uniquely expressed in specific cell-types can be used to
identify the presence of cell-types. Immunohistochemical staining of cell-type markers is
extensively used to reveal the presence and abundance of specific cell-types in brain slices,
such as staining for TH (tyrosine hydroxylase) to reveal the loss of dopaminergic cells in PD
[95]. In neurodegenerative diseases like PD and HD there is remarkable loss of neuronal
cells compared to healthy individuals [96]. Interestingly, cell-types associated with immune
responses (e.g., astrocytes, microglia) are more abundant in the neurodegenerative brain.
Therefore, studies that perform transcriptomic analysis of bulk tissue samples between
patients and controls have to be aware of the different cell populations within samples. Also,
when comparing tissues from different brain regions, an overrepresentation of cell-type
markers may reflect the anatomical organization of brain regions, for example gene
markers for neuronal cells are highly expressed in the synapse-dense cortex. The cell-type
composition has, with no doubt, an influence on the measured gene expression profile, but
normally the true cell-type compositions of bulk tissue samples are unknown. Several
methods have been proposed that use cell-type markers to estimate cell-type composition
and correct differential expression analysis results based on these estimations [97-100].

While there are many genetic risk factors associated with PD, their functional role in the
development of PD remains unclear. Several studies that combined neuroimaging data with
the AHBA focused on the brain-wide expression of genetic risk factors and revealed regional
gene activity that was correlated with imaging features in PD [101,102]. The expression
pattern of genetic risk factors can aid to better understand how genetic mutations lead to
molecular deficits in affected brain regions [103]. While genetic risk factors provide a direct
link to the disease, whole transcriptomic analysis reveals more interesting genes that can
explain the molecular mechanisms underlying neurodegenerative diseases. Previous studies
have shown the various possibilities to analyze neuroimaging data with brain-wide
transcriptomic data, and provide examples of how to use similar computational tools to
unravel molecular mechanisms underlying brain regions and networks that are vulnerable
to PD and HD.

13
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Figure1.6 An overview of computational approaches to combine neuroimaging data with spatial
transcriptomics from the AHBA to study neurodegenerative diseases. Neuroimaging provides
phenotypic information and can be used to create structural or functional networks and find changes
between disease cases and controls. Combining neuroimaging data with spatial transcriptomics
enables the analysis of gene expression in brain regions that are vulnerable in disease. Brain samples
from the AHBA were collected according to a hierarchical ontology. The whole brain is on top of the
hierarchy and splits into more detailed brain structures. Common methods to analyze neuroimaging
with spatial transcriptomics are differential gene expression in regions of interest (MRI mask), gene co-
expression across selected samples, and whole brain analysis of both data modalities using an
integrated approach. For functional interpretation, findings are assessed for the overrepresentation of
known gene sets and/or genetic risk factors associated with the disease.

1.4 CONTRIBUTION OF THESIS

This thesis describes our research on exploring the relationship between the gene
expression profile of different brain regions and age-related neurodegenerative disorders.
We mainly focused our research on PD, but also used similar computational tools to
understand molecular mechanism underlying HD and polyQ genes, as well as
schizophrenia. Our main hypothesis is that certain genes are important to maintain normal
molecular functions in the healthy state, while dysfunctioning of these genes may underlie
the vulnerability to neurodegeneration in specific brain regions. We sought to answer
multiple research questions to detect such genes and consequently improve our
understanding of PD, and other neurodegenerative diseases:

e  Which genes are differentially expressed in brain regions associated with disease?
e Which biological functions or pathways are associated with these genes?

e  How is the spatial expression of genetic risk factors involved in disease?

e Which molecular interactions are associated with specific brain regions?

We used and developed various bioinformatics tools to combine neuroimaging data with
spatial transcriptomic data to reveal genes of interest and its associated functions that may
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be involved in the pathology of neurodegenerative diseases. In each chapter, we exploited
the AHBA to understand gene expression patterns across the healthy brain as a guide to
better understand the molecular mechanisms underlying neurodegenerative diseases. With
this approach, we rely on previous studies that have shown that spatial gene expression
patterns can reveal new insights into the functional organization of the brain, and how
dysfunctional regulation may lead to the development of neurodegenerative diseases.

In Chapter 2, we used spatial transcriptomics to study molecular functions of structural
brain networks that may explain patterns of neurodegeneration in PD. Comparative
analysis between the transcriptomics signatures of multiple SCNs obtained from MRI
revealed the presence of cholinergic genes that may be associated with patterns of atrophy
inPD.

In Chapter 3, we proposed that polyQ genes likely interact because CAG-repeat lengths
within these genes strongly influences the age at onset of HD. We revealed co-expression
between HTT and polyQ genes ATN1 and ATXNz in anatomical structures involved in HD
and a region associated with neurodegeneration in HD based on MRI images of patients.
The co-expression patterns suggest potential interactions between the three polyQ genes in
brain regions that are vulnerable in HD and the shared co-expressed genes among the three
polyQ genes suggests the involvement of DNA repair pathways.

In Chapter 4, we used similar computational tools to investigate the molecular mechanisms
underlying a stress network defined by task-based fMRI in individuals at risk of
schizophrenia. Genes differentially expressed within the network showed associations with
stress-related psychiatric disorders, neuronal cell populations, and neurotransmitter
receptors. Many of the differentially expressed genes have been described to interact with
the HPA-axis, a neuro-endocrine system that controls hormonal stress.

In Chapter 5, we propose that brain-wide gene expression patterns can predict cortical
atrophy in PD brains and possibly the relationship between cortical atrophy and the severity
of clinical symptoms. In this study, we used a multimodal approach to understand the
behavior of groups of genes instead of individual genes and their correlation with patterns
of neurodegeneration. Regional cortical thickness changes in PD were correlated with
pathways associated with the maintenance of cellular health. Without any assumptions on
the involvement of genes and vulnerable brain regions in PD, our findings highlight the
activity of biological pathways across the cortex that are correlated with cellular
maintenance mechanisms that previously have been associated with PD.

In Chapter 6, we used the Braak staging scheme for PD to define a set of brain regions that
are known to be progressively affected during the different clinical stages of PD. The
gradual spreading of Lewy bodies might be explained by the underlying molecular
mechanisms of the involved brain regions. We revealed genes, including SNCA and other
genetic risk factors, for which their healthy expression pattern correlated with the Braak
stages of brain regions. These correlation patterns were not preserved in Braak stage-
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involved regions of PD patients. Additionally, we highlighted two co-expression modules
involved in dopamine biosynthesis and blood-oxygen control whose expression signature
was shown to be correlated with Braak stages. Understanding the transcriptomic
differences between brain regions with different vulnerabilities to PD provided new insights
into the progression of PD.

Each chapter helps to understand the spatial organization of gene transcription activity and
how dysregulation of molecular processes may lead to symptoms apparent in
neurodegenerative diseases. Finally, we discuss the contribution of our work to HD and PD
research and our perspective on future research to improve our understanding of
neurodegenerative diseases.
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