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CHAPTER 1

1.1 MOLECULAR MECHANISMS OF NEURODEGENERATIVE DISEASES

1.1.1 NEURODEGENERATIVE DISEASES

The life expectancy of the global population is expected to keep increasing, especially in the
western world where people live longer due to better health care and improved living
conditions [1]. The downside is that increased age comes with age-related
neurodegenerative diseases [2] that are characterized by the progressive loss of neurons in
the central nervous system, eventually leading to deficits in brain functions affecting
movement and cognition [3]. Parkinson’s disease (PD) is the second most common
neurodegenerative disorder after Alzheimer’s disease (AD) and affects 1% of the population
at the age of 65 years [4]. Recently, it has been reported that PD is the fastest growing
neurological disorder in the world and the number of cases is expected to keep increasing
[5]. PD is characterized by the loss of dopaminergic neurons in the substantia nigra leading
to motor dysfunction e.g., slowness, and rigidity. Currently available treatments help to
control motor symptoms, but cannot slow down disease progression [6]. It is well-
recognized that alterations within the basal ganglia neuronal circuit play a role in the
etiology of PD, but the basal ganglia is also involved in the etiology of Huntington’s disease
(HD) [7,8]. Due to cell loss in the basal ganglia, both neurodegenerative diseases may be
accompanied by neuropsychiatric symptoms including depression and schizophrenia,
which drastically impacts the quality of life [9,10]. Computational tools enable the analysis
of large biological datasets to better understand the molecular and clinical traits of
neurodegenerative diseases. In this thesis, we mainly focused our research on PD, but we
also studied HD and the risk to develop schizophrenia. Our research findings can aid to
provide new insights into the etiology of PD and other neurodegenerative diseases with an
outlook to improved treatment and preferably the early prevention of PD.

1.1.2 AGING VERSUS NEURODEGENERATION

Healthy aging and neurodegenerative diseases are generally associated with a decline in
resistance to cellular stress that may lead to cell death affecting brain function [11]. Initially,
PD patients show similar rates of dopaminergic cell loss as to healthy individuals, but as
time progresses neurodegeneration is accelerated and the first signs of motor symptoms
start to appear (Figure 1.1) [12]. The pre-motor stage is associated with mild motor
symptoms, but non-motor features may also occur early in the course of the disease, e.g.,
symptoms of pain, depression, cognitive dysfunction, dementia, sleep disturbance, and
constipation [13,14]. In the early stage of PD, symptoms are often confused with signs of
aging and may therefore go unnoticed. As the disease progresses and symptoms start to
impair daily activities, PD patients are diagnosed based on clinical assessment scores for
motor and non-motor symptoms [15,16]. Generally, when a patient is first diagnosed, a
substantial proportion of dopaminergic neurons in the substantia nigra has already been
lost, and neurodegeneration has also spread to other regions of the central nervous system
[6]. Findings over the past years have revealed that PD is a complex disease with some
clinical challenges, for example the inability to make a definitive diagnosis at the early
stages of PD and difficulties in managing the symptoms at later stages [17]. In general, the
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pathogenesis of PD is multifactorial and results from a combination of aging, and genetic
and environmental factors [18].
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Figure1.1 Schematic representation of the progression of the level of dopaminergic neurons during
normal aging versus aging in Parkinson’s disease (PD).

1.1.3 NEUROPATHOLOGY AND CAUSE OF PARKINSON’S DISEASE

PD diagnosis is essentially clinical but has to be confirmed upon post-mortem
neuropathological examination by confirming the loss of dopaminergic neurons in the
substantia nigra and the presence of protein inclusions called Lewy bodies (LBs) [19]. The
Braak staging scheme has been proposed to assess the staging of the brain pathology in PD
for neuropathological diagnosis [20]. According to Braak’s theory, LBs first appear in the
brainstem and then spread to selective brain regions during the course of the disease,
manifesting in motor and non-motor symptoms (Figure 1.2). PD comprises a spectrum of
disorders with different subtypes, for which most also share the LB pathology [21]. LBs are
composed mainly of a-synuclein proteins encoded by the gene SNCA that plays a regulatory
role in dopamine homeostasis [22]. There are also PD cases where LBs are not found in the
brain. These patients were usually early-onset (before the age of 40 years), slow progressing,
and neuronal loss was mostly restricted to the substantia nigra [23]. Aside from PD, there
are a number of other atypical parkinsonian syndromes (e.g., dementia with Lewy bodies,
multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration)
that show abnormal protein depositions of a-synuclein or tau together with parkinsonism; a
combination of PD-related symptoms, namely bradykinesia with rigidity, tremor, or
postural instability [24]. Point mutations in the SNCA gene as well as duplication and
triplication variants have been associated with familial PD, but how these genetic variants
results in LB pathology remains unclear [25]. It has been suggested that the spreading of LB
pathology seems to occur across anatomical brain networks and is mostly explained by a-
synuclein expression [26]. Mutations in SNCA are involved in both familial and sporadic PD,
but it is unclear whether SNCA has a causative role or it is just a bystander of disease
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mechanisms [21]. Other genetic mutations in more than 20 genes have been identified in
familial and population studies of PD patients, including rare monogenic causes [27-30],
however only 10% of PD cases is ascribed to monogenic mutations [31]. The heritability of
risk to develop PD is 60% which can be partly explained by pathogenic mutations and the
major risk genes, but the remaining 40% is due to yet unidentified genes [32].

Braak stages 1 and 2 Braak stages 3 and 4 Braak stages 5 and 6

Premotor
symptoms symptoms

@ Brainstem Lewy body

Via vagus @ Cortical Lewy body
nerve

Figure 1.2 Braak staging scheme of Parkinson’s disease. The six Braak stages describe the spread of
Lewy bodies from the brainstem to limbic and cortical regions and are associated with the progression
of clinical symptoms. Image adapted from Doty (2012) [33].

1.1.4 GENETIC CAUSE OF HUNTINGTON'’S DISEASE

HD may serve as a model to study neurodegenerative diseases as it is monogenic,
dominantly inherited, and also a disorder of protein misfolding [34]. The striatum is most
severely affected in HD, but other brain areas also show neuronal loss [35]. Interestingly,
HD and PD are characterized by opposite movement disorders: slowness and rigidity are
symptoms observed in PD, while excessive and uncontrolled movements are typical in HD
[36]. The nigrostriatal circuit, connecting the striatum and substantia nigra, plays a role in
the initiation or termination of voluntary movements and is impaired in disorders like PD
and HD (Figure 1.3) [37]. The cause of HD is a CAG-trinucleotide repeat expansion in the
HTT gene coding for polyglutamine (polyQ) amino acids in the huntingtin protein and leads
to improper folding of mutant huntingtin proteins (Figure 1.4) [38]. The CAG-trinucleotide
normally occurs with up to 35 repeats in tandem, while an increased number of repeats of 40
or more causes HD [39]. Interestingly, the size of the repeat expansion has a strong negative
correlation with the age at onset of the disease [40] and the expanded CAG-repeat length in
other genes also determines the age at onset of a wide spectrum of other neurodegenerative
diseases including multiple spinocerebellar ataxias (SCAs), dentatorubralpallidoluysian
atrophy (DRPLA), and spinobulbar muscular atrophy (SBMA) which are also characterized
by progressive motor and cognitive deficits [41]. Furthermore, it has been shown that the
age of onset in HD is also influenced by the CAG-repeat variations in other genes associated
with polyQ diseases suggesting that there are interactions between polyQ genes [42].
Defects in DNA repair mechanisms are thought to underlie the age at onset of HD and SCAs
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[43]. In addition, movement disorders that appear in PD and HD, including parkinsonism
and chorea, are also frequent in SCAs [44]. This suggests that PD and polyQ diseases share
common disease mechanisms and that genetic factors can influence disease onset.
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Figure1.3 The nigrostriatal pathway is one of the four dopamine pathways and connects the striatum
to the substantia nigra. Image credit: Pharmwiki [45].
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Figure1.4 CAG-trinucleotide repeat expansions in polyglutamine (polyQ) diseases. (A) CAG-repeats
are translated to polyglutamine amino acids, but an expansion in the number of repeats causes the
misfolding of proteins. (B) Age at onset is strongly influenced by the CAG-repeat size in the causative
gene of nine polyQ diseases. Circles depict the mean age at onset for a given expansion size based on
multiple cohorts of patients. Image adapted from Kuiper et al. (2017) [46].

1.2 SPATIAL TRANSCRIPTOMICS TO STUDY NEURODEGENERATIVE DISEASES

1.2.1 TRANSCRIPTOMICS OF PARKINSON’S DISEASE

Although several genetic and environmental factors have been associated with the
development of PD, the underlying pathobiology remains poorly understood.
Transcriptomics can yield new insights into the disease mechanism by measuring genome-
wide expression profiles of samples derived from brain tissue. The whole human genome is
estimated to have ~20,000 protein encoding genes for which the amount of RNA transcripts
per gene can be measured with microarray chips or RNA-sequencing techniques. The goal
of most transcriptomic studies in PD is to find genes that are differentially expressed
between PD patients and age-matched controls and assess whether they are enriched for
genes associated with known biological pathways. The majority of these studies analyzed
samples from the substantia nigra; a structure of the basal ganglia that shows loss of

9
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dopaminergic neurons in PD. Transcriptomic studies of PD have been limited by the small
number of samples (less than 40 PD cases) due to difficulties in sample selection, namely the
limited availability of well-characterized patients, and cases and controls that should be well
matched based on age, ethnicity, and gender [47]. To overcome this limitation, animal
models have been developed to mimic the clinical symptoms of PD, however it remains
unclear to what extent the underlying gene expression patterns reflect those in human PD
or how well these animal models mimic phenotypes observed in PD [48,49]. Gene expression
profiles have also been retrieved from blood samples of patients, however these samples do
not reflect the transcriptomic signatures of the brain [47,50-52]. Furthermore, researchers
have used induced pluripotent stem cells (iPSC) from patients to generate specific neuronal
cell-types, such as dopaminergic cells, but iPSC technology is still challenging and poorly
understood by scientists [53,54]. Another limitation of transcriptomic studies of PD is that
brain samples are derived from patients in the late stage of the disease and therefore they
cannot investigate the early changes that lead to the development of PD [55]. Improving our
understanding of PD in its prodromal phase during midlife is essential to enable early stage
PD diagnosis [14]. Finally, transcriptomic data from PD brains that are currently available
do not cover many brain regions, and there are only few PD studies that analyzed multiple
brain regions from the same donors [56]. Taken together, more extensive brain-wide gene
expression analyses can help to understand the spatial context of gene expression and their
functions that may be dysregulated in neurodegenerative diseases.

1.2.2 TRANSCRIPTOME MAP OF THE HEALTHY BRAIN
Spatial transcriptomics is a method where gene expression is analyzed in a spatial context to

understand how gene transcription activity is organized across a tissue or organ, such as the
brain. Generally, it seems that gene expression varies more between brain regions than
between individuals [57]. The Allen Human Brain Atlas (AHBA) is a high resolution gene
expression atlas covering the whole brain [58]. It was established by collaborative efforts of
multi-disciplinary scientists and made publicly available for neurobiological research.
Almost 4,000 samples were collected from post-mortem brains of six healthy adult donors
without a neurological or neuropsychiatric history (Figure 1.5). To map brain-wide
transcriptomic profiles, brains were carefully dissected while keeping track of anatomical
annotations and spatial coordinates based on magnetic resonance imaging (MRI) scans.
This brain-wide gene expression dataset helps to unravel functions of different brain
structures and their spatial organization. Since its publication the AHBA has been used
extensively to yield new insights into diseases of the central nervous system such as
migraine [59], schizophrenia [60,61], and AD [62—65]. By analyzing the transcriptome of
brain regions that are vulnerable in disease, studies were able to establish the expression
patterns of disease-implicated genes and provide new insights into disease mechanisms. In
studies of neurodegenerative diseases, brain regions of interest were defined based on the
vulnerability to neurodegeneration and/or protein aggregation from imaging studies or
pathological findings. Altogether, the AHBA has offered new opportunities to link molecular
function to brain organization and defects in neurological diseases and can also be of great
value to unravel the molecular mechanisms underlying vulnerable brain regions in PD or
HD.

10
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Neuroanatomical reference
 Detailed structural
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In Situ hybridization datasets
* 3 normative studies
* 2 disease comparisons
* Selected genes in specific
brain regions

Genome expression maps
* In 2D and 3D MRI-based brain representations

Genome-wide expression profiling
* Microarray-based expression profiles
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Figure1.5 Allen Human Brain Atlas. Gene expression map of the healthy human brain. Image credit:
Shen et al. (2012) [66].

1.3 COMPUTATIONAL APPROACHES IN INTEGRATING GENOMICS WITH NEUROIMAGING

1.3.1 PHENOTYPIC INFORMATION FROM NEUROIMAGING

Neuroimaging is a method to study functional neuroanatomy, brain-behavior relationships
and the pathophysiology of brain disorders [67], and thus provides useful phenotypic
features of the brain. It allows detecting differences in imaging features between a group of
patients and controls in vivo to assess, for example, the loss of gray matter in PD brains.
Differences between disease cases and controls are statistically assessed to highlight brain
areas with significant structural or functional changes associated with the disease. The two
main imaging techniques are structural MRI, that measures morphological properties of the
brain (e.g., cortical thickness and volume), and functional MRI (fMRI), that measures blood
oxygen flow to identify functionally connected brain regions based on their activity during
task-based performance or in resting state. In PD imaging studies, the region of interest
often includes anatomical structures of the basal ganglia, nigrostriatal projections, the
cortex and other regions involved in the motor circuit [68,69]. Some MRI studies did not
focus only on specific anatomical structures, but analyzed the entire brain to unbiasedly
identify new brain regions vulnerable to atrophy in PD [70]. Structural covariance is an MRI
method to identify anatomical networks of the brain based on gray matter variation across a
population of individuals [71]. The co-varying regions in structural covariance networks

11
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(SCNs) are thought to arise from functionally connected brain regions. Both functional and
structural networks define a set of connected brain regions that can be compared between
PD and controls to find associations with gray matter loss that is indicative of atrophy
within such networks. Interestingly, several PD imaging studies highlighted relationships
between structural or functional MRI changes in PD and the severity of clinical symptoms
[72-78]. In addition, neuroimaging genetics studies analyzed MRI differences between
groups of patients with different mutations associated with subtypes of PD [79-81] or AD
[82]. It would be interesting to combine spatial transcriptomics with neuroimaging of PD
brains to reveal deeper insights into the molecular mechanisms; however transcriptomic
studies of PD have been limited to few selected brain regions.

1.3.2 NEUROIMAGING AND TRANSCRIPTOMICS TO STUDY NEURODEGENERATIVE DISEASES

Analyzing the transcriptional activity of structural or functional brain networks could reveal
new insights into the molecular organization of the brain. Single photon emission
computed tomography (SPECT) and positron emission tomography (PET) allow whole brain
imaging of molecular changes in patients in vivo, but are limited to the analysis of a single
receptor, transporter, or enzyme [83]. The AHBA provides a whole-genome expression map
of the healthy brain that can be combined with neuroimaging data to correlate
transcriptomic signatures with phenotypic features of the brain. Each sample in the AHBA
is annotated with spatial MNI coordinates that can be used to map the gene expression
samples to brain regions defined by MRI, for example to determine which samples fall
within or outside a region of interest. In recent years, studies have used varying approaches
to combine neuroimaging data with the AHBA, but the processing of gene expression data
has been highly variable [84]. In general, the AHBA is used to examine gene expression
profiles across brain regions or networks that were identified in neuroimaging studies to
find correlations with imaging features, such as network function or gray matter loss. In
studies of neurological disorders, genes may behave differently across disease-related
regions compared to control regions that are considered unaffected. The control region can
be the whole brain, or a region known to not be involved in the disease. The differential
activity of these genes that are correlated with imaging features inform about the cellular
mechanisms that may be involved in disease. Gene co-expression analysis is a powerful
robust method to understand transcriptomic organization [85]. Co-expression of samples
across genes has revealed a network of samples that mimicked a network detected with
fMRI [86]. Alternatively, the correlation between genes across a set of samples measures
whether two genes behave similarly. This information can be used to create a network of
putative gene interactions. Commonly, gene co-expression patterns have been analyzed in
samples from specific tissues across individuals, but can also be examined spatially across
samples from different brain regions. Analyzing spatial gene co-expression patterns in
selected brain regions informs about the spatial organization of molecular pathways and on
how gene interactions are regulated differently in different brain regions. Based on their co-
expression similarity, genes may be clustered into groups referred to as co-expression
modules. Whole brain analysis of both imaging features and gene expression patterns
allows finding correlations between two data modalities [87-89]. Previous studies that
combined neuroimaging data with spatial transcriptomics have shown that there are

12
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multiple ways to analyze gene expression patterns in brain regions defined by imaging
technologies (Figure 1.6). In other words, analyzing the healthy transcriptome of brain
regions associated with neurodegenerative diseases have shown to improve our
understanding of genes and their role in disease pathology.

1.3.3 FUNCTIONAL INTERPRETATION OF FINDINGS

Genes resulting from computational analyses need to be investigated for the presence of
interesting genes for which a functional role has been earlier described. Functional
enrichment analysis assesses whether there is an overrepresentation of groups of genes
associated with specific functions, pathways, diseases, or cell-types. There exists multiple
curated databases with gene annotations that can be used for gene set enrichment analysis
(the Gene Ontology resource [90,91], Reactome pathway database [92], KEGG [93],
DisGENet [94], etc.) to aid in the functional interpretation of transcriptomic findings. Gene
markers that are known to be uniquely expressed in specific cell-types can be used to
identify the presence of cell-types. Immunohistochemical staining of cell-type markers is
extensively used to reveal the presence and abundance of specific cell-types in brain slices,
such as staining for TH (tyrosine hydroxylase) to reveal the loss of dopaminergic cells in PD
[95]. In neurodegenerative diseases like PD and HD there is remarkable loss of neuronal
cells compared to healthy individuals [96]. Interestingly, cell-types associated with immune
responses (e.g., astrocytes, microglia) are more abundant in the neurodegenerative brain.
Therefore, studies that perform transcriptomic analysis of bulk tissue samples between
patients and controls have to be aware of the different cell populations within samples. Also,
when comparing tissues from different brain regions, an overrepresentation of cell-type
markers may reflect the anatomical organization of brain regions, for example gene
markers for neuronal cells are highly expressed in the synapse-dense cortex. The cell-type
composition has, with no doubt, an influence on the measured gene expression profile, but
normally the true cell-type compositions of bulk tissue samples are unknown. Several
methods have been proposed that use cell-type markers to estimate cell-type composition
and correct differential expression analysis results based on these estimations [97-100].

While there are many genetic risk factors associated with PD, their functional role in the
development of PD remains unclear. Several studies that combined neuroimaging data with
the AHBA focused on the brain-wide expression of genetic risk factors and revealed regional
gene activity that was correlated with imaging features in PD [101,102]. The expression
pattern of genetic risk factors can aid to better understand how genetic mutations lead to
molecular deficits in affected brain regions [103]. While genetic risk factors provide a direct
link to the disease, whole transcriptomic analysis reveals more interesting genes that can
explain the molecular mechanisms underlying neurodegenerative diseases. Previous studies
have shown the various possibilities to analyze neuroimaging data with brain-wide
transcriptomic data, and provide examples of how to use similar computational tools to
unravel molecular mechanisms underlying brain regions and networks that are vulnerable
to PD and HD.

13
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Figure1.6 An overview of computational approaches to combine neuroimaging data with spatial
transcriptomics from the AHBA to study neurodegenerative diseases. Neuroimaging provides
phenotypic information and can be used to create structural or functional networks and find changes
between disease cases and controls. Combining neuroimaging data with spatial transcriptomics
enables the analysis of gene expression in brain regions that are vulnerable in disease. Brain samples
from the AHBA were collected according to a hierarchical ontology. The whole brain is on top of the
hierarchy and splits into more detailed brain structures. Common methods to analyze neuroimaging
with spatial transcriptomics are differential gene expression in regions of interest (MRI mask), gene co-
expression across selected samples, and whole brain analysis of both data modalities using an
integrated approach. For functional interpretation, findings are assessed for the overrepresentation of
known gene sets and/or genetic risk factors associated with the disease.

1.4 CONTRIBUTION OF THESIS

This thesis describes our research on exploring the relationship between the gene
expression profile of different brain regions and age-related neurodegenerative disorders.
We mainly focused our research on PD, but also used similar computational tools to
understand molecular mechanism underlying HD and polyQ genes, as well as
schizophrenia. Our main hypothesis is that certain genes are important to maintain normal
molecular functions in the healthy state, while dysfunctioning of these genes may underlie
the vulnerability to neurodegeneration in specific brain regions. We sought to answer
multiple research questions to detect such genes and consequently improve our
understanding of PD, and other neurodegenerative diseases:

e  Which genes are differentially expressed in brain regions associated with disease?
e Which biological functions or pathways are associated with these genes?

e  How is the spatial expression of genetic risk factors involved in disease?

e Which molecular interactions are associated with specific brain regions?

We used and developed various bioinformatics tools to combine neuroimaging data with
spatial transcriptomic data to reveal genes of interest and its associated functions that may

14
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be involved in the pathology of neurodegenerative diseases. In each chapter, we exploited
the AHBA to understand gene expression patterns across the healthy brain as a guide to
better understand the molecular mechanisms underlying neurodegenerative diseases. With
this approach, we rely on previous studies that have shown that spatial gene expression
patterns can reveal new insights into the functional organization of the brain, and how
dysfunctional regulation may lead to the development of neurodegenerative diseases.

In Chapter 2, we used spatial transcriptomics to study molecular functions of structural
brain networks that may explain patterns of neurodegeneration in PD. Comparative
analysis between the transcriptomics signatures of multiple SCNs obtained from MRI
revealed the presence of cholinergic genes that may be associated with patterns of atrophy
inPD.

In Chapter 3, we proposed that polyQ genes likely interact because CAG-repeat lengths
within these genes strongly influences the age at onset of HD. We revealed co-expression
between HTT and polyQ genes ATN1 and ATXNz in anatomical structures involved in HD
and a region associated with neurodegeneration in HD based on MRI images of patients.
The co-expression patterns suggest potential interactions between the three polyQ genes in
brain regions that are vulnerable in HD and the shared co-expressed genes among the three
polyQ genes suggests the involvement of DNA repair pathways.

In Chapter 4, we used similar computational tools to investigate the molecular mechanisms
underlying a stress network defined by task-based fMRI in individuals at risk of
schizophrenia. Genes differentially expressed within the network showed associations with
stress-related psychiatric disorders, neuronal cell populations, and neurotransmitter
receptors. Many of the differentially expressed genes have been described to interact with
the HPA-axis, a neuro-endocrine system that controls hormonal stress.

In Chapter 5, we propose that brain-wide gene expression patterns can predict cortical
atrophy in PD brains and possibly the relationship between cortical atrophy and the severity
of clinical symptoms. In this study, we used a multimodal approach to understand the
behavior of groups of genes instead of individual genes and their correlation with patterns
of neurodegeneration. Regional cortical thickness changes in PD were correlated with
pathways associated with the maintenance of cellular health. Without any assumptions on
the involvement of genes and vulnerable brain regions in PD, our findings highlight the
activity of biological pathways across the cortex that are correlated with cellular
maintenance mechanisms that previously have been associated with PD.

In Chapter 6, we used the Braak staging scheme for PD to define a set of brain regions that
are known to be progressively affected during the different clinical stages of PD. The
gradual spreading of Lewy bodies might be explained by the underlying molecular
mechanisms of the involved brain regions. We revealed genes, including SNCA and other
genetic risk factors, for which their healthy expression pattern correlated with the Braak
stages of brain regions. These correlation patterns were not preserved in Braak stage-
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involved regions of PD patients. Additionally, we highlighted two co-expression modules
involved in dopamine biosynthesis and blood-oxygen control whose expression signature
was shown to be correlated with Braak stages. Understanding the transcriptomic
differences between brain regions with different vulnerabilities to PD provided new insights
into the progression of PD.

Each chapter helps to understand the spatial organization of gene transcription activity and
how dysregulation of molecular processes may lead to symptoms apparent in
neurodegenerative diseases. Finally, we discuss the contribution of our work to HD and PD
research and our perspective on future research to improve our understanding of
neurodegenerative diseases.
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CHAPTER 2

ABSTRACT

Structural covariance networks are able to identify functionally organized brain regions by
gray matter volume covariance across a population. We examined the transcriptomic
signatures of such anatomical networks in the healthy brain using post-mortem microarray
data from the Allen Human Brain Atlas. A previous study revealed that a posterior cingulate
network and anterior cingulate network showed decreased gray matter in brains of
Parkinson’s disease patients. Therefore, we examined these two anatomical networks to
understand the underlying molecular processes that may be involved in Parkinson’s disease.
Whole brain transcriptomics from the healthy brain revealed upregulation of genes
associated with serotonin, GPCR, GABA, glutamate, and RAS signaling pathways. Our
results also suggest involvement of the cholinergic circuit, in which genes NPPA, SOSTDC1,
and TYRP1 may play a functional role. Finally, both networks were enriched for genes
associated with neuropsychiatric disorders that overlap with Parkinson’s disease symptoms.
The identified genes and pathways contribute to healthy functions of the posterior and
anterior cingulate networks and disruptions to these functions may in turn contribute to the
pathological and clinical events observed in Parkinson’s disease.
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TRANSCRIPTOMICS OF GRAY MATTER LOSS IN PARKINSON’S DISEASE

2.1 INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the impairment
of diverse motor and non-motor symptoms that get progressively worse over time [1]. The
decline in clinical performance has been associated with changes in morphological
properties of structural and functional neuroimaging networks [2—4]. In turn, studies have
investigated the relationship between imaging networks and genetic risk factors associated
with PD to provide new insights into the pathogenesis of PD [5-8]. However, less is known
about the functions that underlie the spatial organization of brain regions contributing to
PD. To identify the molecular mechanisms underlying changes in structural and functional
networks in PD, imaging data has been integrated with brain-wide healthy gene expression
from the Allen Human Brain Atlas (AHBA) [9,10]. Regional brain atrophy in PD patients was
correlated with the expression of genes implicated in trans-synaptic alpha-synuclein
transfer [11] and a loss of regional connectivity in PD patients was correlated with the
regional expression of MAPT in the healthy brain [12]. These studies showed that combining
imaging data in PD and gene expression from the healthy brain can shed light on the
molecular mechanisms underlying the morphological differences between PD and controls.

Structural covariance networks (SCNs) identify brain regions that co-vary in gray matter
volume across a population and can reveal functional network organizations [13]. SCNs have
been shown to be dysregulated in different neurological disorders [14-18], and gray matter
variations in SCNs can be explained by transcriptomic similarity and structural connectivity
[19,20]. Hafkemeijer et al. [21] identified nine SCNs based on gray matter variation among
healthy middle-aged to older adults. Gray matter volume in four of these nine networks was
negatively associated with age: a subcortical network, sensorimotor network, posterior
cingulate networks, and anterior cingulate network. Two of these networks were found to
show loss of gray matter volume in PD patients beyond the effects of aging: the posterior
cingulate network and anterior cingulate network [2]. Atrophy within these two networks
was also associated with cognitive impairment and daytime sleepiness, respectively.
Together these studies revealed how brain networks change in aging and PD, but the
molecular mechanisms contributing to the relevant SCNs remain unclear.

Here, we investigated the transcriptomic signatures of the anterior and posterior cingulate
networks within the healthy brain. By integrating the nine SCNs with spatial gene
expression data from the Allen Human Brain Atlas, we showed that genes highly expressed
in the posterior and anterior cingulate networks were associated with multiple
neurotransmitter signaling pathways as well as with memory-related, pain-related, and
neuropsychiatric disorders. In addition, both networks showed high expression of
cholinergic marker genes that are known to act as regulators of extracellular signaling. Our
results provide new insights into the molecular processes underlying anatomical network
function and aids in better understanding the selective progression of PD.
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2.2 MATERIALS AND METHODS

2.2.1 TRANSCRIPTOMIC DATA PREPROCESSING

To understand transcriptomic signatures of nine anatomical networks of the healthy brain,
we analyzed gene expression data from the AHBA, a post-mortem microarray data set of
3,702 anatomical brain regions from six non-neurological individuals (5 males and 1 female,
mean age 42, range 24-57 years) [10]. Normalized gene expression from the AHBA was
downloaded from http://human.brain-map.org/. To filter and map probes to genes, the
data was concatenated across the six donors. We removed 10,521 probes with missing
Entrez IDs, and 6,068 probes with low presence as they were expressed above background
in <1% of samples (PA-call containing presence/absence flag) [10]. The remaining 44,072
probes were mapped to 20,017 genes with unique Entrez IDs using the collapseRows-function
in R-package WGCNA v1.64.1 [22] as follows: (i) if there is one probe, that one probe is
chosen, (ii) if there are two probes, the one with maximum variance across all samples is
chosen (method="maxRowVariance”), (iii) if there are more than two probes, the probe with
the highest connectivity (summed adjacency) is chosen (connectivityBasedCollapsing =
TRUE).

For visualization of gene expression in heatmaps, data was Z-score normalized across all
samples for each brain donor separately. Heatmaps were plotted using R-package
ComplexHeatmap v2.0.0 [23]. Genes were clustered using complete linkage with Euclidean
distances. The same color scale for gene expression was used for all heatmaps.

2.2.2 MAPPING AHBA sAMPLES TO SCNS OF THE HEALTHY BRAIN

We focused on anatomical networks that were previously defined based on whole brain gray
matter volume covariation in 370 middle-aged to older adults between 45 and 85 years; for
more detailed information on the networks see Hafkemeijer et al. 2014. Nine networks were
defined and named according to the presence of the main structures: thalamus (network A),
lateral occipital cortex (Network B), posterior cingulate cortex (Network C), anterior
cingulate cortex (network D), temporal pole (network E), putamen (network F), and
cerebellum (networks G, H, and I). The same networks were previously investigated for loss
of integrity in 159 PD patients from the same age range; for demographic and clinical
information see de Schipper et al. 2017. All samples from each one of the six donors in AHBA
were mapped to regions defined by the nine SCNs in MNI coordinate space.

2.2.3 DIFFERENTIAL EXPRESSION ANALYSIS
For differential expression analysis we focused on the posterior cingulate network (Network

C) and anterior cingulate network (Network D) that were previously associated with gray
matter loss in PD [2]. Gene expression in each of the two networks C and D was compared to
the other 7 networks together (A, B, E, F, G, H, and I). A two-tailed t-test was used for each
gene and the analysis was done separately for each donor from AHBA. Since the microarray
data was log,-transformed, the mean expression difference is interpreted as the log.-
transformed fold-change (FC). The effect sizes for each one of the six donors were combined
by meta-analysis (metafor R-package 2.0). For the meta-analysis, a random effects model
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was applied which assumes that each brain is considered to be from a larger population of
brains and therefore takes the within-brain and between-brain variance into account. The
between-brain variance (tau?) was estimated with the Dersimonian-Delaird model.
Variances and confidence intervals were obtained using the escalc-function. The
significance of summary effect sizes was assessed through a two-sided t-test (Ho: FC=0;
unequal variances). P-values of the effect sizes were Benjamini-Hochberg (BH) corrected for
all 20,017 genes. Genes were differentially expressed within the posterior cingulate network
or the anterior cingulate network compared to the other networks combined when the
absolute fold-change (FC) > 1 and the BH-corrected P-value < 0.05.

2.2.4 PATHWAY ANALYSIS

Pathway analysis was done with the ReactomePA R-package version 1.28 using the function
enrichPathway searching for human pathways. All 20,017 genes in the AHBA dataset were set
as background genes. Pathways with a minimum size of 10 genes were significant when the
BH-corrected P < 0.05.

2.2.5 CELL-TYPE MARKER ENRICHMENT

Gene markers for 28 cell-types were downloaded from the NeuroExpresso database
(http://neuroexpresso.org/) using markers from all brain regions. These have been
identified in a cross-laboratory dataset of cell-type specific transcriptomes from the mouse
brain [24]. To assess their expression, Entrez IDs of the mouse cell-type specific markers
were converted to human homologs (homologene R-package version 1.4) and filtered for
genes present in the AHBA dataset (Supplementary Table 1). Two markers with different
mouse gene IDs (14972, H2-K1, microglial, and 15006, H2-Q1 serotonergic), were converted
to the same human gene ID (3105, HLA-A), and therefore removed before analysis. For cell-
type enrichment, we assessed which cell-type markers were overrepresented among the
differentially expressed genes. For 17 cell-types that had at least six markers (astrocyte,
Bergmann, cerebellar granule, dentate granule, ependymal, GabaReln, hypocretinergic,
microglia, activated microglia, deactivated microglia, noradrenergic, oligo, purkinje,
serotonergic, spinal cord cholinergic, spiny, and thalamus cholinergic), we assessed the
significance with the hypergeometric test and P-values were corrected for all 17 cell-types
(BH-corrected P < 0.05).

2.2.6 ENRICHMENT OF DISEASE-ASSOCIATED GENES

Differentially expressed genes were also assessed for the overrepresentation of disease-
associated genes from DisGeNET [25]. A table of 628,685 gene-disease associations were
obtained from DisGeNET version 6.0 (July, 2019) from http://www.disgenet.org/. A
hypergeometric test was used to assess the significance of overlapping genes (P < 0.05), and
P-values were BH-corrected for 24,166 diseases. The odds ratio (OR) for cell-type and
disease enrichment was calculated using the DescTools R-package.

2.2.7 CODE AVAILABILITY
Scripts to run all analyses can be found online at https://github.com/arlinkeo/pd_scn.
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2.3 RESULTS

2.3.1 TRANSCRIPTOMICS OF THE POSTERIOR AND ANTERIOR CINGULATE NETWORKS
We analyzed the transcriptomes of healthy subjects across nine anatomical networks

defined by structural covariance of gray matter volume among healthy middle-aged to older
adults [21]. For this we used the AHBA microarray dataset of spatial gene expression in post-
mortem brains of six non-neurological donors and samples were mapped to each one of the
nine networks A-I (Table 2.1) based on their spatial location. We focused on the posterior
cingulate network (Network C) and the anterior cingulate network (Network D) that showed
loss of gray matter in PD patients (Figure 2.1) [2] and characterized their transcriptional
signatures by comparing them to the remaining seven networks together.

Table 2.1 Number of samples from the AHBA that fall within networks A-1.

Donors Network
A B C D E F G H I

Donor 9861 72 67 157 47 74 90 26 39 83
Donor 10021 79 46 121 65 49 84 25 55 91
Donor 12876 37 24 57 28 42 45 6 17 25
Donor 14380 38 33 52 30 45 61 7 27 53
Donor 15496 34 24 41 21 39 55 13 24 69
Donor 15697 49 20 38 33 47 64 29 37 49
Total 309 214 466 224 296 399 106 199 370

A: Thalamus; B: Lateral occipital cortex, C: Posterior cingulate cortex, D: Anterior cingulate
cortex, E: Temporal pole; F: Putamen; G, H, I: Cerebellum.

Structural covariance
networks & o

Differential gene expression
Network C Network D Upregulated genes

Gene expression
within networks =
»d%@j Pathway enrichment

Whole-genome

D) cell- i
ﬁ%’;} Cell-type enrichment

Network A, B, E, F, G, H, and I

-
\33’(? Disease enrichment

A A A AA A

Figure 2.1 Study overview. Transcriptomic data from AHBA were mapped to nine anatomical networks
that have been defined based on healthy subjects. The posterior cingulate network (Network C) and
anterior cingulate network (Network D) have been associated with gray matter loss in PD, while the
seven remaining networks were not related to PD. We compared gene expression in network C and D to
gene expression in networks A, B, E, F, G, H, and I together. Upregulated genes were assessed for the
overrepresentation of pathway-specific genes, cell-type marker genes, and disease-associated genes.
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Whole genome differential expression analysis showed a large overlap of genes that were
differentially expressed in the same direction in the two networks. We found that 73 genes
in the posterior cingulate network and 39 genes in anterior cingulate network were
downregulated, of which 25 genes overlapped between both networks (Figure 2.2AB,
Supplementary Table 2 and 3). Furthermore, 200 genes in the posterior cingulate network
and 269 genes in anterior cingulate network were upregulated, for which 144 genes
overlapped (Supplementary Table 4 and 5). Among the differentially expressed genes in the
posterior and anterior cingulate networks, no PD-implicated genes were found that arouse
from familial and genome-wide association studies [26—28].

For functional interpretation of the differentially upregulated genes we further assessed
their associated pathways (see Methods, Supplementary Table 6). As both networks C and D
shared many differentially expressed genes, they also shared similar pathways:
transcriptional regulation by MECP2, GPCR signaling, voltage gated potassium channels,
and neurotransmitter receptor and postsynaptic signal transmission (Figure 2.2C). These
pathways are also hierarchically related to each other based on the ontology of the Reactome
Pathway Database. The posterior cingulate network was additionally related to more
specific pathways such as lysosphingolipid and LPA receptors, GABA receptor activation,
RAS-signaling mediated by NMDA receptors, glutamate binding, activation of AMPA
receptors and synaptic plasticity, and long-term potentiation. The anterior cingulate cortex
was additionally associated with serotonin receptors.

2.3.2 CELL-TYPE ENRICHMENT IN ANATOMICAL NETWORKS

The composition of specific cell-types can shape the transcriptomic features of anatomical
networks. Therefore, we analyzed whether genes differentially expressed in the posterior
and anterior cingulate networks were enriched for cell-type specific marker genes from the
NeuroExpresso database [24]. To assess the expression of each cell-type, we averaged the
expression of the marker genes associated with that cell-type. Both the posterior and
anterior cingulate networks showed high expression of marker genes for brainstem
cholinergic cells, GabaSSTReln, GabaVIPReln, glutamatergic, and pyramidal cells (Figure
2.3 and Supplementary Figure 1).

Among the differentially upregulated genes in the posterior and anterior cingulate
networks, we found 10 marker genes representing six cell-types: astrocyte, Bergmann,
GabaVIPReln, hypocretinergic, pyramidal, and thalamus cholinergic (Table 2.2). Markers
that were significantly upregulated in the posterior cingulate network were also
significantly upregulated in the anterior cingulate network. In both networks, the 10
markers were highly expressed in cortical regions, including the cingulate gyrus, and lowly
expressed in limbic regions (Figure 2.4 and Supplementary Figure 2).

Only genes upregulated in the anterior cingulate gyrus were significantly enriched for a cell-
type, namely thalamus cholinergic cells (OR = 17.12 and P = 2.01e-02). The responsible
markers NPPA, SOSTDC1, and TYRP1 showed high expression within the anterior cingulate
gyrus network, as well as in most parts of the posterior cingulate gyrus network (Figure 2.4).
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Figure 2.2 Differential expressed genes and associated pathways. Genes were analyzed for differential
expression in (A) the posterior cingulate network (Network C) and (B) the anterior cingulate network
(Network D). Effect sizes were summarized across the six healthy donors of AHBA with meta-analysis.
For all genes (points) the log, fold-change (FC; x-axis) and -logi of nominal P-values (y-axis) are shown.
Significant differentially expressed genes (t-test, BH-corrected P < 0.05, and |FC| > 1) are unique for
each network (blue and purple points) or significant in both networks (yellow points). The top 10 genes
with the highest absolute FC are labeled for each network and highly overlap between both networks.
(C) Pathway analysis of differentially upregulated genes in the posterior cingulate network and anterior
cingulate network. Network C and Network D shared similar pathways (yellow) that are hierarchically
organized in the Reactome database. The posterior cingulate network showed more specific
associations with pathways involved in neurotransmitter receptors and postsynaptic signal
transmission (blue). The anterior cingulate network was more specifically associated with serotonin
receptors (purple). See Supplementary Table 6 for gene counts and BH-corrected P-values.

Transcriptional Regulation by MECP2
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Interestingly, while other thalamus cholinergic marker genes showed high expression in
limbic samples and low expression in cortical samples within both networks, NPPA,
SOSTDC1, and TYRP1 showed opposite expression patterns with low expression in limbic
samples, including the thalamus, and high expression in cortical samples (Supplementary
Figure 3).

Table 2.2 Differentially expressed cell-type marker genes in the posterior cingulate network (Network
C) and anterior cingulate network (Network D). Fold-change (FC) and Benjamini-Hochberg (BH)
corrected P-value are shown for cell-type marker genes that were differentially expressed in the two
networks compared to the remaining networks. FC >1and BH < 0.05 are highlighted in red text.

Gene Cell-type Network C Network D
FC BH Estimate BH

LHX2 Astrocyte 2.21 3.92E-03 2.00 6.46E-03
IGFBP2 Astrocyte 0.69 5.80E-02 1.18 1.78E-02
RORB Astrocyte 0.82 3.09E-02 1.19 1.39E-02
WIF1 Bergmann 1.02 8.74E-03 1.03 7.95E-03
VIP GabaVIPReln 1.67 4.23E-03 1.85 6.89E-03
PCSK1 Hypocretinergic 1.15 1.25E-02 1.57 1.06E-02
NEURODé6 Pyramidal 1.90 4.78E-03 1.92 6.76E-03
NPPA ThalamusCholin 1.64 6.98E-03 2.09 6.39E-03
TYRP1 ThalamusCholin 0.81 2.41E-02 1.43 9.82E-03
SOSTDC1 ThalamusCholin 0.83 1.21E-02 1.14 6.39E-03

Fold-change (FC) and Benjamini-Hochberg (BH) corrected P-value for cell-type markers genes
that were differentially expressed in network C and D compared to the remaining networks. FC
>1and BH < 0.05 are highlighted in red.
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Figure 2.3 Expression of cell-types in anatomical networks. Gene expression was Z-scored and
averaged across cell-type specific markers, across samples within anatomical networks, and across the
six donors in the AHBA. Networks G, H, and I are cerebellar networks and thus showed distinct
expression patterns. The posterior and anterior cingulate networks (Network C and Network D) showed
high expression of marker genes for brainstem cholinergic cells, GabaSSTReln, GabaVIPReln,
glutamatergic cells, and pyramidal cells. Gene expression heatmaps for each donor are shown in
Supplementary Figure 1.
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2.3.3 CINGULATE NETWORKS ARE ENRICHED FOR GENES ASSOCIATED WITH COGNITIVE DISORDERS
Dysregulation of functional networks may result in a broader spectrum of disorders than
PD. Therefore, we assessed which disease-associated genes from DisGeNET were
overrepresented among the differentially upregulated genes in the posterior cingulate
network as well as the anterior cingulate network. Since both networks shared many
upregulated genes, similar disease-associations were also found. We found that genes
upregulated in both networks were significantly associated with epileptic and non-epileptic
seizures, many mental disorders (bipolar, panic, autistic, cocaine-related, (age-related)
memory, mood, major depressive, and anxiety disorder), pain and schizophrenia (Figure
2.5). The posterior cingulate network was more related to memory and pain-related
disorders, while the anterior cingulate network was more related to mental and
neuropsychiatric disorders.

2.4 DiscussION

The posterior and anterior cingulate networks have been previously associated with
decreased gray matter in PD patients. We examined transcriptomic signatures of both
networks in the healthy brain to identify molecular mechanisms underlying these two
regions. Pathway analysis revealed genes related to gPCR signaling, transcriptional
regulation by MECP2, and neurotransmitter receptors and postsynaptic signal
transmission. We only found significant enrichment of cell-types for genes upregulated in
the anterior cingulate gyrus, which were the thalamus cholinergic marker genes. Upon
further examination the specific genes were also highly expressed in the posterior cingulate
cortex, although not significantly. Moreover, our results showed that both SCNs are
associated with multiple neurotransmitter signaling pathways, e.g., serotonin, GPCR,
GABA, glutamate, and RAS.

2.4.1 CHOLINERGIC FUNCTION IN PD

Genes that were highly expressed in the anterior cingulate network were significantly
enriched for thalamus cholinergic markers, specifically: NPPA, SOSTDC1, and TYRP1. These
marker genes, together with other markers of this cell-type, were previously defined based
on their expression in cholinergic cells from the mouse thalamus, more specifically the
habenula [24]. According to the AHBA ontology the habenula is not part of the thalamus. In
this study, most thalamus cholinergic marker genes indeed showed high expression in
human thalamic regions. However, NPPA, SOSTDC1, and TYRP1 unexpectedly showed
opposite expression patterns with mainly high expression in cortical regions and low
expression in limbic regions, including the thalamus. Cholinergic circuits are key in
cognitive functions and cholinergic denervation of the cortex and thalamus in PD patients
may contribute to the transition from PD to PD with dementia [29]. We found that
glutamatergic and GABAergic marker genes were also highly expressed within the posterior
and anterior cingulate networks, although statistical significance could not be assessed due
to the small number of marker genes for these cell-types. Interestingly, acetylcholine release
by cholinergic neurons affects glutamatergic and GABAergic signaling by altering the
synaptic excitability [30,31]. Moreover, it is thought that dysfunction of cholinergic circuits
contributes to cognitive decline associated with neurodegenerative diseases [29].
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Figure 2.4 Expression of differentially upregulated cell-type marker genes in the posterior cingulate
network (Network C) and anterior cingulate network (Network D). Heatmaps of differentially
expressed marker genes (rows) are shown for one of the six donors in the Allen Human Brain Atlas
(donor 10021). Samples from different anatomical substructures within the networks are color
annotated (columns). Expression was averaged across samples from an anatomical substructure with
the same acronym ignoring left and right hemisphere annotations. See Supplementary Figure 2 for

heatmaps for all six donors from the AHBA and Supplementary Table 7 for full names of the region-
specific acronyms.
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Figure 2.5 Disease associations of the posterior cingulate network (Network C) and anterior cingulate
network (Network D). Differentially upregulated genes in each network were assessed for the
enrichment of disease-associated genes from DisGeNET (hypergeometric test, BH-corrected P < 0.05).
Top plot shows odds ratios (ORs) for the number of overlapping genes, and bottom plot shows the

significance of overlap indicated with —logic P-values (y-axis). Disorders (columns) are sorted based on
highest ORs in either one of the networks.
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2.4.2 NPPA, SOSTDC1, AND TYRP1

Cholinergic marker genes NPPA, SOSTDC1, TYRP1 were highly expressed in the posterior
cingulate network and anterior cingulate network of the healthy brain compared to the
other seven SCNs. While the functions of these genes likely involve cholinergic signaling,
several studies suggest they also function as extracellular regulators of multiple other
signaling pathways, including cAMP, Wnt, and -catenin signaling [32—37].

NPPA (natriuretic peptide precursor A) and other natriuretic peptides are thought to be
involved in a wide range of functions, including neurovascular functions, blood-brain
barrier, brain homeostasis, neuroprotection, and synaptic transmission by regulating the
release and re-uptake of neurotransmitters such as noradrenalin, dopamine and glycine
[38]. Impaired function of natriuretic peptides in brains of AD patients could accelerate
neurodegeneration and may impair structural integrity of the brain leading to a higher risk
of cognitive decline [39]. Our results suggest that NPPA might similarly be involved in PD
pathogenesis given its high expression within the anterior and posterior cingulate
networks.

SOSTDC1 (sclerostin domain-containing 1) is known as a negative regulator of bone
morphogenetic protein (BMP) and Wnt-signaling, but recent studies also show that
SOSTDC1 regulates natural killer cell maturation and cytotoxicity [35]. An increased number
of natural killer cells have been found in PD, but the actual relevance with PD risk is still
unclear [40]. The BMP signaling pathway promotes the development of midbrain
dopaminergic neurons [41], in which SOSTDC1 may play a role. Furthermore, SOSTDC1 was
upregulated in the striatum of Parkinsonian rats that were treated by subthalamic nucleus
high frequency stimulation, and is therefore suggested to have neuroprotective effects [42].

TYRP1 (tyrosinase-related protein 1) produces melanocytes-specific proteins involved in the
biosynthesis of melanin in brain, skin and eyes [43,44]. Melanoma and PD share genes
involved in the synthesis of melanin and dopamine, including SNCA which encodes the a-
synuclein protein found in Lewy bodies [45]. Furthermore, neuromelanin is produced
almost exclusively in human catecholaminergic neurons and is responsible for the
pigmentation of dopaminergic neurons of the substantia nigra, and noradrenergic neurons
of the locus cereleus [46]. It is considered to be protective due to its ability to chelate metals,
especially iron which increases with age [46].

2.4.3 DISEASE-ASSOCIATIONS

The posterior and anterior cingulate networks shared similar highly expressed genes and
were likewise associated with similar diseases. Both SCNs represent anatomical networks
that function normally in healthy brains, but their activity is reduced in aging and PD [2,21].
As part of the default mode network, both the posterior and anterior cingulate cortex have
been shown to be dysregulated in neuropsychiatric disorders [47,48]. Based on our analysis
of transcriptomic signatures in the healthy brain, we found that the posterior cingulate
network showed stronger associations with memory and pain-related disorders compared
to the anterior cingulate networks which showed stronger associations with mental and
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neuropsychiatric disorders. Our findings suggest that genes involved in multiple signaling
pathways, such as serotonin, GPCR, GABA, glutamate, and RAS, contribute to healthy
functions of the posterior and anterior cingulate networks.
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ABSTRACT

Cytosine-adenine-guanine (CAG) repeat expansions in the coding regions of nine
polyglutamine (polyQ) genes (HTT, ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, ATN1, AR,
and TBP) are the cause of several neurodegenerative diseases including Huntington's
disease (HD), six different spinocerebellar ataxias (SCAs), dentatorubral-pallidoluysian
atrophy, and spinobulbar muscular atrophy. The expanded CAG repeat length in the
causative gene is negatively related to the age-at-onset (AAO) of clinical symptoms. In
addition to the expanded CAG repeat length in the causative gene, the normal CAG repeats
in the other polyQ genes can affect the AAO, suggesting functional interactions between the
polyQ genes. However, there is no detailed assessment of the relationships among polyQ
genes in pathologically relevant brain regions.

We used gene co-expression analysis to study the functional relationships among polyQ
genes in different brain regions using the Allen Human Brain Atlas (AHBA), a spatial map of
gene expression in the healthy brain. We constructed co-expression networks for seven
anatomical brain structures, as well as a region showing a specific pattern of atrophy in HD
patients detected by magnetic resonance imaging (MRI) of the brain. In this HD-associated
region, we found that ATN1 and ATXN2 were co-expressed and shared co-expression
partners which were enriched for DNA repair genes. We observed a similar co-expression
pattern in the frontal lobe, parietal lobe, and striatum in which this relation was most
pronounced. Given that the co-expression patterns for these anatomical structures were
similar to those for the HD-associated region, our results suggest that their disruption is
likely involved in HD pathology. Moreover, ATN1 and ATXNz also shared many co-expressed
genes with HTT, the causative gene of HD, across the brain. Although this triangular
relationship among these three polyQ genes may also be dysregulated in other polyQ
diseases, stronger co-expression patterns between ATN1 and ATXN2 observed in the HD-
associated region, especially in the striatum, may be more specific to HD.
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3.1 INTRODUCTION

Polyglutamine (polyQ) diseases are a family of nine neurodegenerative disorders caused by a
cytosine-adenine-guanine (CAG) trinucleotide repeat expansion in the coding region of one
of the polyQ disease-associated genes. PolyQ diseases include Huntington's disease (HD),
six spinocerebellar ataxias (SCAs), dentatorubral-pallidoluysian atrophy (DRPLA), and
spinobulbar muscular atrophy (SBMA), each with its own causative gene: HTT, ATXNI,
ATXN2, ATXN3, CACNA1A, ATXN7, TBP, ATN1, and AR, respectively [1]. With the exception
of SBMA, all polyQ diseases are inherited in an autosomal dominant manner [1]. The CAG
repeat region is translated into a stretch of glutamine amino acids, also referred to as the
polyQ tract [2,3]. In HD patients, the polyQ expansion in the huntingtin protein causes
neurodegeneration that affects the striatum most severely and results in cognitive,
psychiatric as well as motor disturbances and gait abnormalities [4,5]. It is thought that the
expansion of the polyQ tract causes the protein to misfold and aggregate, and therefore
loses its normal function. Hence, these mutant proteins also become toxic components as
they trigger the misfolding of other proteins [6].

In HD and SCAs, longer CAG repeat lengths in the causative polyQ genes are associated with
an earlier age-at-onset (AAO) [7,8]. In HD, up to 75% of the variability in AAO can be
explained by the HTT CAG repeat length [7], while in SCA1, SCA2, SCA3, SCA6, and SCA7,
the CAG repeat in the causative gene explains between 32 and 80% of the AAO variability [8].
There is also evidence suggesting that, in addition to the expanded CAG repeat length in the
causative gene, the normal CAG repeat lengths in other non-causative polyQ genes affect
the AAO in HD and SCAs [7-12]. For example, clinical observations show that the AAO in
HD is not only affected by the expanded CAG repeat length in HTT, but also by the normal
CAG repeat length in ATN1 and ATXN1 negatively affecting the AAO [7]. The observation that
the number of CAG repeats in multiple polyQ genes can affect the AAO in HD or SCAs
suggests that polyQ gene products are functionally interacting.

In addition to the suggested genetic associations based on shared effects on AAO, similar
mechanisms likely contribute to polyQ disease pathogenesis. These mechanisms include
misfolding of the disease protein, deleterious protein interactions, transcriptional
dysregulation, mitochondrial dysfunction, aberrant neuronal signaling, cellular protein
homeostasis impairment, and RNA toxicity [1]. Despite the similarities, these mechanisms
seem to affect specific brain regions depending on the particular polyQ disease. To get a
better understanding of how the CAG expansion in HTT affects the brain, multiple studies
used genome-wide expression analysis of post-mortem samples collected from different
brain regions. By comparing the brain region-specific expression profiles of HD patients
and healthy controls, the highest number of differentially expressed genes was found in the
caudate nucleus and to a lesser extent in the cerebellum [13]. This demonstrates that
differential gene expression in the HD brain has a regional pattern corresponding to the
known pattern of neuropathology. A more recent study used longitudinal RNA-sequencing
expression data of HD knock-in mice with increasing CAG repeat lengths, and using
weighted gene co-expression network analysis (WGCNA), they studied length-dependence
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of molecular networks in HD-relevant brain regions [14]. They found one striatal module
which showed strong patterns of downregulation that were both CAG length- and age-
dependent.

In addition to patient postmortem samples and mouse models, characterizing expression
patterns of wild-type genes in the healthy brain can provide useful insights into the
molecular and pathological changes regarding polyQ diseases. Using gene expression data
from ten different brain tissues and 101 healthy individuals from the UK Brain Expression
Consortium [15], Bettencourt et al. analyzed the co-expression relationships of SCA genes in
the healthy brain using WGCNA [16]. Two cerebellar modules were enriched in SCA
transcripts of which one module seemed preserved across all brain regions and the other
module seemed unique to the cerebellum. The study suggests that genes co-expressed with
SCA genes across all brain regions give rise to more complex phenotypes (other ataxia
syndromes and neurodegenerative disorders), while cerebellum-specific co-expressing
genes results in pure ataxia phenotypes. While previous studies have focused on region-
specific gene expression differences between patients and healthy controls [13,17], and co-
expression relationships between SCA genes in the healthy brain [16], there is no detailed
assessment of the relationships among polyQ genes in pathologically relevant regions of the
brain.

We aim to find common mechanisms through which the nine polyQ genes could interact
with each other in order to understand how these interactions could affect neuropathology
in polyQ disorders. Our approach consisted of interrogating healthy brain gene expression
data from the Allen Human Brain Atlas (AHBA) [18] as its high spatial resolution allows
localizing interactions to specific brain regions. PolyQ genes with similar expression
patterns in a specific brain area suggest their co-involvement in functions specific to that
brain area. Using the AHBA to relate biological functions to disease and pinpoint pathways
to specific regions of the brain has been reported previously, for example through
evaluation of normal activity in the brain of genes associated to migraine [19], and autism
[20-22]. Here, we follow a similar approach to detect functional relationships between the
nine polyQ genes. We focus on a brain region consisting of several brain areas which were
recently shown to be most severely affected in HD through an MRI-guided unbiased
approach [23]. In addition, the analysis was repeated for seven anatomical brain structures
to assess whether the relationships between polyQ genes within the HD-associated region
are reflected in other anatomical brain structures (Figure 3.1). We analyzed gene co-
expression networks within the different brain regions to identify region-specific relations
among polyQ genes and their underlying functional mechanisms.
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Figure 3.1 Overview of the approach. (A) Flowchart of the general approach in this study using co-
expression analysis. (B) Number of samples in all six donors. The left chart shows the number of
samples in the HD-associated region and the rest of the brain. The right chart shows the number of
samples in seven anatomical brain structures and the rest of the brain. There are 3,702 samples in total.
(C) Mapping AHBA samples to the HD-associated region. AHBA samples were spatially mapped to the
HD-associated region (brown) which was based on an MRI study that looked at gray matter changes
between HD patients and controls [23]. In this MRI image, we discarded all the samples that did not
belong to one of the predefined regions. The colored points correspond to samples collected from
anatomical structures that fall either inside or outside the HD-associated region. (D-F) Co-expression
networks for the HD-associated region and each anatomical structure were constructed by retaining
links between strongly correlated gene pairs (Pearson’s r > 0.5). PolyQ genes are colored and have a
larger node size. The relationships between polyQ genes were analyzed based on three methods: (D)
Direct co-expression between polyQ genes. (E) Subnetworks of genes co-expressed with polyQ genes.
Nodes are colored according to the co-expressed polyQ gene. (F) Functional enrichment of the set of
genes co-expressed with each of the polyQ genes (colored charts). Functional links between polyQ genes
were assessed based on the overlap of enriched functional terms. (G) PolyQ gene relationships in the
HD-associated region were then compared to those in networks constructed for different anatomical
structures.

43



CHAPTER 3

3.2 MATERIAL AND METHODS

3.2.1 SPATIAL GENE EXPRESSION IN THE HEALTHY HUMAN BRAIN
We used the publicly available gene expression data set from AHBA [18] to exploit

possibilities to study neurodegenerative diseases in the healthy brain. The spatially high-
resolution data set contains genome-wide microarray expression of 3,702 samples collected
from 6 healthy adult donors (5 males and 1 female, mean age 42, range 24-57 years). For each
brain, 363-946 samples are available. In two out of the six brains, samples were collected
from both hemispheres, while in the remaining four brains, samples were collected from
the left hemisphere only.

The expression of several genes in the AHBA was assessed using multiple probes. We
selected one probe per gene as follows: (1) if there was one probe for a gene, this probe was
selected; (2) if there were two probes for a gene, we selected the probe with the highest
variance (measured per brain and then averaged across the six brains); (3) if there were more
than two probes for a gene, we chose the probe with the highest connectivity (measured as
the sum of the Pearson correlations per brain and then averaged across the six brains).
These steps resulted in 19,992 genes selected for further analysis.

3.2.2 MAPPING AHBA SAMPLES TO THE HD-ASSOCIATED REGION
In our analysis, we included a brain region affected in HD patients compared to healthy

controls defined according to gray matter changes in MRI scans [23]. Several structural co-
variance networks (SCNs), corresponding to discontinuous brain areas, were associated
with HD. The SCN analysis was applied on whole brain images rather than predefined
regions [24] to reveal a map of regions affected in HD. Two disjoint brain areas, referred to
as the caudate nucleus and hippocampal network, showed strong significant association
with pre-manifest HD and manifest HD patients. The caudate nucleus network includes the
nucleus accumbens, pallidum, putamen, and precuneus. The hippocampal network
includes the parahippocampal gyrus, cerebellum, pallidum, and planum polare. We
combined these two regions into one, hereafter named “HD-associated region”. AHBA
samples were mapped to the HD-associated region using the MNI coordinate space. Based
on this mapping, we identified AHBA samples located inside the HD-associated region that
exhibits significant gray matter volume changes in HD compared to healthy controls.

3.2.3 DIFFERENTIAL GENE EXPRESSION IN THE HD-ASSOCIATED REGION
We examined gene expression differences between samples located inside and outside the

HD-associated region. Differential expression was assessed for each brain separately using
two one-tailed Mann-Whitney U-tests to identify up- and downregulated genes. Genes with
a P-value lower than 0.025 in either the upper tail or lower tail in five out of six brains were
considered differentially expressed.

3.2.4 REGION-SPECIFIC CO-EXPRESSION ANALYSIS
We used Pearson’s correlation (r) as a measure of co-expression between two genes. Gene

pairs showing a co-expression greater than 0.5 were considered to be related as they have
similar expressions across tissue-specific samples. The co-expression threshold was based
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on our observation of the polyQ co-expression distributions in different regions
(Supplementary Figure 1). For each polyQ gene, a correlation threshold of 0.5 on average
coincides with selecting the top 5% most co-expressed genes. Similar patterns of the
number of co-expressed genes were observed when the co-expression threshold was set at
0.4 and 0.6 (Supplementary Figure 2). Co-expression was calculated for all possible gene
pairs across samples inside the HD-associated region as well as samples representing one of
the following brain structures: frontal lobe, parietal lobe, striatum, hypothalamus,
mesencephalon, cerebellar cortex, and pons. Co-expression was first calculated per donor
and then averaged across all donors to one consensus matrix containing all pairwise gene
co-expressions.

3.2.5 FUNCTIONAL ENRICHMENT OF CO-EXPRESSED GENES

We assessed enrichment in functional terms for sets of genes using DAVID Bioinformatics
resources [25,26]. Enrichment analysis was done for genes differentially expressed in the
HD-associated region (up- and downregulated) and sets of genes co-expressed with one of
the nine polyQ genes. We selected the following annotation categories: GOTERM_BP_ALL,
GOTERM_MF_ALL, GOTERM_CC_ALL. Enrichment analysis was done using Entrez IDs as
gene identifiers and all 19,992 genes in the AHBA were added as a background list.
Functional terms were selected when the Benjamini-Hochberg (BH) corrected P-value was
lower than 0.05 and when at least two genes were present in the gene ontology category. To
summarize the functional terms enriched in genes differentially expressed between the HD-
region and the rest of the brain, we used the clustering function from DAVID and retained
only terms with a cluster enrichment score > 2..

3.2.6 POLYQ INTERACTIONS BASED ON CO-EXPRESSION

We used three different representations of the relationships between polyQ genes, each
highlighting a different way of how polyQ genes could be related. (1) Direct co-expression:
co-expression between two polyQ genes indicates a strong interaction based on their spatial
expression patterns. (2) Shared co-expression: a significant overlap of the two co-expressed
gene sets of two polyQ genes suggests that these two polyQ genes are indirectly related to
each other through other genes with which they interact. (3) Functional overlap: if two polyQ
genes indirectly interact, the overlap between the functional terms enriched in their
corresponding sets of co-expressed genes point out whether the two polyQ genes are also
functionally related. We assessed the significance of shared co-expressed genes between
two polyQ genes using one-tailed Fisher’s exact test. We considered a functional overlap
between two polyQ genes when their respective gene sets share at least 10 enriched
functional terms.

3.2.7 NETWORK ANALYSIS

The polyQ gene network for the HD-associated region was visualized using Gephi [27] and
the rgexf R-package. In the network, nodes represent polyQ genes (each with a unique color)
as well as genes co-expressed with polyQ genes (each assigned the color of the polyQ gene
with which it is co-expressed). The node color is mixed when genes are co-expressed with
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multiple polyQ genes. Edges are colored by the polyQ gene that they connect to. We used
‘Fruchterman-Reingold’ and ‘label adjust’ options for the layout. The circular co-expression
plots were visualized using Cytoscape [28] and the RCy3 R-package [29]. Each node
represents one of the nine polyQ genes and node colors indicate their mean expression
across samples specific to the indicated regions per donor and then averaged across the six
brains. Expression levels increase from blue to white to red. Edge thickness indicates the co-
expression strength between two genes, the number of shared co-expressed genes, or
number of shared functional terms between two polyQ gene sets.

3.2.8 ENRICHMENT OF UBIQUITIN LIGASES AND DNA BINDING GENES

Genes encoding ubiquitin conjugating enzymes (UBE2) were downloaded from the HUGO
Nomenclature Committee [30] and includes 41 genes. DNA repair and ubiquitination gene
sets, consisting of 125 and 40 genes, respectively, were obtained from the Molecular
Signature Database (MSigDB) [31].

3.3 RESULTS

3.3.1 ATXN2 IS DIFFERENTIALLY EXPRESSED IN THE HD-ASSOCIATED REGION

To assess normal gene expression changes in regions affected by HD, we examined the
differential expression of genes in AHBA samples split according to being inside or outside
the HD-associated region. Among the polyQ genes under study, only ATXN2 was
significantly downregulated in five out of six brains (Supplementary Figure 3). All other
polyQ genes did not show consistent expression changes across the six brains. The analysis
yielded 2,812 (14.1% of all 19,992 genes) significant genes (P-value < 0.025; one-sided Mann-
Whitney U-test; Bonferroni-corrected). Out of the differentially expressed genes, 711 genes
showed a significant higher expression in the HD-associated region (upregulated) and 2,101
genes showed a lower expression (downregulated). The set of downregulated genes was
enriched in terms related to cytoplasm, mitochondrial processes, cellular component
organization, DNA damage recognition, synapses, autophagy, and metabolic processes
(BH-corrected P < 0.05; term cluster enrichment score > 2; Supplementary Table 1). These
biological functions have been implicated in HD before [5,13,32—34]. Interestingly, there
were no functional terms enriched in the set of upregulated genes. From Supplementary
Figure 3 it can also be inferred that ATXN2 had medium expression both inside and outside
the HD-associated region in all six brains. Compared to all polyQ genes, ATN1 had the
highest expression across the brain, while ATXN3 had the lowest expression.

3.3.2 ATN1, ATXN2 AND HTT HAVE THE HIGHEST CONNECTIVITY AMONG POLYQ GENES
We examined the functional relations among the polyQ genes by analyzing their spatial co-

expression using the high-resolution AHBA. Co-expression of the polyQ genes was analyzed
in the healthy brain using the AHBA samples within regions associated with gray matter
changes in HD patients (HD-associated region). In addition, we analyzed seven anatomical
brain structures to assess whether polyQ gene co-expression patterns in the HD-associated
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region are reflected within these structures. All anatomical structures had a sufficient
number of samples to perform co-expression analysis (Table 3.1).

Table3.1 Number of samples for the HD-associated region and seven anatomical brain structures
across donors.

Donor HD- Frontal Parietal Striat Hypo- Mesen- Cerebellar  Pons

associated  lobe Lobe um thalamus  cephalon cortex

region
9861 280 161 81 48 9 48 41 52
10021 183 135 57 46 22, 61 76 50
12876 99 47 37 16 17 9 40 6
14380 139 70 42 24 20 22 44 26
15496 125 64 32 18 16 24 60 29
15697 147 60 41 18 18 18 76 26
Total

973 537 290 170 102 182 337 189
samples

The HD-associated region overlaps with parts of different anatomical structures. None of
the examined anatomical structures were overrepresented in the HD-associated region
(Supplementary Table 2). We examined the cerebellar cortex instead of the cerebellum
because of strong expression differences between the cerebellar cortex and cerebellar nuclei
samples [35]. The cerebellar nuclei were left out of the co-expression analysis as they had too
few samples. Since the HD-associated region showed little overlap of samples with
anatomical structures, co-expression patterns in this region are not dominated by samples
from any specific anatomical structures.

The number of co-expressed genes varied per polyQ gene and brain region (Figure 3.2).
ATN1 had the highest number of co-expressed genes in all examined regions except the
mesencephalon and pons where only HTT had more co-expressed genes. The largest
number of genes co-expressed with ATN1 was observed in the striatum (3,428 genes),
followed by the parietal lobe (3,332), and the frontal lobe (1,971). ATXN2 had the second
largest number of co-expressed genes in the parietal lobe, followed by the striatum and the
frontal lobe. TBP had only one gene co-expressing in the cerebellar cortex. For all sets of
genes co-expressed with polyQ genes we performed functional enrichment analysis to
obtain sets of functional GO terms (BH-corrected P < 0.05). This was repeated for all
inspected brain regions (Supplementary Figure 4). Similar patterns were observed for the
number of functional terms and their respective gene set sizes, with ATN1, ATXN2, and HTT
showing the highest number of GO terms.
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Figure 3.2 PolyQ co-expressed gene sets across the brain. The number of genes co-expressed with each
of the polyQ genes (rows) for the different, anatomical brain structures (columns).

3.3.3 STRONG CONNECTIVITY BETWEEN ATN1 AND ATXN2 IN THE HD-ASSOCIATED REGION
The co-expression network of polyQ genes within the HD-associated region includes all

genes that are co-expressed with one of the nine polyQ genes (Figure 3.3). The numbers of
shared co-expressed genes for different brain regions are shown in Figure 3.44, and their
respective co-expressed genes in the HD-associated region are listed in Supplementary
Table 3. The functional overlap between two polyQ genes (Figure 3.4B) was measured as the
number of shared enriched functional terms between their corresponding sets of co-
expressed genes (Supplementary Figure 4).

In the HD-associated region, ATN1-ATXN2 was the only polyQ gene pair that was directly
co-expressed (r = 0.53, Figure 3.5). The same pair also shared most (490) co-expressed genes
among all polyQ gene pairs. TBP and ATXN7 were not co-expressed with other genes at all.
While both genes show low mean expression levels in the examined regions, the variance is
similar to other polyQ genes. Their low expression levels indicate that TBP and ATXN?7 are
less active in these brain regions, suggesting that they are not functionally related to other
polyQ genes, at least in the examined regions. The AR and ATXN3 gene sets showed more
indirect and distant co-expressions with other polyQ genes (Supplementary Figure 5). HTT
shared many co-expressed genes with ATN1, ATXN2, and ATXN1 (Figure 3.44).
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Figure 3.3 PolyQ gene co-expression network in the HD-associated region. The network consists of
3,368 nodes representing genes. The poly genes are shown as larger nodes, each with a unique color.
Genes were considered co-expressed when the calculated Pearson’s correlations exceed 0.5. Smaller
nodes are genes that are co-expressed with at least one of the nine polyQ genes. Their colors indicate
the polyQ gene with which they are co-expressed. Genes co-expressed with multiple polyQ genes have a
mixed color. Edges are colored according to the colors of the nodes they connect. In the HD-associated
region, ATN1-ATXN2 is the only gene pair that is directly co-expressed, while other polyQ genes are
more distantly related through indirect relationships. In this network, 41 genes co-expressed with HTT,
ATN1, and ATXN2 and 488 co-expressed with ATN1 and ATXNz.

3.3.4 POLYQ CO-EXPRESSION RELATIONSHIPS OVERLAP BETWEEN THE HD-ASSOCIATED REGION
AND ANATOMICAL STRUCTURES INVOLVED IN HD-PATHOLOGY

Co-expression relationships of polyQ genes in the HD-associated region were also observed
in other anatomical structures. The direct co-expression between ATN1 and ATXNz in the
HD-associated region was also observed in the frontal lobe (r = 0.53), parietal lobe (r = 0.52),
as well as the striatum (r = 0.56) that showed the highest correlation (Figure 3.54). In the
striatum, ATN1-ATXN2 was also the only co-expressed polyQ gene pair similar to the HD-
associated region. ATN1 and ATXN2 had the highest correlations in the striatum and they
also had the highest number of overlapping co-expressed genes and functional terms in the
striatum. This indicates that the co-expression patterns between ATN1 and ATXNz found in
the HD-associated region are particularly pronounced in the striatum.
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There is a significant overlap between sets of co-expressed genes of HTT, ATN1, and ATXN2
across all studied regions (Figure 3.4A and Figure 3.5B). When considering the overlap
between sets of enriched functional GO terms (Figure 3.4B and Figure 3.5C), the triangular
relationship between these three genes is only observed in the frontal and parietal lobes of
the cerebral cortex. In the striatum, we observe a very strong functional overlap between
ATN1 and ATXNz. Together, these observations suggest a strong regional and functional
relatedness between the three genes, rather than just the measured co-expression.

In addition, ATXN1 shows significant overlap of functional terms with HTT in the HD-
associated region, frontal lobe, parietal lobe, and striatum. ATXN1 was also found to share
functional terms with ATN1, ATXN2, and HTT, forming a clique of four polyQ genes in the
parietal lobe. Finally, the co-expression patterns in the HD-associated region seemed to be
dominated by the co-expression patterns within the frontal lobe, parietal lobe, and
striatum, which were also the regions described as part of the HD-associated region in the
imaging study (Supplementary Figure 6) [23].

3.3.5 HTT, ATN1, AND ATXN2 ARE ASSOCIATED THROUGH BINDING, LOCALIZATION, AND
REGULATION OF CELLULAR COMPONENTS

To gain insight into the functional relationships between HTT, ATN1, and ATXN2, we
examined the overlap of functional terms between all three genes (Supplementary Table 4).
These three genes share 15 functional terms, in the frontal and the parietal lobe, showing
that they are involved in binding of cellular components. In the striatum, they are involved
in the positive regulation of catalytic activity and molecular function, while in the
hypothalamus, they are involved in DNA repair and cell cycle process and regulation. In the
pons, they are involved in the cytoskeleton and regulation of cellular component
organization. In the HD-associated region, they are involved in ubiquitin protein ligase
binding, microtubule cytoskeleton, and cellular protein and macromolecule localization. In
the mesencephalon and cerebellar cortex HTT, ATN1, and ATXN2 do not share functional
terms together. Together these overlapping functions between HTT, ATN1, and ATXN2z
suggest that their connectivity in the aforementioned brain regions is involved in the
binding, localization, and regulation of cellular components.

We focused on genes involved in ubiquitination or DNA repair pathways, because these
pathways have been previously associated with polyQ diseases [16,36,37]. In the HD-
associated region, eight UBE2 genes that are part of the ubiquitin conjugating enzymes gene
family, UBE2G2, UBE2l, UBEz2C, CDC34, UBE2W, UBE2Z, UBE2E3, and UBE2D4, co-
expressed with polyQ genes. Furthermore, several polyQ genes co-expressed with DNA
repair genes, especially HTT, ATN1, and ATXN2. Most DNA repair and ubiquitination genes
were co-expressed with ATNI in the striatum (34 and 11 genes, respectively; Supplementary
Figure 7). In summary, ubiquitin-related genes and DNA repair genes co-expressed with
highly connected polyQ genes HTT, ATN1, and ATXN2 in regions associated with HD.
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Figure 3.5 Overview of polyQ relationships in the HD-associated region and seven anatomical
structures. Each node represents a polyQ gene and the color represents the expression of that polyQ
gene averaged across region-specific samples and the six donors (red indicates high expression and
blue low expression). Edge width indicates the strength of the detected relationship between polyQ
genes. Each column represents a different type of relationship: (4) direct co-expression between polyQ
genes, edge width corresponds to the co-expression value; (B) shared co-expression, edge width
indicates the overlap of co-expressed genes, only for significant overlaps (P < 0.05); (C) functional
overlap, edge width indicates the overlap size between two polyQ gene sets shown only for overlaps of at
least 10 enriched terms. For each type of relationship the lowest and highest value are given along the

thinnest and thickest edge.
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3.4 DiscussION

Polyglutamine diseases share a similar genetic basis and their phenotypes, such as AAO, are
affected by CAG repeat variations in the normal range in polyQ genes other than the
causative gene [7-12]. The causative polyQ genes are thought to modulate protein
interactions through the role of CAG tracts in stabilizing protein interactions [38]. We
analyzed the relationships between nine polyQ genes based on their co-expression within
different regions of the healthy human brain.

We performed co-expression analysis in a brain region previously associated with HD
specific damage in the cortical and subcortical gray matter. By combining imaging data
from HD mutation carriers with spatial gene expression patterns from healthy brains, we
were able to study the role of interactions between polyQ genes in the neuropathology of
HD. Seven anatomical brain structures were also included in the analysis to examine
regional differences compared to the HD-associated region. The anatomical structures also
included the striatum, the main affected structure in HD. However, co-expression patterns
in the striatum may be more specific to the structure itself rather than to HD pathology.

Among the nine polyQ genes, the relationship between ATN1 and ATXN2 was most
pronounced based on our three representations of gene associations: it was the only gene
pair that directly co-expressed, shared the most co-expressed genes, and also showed
functional overlap in the HD-associated region. The same polyQ gene pair also shared co-
expressed genes, and a functional overlap with HTT, suggesting functional connectivity
with the causative gene of HD. Furthermore, out of the nine polyQ genes, only ATXN2 had a
significant lower expression in the HD-associated region compared to the rest of the brain.
An expanded polyQ tract in the huntingtin protein may dysregulate pathways in which all
three polyQ genes are involved. The function of ATXN1 may also be affected in HD as this
gene also shared co-expressed genes and showed functional overlap with HTT in the HD-
associated region.

The co-expression patterns among polyQ genes within the HD-associated region overlapped
with those observed within anatomical structures involved in HD neuropathology. In the
striatum, the main structure affected in HD, ATN1 and ATXN2 were directly co-expressed
and shared co-expressed genes. This suggests that this gene relationship has a more
important role in HD than in other polyQ diseases. For the frontal and parietal lobes, ATN1
and ATXN2z were directly co-expressed and shared functional terms together with HTT,
similar as for the patterns observed for the HD-associated region. The frontal lobe includes
the primary motor cortex BA4, and is located next to the parietal lobe, which includes other
motor areas. The motor cortex, involved in planning, control, and execution of voluntary
movement, has been previously implicated in HD [39-42]. The motor cortex is also known
to be directly connected to the caudate nucleus of the striatum [43]. In a previous study, HD
gene expression profiles in the caudate nucleus and motor cortex were strikingly similar
[13], suggesting that similar molecular mechanisms in different brain regions are involved
in neurodegeneration. These mechanisms may include polyQ genes as we find similar co-
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expression patterns in the frontal lobe and striatum between HTT, ATN1, ATXN2, and ATXN1
(Figure 3.5).

There was a significant overlap in co-expressed genes between HTT, ATN1, and ATXN2 in all
examined brain regions. It would be interesting to evaluate whether this triangular relation
between HTT, ATN1, and ATXN2 is dysregulated in all polyQ diseases, especially HD,
DRPLA, and SCA2. In addition, we observed strong connectivity of ATXNz and AR with HTT
in the pons that has been described to undergo atrophy in SCA2 [44]. This relationship may
possibly be disrupted in the pons of SCA2 patients. Altogether, these region-specific
interactions demonstrate that co-expression analysis can reveal many interesting relations
between genes based on their spatial information.

Accumulating evidence suggests that normal CAG repeat size variations in polyQ genes
could act as genetic modifiers of AAO in different polyQ diseases. For example, the normal
CAG repeat length in ATXN3, known to have a deubiquitinating function [45], has been
found to have a positive effect on HD progression as it was associated with a later AAO [12].
There is also evidence for a polyQ-length dependent interference of both the mutant and
normal proteins with a range of other protein binding partners [46-52]. Mutant proteins
can interact either more strongly or weakly with other polyQ containing proteins and
thereby inhibit there physiological function [49,52]. A case in this regard is a recent study
which showed that the polyQ domain of wild-type ataxin 3 enables it to interact with beclin
1, a key initiator of autophagy, allowing the deubiquitinase activity of ataxin 3 to protect
beclin 1 from proteasome-mediated degradation and thereby enabling autophagy [49]. They
demonstrated that mutant huntingtin polyQ fragments competed with ataxin 3 for
interaction with beclin 1 in a polyQ-length dependent manner, thereby inhibiting autophagy
and contributing to neuronal dysfunction. This finding may explain the protective role of
larger ATXN3 CAG repeat sizes in HD [12]. In our analysis we did not find any relation in co-
expression between HTT and ATXN3 in the examined regions. This might be due to the
polyQ length-dependent competing between huntingtin and ataxin 3 being relevant only
with pathologically expanded polyQ tracts, which were not present in AHBA. Furthermore,
atrophin 1 and the androgen receptor have been found to bind to beclin 1 in a polyQ length-
dependent way. Among the polyQ genes and examined brain regions in our study, we found
that BECNI is only co-expressed with ATN1 in the pons. Several putative interactions with
HTT reported in previous studies were also supported by the co-expression analysis in our
study. In the HD-associated region, ATN1 and ATXN2 shared co-expression partners with
HTT and both genes were also functionally related to HTT. For each of the genes it was
shown before that variations in the normal CAG repeat length, together with the expanded
CAG repeat in HTT, affect the AAO in HD [7]. The co-expression patterns between HTT,
ATN1, and ATXN1 suggest a functional relationship in brain regions that are involved in HD
pathology.

Ubiquitin may be involved in HD pathogenesis through the relationships between HTT,
ATN1, and ATXNz2. The ubiquitin-proteasome system (UPS) has been linked extensively to
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the pathogenesis of neurodegenerative diseases, including HD and other SCAs [1,6,36,53—
55]. Aggregates in polyQ diseases show parts of ubiquitin and several important
homeostatic proteins [56]. We found that E3 ubiquitin ligase genes UBR4 and CHIP/STUBI,
and ubiquitin-activating UBAI gene to be co-expressed with HTT, ATN1, and ATXN2. This
suggests that the three polyQ genes contribute to the UPS in the HD-associated region of
the healthy brain. Biochemical properties of CHIP are well-studied and this gene is known
to interact with mutant polyQ proteins (including HTT, ATXN1, ATXN3, and AR) suppressing
polyQ aggregation by promoting proteasomal degradation [1,2,57-59]. CHIP has also been
implicated in several SCAs indicating it is directly involved in disease pathology [60]. The
gene UB4R has a fundamental role in calcium signaling and neuronal survival and may
contribute to neurodegenerative conditions [61]. This gene has been identified as a
candidate locus in early-onset episodic ataxia [62]. It is not known whether recognition of
aberrant proteins by ubiquitin ligases is beneficial or disadvantageous [63]. UBAI is an
important regulator of cellular protein homeostasis and contributes to the pathogenesis in
SBMA and HD [32,64]. Altogether, we found genes involved in the UPS that co-expressed
with multiple polyQ genes which have been associated with similar pathologies in
neurodegenerative disorders. The UPS is involved in protein homeostasis and may be
affected early in HD through strong regional interactions. If there are changes in huntingtin
protein function due to polyQ expansion, then the interaction between ATN1 and ATXN2 is
likely to be affected. The low expression of these genes in certain brain regions could
indicate their increased vulnerability to dysregulations of the UPS. We suspect co-expressed
polyQ genes to have a role in AAO, as they and their shared co-expression partners seem to
be involved in functions that have been associated to polyQ diseases.

There are several issues that limit a one-to-one comparison between the co-expression
relationships reported in the present study and phenotype-genotype associations described
previously [7-12]. First, we do not expect all phenotype-genotype associations to be
explained by changes in co-expression patterns. Second, there is a wide degree of
heterogeneity in both the data and methods used in the genetic association studies [7-12],
limiting the possibility to combine their findings. Third, thus far, not all possible pairs of
polyQ genes have been tested in the genetic association studies, highlighting the need for
more comprehensive genetic association studies in larger cohorts of patients with polyQ
disorders.

To validate our findings in other brain gene expression data we need a dataset with a spatial
sampling resolution that allows co-expression analysis within substructures of the brain.
Although the UK Brain Expression Consortium [15] sampled multiple (10) brain regions per
healthy individual, the expression within a substructure, e.g., the cerebellum, is still
represented by a single sample. Gene expression data of HD patients may be used to observe
whether co-expression patterns are altered in disease state. However, existing datasets are
particularly rich in the number of individuals they sampled and not brain regions [13]. This
captures variation across individuals, while in our gene co-expression networks we capture
spatial variation within a brain region of interest (e.g., striatum).
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3.5 CONCLUSION

We showed that polyQ genes are co-expressed in the healthy brain and that their
relationships are also specific to certain brain regions including a region associated with
HD. Our aim was to find co-expression patterns between polyQ genes in different brain
regions.The co-expression networks are likely altered in polyQ diseases due to interaction
changes, especially in brain regions associated with the disease. The fact that these findings
could not be validated on other expression datasets implies the importance of follow-up
studies to understand more about the mechanisms behind polyQ diseases. We show that
gene expression in the healthy brain may render specific regions vulnerable to expression
changes based on gene co-expression networks.
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CHAPTER 4

ABSTRACT

The biological mechanisms underlying inter-individual differences in human stress
reactivity remain poorly understood. We aimed to identify the molecular underpinning of
neural stress sensitivity. Linking mRNA expression data from the Allen Human Brain Atlas
to task-based fMRI revealed 201 differentially expressed genes in cortex-specific brain
regions differentially activated by stress in individuals with low or high stress sensitivity.
These genes are associated with stress-related psychiatric disorders (e.g., schizophrenia
and anxiety) and include markers for specific neuronal populations (e.g., ADCYAP1,
GABRB1, SSTR1, and TNFRSFi2A), neurotransmitter receptors (e.g., GRIN3A, SSTRi,
GABRB1, and HTRIE), and signaling factors that interact with the corticosteroid receptor
and hypothalamic-pituitary-adrenal axis (e.g., ADCYAP1, IGSF11, and PKIA). Overall, the
identified genes potentially underlie altered stress reactivity in individuals at risk for
psychiatric disorders and play a role in mounting an adaptive stress response, making them
potentially druggable targets for stress-related diseases.
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4.1 INTRODUCTION

Stress is a major risk factor for the development of a wide range of psychiatric disorders,
including schizophrenia and depression [1]. Inter-individual differences in how the brain
responds to stress depend on intrinsic (e.g., genetic and developmental) as well as on
extrinsic (e.g., hormonal) factors [2]. The neural correlates underlying stress reactivity are
currently a growing topic of investigation [3-5]. In healthy individuals, acute stress causes a
shift in neural networks by suppressing the executive control network and activating the
salience network and default mode network (DMN) [6]. One hypothesis is that stress
vulnerability is the result of maladaptive changes in the dynamic response of these neural
networks, either during the acute phase, during the recovery period in the aftermath of
stress, or both[2]. Moreover, acute social stress deactivates the DMN in the aftermath of
stress during emotion processing in healthy controls but not in siblings of schizophrenia
patients who are at-risk for several psychiatric disorders [7][8]. Yet, the molecular
mechanisms underlying differences in brain reactivity to stress in humans remain unknown
as access to the tissue of interest in humans is limited.

Nevertheless, stress-related brain regions and networks as identified by fMRI can be further
characterized based on transcriptomic signatures. Mapping gene expression atlases of the
healthy brain to imaging data allows the identification of the molecular mechanisms
underlying imaging phenotypes. Previous studies have identified gene expression patterns
associated with structural brain changes in autism spectrum disorders, Huntington’s
disease and the onset of schizophrenia [9-12]. Similarly, mapping resting-state fMRI and
connectivity data onto gene expression atlases has led to identification of molecular profiles
underlying these fMRI networks [13-15].

In this study, we examined the putative molecular signatures of brain regions linked to
stress reactivity. We linked gene expression data from the Allen Human Brain Atlas (AHBA)
to an fMRI-stress network (Figure 4.1). In short, we found that the stress network was
enriched for genes associated to specific subtypes of neurons (i.e. components of the cortical
circuitry) with genetic relevance for psychiatric disorders, and for signaling factors and
proteins that interact with the activation of the Hypothalamic-Pituitary-Adrenal axis (HPA-
axis) and response to glucocorticoids. These all constitute potential targets for directed
pharmacotherapy in stress related disorders.
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Figure 4.1 Study overview. (A) Cortical brain regions vulnerable to stress (= stress network) during an
emotion processing task were assessed in an fMRI study. All brain regions showed higher stress-
induced brain activity following an acute social stressor in at risk individuals (healthy siblings of
schizophrenia patients). The fMRI data was mapped to the AHBA resulting in an overlay of the fMRI
and gene expression data. (B) With this overlay, differential gene expression between the brain regions
vulnerable to stress and the rest of the cortex were assessed. (C) Differentially expressed genes were
consequently characterized by identifying enrichment for gene ontology and cell type markers,
associations with stress-related diseases and enrichment for cortisol responsive genes. (D) Information
provided by the previous analyses was used to build a model of a molecular pathway underlying human
stress reactivity.
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4.2 METHODS

4.2.1 DEFINING THE STRESS NETWORK
Based on a previous study, we selected brain regions that were differentially affected by

stress in individuals with high and low stress sensitivity [6]. In this study, there were four
experimental groups: control-no-stress (n=19), control-stress (n=20), sibling-no-stress
(n=20) and sibling-stress (n=19) (Table 4.1). Before scanning, participants in the stress
groups underwent a Trier Social Stress Test [16] and 30 minutes after the onset of the test,
participants performed an emotion-processing task in the magnetic resonance imaging
(MRI) scanner based on the International Affective Picture System [17] during which
pictures were presented that had to be rated as either neutral, positive or negative. All
participants in this experiment gave written informed consent and the experiment was
approved by the Utrecht Medical Center ethical review board and performed according to
the guidelines for Good Clinical Practice and the declaration of Helsinki. Based on a 2x2
ANOVA (control/sibling x stress/no-stress) voxel-wise analysis, several brain regions that
responded differently to all pictures after acute social stress in siblings compared to healthy
individuals were identified. These regions include key nodes of the DMN (posterior
cingulated cortex/precuneus and medial prefrontal cortex) and salience network (anterior
insula), as well as the superior temporal gyrus, middle temporal gyrus, middle cingulate
gyrus, ventrolateral prefrontal cortex, precentral gyrus and cerebellar vermis (Figure 4.24).
We selected and present in the figures the cortex-specific brain regions for the initial
analyses to prevent that our results are being driven by differences between the cortex and
subcortex. Analyses on all brain regions in the stress network can be found in the
supplementary text.

Table 4.1 Group characteristics of fMRI study
Con-no-stress  Con-stress  Sib-no-stress  Sib-stress  P-value

N 19 20 20 19

Age (years) 32.6(8.5) 34.8(9.1) 33.8(10.8) 32.5(7.4) 0.836°
Handedness (% right) 89.5 95 70 89.5 0.194°
Educational level 7.6 (2.7) 7.1(1.9) 7.0 (1.6) 7.4 (1.5) 0.688*
Body Mass Index 24.1(2.7) 24.2 (2.1) 24.0 (3.0) 24.9 (3.9) 0.774%
Ethnicity (% Caucasian)  84.2 90 90 84.2, 0.900°
Smoker (% yes) 5.3 35 30 31.6 0.132°

Con = control; sib = sibling of schizophrenia patient.

Mean values (SD) are denoted for age, education, and body mass index. All other values are reported in
frequency.

a=one-way-ANOVA

b = chi square test
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4.2.2 ALLEN HUMAN BRAIN ATLAS (AHBA)

Gene expression data from six healthy brains were acquired from the AHBA [18]. In this
microarray dataset, probes were mapped to genes as previously described [19]. Z-scores for
normalized gene expression levels from the AHBA were calculated separately for each of the
six individual brains. Gene expression data were linked to an fMRI-based stress network
according to the MNI coordinate system, such that samples of the AHBA exactly overlap
with the corresponding fMRI voxels. For all samples in the AHBA, we determined whether
they were located in the cortical stress network for all six donors separately. The gene
expression levels of the AHBA samples were extracted and resulted in expression data of
19,992 genes in 111 and 1839 brain samples in- and outside the cortical stress network,
respectively.

4.2.3 DIFFERENTIAL GENE EXPRESSION IN THE CORTICAL STRESS NETWORK

To identify genes differentially expressed between the cortical stress network and the rest of
the cortex, we analyzed each of the six brain donors separately. Differential expression was
determined for the cortical stress network altogether as one mask. For each gene, we
combined effect sizes (difference in mean expression between the brain stress network and
the rest of the brain) across donors using a meta-analysis approach from the ‘metafor’ 2.0-0
R-package. In brief, a random effects model was used, taking into account the within-brain
and between-brain variance, which was estimated with the Dersimonian-Laird model.
Variances and confidence intervals needed for the meta-analysis were calculated using the
escalc-function. Genes were considered to be differentially expressed at a Benjamini-
Hochberg (BH) adjusted P-value < 0.05.

We also performed analysis on the whole brain (differentially expressed genes BH-adjusted
P-value < 0.05 and log. fold-change (FC) > |1|). Given the large difference in the
transcriptional profile of the cerebellum compared to the rest of the brain [20], we excluded
the cerebellum from the whole brain analysis. In addition, we performed the differential
expression analysis between samples inside and outside the stress network for each of the
following brain regions separately: cerebral cortex (Cx), frontal gyrus (FG), cingulate gyrus
(CgG), cerebellum (Cb), and the hippocampal formation (HiF). Other anatomical regions
contained too few samples (< 2 in the mask) to perform the analysis on these particular
structures separately.

We used a bootstrapping approach to assess the robustness of our results with respect to the
imbalance between the number of AHBA samples inside and outside the cortical stress
network (111 inside and 1839 outside). We randomly selected 111 samples from the whole
cortex, regardless of their location inside or outside the stress network and compared gene
expression profiles of these brain samples with the original set of 111 samples inside the
cortical stress network. We repeated this process 1000 times to assess the reproducibility of
the differentially expressed genes.
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4.2.4 GENEONTOLOGY (GO) ENRICHMENT ANALYSIS

To characterize the functionality of the differentially expressed genes, a GO enrichment
analysis was performed. The list of unranked differentially expressed genes was uploaded to
GOrilla (Gene Ontology Enrichment Analysis and Visualization Tool) [21]. As a background
list, the top 20% of genes with the highest expression level in the cortex was used, to correct
for non-selective ontologies. GO terms were considered significant when the P-values <
o.oo1 (Fisher’s exact test) after BH-correction.

4.2.5 CELLTYPE ENRICHMENT ANALYSIS

We assessed whether the differentially expressed genes were enriched for cell type markers
[22]. Genes with a 20-fold higher expression in neurons (628 marker genes),
oligodendrocytes (186 marker genes), astrocytes (332 marker genes), microglia (520 marker
genes) and endothelial cells (456 marker genes) were considered to be markers for that cell
type. Since most of our AHBA samples were located inside the cortex, we used a set of brain-
region-specific markers and focused on 18 cortical cell types [23]. Details on markers can be
found on https://pavlab.msl.ubc.ca/data-and-supplementary-information/supplement-to-
mancarci-et-al-neuroexpresso. Finally, to assess which neuronal cell types might be
involved in stress sensitivity, single cell RNA sequencing data of the middle temporal gyrus
of the human neocortex from the Allen Brain Institute [24] (http://celltypes.brain-
map.org/rnaseq/human) were used. The sum of the logw values of the counts per
differentially expressed gene were calculated for each cell cluster separately.

4.2.6 ENRICHMENT ANALYSIS OF DISEASE-ASSOCIATED GENES

To assess whether the differentially expressed genes are associated to stress-related
psychiatric disorders, a disease-associated gene enrichment analysis was performed based
on existing Genome-Wide Association Studies (GWAS) including schizophrenia [25,26],
Bipolar Disorder [27], and Major Depressive Disorder [28], and stress-related diseases such
as Post-Traumatic Stress Disorder, as well as non-stress-related diseases (e.g., Huntington
and osteoporosis) based on disease gene sets from DisGeNET [29]. As non-disease control
conditions, genes associated to height and waste-hip ratio were included in the analysis
[30,31]. The schizophrenia, MDD and BP GWAS loci were considered to be associated if they
reached genome-wide significance of P < 5¥10°. Intersections of loci based on GENCODE
with UCSC hg19/NCBI build 37 position were used to map loci to risk genes by the authors of
the GWAS [25,27,28]. These annotations were used for the enrichment analyses. All genes
assessed in the AHBA that were not associated to a disease or trait were used as background
test in the Fisher-test. FDR-correction was applied over the amount of enrichment tests.

To assess the enrichment of disease-related gene sets in intercellular signaling genes,
neuropeptides and receptor genes were selected from the differentially expressed genes.
Odds ratios (ORs) were calculated for the set of neuropeptides and receptors for each
disease as a measurement of effect size, (i.e. the increased chance of a peptide or receptor
being present in the set of differentially expressed genes). For this, the number of receptors
found within the trait was compared to all the receptors that were measured in the AHBA
(1203 receptors), based on the gene annotation of the AHBA. Gene names that included the
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word ‘receptor’ were selected and this list was manually verified whether the gene was a
receptor or a modulator. The ORs for the neuropeptides were calculated in the same way,
based on a list of neuropeptides available from NeuroPep [32].

4.2.7 MINERALOCORTICOID AND GLUCOCORTICOID DNA BINDING LOCI

MR and GR DNA binding loci under stress in the rat hippocampus were previously assessed
[33]. We identified sets of genes with GR-specific, MR-specific and GR-MR-overlapping
DNA binding loci, i.e. potential target genes. To predict glucocorticoid sensitivity of our
differentially expressed genes, we assessed whether these sets of targets were enriched
among the differentially expressed genes.

4.2.8 ENRICHMENT STATISTICS FOR GO, CELL TYPE, DISEASE-ASSOCIATED GENES AND RECEPTOR
BINDING

Enrichments were assessed based on Fisher's Exact Tests and odds ratios (ORs) were
calculated as a measurement of effect size for the enrichments. An OR of 1 indicates no
effects, whereas an OR >1and o < OR <1 reflects enrichment and depletion, respectively. All
P-values were corrected for multiple testing using the Benjamini-Hochberg (BH) method
and a BH corrected P-value < 0.05 was considered to be significant, unless stated otherwise.

4.3 RESULTS

4.3.1 DIFFERENTIALLY EXPRESSED GENES IN THE STRESS NETWORK

We identified the gene expression signatures of the cortical stress network with altered
stress-induced activity by determining which genes are differentially expressed in the stress
network compared to the rest of the cortex. Using a meta-analysis approach to combine
results across all donors of the AHBA (n = 6), we identified 201 differentially expressed genes
(BH-adjusted P < 0.05, Figure 4.2B; Supplementary Table 1). Among those genes, 177 were
higher expressed, while the other 24 genes were lower expressed in the cortical stress
network compared to the rest of the cortex (Figure 4.2C). Using a bootstrapping approach
(see 2.3), we found the identified set of genes to be highly robust to the imbalance between
the number of AHBA samples inside and outside the stress network (in 83% of our 1000
iterations, only genes out of our initial 201 differentially expressed gene list were found).

We also identified the gene expression signatures of the stress network with altered stress-
induced activity by determining which genes are differentially expressed in the stress
network compared to the rest of the brain minus the cerebellum. Using the same meta-
analysis approach, we identified 261 differentially expressed genes (BH-adjusted P < 0.05
and log. FC > |1|). A full description of the results, including tables and figures, can be found
in the supplementary text. However, due to the higher representation of cerebral cortex
samples in the brain regions vulnerable to stress (109 out of 127; 91%) compared to the rest of
the brain minus the cerebellum (1,950 out of 3,225; 60%), differentially expressed genes in
the whole brain stress network were also differentially expressed between cortical and non-
cortical samples (222 out of 261 genes were also differentially expressed in the top 10%
difference between cortex and non-cortex, P < 0.00001). Therefore, we chose to focus on the
cortex-specific stress network.
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The differentially expressed genes in the cortical stress network generally showed high
expression values in the cortex but not the hippocampus, and mostly low expression levels
in non-cortical areas (Figure 4.2D). The two most differentially expressed genes in the
stress-specific cortical regions are Tumor necrosis factor receptor superfamily member 12A
(TNFRSF12A) (BH-adjusted P-value = 0.006, log.(FC) = -0.24) and Exosome Component 6
Pseudogene (LOC392145) (BH-adjusted P-value = 0.009, log,(FC) = 0.38). TNFRSF12A may
module cellular adhesion to matrix proteins, whereas LOC392145 is an mRNA transport
regulator.

4.3.2 FUNCTIONALITY AND CELL-TYPE SPECIFICITY OF DIFFERENTIALLY EXPRESSED GENES IN THE
STRESS NETWORK

A GO term enrichment analysis was performed to assess whether the differentially
expressed genes in the stress network are enriched for specific functions. The differentially
expressed genes were enriched for GO terms involved in neuronal development and
neurogenesis, synaptic signal transmission, and glutamate receptor signaling (Figure 4.3A
and Supplementary Table 1). Genes involved in most processes based on GO terms (at least
assigned to five out of ten GO terms) include SHANK, GRIN3A, CNTN4 and ADCYAP1.
Enrichment analysis for cellular components indicated that the proteins coded by the
differentially expressed genes were mainly found at the synapse, reflecting both the high
expression of the genes in the synapse-dense cerebral cortex, and a potential role for
synaptic proteins as determinants for the differential activation.

Next, we identified the specific cell types underlying the differential gene expression levels
in the cortical stress network using enrichment analysis of cortical cell-type markers [22].
Enrichment was found for neuronal cell markers (BH-adjusted P = 5%10%), including
ADCYAP1, DPYSL3, INSM1, PKIA, SSTR1, NOL4, BAIAP3, KCNB2, FAMé5B, ABLIM3, TEKT2,
SHANK1, DACT1, PCBP3, SCN3B, LMO3, CA1o, LRRTM4, SYT16, GPRIN1, TMEM200A, LRRC3B,
GRIN3A, and PNCK. However, no specific subtype of neuron was in particular enriched.
Enrichment was also found for astrocytes (ATP2B4, PTCH1, FABP7, IGSF11, KCNN3, GRM3,
GABRBI, PTX3, BH-adjusted P = 0.024). The list of differentially expressed genes included a
few microglia (TMEM52, F13A1, MSH5, ARHGAP4, NOD2, and TNFRSFi124), endothelial cell
(LAMA1, LAMB1, Ciorfits, DOK4, and MICB), and oligodendrocyte markers (EFNB3 and
TYRO3), although not significantly enriched (BH-adjusted P = 0.924). Moreover, we found
that neuronal markers showed a partially overlapping distribution in a t-Distributed
Stochastic Neighbor Embedding (t-SNE) map of all genes across the whole brain as the
differentially expressed genes in, indicating that neuronal markers and the differentially
expressed genes show the same expression patterns across cortical areas (Figure 4.3B) and
thus differential activity may depend on neuronal gene expression.

Using a human-specific single cell RNA-sequencing data of the medio-temporal gyrus [24],
we found the differentially expressed genes to be mainly enriched in glutamatergic
excitatory neurons compared to GABAergic and non-neuronal cells, using a Wilcoxon rank
test (P-value = 2.2¥10716, Figure 4.3C).
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Figure 4.2 Differentially expressed genes in brain regions vulnerable to stress can be identified using
gene expression atlases. (A) Brain regions in the stress network are present throughout the brain
(including cerebellum, cingulate gyrus, frontal gyrus, temporal gyrus, and hippocampal formation). For
the analysis, all regions in the cortex were combined. (B) Differential gene expression was determined
for the cortical stress network compared to the rest of the cortex. Significant genes (BH-adjusted P-
value < 0.05 have higher expression in the stress network. Grey dots represent non-significant genes
and brown dots represent significant genes based on meta-analysis across all six AHBA donors. (C) The
box plots show the expression of the higher (left) and lower (right) expressed genes compared to the rest
of the cortex in the brain regions of interest from the stress network. (D) In the whole brain,
differentially expressed genes show mostly high expression levels in the cortex and low expression levels
in non-cortical brain regions. In the heatmap, each row represents a gene and each column represents a
sample and all samples of the AHBA are illustrated here. On the right, coronal brain sections for the
genes SSTR1, GABRB1, ADCYAP1, and DOC2A are presented. Colors indicates high (red) and low (blue)
expression levels.
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Figure 4.3 Functionality of differentially expressed genes in the stress network. (A) Differentially
expressed genes annotated to one of the GO terms were assigned to multiple GO terms and thus
involved in multiple processes. Between parentheses, the total number of genes assigned to the GO
term is depicted. On the right side of the graph, ORs are displayed per GO term. (B) Differentially
expressed genes (brown), neuronal marker genes (purple) and overlapping genes (yellow) are plotted in
a t-SNE plot generated using BrainScope.nl [20], where points close together represent genes with
similar gene expression profiles. The differentially expressed genes show a similar profile in the t-SNE
plot as neuronal cell markers (purple). (C) The sum of the logi, values of the counts per gene is plotted
for each cell cluster. Green clusters belong to GABAergic cells, purple clusters to glutamatergic cells and
red clusters to non-neuronal cells.

4.3.3 DIFFERENTIALLY EXPRESSED GENES IN STRESS NETWORK ARE ASSOCIATED TO STRESS-
RELATED DISEASES

We hypothesized that the differentially expressed genes in the stress network would be
associated to the genetic background of psychiatric disorders, particularly for stress-related
brain disorders, as stress plays a major role in the development of these disorders. Using
genetic variants from GWAS of the Genomics of Psychiatry Consortium [25,26], we assessed
whether schizophrenia-associated risk loci are enriched in the set of differentially expressed
genes. Indeed, schizophrenia risk genes were enriched in the differentially expressed genes
in the stress network (Fisher Exact test, BH-adjusted P-value = 0.015). The schizophrenia
risk genes CNTN4, GRM3, FUT9, SATB2, GPM64A, COQ10B, DOC24, and NISCH were present in
our differentially expressed genes, and all except one (COQ10B) were higher expressed in the
cortical brain regions vulnerable to stress. Based on a recent GWAS across multiple
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psychiatric disorder, multiple pleiotropic risk genes were identified [34]. Furthermore,
gene-disease associations from DisGeNet, a manually curated database, were used to assess
risk gene enrichment for psychiatric, brain and non-brain diseases and non-disease traits.
Enrichment was found for neuropsychiatric disorders (schizophrenia, bipolar disorder, and
autism spectrum disorder) and other brain diseases (Parkinson’s disease). However, no gene
enrichment was found for non-brain diseases (e.g., osteoporosis) and non-disease traits
(e.g., height and waste-hip-ratio; Figure 4.4). Thus, differentially expressed genes in the
stress network are predominantly involved in genes relevant for stress-related diseases but
not in non-brain-related disorders and traits.

Interestingly, the set of 201 differentially expressed genes in the stress network included a
considerable number of receptors. Apart from their use as markers for specific cell types
(e.g., ADCYAP1, GABRBI, SSTR1, and TNFRSF124), these are important for signaling in the
brain (e.g., ADCYAP1 modulates glutamatergic signaling [35] and the HPA-axis response
[36]) and some of them are known to be involved in the regulation of stress [36,37].
Therefore, we assessed whether there were more receptors in our set of genes associated to
psychiatric disorders than you would expect by chance. We found higher odds ratios for
brain and psychiatric disorders, with the biggest effect sizes in psychiatric disorders (Figure
4.4). Effect sizes for receptor enrichment in Epilepsy (P-value < 110%, OR = 9.07),
Huntington (P-value = 0.007, OR = 5.18), Obsessive Compulsive Disorder (P-value = 0.004,
OR =7.18), Major Depressive Disorder (P-value =110, OR =13.5), Bipolar Disorder (P-value
=1"10"%, OR = 26.8), and Schizophrenia (P-value = 0.03, OR = 3.82) were significant.

4.3.4 CORTISOL SENSITIVITY OF THE STRESS NETWORK

The enrichment of the neuronal GO terms in our set of genes and the association with
stress-related diseases indicates that the differentially expressed genes in the stress network
are relevant for stress and may be responsive to the pivotal stress hormone cortisol. To
investigate glucocorticoid sensitivity, we compared our list of differentially expressed genes
with genes that show a DNA binding site for the glucocorticoid- and/or mineralocorticoid
receptors (GR and MR) in the rat hippocampus by Chromatin Immunoprecipitation
sequencing after stimulation with the endogenous steroid corticosterone [33]. Differentially
expressed genes that showed DNA binding loci for both the GR and MR are: SLC26A4,
IGSF11, GRIK4, SCN3B, GABRB1, CCDC854, KIRREL3, HECW2 and PKIA (9/459 genes with
binding sites, BH-adjusted P-value for enrichment = 0.038). There was no significant
enrichment for either GR binding (OPRM1, PTER, FUT9, EPB41L4B, PKLR, GPMé6A, and GSC;
7/704 genes with binding sites, BH-adjusted p- value = 0.98) or MR binding exclusively
(ADCYAP1, LAMA1L, CNTN4, XPO1, RGS12, MGRN1, CHSTi5, and ANKLE2; 8/1247 genes with
binding sites, BH-adjusted P-value = 0.18). These results indicate that differentially
expressed genes in brain the stress network are enriched for DNA-binding loci of that (in the
rat) can be bound by both the GR and the MR.
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4.4 DIScUSSION

In this study, we identified genes and pathways in the cortical stress network based on an
fMRI-based study involving acute stress exposure. By combining fMRI data to gene
expression data, we found 201 differentially expressed genes involved in neuronal processes
and enriched in stress-related psychiatric disorders. Moreover, the enriched genes included
several neuropeptides and neurotransmitter receptors with regulation by both the GR and
MR and substantial links to HPA-axis activity. This gene set uncovered by combining
human gene expression and neuroimaging results give important new insights into the
putative neural populations and mechanisms underlying stress vulnerability in humans.

Our results point to the involvement of (cortical) cell type markers in differential stress
reactivity. For example, we found enrichment for some astrocyte markers, which among
others modulate glutamate metabolism and transmission [38]., and there is evidence from
both human and rodent models that they may play a role in stress-related disorders [39].
Moreover, the differentially expressed genes are in general highly expressed in excitatory
glutamatergic compared to inhibitory GABAergic neurons [24]. Thus, glutamate signaling
seems to be involved in a more global level, whereas GABA-related mechanisms that may
underlie differential reactivity to stress are limited to a specific subset of GABA-ergic
neurons. Specific targeting of these GABAergic populations, based on their receptor
repertoire, may help to separate primary from secondary changes in the cortical circuitry.

For genes that do not represent specific neuronal subtypes, changed expression levels may
reflect differential responsiveness based on more generic signaling pathways. This may, in
particular, be the case for the identified stress-related genes with a genetic association to
schizophrenia. OPRM1 encodes for a mu-opioid receptor, which has been shown to interact
with glutamate to adapt to chronic drug abuse, a stress-related disorder [40]. Moreover,
mu-opioid receptors are known to modulate the HPA-axis [41].

Genes with high expression levels in the regions vulnerable to stress include neuropeptides
and neurotransmitter receptors, which may be directly targeted to modify the activity of
these brain regions. SST1 codes for the somatostatin receptors, a neuropeptide produced in
the hypothalamus. This neuropeptide is known to attenuate the stress response, by
counteracting CRH signaling via the SST1 receptor [42]. Also a number of serotonergic,
GABAergic, and glutamatergic receptors are differentially represented in the stress
network. All these factors may well have a role in regulating neuronal network activity
during maladaptive stress responses [43—45]. Of note, the excitatory 5-HT1E receptors are
overrepresented in brain regions that failed to shut off after stress in at-risk subjects.
Antagonism of 5-HT2A is common between several antipsychotic and antidepressant drugs,
and normalizing the activity of these brain regions after stressor exposure may be part of
their therapeutic mechanism. However, the exact function of the 5-HTIE receptors are
unknown, but HTRIE is a candidate gene for several stress-related disorders [46-48].

The enrichment analysis of gene ontology terms suggests that the list of differentially
expressed genes play a role in stress vulnerability and risk for psychiatric disorders. For
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example, prenatal chronic stress has consequences on nervous system development as
shown in mice [49—-51]. Moreover, disruption of neuronal plasticity [52]. is induced by a
prolonged stressor and is a common symptoms of stress-related psychiatric disorders [53].

Furthermore, we found that differentially expressed genes in the stress network are
enriched for DNA-binding loci of both the GR and the MR based on experimental data in
rats. GR is thought to facilitate recovery and adaptation in the aftermath of stress [54] and
polymorphisms as well as post-translational modifications alter susceptibility for stress-
related psychiatric disorders [55,56]. The MR has been shown to facilitate stress reactivity
[57]. The link with GR and MR suggests that it related to factors related to systemic
adaptations, even though we cannot know to what extent these loci actually reflect target
genes.

We found a significant overlap between the genes found to be differentially expressed in the
whole stress network and those found to be differentially expressed in the region-specific
stress-network analysis of which some are known to be involved in stress-related
phenotypes [58,59]. The differences between the results obtained in these experiments can
be partially explained by the fact that the AHBA samples were collected using bulk
sequencing which does not allow the detection of differences across individual cell
populations [60]. With the increasingly availability of single cell data we will have enough
resolution to detect more subtle differences within the cortex, but for now, human brain
single cell data is very limited [24,61-63]. Moreover, previous studies has shown that
structures within the cortex are relatively similar in terms of gene expression [14].
Therefore, the finding of 201 differentially expressed genes, point out to a true difference in
the cortical stress-network and all other cortical brain regions. The non-overlapping genes
from the combined analysis of cortical and non-cortical samples might be driven by
anatomical differences, although it is complex to entangle the true biological signals from
anatomy-driven signals.

We do not know whether the differentially expressed genes are subject to genetic regulation
and whether they show differential translational responses. Furthermore, we could not
infer causality, but rather association of genes with stress-sensitivity. In this regard, it will
be of considerable interest to further study the genes that have been linked to psychiatric
disorders, as genetic variation may, in fact, lead to abnormal expression of the genes we
identified. It will also be of interest to study epigenetic regulation of the genes of interest
and gene-environment interactions [64—67].

Given that we assessed gene expression levels in the healthy brain, it is challenging to
interpret the differences in high and low expression levels and the meaning in diseased
brains. High expression levels of the genes in the stress network do not necessarily mean
that stress sensitivity is a result of the high gene expression per se. It might be the ability to
regulate neurobiological processes via direct neurotransmitter and receptor signaling or the
ability to indirectly regulate changes in gene expression [68]. Moreover, we have to take into
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consideration that we identified genes that already show low baseline expression levels in
the brain.

Another limitation of this study is that the low number of samples in some brain regions did
not allow the analysis of differential expression within these regions. For example, the
precuneus and the angular gyrus were underrepresented in the AHBA (n = 7 for both
regions), but harbored great changes according to the fMRI signal. However, there were
sufficient brain samples available from the AHBA to analyze brain regions vulnerable to
stress altogether. Moreover, the stress-network we defined was based on 78 males. Given
the relatively small sample size, replication in a bigger independent cohort should be
awaited. Furthermore, the six donors were five males and one female. It is important to
take donor’s sex effect into account, since there is a sex difference in the development and
symptoms of stress-related diseases [69,70]. Therefore, we checked whether gene
expression levels were different for the female donor compared to the male donors. We did
not find gender effects of gene expression levels of the differentially expressed genes. To
maximize the number of samples, we decided to include the female donor in our analyses. It
has to be taken into account, however, that the outcome of the performed task might be
different across the genders [71]. This implies that our results cannot be generalized over the
whole population, but are rather reflective for males, since the stress-network we identified
could also be male-specific. We also acknowledge that we do not know how the stress
network would look like in individuals at risk for other psychiatric disorder. Moreover,
brain regions differentially activated by acute stress are specific for the emotion processing
task. Therefore, we might have missed some relevant brain structures, and thus genes, that
might have become active during another task under stressful conditions. Lastly, the stress
network that was used in this paper was based on data from siblings of patients with
schizophrenia. Even though stress is a transdiagnostic factor and relevant for all psychiatric
disorders [72], we cannot directly extrapolate the stress network to other psychiatric
disorders such as depression and bipolar disorder. There is increasing research into risk
groups for these disorders, but to our knowledge, direct comparisons on brain-related
stress sensitivity between (risk groups of) across psychiatric disorders are lacking.

To our knowledge, this is the first study to map gene expression atlases to task-based fMRI
data in order to identify the molecular mechanisms underlying human stress reactivity in
relation to the risk to develop psychiatric disorders. Here, we show that this method can aid
in disentangling the molecular underpinnings of specific tasks and traits. We showed that
genes possibly underlying stress reactivity are also associated with neuronal cell type
markers (e.g., glutaminergic excitatory neurons), stress-related disease, GR and MR
responsiveness and HPA-axis activity. We identified several neuropeptides and receptors as
important players. These identified systems are not only important to understand the
underlying mechanisms of stress vulnerability, but can also be used to develop new drug
targets. Therefore, identification of novel drug targets involved in stress vulnerability would
be of great interest for the development of new therapies in stress-related psychopathology.
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CHAPTER 5

ABSTRACT

Cortical atrophy is a common manifestation in Parkinson’s disease (PD), particularly in later
disease stages. Here, we investigated patterns of cortical thickness using Ti-weighted
anatomical MRI data of 149 PD patients and 369 controls. To elucidate the molecular
underpinnings of cortical thickness changes in PD, we performed an integrated analysis of
brain-wide healthy transcriptomic data from the Allen Human Brain Atlas and
neuroimaging features. For this purpose, we used partial least squares regression to
identify gene expression patterns correlated with cortical thickness changes. In addition,
we identified gene expression patterns underlying the relationship between cortical
thickness and clinical domains of PD. Our results show that genes whose expression in the
healthy brain is associated with cortical thickness changes in PD are enriched in biological
pathways related to sumoylation, regulation of mitotic cell cycle, mitochondrial translation,
DNA damage responses, and ER-Golgi traffic. The associated pathways were highly related
to each other and all belong to cellular maintenance mechanisms. The expression of genes
within most pathways was negatively correlated with cortical thickness changes, showing
higher expression in regions associated with decreased cortical thickness (atrophy). On the
other hand, sumoylation pathways were positively correlated with cortical thickness
changes, showing higher expression in regions with increased cortical thickness
(hypertrophy). Our findings suggest that alterations in the balanced interplay of these
mechanisms play a role in changes of cortical thickness in PD and possibly influence motor
and cognitive functions.
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5.1 INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a progressive loss
of dopaminergic and non-dopaminergic neurons in the brain and peripheral and autonomic
nervous system [1]. Cortical atrophy occurs during the later disease stages and has been
associated with cognitive decline, including executive, attentional, memory, and
visuospatial deficits [2,3]. Although MRI studies of patient brains have tried to link regional
cortical atrophy to clinical features of the disease [4-8], little is known about the
pathobiology that underlies the selective cortical vulnerability in PD.

Analyzing the transcriptome in vulnerable cortical regions may aid in better understanding
the underlying molecular mechanisms of atrophy in PD. Although gene expression data of
human post-mortem PD brains is available, most findings relate to studies that focused only
on one or few coarse brain regions [9]. To perform whole brain analysis of both gene
expression and imaging data, studies turn to the Allen Human Brain Atlas (AHBA), a high
resolution gene expression atlas covering the entire brain of six adult donors without any
history of neurological disorders [10,11]. The AHBA has been combined with functional MRI
data of PD patients and revealed that the regional expression of MAPT, but not SNCA,
correlated with the loss of regional connectivity [12]. Using a similar approach, correlations
were identified between a cortical atrophy pattern and the regional expression of 17 genes
implicated in PD [13]. Although both studies used spatial transcriptomics to explore gene
expression across the whole brain, they only analyzed the expression of a limited set of
genes that are of interest to PD, e.g., those that are known as genetic risk factors.

To investigate the relationship between high dimensional genome-wide expression patterns
and imaging data, multivariate analysis methods are required. Partial least squares (PLS)
regression has been used to perform simultaneous analysis of brain-wide gene expression
from the AHBA and neuroimaging data of adolescents, healthy adults, and Huntington’s
disease [14-16]. The PLS approach allows the linking of multiple predictor variables (genes)
and multiple response variables (imaging features) and deals with multicollinearity by
projecting variables to a smaller set of components that are maximally correlated between
both datasets. Thus, PLS is an attractive model to identify gene expression patterns
associated with imaging features.

Here, we exploited PLS regression to find transcriptomic signatures that are related to
changes in cortical thickness (CT) in PD. MRI data was obtained from patients and age-
matched controls to find CT changes across all cortical regions. Gene expression samples
from healthy donors in the AHBA were anatomically mapped to the cortical regions to find
brain-wide gene expression patterns predictive of the CT changes observed in PD patients.
In addition, we assessed the relationships between CT and clinical scores in PD patients and
used a second PLS model to find expression patterns associated with these relationships
across all cortical regions. With these models we address three research questions: (1) Which
cortical regions show CT changes in PD, (2) Which genes and biological pathways show
expression patterns associated with these regional changes, and (3) Which molecular
mechanisms underlie the relationships between CT and clinical scores in PD. To answer
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these questions, we explored the whole transcriptome in cortical regions of the healthy
brain to find expression signatures predictive of imaging features in PD.

5.2 MATERIALS AND METHODS

5.2.1 MRI DATA ACQUISITION

MRI images of 149 PD patients (mean age = 64.8 years; 65.7% male) were obtained from a
cross-sectional cohort study and is part of the ‘PROfiling PARKinson's disease’ (PROPARK)
study [17]. PD patients were recruited from the outpatient clinic for Movement Disorders of
the Department of Neurology of the Leiden University Medical Center and nearby university
and regional hospitals. All participants fulfilled the United Kingdom Parkinson's
Disease Society Brain Bank criteria for idiopathic PD [18]; written consent was obtained
from all participants. The Medical Ethics Committee of the LUMC approved the study.
Three-dimensional T1-weighted anatomical images were acquired on a 3 Tesla MRI scanner
(Philips Achieva, Best, the Netherlands) using a standard 32-channel whole-head coil.
Acquisition parameters were: repetition time = 9.8 ms, echo time = 4.6 ms, flip angle = 8°,
field of view 220 x 174 x 156 mm, 130 slices with a slice thickness of 1.2 mm with no gap
between slices, resulting in a voxel size of 1.15 mm x 1.15 mm x 1.20 mm.

Three-dimensional T1-weighted images from 369 controls (mean age = 65.7 years; 48.1%
male) were acquired in a different cohort [19], where all imaging was performed on a whole
body 3 Tesla MRI scanner (Philips Medical Systems, Best, the Netherlands), using the
following imaging parameters: TR = 9.7 ms, TE = 4.6 ms, FA = 8°, FOV = 224 x 177 x 168 mm.
The anatomical images covered the entire brain with no gap between slices resulting in a
nominal voxel size 0f 1.17 x 1.17 x 1.4 mm. Acquisition time was approximately 5 min.

5.2.2 CORTICAL THICKNESS CHANGES IN SEGMENTED CORTICAL REGIONS
CT in cortical regions of PD patients and controls was determined using cortical parcellation

implemented in FreeSurfer version 5.3.0 [20]. The FreeSurfer algorithm automatically
parcellates the cortex and assigns a neuroanatomical label to each location on a cortical
surface model based on probabilistic information. The parcellation scheme of the Desikan-
Killiany atlas was used to divide the cortex into 34 regions per hemisphere [21].

To assess CT changes between patients (149) and controls (369), a two-tailed t-test assuming
unequal variances was applied in SPSS Statistics version 23. P-values were corrected for
multiple testing across 68 cortical regions using the Benjamini-Hochberg (BH) method. A
two-tailed ¢-test was also used to assess CT differences between the left and right
hemisphere for each one of the 34 cortical regions, with P-values being BH-corrected across
the 34 cortical regions.

5.2.3 CLINICAL SCORES

All patients underwent standardized assessments, and an evaluation of demographic and
clinical characteristics [17]. MDS-UPDRS is a clinical rating scale consisting of four parts: (I)
Non-motor Experiences of Daily Living; (II) Motor Experiences of Daily Living; (III) Motor
Examination; (IV) Motor Complications [22]. UPDRSTOTSCR is the total score of all four
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parts. The SENS-PD scale is a composite score of non-dopaminergic symptoms [23], LED is
the levodopa equivalent dose [24], and MMSE is the mini-mental state examination [25].

5.2.4 RELATIONSHIP BETWEEN CT AND CLINICAL SCORES
We used CT data and clinical scores from 149 PD patients to determine the relationships

between CT and clinical domains. We selected 9 clinical features with numeric (non-
nominal) values for which scores were available for 82-123 patients: AGEONSET,
SENSPDSC, MDS_UPDRS_3, MMSE, LED, MDS_UPDRS_1, MDS_UPDRS_2,
MDS_UPDRS_4, and UPDRSTOTSCR (Supplementary Figure 1).

The correlation between CT and the scores of each clinical feature individually was
determined across patients by applying linear regression. To obtain maximum correlation,
separate linear regression models were used for each combination of a region and clinical
feature:

CTy=a+ pK;+ B,Age+ ¢ (€Y
where CT; is the CT of one region i across patients, K; is the score of one clinical feature j
across patients. Age is taken into account to correct for the age of patients. a is the
background term, f; is the regression coefficient for K, 8, is the regression coefficients for
Age, and ¢ is the residual. The regression coefficient §; was used to determine the
relationship between CT and clinical domain scores, and assessed for statistical significance
where P-values were BH-corrected for 34 regions and 9 clinical features (¢-test, Ho: f; =0, P
<0.05).

5.2.5 MAPPING TRANSCRIPTOMIC DATA TO CORTICAL REGIONS
We downloaded normalized gene expression data from the Allen Human Brain Atlas (AHBA;

http://human.brain-map.org/), a microarray data set of 3,702 anatomical brain regions
from six non-neurological individuals (5 males and 1 female, mean age 42, range 24—57 years
[10]). To analyze the transcriptome in the cortical regions, we used the mapping of AHBA
samples to cortical regions in neuroimaging data proposed in [11], where they applied
Freesurfer on Tt MRIs of the six donors in the AHBA to segment the cortical regions
according to the Desikan-Killiany atlas. AHBA samples were mapped to 34 cortical regions
from the left hemisphere, since for only two out of six brains samples were collected from
both hemispheres and for four brains they only sampled from the left hemisphere. By only
analyzing the left hemisphere, we assumed that there are small to no differences in gene
expression between the left and right hemisphere [10]. Samples were assigned to a
segmented cortical region when their MNI coordinates corresponds to a voxel within a
parcel, including samples that are up to 2 mm away from any voxel in the parcel. In total
1,284 samples from the AHBA were assigned to the 34 cortical regions.

5.2.6 PARTIAL LEAST SQUARES (PLS) MODEL-1 AND MODEL-2
We used PLS regression (R-package pls 2.7) to find gene expression patterns across the 34

cortical regions that are predictive of gray matter atrophy and possibly their relationship to
scores of nine clinical domains (Supplementary Methods). PLS regression and principal
component analysis regression are both methods where the original measurements are
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projected to latent variables to study the data in reduced dimensions (Figure 5.1A). PLS
however, projects variables from each dataset to latent variables such that they are
maximally correlated between two datasets X and Y (Figure 5.1B). In this study, the
predictor X is a gene expression matrix of 34 regions (n) in the left hemisphere and all 20,017
genes (m) and is used to predict imaging variables (p) in the same set of 34 cortical regions.
For each cortical region and each gene, expression levels were averaged across samples that
fall within that cortical region and then averaged across the six donors from the AHBA, such
that the input matrix of predictor variables contains one expression value for every gene per
cortical region. We implemented two PLS models (Figure 5.1C): one single-response PLS
model, model-1, to predict CT changes, measured as the ¢-statistics of ACT between PD
patients and controls, and one multi-response PLS model, model-2, to predict the correlation
between CT and clinical scores in PD patients, measured as the t-statistics of the
coefficients B; in Equation 1.

A X3

Yz

pca;
X=TP"+E Y=UQ"+F
x, (outer relation) Vi (outer relation)
X2
U=TB+H
X1 (inner relation)
C  PLS model-1 PLS model-2

t-statistic of B;'s of
t-statistic of ACT genes clinical features

Y| — X Y |—

genes

X

regions
regions
regions
regions

Figure 5.1 Principal of partial least squares regression (PLS). (A) Principal component analysis (PCA)
and PLS project measurements to a new latent space. Unlike PCA, PLS tries to find a latent space that is
maximally correlated with another measurement y from dataset ¥ on the same samples. (B) The first
latent component t, of dataset X is maximally correlated with the first latent factor u, of dataset Y. T
and U scores determine the outer relations of individual datasets in the model. The coefficient 8
determines the inner relation between both datasets X and Y in the model (more details in
Supplementary Methods). (C) In PLS model-1, we used regional gene expression as input to predict the
regional t-statistics of ACT. Given the PLS model, R in Equation 5 and 6 in Supplementary Methods is
used as gene weights. In PLS model-2, we used the same input to predict the t-statistics of correlation
coefficients 8, of clinical features from Equation 1.
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5.2.7 PATHWAY ENRICHMENT

Pathway enrichment analysis was done using gene set enrichment analysis (GSEA) and
2,225 pathways from the Reactome database in ReactomePA R-package version 1.28. Genes
were ranked based on their weights to each PLS component; R in Equation 5 and 6 in
Supplementary Methods. Pathways were significant when the FDR-adjusted P < 0.05.

5.2.8 DATA AND CODE AVAILABILITY
Transcriptomic data from the AHBA is available at http://human.brain-map.org/. All scripts
were run in R version 1.6 and can be found online at https://github.com/arlinkeo/pd_pls.

5.3 RESULTS

5.3.1 CT CHANGES BETWEEN PD PATIENTS AND CONTROLS

We analyzed CT changes between PD patients and healthy controls (ACT) as a measure for
gray matter loss (Figure 5.1C). Each of the 68 cortical regions from both hemispheres was
assessed, for which ACT was statistically significant in 10 cortical regions (t-test, BH-
corrected P < 0.05; Figure 5.2A and Supplementary Table 1). The lateral occipital cortex
showed decreased CT in patients compared to controls in both the left hemisphere and right
hemisphere. The left caudal anterior cingulate, right isthmus cingulate, and right
pericalcarine also showed decreased CT in patients. Cortical regions with increased CT in
patients included the pars opercularis from both the left hemisphere and right hemisphere,
the right rostral middle frontal cortex, right temporal pole, and right superior temporal
cortex. In general, we observed more decreased CT (atrophy) in caudal regions of the cortex
compared to rostral regions that showed increased CT (hypertrophy).

5.3.2 CT CHANGES BETWEEN HEMISPHERES IN PD
Clinical symptoms appear asymmetrical at disease onset with the left hemisphere being

more susceptible to degeneration than the right [26]. To assess whether this asymmetry is
reflected also in the observed atrophy patterns, we compared the CT between the left and
right hemisphere for each of the 34 cortical regions in PD patients. We found six cortical
regions that showed significant hemispheric differences (BH-corrected P < 0.05; Figure 5.2B
and Supplementary Table 2). For five out of six significant regions, CT was indeed smaller in
the left hemisphere compared to the right: banks of superior temporal sulcus, entorhinal
cortex, temporal pole, medial orbitofrontal cortex, and lateral occipital cortex. For the
lateral orbitofrontal cortex, the CT was larger in the left hemisphere compared to the right.

5.3.3 GENE EXPRESSION PATTERNS PREDICTIVE OF CT CHANGES IN PD PATIENTS
To identify the molecular mechanisms underlying CT changes in PD, we integrated the

imaging features with brain-wide gene expression profiles from the AHBA (Figure 5.1C).
Using PLS model-1 (see Methods), the expression of all 20,017 genes in 34 brain regions from
the left hemisphere was used as predictor variables and we used the t-statistics of ACT
between PD patients and controls in the 34 regions (Supplementary Table 1) as a single
response variable. The number of AHBA samples varied between o and 92 for each one of
the six brain donors and 34 cortical regions (Supplementary Table 3).
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Figure 5.2 t-Statistics of cortical thickness changes (ACT) across cortical regions. (A) CT was assessed
between PD patients and healthy controls. Higher t-statistics (red) indicate a larger CT in controls
compared to the CT in patients and thus corresponds to cortical atrophy. (B) CT in the left hemisphere
compared to the right hemisphere in PD patients. Higher t-statistics (red) indicate a larger CT in the
right hemisphere compared to the left hemisphere and thus corresponds to cortical atrophy in the left
hemisphere. P-values are BH-corrected and significant regions (P < 0.05) are labeled.

The PLS components that explain maximum covariance between the input space and the
response variable are derived from successively deflated predictor and response matrices.
Hence, the first component of the predictor matrix, component-1, has maximum covariance
with the first component of the response matrix, and the second component of the predictor
matrix, component-2, has maximum covariance with the second component of the response
matrix, etc. Since PLS model-1 has a single response variable, component-1 of the response

90



GENE EXPRESSION AND CORTICAL THICKNESS

matrix is equal to a scaled version of the single response variable. As such, we only examined
PLS component-1 of the predictor matrix (additional checking with leave-one-out cross-
validation showed that the optimal number of components is indeed one, Supplementary
Figure 2).

The scores of PLS component-1 of the predictor variables (genes) showed a caudal-to-rostral
expression pattern (Figure 5.3A) that was correlated with CT changes in PD brains (Figure
5.3B), i.e. gene expression of PLS component-1 was high in caudal regions associated with
atrophy and low in regions associated with hypertrophy. The Pearson correlation between
the PLS component-1 scores of the predictor variables (gene expression) and the response
variable (t-statistics of ACT) was 0.58, and explained 20.5% of the variance in gene
expression and 34.2% of the variance in CT changes. Cortical atrophy was highest in the
lateral occipital cortex and related to high PLS component-1 scores. The pericalcarine showed
the highest PLS component-1 score. These results showed that the expression profiles of a
weighted combination of genes can be predictive of CT changes in PD.

5.3.4 FUNCTIONALITY OF GENES PREDICTIVE OF CT CHANGES

A PLS component of the predictor variables is a linear combination of weighted gene
expression. We used the gene weights of PLS component-1 to perform GSEA analysis and
revealed significant enrichment of 90 pathways, which were among others involved in DNA
damage checkpoints, stabilization of ps3, regulation of apoptosis, mitochondrial
translation, and SUMOylation of chromatin organization proteins (Supplementary Table 4).
High overlap of genes between the enriched pathways suggested that these functional
processes are highly related to each other (Supplementary Figure 3).

Significant pathways are either positively or negatively correlated with CT changes based on
the median weight of genes within pathways. Out of the 90 pathways that were significantly
enriched, three pathways were positively correlated with the t-statistic of ACT. These
included SUMOylation of chromatin organization proteins, signaling by cytosolic FGFR1
fusion mutants, and class C/3 (Metabotropic glutamate/pheromone receptors). Higher
mean expression of genes within these three pathways is related to cortical atrophy (higher
t-statistics of ACT); as apparent in the lateral occipital cortex (Figure 5.3C and
Supplementary Figure 4). The positive correlation also indicates that a lower expression of
these pathways is related to cortical hypertrophy (lower t-statistics of ACT). We found 87
negatively correlated pathways (median gene weight < 0). These pathways seem to play a
role in the mitochondrial regulation of mitosis as we found pathways for mitochondrial
translation, the regulation of mitotic cell cycle, ps3-(in)Jdependent DNA damage
checkpoints, and the degradation of mitotic proteins, such as cyclins A, and D. In general,
the mean expression of genes in the negatively correlated pathways was high in cortical
regions that showed hypertrophy, such as the pars opercularis or the entorhinal cortex.
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Figure 5.3 Transcriptional signatures to predict t-statistics of ACT between PD patients and controls
in PLS model-1. (A) PLS component-1 scores of predictor variables (gene expression) visualized in
cortical regions (lateral and medial view of the left hemisphere). (B) Regression fit of the latent predictor
variable, PLS component-1 scores, with the single response variable, CT changes in PD measured as the
t-statistics of ACT between PD patients (149) and controls (369) across the 34 cortical regions. (C) Mean
expression of genes in the top 30 significant pathways (rows) across cortical regions (columns). A
complete heatmap with all significant pathways is given in Supplementary Figure 4. The correlation
between transcriptomic signatures and CT changes in PD across cortical regions is predicted by the
gene weights for PLS component-1 shown in boxplots for each pathway where the median weight is
either negative or positive. Negatively correlated pathways show high gene expression in regions with
low t-statistics of ACT and gene expression decreases in regions with higher t-statistics of ACT. In our
analysis, negative t-statistics correspond to increased CT (cortical hypertrophy) and positive t-statistics
of ACT correspond to decreased CT (cortical atrophy). Positively correlated pathways show low
expression in regions with low t-statistics of ACT and expression increases in regions with higher t-
statistics of ACT. * = APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of the
cell cycle checkpoint. ** = APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted
proteins in late mitosis/early G1.
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5.3.5 RELATIONSHIPS BETWEEN CLINICAL SCORES AND CORTICAL THICKNESS

Next, we set to understand the relationship between CT in 34 cortical regions and clinical
scores of PD patients. Linear regression was used to predict clinical scores from CT across
patients and obtain regression coefficients, 8;, for each cortical region and clinical domain
(Equation 1). We assessed the t-statistics of the regression coefficients instead of the
coefficients B; themselves (Ho: B; = 0) (Figure 5.4). Negative t-statistics showed that most
combinations of cortical regions and clinical features are negatively correlated. For all
clinical features, higher scores also indicate more severe symptoms, except for MMSE
scores where lower scores indicate more severe symptoms, and thus showed positive
relationships with CT. In most regions, age at onset (AGEONSET) also showed positive
relationships with CT, indicating that age at onset has an effect on the loss of CT. While
these general interpretations apply to most cortical regions, some regions showed different
relationships with CT. For example, CT in the rostral anterior cingulate is negatively related
to age at onset, and positively related to MDS-UPDRS 4 scores.
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Figure 5.4 Relationship between clinical scores and CT across PD patients. Linear regression was used
to predict clinical scores from CT across at most 123 PD patients (Supplementary Figure 1). Separate
models were used for each clinical feature (row) and cortical region (column) to obtain regression
coefficients, see Equation 1. The heatmap shows the two-sided t-statistics of the regression coefficient
when tested for Ho: B4 = 0. Regions (columns) are clustered based on complete linkage of the Euclidean
distance of the t-statistics of ;.

5.3.6 GENES PREDICTIVE OF RELATIONSHIPS BETWEEN CLINICAL SCORES AND CORTICAL THICKNESS

With PLS model-2, we examined gene expression patterns that are predictive of the
relationship between CT and clinical scores measured as t-statistics of the correlation
coefficients B; in Equation 1 (Figure 5.1C). We selected the first two PLS components for
further analysis, which explained 36% of the variance of the predictor variables and 37% of
the variance of the response variables (Supplementary Figure 5). PLS component-1 scores of
the predictor variables showed a ventral-to-dorsal gene expression pattern (Figure 5.5A) that
is correlated with the PLS component-1 scores of the response variables (Pearson r = 0.76,
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Figure 5.5B). The dorsal regions include the postcentral gyrus which is part of the primary
somatosensory cortex. PLS component-2 scores of the predictor variables showed a caudal-
to-rostral gene expression pattern (Pearson r = 0.56, Figure 5.6A) that is correlated with the
PLS component-2 scores of the response variables (Figure 5.6B). Moreover, we assessed PLS
component-3 (Pearson r = 0.76 between the predictors and response variables), which
additionally explained 9% variance of the predictor variables and 11% variance of the
response variables. However, further analysis revealed there were no enriched pathways for
component-3 limiting the functional interpretation of this component.

PLS component-1 and component-2 of the predictor variables showed 144 and 230 significantly
enriched pathways, respectively, with 54 overlapping pathways between the two
components (Supplementary Table 5 and 6). Both components showed a cluster of related
pathways involved in anterograde and retrograde transport between Golgi and endoplasmic
reticulum (ER), and asparagine N-linked glycosylation (Supplementary Figure 6 and 7).
Other pathways that overlapped between the two components included macroautophagy,
mitochondrial translation, mitochondrial biogenesis, mitochondrial protein import, DNA
damage/telomere stress induced senescence, oxidative stress induced senescence, and
protein localization.

Furthermore, PLS component-1 showed enrichment of pathways involved in tRNA and rRNA
processing in the nucleus and mitochondrion, voltage-gated potassium channels, uptake
and actions of bacterial toxins, and interleukin signaling. PLS component-2 showed strong
enrichment of neutrophil degranulation, DNA replication, p53-(in)dependent DNA damage
response, and chaperonin-mediated protein folding, and tubulin folding. Notably, the gene
expression pattern of PLS component-2 was also associated with several sumoylation
pathways and pathways involved in mitotic cell cycles and the degradation of mitotic
proteins (Supplementary Table 6).

The enriched pathways for PLS component-1 and component-2 either showed negative or
positive median gene weights that inform about the sign of the correlation between genes
within a pathway and the PLS component score of the response variables (Figure 5.5C,
Figure 5.6C, Supplementary Figure 8 and 9). For example, the expression of genes within
pathways relating to mitochondrial processes increases for higher PLS component-1 scores of
the response variables. We further assessed PLS component-1 and component-2 scores of the
predictor variables and their correlation with each individual response variable, which are
the clinical features and their relationship with CT in PD patients (Figure 5.7). The rostral-
to-dorsal expression pattern of PLS component-1 is highly predictive of the relationship
between CT and MMSE score in patients (Pearson’s r= 0.71). Thus, pathways associated with
PLS component-1 may play an important role in cognitive circuits, which seems to be
apparent based on their expression in the postcentral gyrus, but also the entorhinal cortex.
PLS component-2 scores showed low correlations with the clinical features and their relation
with CT across cortical regions, and suggests weak associations between the expression
patterns of PLS component-2 and the response variables.
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Figure 5.5 Transcriptional signatures of PLS component-1in PLS model-2 predictive of the relationship
between cortical thickness (CT) and clinical scores. (A) PLS scores for PLS component-1 of the predictor
variables (gene expression) and (B) its correlation with PLS component-1 of the response variables (t-
statistic of B4 in Equation 1). Axes show the percentage of explained variance for each component; r
indicates the Pearson correlation. (C) Mean expression across cortical regions (columns) of genes in the
top 30 significant pathways (rows). A complete heatmap with all significant pathways is given in
Supplementary Figure 8. * = Respiratory electron transport, ATP synthesis by chemiosmotic coupling,
and heat production by uncoupling proteins.
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Figure 5.6 Transcriptional signatures of PLS component-2 in PLS model-2 predictive of the relationship
between cortical thickness (CT) and clinical scores. (A) PLS scores for PLS component-2 of the predictor
variables (gene expression) and (B) its correlation with PLS component-1 of the response variables (t-
statistic of B4 in Equation 1). Axes show the percentage of explained variance for each component; r
indicates the Pearson correlation. (C) Mean expression across cortical regions (columns) of genes in the
top 30 significant pathways (rows). A complete heatmap with all significant pathways is given in
Supplementary Figure 9.
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Figure 5.7 Correlations between PLS model-2 component-1 and component-2 scores of the predictor
variables and individual response variables. Each plot shows the correlation between the predictor
variables of gene expression (x-axis) and the response variables which are the relationships between CT
and scores of a clinical feature across cortical regions (y-axis). On top of each plot, the Pearson
correlation and the Y-loadings (Q in Eq. 4 and 8) are shown; both values tell something about the sign (-
/+) and magnitude (high/low) of the correlation. Each point or sample is one of the 34 cortical regions.
Regions are labeled for those with minimum or maximum value along one of the axes.

5.4 DiscussION
We found a caudal-to-rostral gene expression pattern that was correlated with CT changes

in PD (PLS model-1); cortical atrophy was found in caudal regions while rostral regions

showed cortical hypertrophy. This transcriptional signature was highly enriched for genes

in biological pathways associated with mitochondrial translation and mitotic cell cycle

regulation. We also found a ventral-to-dorsal and caudal-to-rostral gene expression pattern

that was correlated with the relationship between CT and clinical domains of PD (PLS model-
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2). Both transcriptional signatures were associated with similar pathways, including
macroautophagy and Golgi-ER trafficking, and may be involved in the effect of CT on
clinical scores, namely MMSE scores for cognitive assessment.

The CT analyses between disease conditions and hemispheres in patients revealed cortical
regions that are susceptible to atrophy. Cortical atrophy in PD commonly occurs
asymmetrical, with a preference for the left hemisphere, particularly in the early disease
stages [26—29]. Here, we showed that five out of six regions with significant CT changes
between hemispheres, indeed revealed more atrophy in the left hemisphere. Two cortical
regions that showed significant changes between patients and controls, also showed
changes between the left and right hemisphere. Our findings are in line with those of a
previous study showing that cortical atrophy in PD most prominently affects the lateral
occipital cortex, particularly in the left hemisphere [13]. The temporal pole showed
hypertrophy in patients compared to controls, which was only significant in the right
hemisphere. However, our analysis between hemispheres of PD brains suggests that the left
temporal pole is more susceptible to CT loss than the right hemisphere. The remaining
regions that were susceptible to CT changes showed atrophy in either the left or right
hemisphere; however differences between hemispheres in patients could not be confirmed.
All 10 regions that were different between patients and controls, except the pericalcarine,
were earlier identified as part of two structural covariance networks that were related to
gray matter atrophy in the same PD dataset as in this study [17]. Overall, we observed
atrophy in caudal regions, which earlier has been associated with late stage PD [26].

With our findings of the PLS models we interpret gene expression patterns of the healthy
brain in relation to imaging features observed in PD. The six adult donors of the AHBA had
no known neuropsychiatric or neuropathological history [30], however it is unknown
whether these individuals could have developed neurodegenerative diseases later in life. The
observed spatial gene expression patterns reflect the physiological conditions in the adult
healthy brain and are informative of important molecular mechanisms that are vulnerable
in PD. The biological pathways found for PLS model-1 were closely related as they shared
many similar genes. These interrelated pathways suggest a strong functional relationship
between molecular processes involving mitotic cell cycle, mitochondrial translation,
transport between ER and Golgi, DNA damage checkpoints, and sumoylation. We found
that differential regulation of these molecular processes across the brain was associated
with CT changes observed in PD. Similar pathways were found in PLS model-2 with multiple
response variables corresponding to the relationships between CT and nine clinical domain
scores in PD.

There is evidence that impaired cell cycle control plays a role in the pathogenesis of
neurodegenerative diseases. In healthy conditions, differentiated neuronal cells become
quiescent cells that cannot re-enter the cell cycle, however in neurodegenerative diseases
they are reactivated which is associated with increased cell death [31]. Cell cycle checkpoints
are controlled by cyclins that guide the cell from one phase to the next phase and its
expression can induce cell cycle re-initiation [32]. Here, we found that regional expression
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of pathways associated with the degradation of cell cycle proteins in healthy conditions were
negatively correlated with CT changes in PD, i.e. higher expression was associated with
cortical hypertrophy in rostral regions such as the pars opercularis and temporal pole.
Reversely, we observed low expression of protein degradation pathways in caudal regions
that were associated with atrophy, and therefore suggests that regions with low expression
are more vulnerable to improper degradation of cell cycle proteins leading to cell cycle
initiation. This indicates that regions with low expression of such essential pathways are
predisposed to neurodegeneration.

We found that the expression of several pathways associated with DNA replication and p53-
(in)dependent DNA damage responses and checkpoints were correlated with CT changes.
DNA replication during the S-phase may control the survival of post-mitotic cells by DNA
repair mechanisms or apoptosis followed by DNA damage, which seems to be the case in
neurodegenerative diseases [33]. Furthermore, DNA damage response signaling can be
modulated by tumor suppressor ps3 and may also contribute to apoptosis in aging and age-
related neurodegenerative disorders [34]. These pathways showed similar expression
patterns as those associated with the mitotic cell cycle, and therefore a lower expression of
these DNA damage response pathways in caudal regions is related to cortical atrophy in PD.

Similar caudal-to-rostral expression patterns were found for pathways associated with
mitochondrial translation. Increased risk for PD has been associated with mutations in
SNCA, PARK?2 (parkin), PINK1, DJ-1, and LRRK2 which have been linked to mitochondrial
function and oxidative stress [35]. PINK1 and parkin mediates clearance of damaged
mitochondria by mitophagy and may therefore influence mitotic cell cycle progression [36].
PINK1 also regulates both retrograde and anterograde axonal transport of mitochondria via
axonal microtubules [37] The interaction between PINK1 and parkin is likely involved in
mitochondrial quality control mechanisms, where anterograde transport of damaged
mitochondria is reduced and retrograde transport is enhanced for elimination by
mitophagy in the neuronal cell body [38].

A cluster of pathways involved in ER-Golgi traffic were found enriched for PLS model-2
component-1 and component-2, and involved both ER-to-Golgi anterograde and Golgi-to-ER
retrograde transport. Component-1 showed a ventral-to dorsal gene expression pattern that
was associated with higher correlations between CT and clinical scores, namely, the mental
state of PD patients and the performance of motor functions. The pathways involved in ER-
Golgi traffic were notably high expressed in the postcentral gyrus which contains the
somatosensory cortex that is known for its role in processing sensory information and the
regulation of emotion [39]. Our results suggest that genes in ER-Golgi traffic pathways are
important for cognitive functions controlled by the postcentral gyrus. Genes involved in ER-
Golgi vesicle trafficking have the ability to modify a-synuclein toxicity in yeast [40].
Moreover, fragmentation to the Golgi apparatus has been associated with the accumulation
of aberrant proteins in neurodegenerative diseases, including a-synuclein [41]. A study in
yeast models has showed that a-synuclein expression modulates ER stress signaling
response and inhibits viral infections and viral replication [42]. We found several pathways
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associated to HIV and influenza infections that were correlated to the relationship between
CT and clinical scores. Another pathway that shared overlapping genes with those involved
in ER-Golgi traffic was asparagine N-linked glycosylation, which is a biochemical linkage
important for the structure and function of proteins. The N-glycosylated proteins are
synthesized essentially in the ER and Golgi through sequential reactions and aberrant
glycolysation of proteins may lead to inflammation and mitochondrial dysfunction in PD
and consequently to a cellular overload of dysfunctional proteins [43].

We found that the expression of genes involved in sumoylation of chromatin organization
proteins was correlated with CT changes, i.e. higher expression within caudal brain regions,
such as the pericalcarine and the lateral occipital cortex, was associated with greater
atrophy in PD. Therefore, higher activity of sumoylation events may play a role in the
regional vulnerability to neurodegeneration observed in PD. On the other hand, lower
expression of these pathways, such as in the pars opercularis, was associated with
hypertrophy in rostral regions, suggesting that lower expression of sumoylation pathways
has a protective effect. Additionally, the higher expression of sumoylation pathways was
associated with higher correlations between CT and clinical scores as projected by PLS
component-2 in model-2. Sumoylation involves small ubiquitin-like modifier (SUMO) proteins
that increase in response to cellular stress, such as DNA damage and oxidative stress, and
can promote a-synuclein aggregation and Lewy body formation [44—46]. Several proteins
associated with inherited forms of PD are targets modified by SUMO regulating
mitochondrial processes, these include a-synuclein, DJ-1, and parkin [47]. Sumoylation has
been associated with several diseases, including cancers, cardiac diseases, and
neurodegenerative diseases [48]. In cancer, sumoylation mediates cell cycle progression and
plays an essential role during mitosis [49]. SUMO seems to promote cell death mediated by
the ps3 tumor suppressor protein, which may be responsible for the cell death of
dopaminergic neurons in PD [44]. Our findings are in support of these hypotheses, and
further suggest that sumoylation is important in specific cortical regions that are atrophic
in PD, such as the lateral occipital cortex.

Spatial gene expression data from PD brains are limited in the number of brain donors and
brain regions, which is mainly due to the limited availability of well-defined post-mortem
PD patients. Therefore, we used healthy gene expression from the AHBA to perform
unbiased whole brain and whole transcriptome analysis. Gene expression for all the six
healthy adult donors in AHBA was only available for the left hemisphere. Therefore, this
study was restricted to the analysis of the left hemisphere when combining gene expression
with MRI data. Furthermore, it is generally assumed that gene expression changes with age,
however due to the limited number of brain donors in the AHBA, age-related differences in
gene expression were not taken into account. In addition, MRI data from the patient and
control groups were collected in different cohorts where different MRI scanners were used.
However, both datasets were processed separately to obtain CT measurements per region.
Thus, these morphological features could be directly compared between the two groups.
Finally, to determine whether genes and pathways truly have predictive power of imaging
features, both PLS models need to be validated with independent imaging cohorts of PD.
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5.5 CONCLUSION

We set out to find biological explanations for the selective regional vulnerability in PD by
correlating healthy gene expression in cortical regions with CT changes in PD observed as
atrophy and hypertrophy in neuroimaging data. We found genes that point towards
pathways involved in cellular maintenance mechanisms that are well known in PD and other
neurodegenerative diseases, but were shown to be differently regulated across the brain.
Sumoylation pathways showed opposite expression patterns across the brain compared to
pathways associated with the regulation of mitotic cell cycle, ps3-(in)Jdependent DNA
damage response, mitochondrial translation, and ER-Golgi trafficking (Figure 5.8).
Nevertheless, all the enriched pathways were highly interconnected as shown by the number
of shared genes and suggest a balanced interplay between sumoylation events and the other
molecular mechanisms that seem to be important in controlling CT in different cortical
regions. Moreover, we propose that dysfunctions of these pathways may impair motor and
cognitive functions in PD as a consequence of cortical atrophy.

Increased CT in Decreased CT in
rostral regions caudal regions

(hypertrophy) i l (atrophy)
SNCA
PINK1
— PARK? —

DJ-1

Regulation of mitotic cell cycle LRRK2 Sumoylation
DNA damage responses
Mitochondrial translation / \
ER-Golgi traffic
S

Figure 5.8 Schematic overview of the balance between biological pathways and their influence on CT
across cortical brain regions. The big arrow indicates the caudal-to-rostral (red-to-blue) or rostral-to-
caudal (blue-to-red) change in CT across cortical brain regions of PD patients with red indicating
decreased CT (atrophy) in caudal regions and blue indicating increased CT (hypertrophy) in rostral
regions. Genes within pathways associated with sumoylation showed that the expression of these genes
within the pathways increases from rostral to caudal regions. Other biological pathways that were
correlated with CT changes in PD included regulation of mitotic cell cycle, mitochondrial translation,
DNA damage responses, and ER-Golgi traffic, and the involved genes showed decreasing expression
patterns from rostral to caudal regions (or increasing from caudal to rostral regions). All enriched
pathways shared many common genes and were generally associated with cellular maintenance
mechanisms. Literature studies suggest that these biological pathways may be involved in the
pathobiology of PD through their interaction with genetic risk variants.
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ABSTRACT

The molecular mechanisms underlying caudal-to-rostral progression of Lewy body
pathology in Parkinson’s disease remain poorly understood. Here, we identified
transcriptomic signatures across brain regions involved in Braak Lewy body stages in non-
neurological adults from the Allen Human Brain Atlas. Among the genes that are indicative
of regional vulnerability, we found known genetic risk factors for Parkinson’s disease:
SCARB2, ELOVL7, SH3GL2, SNCA, BAP1, and ZNFi84. Results were confirmed in two
datasets of non-neurological subjects, while in two datasets of Parkinson’s disease patients
we found altered expression patterns. Co-expression analysis across vulnerable regions
identified a module enriched for genes associated with dopamine synthesis and microglia,
and another module related to the immune system, blood-oxygen transport, and endothelial
cells. Both were highly expressed in regions involved in the preclinical stages of the disease.
Finally, alterations in genes underlying these region-specific functions may contribute to
the selective regional vulnerability in Parkinson’s disease brains.
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6.1 INTRODUCTION

Parkinson’s disease (PD) is characterized by a temporal caudal-rostral progression of Lewy
body (LB) pathology across a selected set of nuclei in the brain [1]. The distribution pattern
of LB pathology is divided into six Braak stages based on accumulation of the protein a-
synuclein — the main component of LBs and Lewy neurites — in the brainstem, limbic, and
neocortical regions [1]. These six Braak stages indicate affected regions throughout the
progression of PD with the region involved in Braak stage 1 being first affected and the
region involved in Braak stage 6 being last affected. Thus, the Braak staging scheme points
out vulnerable brain regions involved in disease progression and the sequential order of
their vulnerability. Different hypotheses have been brought forward to explain the evolving
LB pathology across the brain, including: retrograde transport of pathological a-synuclein
via neuroanatomical networks, o-synuclein’s prion-like behavior, and cell- or region-
autonomous factors [2,3]. Yet, the mechanisms underlying the selective vulnerability of
brain regions to LB pathology remain poorly understood, limiting the ability to diagnose
and treat PD.

Multiplications of the SNCA gene encoding a-synuclein are relatively common in autosomal
dominant PD and SNCA dosage has been linked to the severity of PD [4,5]. For other PD-
associated variants, e.g., GBA and LRRK2, their role in progressive a-synuclein
accumulation is less clear, although they have been associated with mitochondrial
(dys)function and/or protein degradation pathways [6-8]. On the other hand,
transcriptomic changes between PD patients and non-neurological controls of selected
brain regions, e.g., the substantia nigra, have identified several molecular mechanisms
underlying PD pathology, including synaptic vesicle endocytosis [9-11]. However, post-
mortem human brain tissue of well-characterized PD patients and controls is scarce, usually
focuses on a select number of brain regions, and have a limited coverage of patients with
different Braak LB stages, resulting in low concordance of findings across different studies
[12].

Spatial gene expression patterns in the human brain have been studied to unravel the
pathogenic mechanisms underlying amyloid-B and tau pathology progression in
Alzheimer’s disease, revealing proteins that co-aggregate with amyloid-B and tau, and
protein homeostasis components [13,14]. This highlights the value of analyzing spatial
transcriptomics to study the pathobiology in neurodegenerative diseases. Interestingly, by
integrating Allen Human Brain Atlas (AHBA) gene expression data [15] with magnetic
resonance imaging of PD patients, the regional expression pattern of MAPT and SNCA was
associated with loss of functional connectivity in PD [16], and regional expression of
synaptic transfer genes was related to regional gray matter atrophy in PD [17]. This
combined gene-MRI analysis illustrates the importance of local gene expression changes on
functional brain networks. More detailed knowledge about the spatial organization of
transcriptomic changes in physiological and pathological conditions may aid in
understanding these changes on a functional level during disease progression in PD.
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In the present study, we analyzed the transcriptome of brain regions involved in Braak LB
stages [18] of non-neurological adult donors from the AHBA to reveal molecular factors
underlying selective vulnerability to LB pathology during PD progression. We validated our
findings in two independent non-neurological datasets (the Genotype-Tissue Expression
project (GTEx) [19] and UK Brain Expression Consortium (UKBEC) [20]). Further, we
showed that Braak stage-related genes (BRGs) are indeed progressively disrupted in
patients with incidental Lewy body disease (iLBD; assumed to represent the pre-clinical
stage of PD [11,21]) and PD. The observed transcriptomic signatures of vulnerable brain
regions pointed towards the dopamine biosynthetic process and oxygen transport that were
highly expressed in brain regions related to the preclinical stages of PD. Together, our
analyses provide important insights that enable a better understanding of the biological
mechanisms underlying disease progression.

6.2 RESULTS

6.2.1 STUDY OVERVIEW

The PD Braak staging scheme defines a temporal order of brain regions affected during the
progression of the disease [18]. Based on the sequence of events as postulated by Braak et al.
[1], we hypothesized that genes whose expression patterns increase or decrease across
regions involved in the Braak staging scheme might contribute to higher vulnerability to LBs
in PD brains (Figure 6.1). Based on this assumption, we aimed to find (1) which genes are
involved, (2) which modules of interacting genes are involved, and (3) which biological
processes contribute to this vulnerability. We analyzed the regions of interest using a
microarray dataset of anatomical brain regions from six individuals without any known
neuropsychiatric or neurological background from the AHBA [15]. Therefore, we first
assigned 2,334 out of 3,702 brain samples to Braak stage-related regions Ri-Ré [18]:
myelencephalon (medulla, R1), pontine tegmentum including locus coeruleus (R2),
substantia nigra, basal nucleus of Meynert, CA2 of hippocampus (R3), amygdala, occipito-
temporal gyrus (R4), cingulate gyrus, temporal lobe (R5), frontal lobe including the olfactory
area, and parietal lobe (R6) (Supplementary Table 1, and Supplementary Figure 1).

6.2.2 PD BRAAK STAGE-RELATED GENES

To identify genes with expression patterns that are associated with selective vulnerability to
PD, i.e. BRGs, we correlated gene expression with the label of these vulnerable regions as
defined by Braak stage. To ensure that genes have large expression differences across
regions, we assessed differential expression between all pairs of Braak stage-related regions
R1-R6, and found most significant changes between regions related to the most distant
stages: R1 versus Rs and Ri versus Ré (|fold-change (FC)| > 1, Benjamini-Hochberg (BH)-
corrected P < 0.05, t-test; Supplementary Figure 2). Thus, in the selection of BRGs, we also
focused on the FC between the disease-related end points R1 and Ré.

BRGs were selected based on (i) the highest absolute Braak label correlation (|r|), (ii) highest
absolute FC between R1 and Ré (|FCrure|), and (iii) smallest BH-corrected P-values of the FC
(Prc). The top 10% (2,001) ranked genes for each one of the three criteria resulted in genes
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with |r| > 0.66, |FCrirs|>1.33, and Prc < 0.00304 (Figure 6.24). The overlap of the three sets
of top 10% ranked genes resulted in 960 BRGs, with 348 negatively and 612 positively
correlated genes showing a decreasing (r < 0) or increasing (r > 0) expression pattern across
regions R1-Ré, respectively (Figure 6.2B and C, Supplementary Figure 3, and Supplementary
Data 1). Negatively correlated BRGs were significantly enriched for gene ontology (GO)
terms like anatomical structure morphogenesis and blood vessel morphogenesis
(Supplementary Data 2), while positively correlated BRGs were significantly enriched for
functions like anterograde trans-synaptic signaling and nervous system development (BH-
corrected P < 0.05, DAVID; Supplementary Data 3).

Since the expression patterns of the 960 BRGs were observed in only six non-neurological
brains from the AHBA, we used two independent datasets from non-neurological controls
for validation. For each dataset we assessed whether BRGs were also differentially expressed
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Figure 6.1 Study overview. Differential vulnerability to Parkinson’s disease (PD) was examined across
brain regions R1-Ré (image credit: Allen Institute). N is the number of samples across all six non-
neurological donors from the Allen Human Brain Atlas (AHBA), which are involved in the six PD Braak
stages as they sequentially accumulate Lewy bodies during disease progression (Supplementary Table 1
and Supplementary Figure 1). Through correlation and differential expression analysis, we identified
Braak stage-related genes (BRGs) with expression patterns that are either positively (r > 0) or negatively
(r < 0) correlated with Braak stages in the non-neurological brain. These were validated in cohorts of
non-neurological individuals and subsequently in PD patients and age-matched controls. To obtain a
more global view of BRG expression signatures, we focused on co-expression modules of all genes and
correlated the module eigengene expression with Braak stages. The resulting modules of genes were
subsequently analyzed to detect common biologically meaningful pathways.
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between regions related to the most distant Braak stages, and whether the decreasing or
increasing expression patterns could be replicated. First, using microarray data from 134
individuals in the UKBEC [20], we selected brain samples corresponding to the
myelencephalon (R1), substantia nigra (R3), temporal cortex (R5), and frontal cortex (Ré).
For the 885 BRGs present in UKBEC, 139 out of 314 (44.3%) negatively correlated BRGs and
400 out of 571 (70.1%) positively correlated BRGs were differentially expressed between R1
and R6 (|FCrurs| > 1, BH-corrected P < 0.05, t-test). The mean expression of negatively and
positively correlated BRGs showed indeed decreasing and increasing expression patterns,
respectively, across regions Ri, R3, Rs, and Ré (Figure 6.2D). Second, we used RNA-
sequencing (RNA-seq) data from 88-129 individuals in the GTEx consortium [19] and
selected samples of the substantia nigra (R3), amygdala (R4), anterior cingulate cortex (R5),
and frontal cortex (R6). For the 883 BRGs present in the GTEx consortium, 204 out of 318
(64.2%) negatively correlated BRGs and 475 out of 565 (84.1%) positively correlated BRGs
were differentially expressed between the two most distant regions R3 and R6 in this dataset
(FC rs-rs| > 1, BH-corrected P < 0.05, DESeqz2). The mean expression of BRGs again showed
decreasing and increasing patterns, here across regions R3-Ré (Figure 6.2E). Together, this
indicates that the expression patterns of BRGs in the brain are consistent across non-
neurological individuals.

We next hypothesized that if the identified BRGs are associated with vulnerability to PD,
they are also indicative of vulnerability differences between PD patients and controls. To
test this hypothesis, we used two datasets with transcriptomic measurements from brain
regions covering most Braak stage-related regions sampled from PD and iLBD patients, and
non-demented age-matched controls (microarray [11] (Supplementary Table 2 and
Supplementary Data 4) and RNA-seq datasets (Supplementary Table 3 and Supplementary
Data 5); see the “Methods” section). First, we found more differentially expressed genes
between brain regions within the same group of individuals (PD, iLBD, and control) than
between conditions within the same region (Supplementary Figure 4). This observation
further highlights the importance of assessing expression patterns across regions rather
than disease conditions [28]. Next, we validated the expression patterns of BRGs, which we
identified in brains of non-neurological adults from the AHBA, in both the PD microarray
and RNA-seq datasets. First, we observed (again) similar patterns in non-demented age-
matched controls (Figure 6.2F and G). Interestingly, the increasing and decreasing
expression patterns of BRGs were diminished in iLBD patients and totally disrupted in PD
patients across regions involved in preclinical stages R1-R3 (Figure 6.2F). Across regions R3
and R4/Rs however, these expression patterns were preserved in PD patients (Figure 6.2G).
In addition to the patterns across brain regions, we found that BRGs also captured patterns
across conditions PD, iLBD, and control (Supplementary Figure 5). For both PD datasets,
this is most apparent within the substantia nigra (R3), where negatively correlated BRGs
that had higher expression in more vulnerable brain regions also had higher expression in
PD patients compared to controls. Vice versa, positively correlated BRGs that had higher
expression in less vulnerable brain regions also had higher expression in controls compared
to PD patients.
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Figure 6.2 Expression patterns of Braak stage-related genes (BRGs) across brain regions of non-
neurological, incidental Lewy body disease (iLBD) and Parkinson’s disease (PD) brains. (A) Selection of
BRGs that were either negatively (blue; r < 0) or positively (red; r > 0) correlated with Braak stages.
Genes were selected based on (1) highest absolute correlation (|r|) of gene expression and Braak stage
labels, (2) highest absolute fold-change (FC) between R1 and Ré, and (3) lowest P-value of FC in the
differential expression analysis (BH-corrected Prc), for which the top 10% (2,001) genes resulted in the
shown thresholds. The overlap between the three sets of top 10% genes resulted in 960 BRGs. (B)
Correlation r of BRGs (red and blue points) with Braak stages (x-axis) and —logic BH-corrected P-value
(y-axis). (C) Mean expression of BRGs for each region (colors) and donor (opacity) in the AHBA (number
of samples in Supplementary Table 1). (D) Validation across 134 non-neurological individuals in UK
Brain Expression Consortium (UKBEC; R1: medulla, R3: substantia nigra, Rs: temporal cortex, Ré:
frontal cortex), and (E) 88-129 non-neurological individuals in Genotype-Tissue Expression Consortium
(GTEx; R3: substantia nigra, R4: amygdala, Rs: anterior cingulate cortex, Ré: frontal cortex). Each data
point is a sample with the mean expression of negatively or positively correlated BRGs. (F) Validation in
PD microarray dataset (R1: medulla oblongata, R2: locus coeruleus, R3: substantia nigra; number of
samples in Supplementary Table 2) and (G) PD RNA-seq dataset (R3: substantia nigra, R4/Rs: medial
temporal gyrus; number of samples in Supplementary Table 3). Boxplots (f, g) are shown per patient
group (PD, iLBD, and control) and per brain region (Supplementary Figure 5). The boxplots indicate the
median and interquartile range (25th and 75th percentiles) with whiskers indicating 1.5 times the
interquartile range; outliers beyond the whiskers are plotted individually.

To summarize, these validations showed that the expression patterns of the detected BRGs
are replicated in independent datasets (UKBEC and GTEx) and indeed showed progressively
disturbed patterns in iLBD and PD patients (PD microarray and PD RNA-seq datasets). This
was shown for the mean of both BRGs groups (increasing and decreasing), but is also shown
for individual BRGs (Supplementary Figure 6). These findings support the relationship of
BRGs with PD vulnerability encountered in brain regions of non-neurological individuals

and show how their expression may influence the vulnerability at a region-specific level as
well as between patients and controls.
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6.2.3 BRAAK STAGE-RELATED CO-EXPRESSION MODULES

In addition to the expression of individual genes, we analyzed non-neurological brains from
the AHBA to examine the expression of gene sets that may jointly affect the vulnerability of
brain regions to PD. To study genetic coherence in vulnerable brain regions, we clustered all
20,017 genes into 167 modules based on their pairwise co-expression across regions R1-Ré.
The module eigengene, which summarizes the overall expression of genes within a module,
was correlated with the labels of regions R1-R6 as defined by Braak stages (Figure 6.3A and
Supplementary Data 6). Whether or not the modules showed expression patterns that
correlated with Braak stages, their expression in the arcuate nucleus of medulla, locus
coeruleus and CA2-fleld was consistently low (Figure 6.3B and Supplementary Figure 7). For
the CA2-field this might be explained by the presence of Lewy neurites rather than LBs [18].
Correlations with Braak stages were mostly driven by the expression change between
regions involved in preclinical stages (R1-R3) and clinical stages (R4-R6). In addition,
regions Ri-R3 showed more extreme expression values (high and low) than in regions R4-
Ré6.

We selected 23 co-expression modules for which the eigengene was significantly correlated
with Braak stages (BH-corrected P < 0.0001, t-test). These modules have distinct expression
patterns (Supplementary Figure 8) and those that were negatively correlated with Braak
stages showed more distinct expression patterns than the positively correlated modules
(Supplementary Figure 9). Module M39 showed the lowest correlation with Braak stages (r =
-0.87, BH-corrected P = 3.65e-7, t-test), while Mso showed the highest correlation (r = 0.92,
BH-corrected P = 4.42e-7, t-test). Most modules were significantly enriched for BRGs that
were similarly correlated with Braak stages (BH-corrected P < 0.05, hypergeometric test;
Figure 6.3C). For functional characterization, modules were further assessed for
enrichment of cell-type markers [26], and gene sets associated with functional GO terms or
diseases. A full version of the table in Figure 6.3C showing all significant associations is
given in Supplementary Figure 10.

We found that modules that were negatively correlated with Braak stages were enriched for
markers for all different cell-types, and linked to various functions and diseases. M39 was
enriched for markers of astrocytes and endothelial cells, and the function membrane raft
which plays a role in neurotransmitter signaling. M127 was enriched for microglia and
neurons, and associated with functional GO terms such as locomotory behavior and
dopamine biosynthetic process, as well as diseases including dopa-responsive dystonia,
dystonia-limb, and tremor, highlighting their role in motor circuitry. M47 was enriched for
endothelial cell markers and genes involved in immune response, blood coagulation,
interferon-gamma-mediated signaling pathway, and oxygen transport. This module was
also enriched for genes involved in auto-inflammatory or auto-immunity disorders, e.g.,
hypersensitivity, infection, and inflammation. These modules and their associated
pathways were associated with the preclinical stages of PD, because of their higher
expression in regions R1-R3.
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Figure 6.3 Braak co-expression modules. Genes were analyzed for co-expression across regions R1-Ré
in the Allen Human Brain Atlas. (A) Module eigengene correlation with Braak stages. Each point
reflects a module showing its correlation r with Braak stages (x-axis) and -logi-transformed P-values
(BH-corrected; y-axis); 23 significant modules (BH-corrected P < 0.0001, t-test) were selected for
further analysis (blue and red points). (B) Eigengene expression of all 167 modules across brain regions
(rows) of donor 9861 sorted by their correlation with Braak stages (column colors). The vertical line
separates negatively and positively correlated modules, and correlations are shown for two modules
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with the lowest and highest correlation. Brain regions involved in Braak includes the following
anatomical structures: myelencephalon (MY), pontine tegmentum (PTg), substantia nigra (SN), CAz-
field (CA2), basal nucleus of Meynert (nbM), amygdala (Amg), occipito-temporal gyrus (OTG), temporal
lobe (TL), cingulate gyrus (CgG), parietal lobe (PL), and frontal lobe (FL). Modules were low expressed in
the arcuate nucleus of medulla, locus coeruleus and CA2-field, independently of their correlation with
Braak stages (Supplementary Figure 7). (C) Significant modules were sorted based on their correlation
with Braak stages (columns) and assessed for significant overlap with Braak stage-related genes (BRGs),
cell-type markers, and gene sets associated with functional GO terms or diseases (brown squares, BH-
corrected P < 0.05, hypergeometric test). The number of genes within each module and tested gene set
is given between brackets. Additionally, these modules revealed the presence of genes associated with
Parkinson’s disease variants (annotated at the top) that have (blue and red) or have not (black) been
identified as BRGs. A full version of this table showing all significant associations is given in
Supplementary Figure 10.

Modules that were positively correlated with Braak stages were specifically enriched for
neuronal markers and related functions (e.g., axon, cell junction, and chemical synaptic
transmission) reflecting higher expression of these modules in the synapse-dense cerebral
cortex. M157 was enriched for the function olfactory bulb development, M1os for functions
such as cell junction, postsynaptic density, calcium ion binding, and genes linked to bipolar
disorder, M153 for functions cell junction and postsynaptic membrane, and both M153 and
Mso were linked to tobacco use disorder. Overall, gene co-expression across Braak stage-
related regions R1-Ré revealed interesting modules that highlight pathways and potential
gene interactions involved in the preclinical or clinical stage of PD.

6.2.4 BRGS ARE NOT FULLY CONFOUNDED BY CELLULAR COMPOSITION
We validated whether the identification of BRGs was confounded by variations in cellular

compositions across the six Braak stage-related regions R1-R6. We applied population-
specific expression analysis (PSEA) [25] to the AHBA to validate the cell-type specificity of
each of the 960 BRGs. We found all 960 BRGs to be differentially expressed (BH-corrected P
< 0.05, t-test) between regions R1 and Ré after correcting for five major cell-types (neurons,
astrocytes, oligodendrocytes, microglia, and endothelial cells). For example, the neuronal
marker ADCY1 which was identified as a BRG remains differentially expressed between
regions R1 and R6 when corrected for neurons or other cell-types (Figure 6.4). Similarly as
for BRGs, PSEA analysis on all 23 Braak stage-related co-expression modules showed
significant differential expression between regions R1 and Ré which cannot be fully
explained by differences in cellular composition.

In the PD datasets, not all BRGs were found significant after correction for cellular
composition, however smaller changes can be expected when comparing regions that are
less distant (R1-R3 and R3-R4/Rs). Similar to the differential expression analysis without
correction for cellular composition (Supplementary Figure 4), PSEA revealed more changes
between brain regions than between patients and controls (Supplementary Figure 11).
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Figure 6.4 Differential expression of neuronal marker ADCY1 in the AHBA corrected for cell-type
abundance. ADCY1 is a neuronal marker identified as one of the 960 Braak stage-related genes (BRGs).
We found it was still significantly differentially expressed between samples from region R1 (black) and
R6 (red) when correcting for one of the five main cell-types with PSEA (BH-corrected P < 0.05, {-test).
Significant BH-corrected P-values are highlighted in red text together with cell-type specific fold-
changes (FC; slope change of red line).

6.2.5 EXPRESSION OF PD-IMPLICATED GENES IS RELATED TO BRAAK STAGING

We found that the expression patterns of several PD-implicated genes, identified in the two
most recent genome-wide association studies [7,8], were correlated with the Braak LB
staging scheme. These included BRGs (SCARB2, ELOVL7, SH3GL2, SNCA, BAP1, and ZNF184;
Table 6.1 and Supplementary Figure 12) or genes present in Braak stage-related co-
expression modules (GCH1, ITIH3, ITPKB, RAB7L1, BIN3, SATB1, ASHL1, MAPT, DLG2, and
DNAHI; Figure 6.3C).

We further explored the relationship between SNCA expression and PD vulnerability in
more detail. SNCA was positively correlated with Braak stages in non-neurological brains
from the AHBA, with a lower expression in regions R1-R2 and higher expression in R3-Ré
(Figure 6.5A-C), which was replicated in larger cohorts of non-neurological individuals
(Figure 6.5D and E). This observation suggests that lower SNCA expression indicates high
vulnerability of brain regions to develop LB pathology. We further validated this concept in
two cohorts of PD patients in which SNCA expression similarly increased across the medulla
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oblongata (R1), locus coeruleus (R2), and substantia nigra (R3) of PD and iLBD patients, and
age-matched controls. SNCA was significantly lower expressed in region R1 compared to R2
and R3 in PD and iLBD patients, but not in controls (BH-corrected P < 0.05, t-test; Figure
6.5F). In the PD RNA-seq dataset, SNCA was significantly lower expressed in the substantia
nigra (R3) compared to the medial temporal gyrus (R4/R5) in PD patients, but again not in
controls (BH-corrected P < 0.05, DESeq2; Figure 6.5G). Altogether, SNCA expression
patterns could be replicated in brain regions of age-matched controls, however changes
were larger between brain regions in PD and iLBD cases. We further assessed SNCA
expression using PSEA in the AHBA (Figure 6.5H) and found that changes were independent
of neuronal or other cell-type densities when comparing different brain regions. In the PD
datasets, PSEA results were scattered and did not align between the microarray and RNA-
seq dataset, which might be caused by the small sample sizes and the comparison of
different brain regions (Supplementary Figure 13).

Co-expression analysis in non-neurological brains from the AHBA revealed several
dopaminergic genes present in module Mi27. Their expression patterns were further
investigated together with SNCA which is also known to regulate dopamine homeostasis
[29]. GCH1, TH, and SLC6A3 (also known as DAT) were related to the functional term
dopamine biosynthetic process, and SLC18Az (also known as VMAT2) is known to store
dopamine into synaptic vesicles [30]. Unlike SNCA, the expression of GCH1, TH, SLC6A3,
and SLC18Az was higher expressed in regions involved at preclinical stages than those
involved at clinical stages (Figure 6.6 and Supplementary Figure 14). Furthermore, all these
dopaminergic genes and SNCA showed a clear peak of expression in region R3 which
includes the substantia nigra, basal nucleus of Meynert, and CA2-field.

Table 6.1 Braak stage-related genes that previously have been associated with Parkinson’s disease.
Several Parkinson’s disease variant-associated genes showed expression profiles that are correlated
with Braak stages. The correlation r with Braak stages, fold-change (FC), and P-value of FC (t-test, BH-
corrected) are within the selection thresholds for BRGs.

Gene Entrez Corre- P-value of FC P-value of Mod- Reference
symbol  ID lation  correlation between FC between ule

with withBraak R1 and Ri and R6 mem

Braak (BH- Ré6 (BH- -ber

(3] corrected) corrected)
SCARB2 950 -0.78 4.4e-04 -1.44 1.7e-03 M1zo  Nallsetal. 2014
ELOVL7 79993 -0.67 7.2e-04 -1.35 1.4e-03 M84 Changetal. 2017
SH3GLz 6456 0.70 4.5e-04 1.4 2.3e-03 - Changetal. 2017

Nalls et al. 2014,

SNCA 6622 0.70 3.3e-04 1.75 4.3e-04 M3 Changetal. 2017
BAP1 8314 0.77 3.2e-03 1.99 1.6e-03 M8s Changetal. 2017
ZNF184 7738 0.81 4.6e-04 2.34 2.9e-03 Mis7  Changetal. 2017
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Figure 6.5 SNCA expression in Braak stage-related regions Ri-Ré of non-neurological individuals and
Parkinson’s disease (PD) patients. (A) Boxplots of SNCA expression in regions R1-Ré (colored) for each
donor (opacity) in the AHBA (number of samples in Supplementary Table 1). Meta-analysis of (B) SNCA
correlation with Braak stages and (C) SNCA expression fold-change (FC) between region R1 and Ré
across the six donors in the AHBA. To calculate the summary effect size (orange diamonds) from the
individual effect sizes (turquoise squares), the 95% confidence intervals (CI) and weights are taken into
account. The positive correlation with Braak stages was validated in datasets from two healthy cohorts,
(D) UK Brain Expression Consortium (UKBEC; 134 donors) and (E) Genotype-Tissue Expression
Consortium (GTEx; 88-129 donors), and (f, g) two PD cohorts with PD patients, incidental Lewy body
disease (iLBD) patients, and non-demented age-matched controls (number of samples in
Supplementary Table 2 and 3). In the PD datasets, SNCA expression was tested for differential
expression between regions and conditions (red, BH-corrected P < 0.05, t-test and DESeq2,
respectively). The boxplots indicate the median and interquartile range (25th and 75th percentiles) with
whiskers indicating 1.5 times the interquartile range; outliers beyond the whiskers are plotted
individually. (H) SNCA was still significantly differentially expressed between region R1 (black) and Ré
(red) when correcting for five main cell-types with PSEA in the AHBA (BH-corrected P < 0.05, t-test).
Significant BH-corrected P-values are highlighted in red together with cell-type specific fold-changes
(slope change of red line). PSEA results for PD data are shown in Supplementary Figure 13.
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Vulnerability to PD pathology
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Figure 6.6 Schematic overview of molecular activity of dopaminergic genes in module M127 and SNCA
across brain regions of the Braak staging scheme. Lines across regions Ri-R6 were based on
transcriptomic data from the Allen Human Brain Atlas (Figure 6.1 and Supplementary Figure 14).
Expression of module M127 is in the eigengene space. Genes showed peak activity in region R3 that
includes the substantia nigra, basal nucleus of Meynert, and CA2-field. While SNCA was generally high
expressed in all regions, dopaminergic genes in M127 were low or not expressed in other regions than
R3. SNCA: responsible for dopamine release, GCHi: together with TH required for production of
dopamine, TH: catalyzes tyrosine to the dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA),
SLC6A3 (also known as DAT): transports dopamine from the synaptic cleft back to the cytosol, SLC18A2
(also known as VMAT?2): stores dopamine into synaptic vesicles.

6.3 DiscussioN

In PD, the progressive accumulation of LB pathology across the brain follows a
characteristic pattern, which starts in the brainstem and subsequently evolves to more
rostral sites of the brain (Braak ascending scheme) [1]. Using transcriptomic data of non-
neurological brains, we identified genes (e.g., SNCA, SCARB2, and ZNF184) and modules of
co-expressed genes for which the expression decreased or increased across brain regions
defined by the Braak ascending scheme. Interestingly, these patterns were disrupted in
brains of PD patients across regions that are preclinically involved in the pathophysiology of
PD. One gene co-expression module that showed higher expression in preclinically involved
regions was related to dopamine synthesis, locomotory behavior, and microglial and
neuronal activity. Another module was related to blood-oxygen transport, the immune
system, and may involve endothelial cells. Our results highlight the complex genetic
architecture of PD in which the combined effects of genetic variants and co-expressed genes
may underlie the selective regional vulnerability of the brain.
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Multiple studies suggests that a cytotoxic role and prion-like transfer of a-synuclein may
contribute to its progressive spread across the brain in PD, assuming a gain-of-function
[3,31,32]. In line with this assumption are reports of familial PD caused by SNCA
multiplications, suggesting a SNCA dosage effect in causing PD [4,5]. Interestingly, in
contrast to the temporal and spatial pattern of the a-synuclein distribution associated with
the ascending Braak scheme in PD, the SNCA expression signature across brain regions R1-
Ré6 in non-neurological brains followed a reverse pattern with lowest expression in
preclinically involved regions (brainstem) and highest expression in clinically involved
regions (limbic system and cortex). Expression changes between regions were larger in PD
and iLBD brains, because of lower expression in preclinically involved regions compared to
age-matched controls. The abundance of physiological SNCA in non-neurological brains
suggests a protective role, while at the same time it may impact vulnerability to LB
pathology in PD brains as demonstrated in earlier studies detecting both proteins and
mRNA levels (literature overview in Supplementary Table 4). Cell lines or animal models
without SNCA showed a synaptic deficit, increased susceptibility to viruses, sensitivity to
reward, and resulted in nigrostriatal neurodegeneration underscoring the importance of
the presence of a-synuclein for neuronal function. Mutant a-synuclein accelerated cell
death induced by various stimuli (staurosporine, serum deprivation, trypsin, or oxidative
stress by H.O.), while wild-type a-synuclein exerted anti-apoptotic effects. In contrast to
the suggested neuroprotective role of a-synuclein, other studies suggest a deleterious effect
when overexpressed and that removing SNCA mediates resistance to LB pathology.
Collectively, our findings suggest that low SNCA expression in preclinically involved regions
may increase the vulnerability of brain regions to LB pathology.

Next to SNCA, the expression of several other genes known as genetic risk factors for PD
[7,8] were related to the Braak staging scheme. Two genes ZNF184 (zinc finger protein 184)
and ELOVL7 (fatty acid elongase 7) have recently been associated with early onset PD in a
Chinese population [33]. SCARBz (scavenger receptor class B member 2) encodes for the
lysosomal integral membrane protein-2 (LIMP2), the specific receptor for
glucocerebrosidase (GCase), and is important for transport of GCase from the endoplasmic
reticulum via Golgi to lysosomes [34]. SCARB2-deficiency in mice brains led to a-synuclein
accumulation mediating neurotoxicity in dopaminergic neurons [34]. Overexpression in
murine and human cell lines improved lysosomal activity of this enzyme and enhanced -
synuclein clearance [34]. SH3GL2 (SH3 Domain Containing GRB2 Like 2, Endophilin A1) is
thought to act downstream of LRRK2 to induce synaptic autophagosome formation and may
be deregulated in PD [35]. BAP1 (ubiquitin carboxyl-terminal hydrolase) is a deubiquitinase
that acts as a tumor suppressor. Cancer-associated mutations within this gene were found
to destabilize protein structure promoting amyloid-B aggregation in vitro, which is the
pathological hallmark in Alzheimer’s disease [36].

A number of functional pathways have been suggested to play a role in the pathogenesis of
PD, such as lysosomal function, immune system response, and neuroinflammation [6—
8,37]. We identified modules of genes that co-expressed across the six Braak stage-related
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regions and found they were enriched for genes related to molecular processes that have
been linked to the (pre)clinical symptoms and functional deficits in PD.

One negatively correlated module M127 was enriched for genes related to functions and
diseases involving dopamine synthesis and motor functions. This module also contained the
PD variant-associated gene GCH1 (GTP cyclohydrolase 1) that is known to co-express with
TH (tyrosine hydroxylase, the enzyme responsible for converting tyrosine to L-3,4-
dihydroxyphenylalanine (L-DOPA) in the dopamine synthesis pathway) to enhance
dopamine production and enable recovery of motor function in rat models of PD [38]. In
this study, both GCH1 and TH occur in M127 and thus were co-expressed across brain
regions involved in Braak stages supporting their interaction. The higher expression in
more vulnerable brain regions Ri-R3 indicates that GCH1, TH, and possibly other genes
within module M127 are essential to maintain dopamine synthesis that is affected in the
early Braak stages of PD. Indeed, by inhibiting TH activity, a-synuclein can act as a negative
regulator of dopamine release [30,39]. In this module, SLC1842 (vesicular monoamine
transporter 2) and SLC6A3 (dopamine transporter) were also present, which are important
for dopamine storage and transport in the cell [30]. Interestingly, dopamine may increase
neuronal vulnerability, as was suggested by an earlier study showing that a-synuclein is
selectively toxic in dopaminergic neurons, and neuroprotective in non-dopaminergic
cortical neurons [40]. Cell-type marker enrichment showed that module M127 was enriched
for microglia- and neuronal markers, suggesting a role in neuroinflammation. a-Synuclein
aggregates evoke microglia activation which in turn promotes aggregated protein
propagation to other brain regions, possibly even from the gut or periphery to the brain
(31,37]. The higher expression of microglial genes within module M127 may contribute to the
higher vulnerability of brain regions affected during preclinical stages to form protein
aggregates. Further investigation of genes within module Mi127 will provide a better
understanding of the molecular mechanisms underlying microglia activation, dopaminergic
pathways and motor functions.

Another negatively correlated module M47 was enriched for endothelial cell markers and
genes involved in functions and disorders that relate to the immune response and oxygen
transport in blood. One previous case-control study showed that anemia or low hemoglobin
levels may precede the onset of PD [41]. Several studies using blood transcriptomic meta-
analysis revealed genes associated with hemoglobin and iron metabolism were
downregulated in PD patients compared to controls [42—44]. In our study, several
hemoglobin genes (HBD, HBB, HBA1, HBA2, and OASL) were also present in module M47 of
which HBD and HBB have been described to be highly interconnected with SNCA [44]. We
also found an association between the interferon-gamma-mediated signaling pathway and
M47 in which OASL also plays a role. Module M47 was negatively co-expressed with SNCA.
Notably, a significant loss of negative co-expression between SNCA and interferon-gamma
genes in the substantia nigra has been demonstrated in PD patients as compared to controls
[45]. This loss may result from a downregulation of genes within M47 in the substantia nigra
of PD patients, similarly as was observed in blood transcriptomics of PD [42-44]. This could
be confirmed for ATXN3 in the substantia nigra of PD patients [46]. Therefore, these genes
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have the potential to serve as blood biomarkers for PD vulnerability. Overall, these studies
suggest that dysregulation of genes within module M47 involved in blood-oxygen transport
and the immune system influence brain regions to be selectively vulnerable to PD.

Identification of transcriptomic features in regions or disease conditions may be
confounded by changes in cell-type composition. We used PSEA [25] to examine the impact
of this confounding factor and found that all 960 BRGs remained differentially expressed
between regions R1 and Ré in the AHBA. We also applied PSEA in the two PD datasets that
allowed us to examine cell-type specificity between regions as well as between disease
conditions. Although it is known that gene expression varies more between regions than
between disease conditions [28], it is less clear how cell-type composition contributes to this
variation. Here, we found that regional comparisons yielded more significant results than
when comparing disease conditions. Therefore, BRGs also captured expression changes
between patients and controls, but changes were less dependent on cell-type abundance
between regions than between patients and controls.

To get a full understanding of how cell-types affect PD progression, we would need single
cell data that map to all six Braak stage-related regions. This would allow us to assess which
cell-types might influence regional vulnerability and which genes or modules relate to these
cell-type specific processes. Currently, there are many single cell datasets available, but they
mainly cover limbic and cortical regions [47,48], which only includes regions involved in the
clinical stages of PD. For the substantia nigra, the hallmark region of PD, there is currently
only one human single cell dataset available derived from archived samples [49]. Thus, the
single cell datasets that are available now do not cover all regions in the Braak staging
scheme. However, as the field of single cell analysis is growing at a fast pace and more
datasets are being published, we expect that studying the role of cell-types with respect to
regional vulnerability to PD in a similar way as we presented here will be possible in the near
future.

Our findings on BRGs were based on regional expression differences that we analyzed using
the AHBA. Although the number of AHBA donors is low, we confirmed these expression
patterns in UKBEC and GTEx where the number of donors is high. Since most PD studies
are limited by the availability of post-mortem brains of PD patients, the two PD datasets in
our study had both low numbers of regional samples and donors. Thus, our findings on
regional differences in PD patients are less reliable than our findings based on non-
neurological controls. Nevertheless, they can still give an indication on how the expression
of BRGs changes in brains of PD patients. This study showed that collecting more samples
from multiple brain regions in post-mortem PD brains is valuable to get a better
understanding of the vulnerability to PD.

In conclusion, we identified genes and pathways that may be important to maintain
biological processes in specific brain regions, but may also contribute to a higher selective
vulnerability to PD. Our results suggest that interactions between microglial genes and
genes involved in dopamine synthesis and motor functions, as well as between genes
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involved in blood-oxygen transport and the immune system may contribute to the early
involvement of specific brain regions in PD progression. Our observations highlight a
potential complex interplay of pathways in healthy brains and provide clues for future
genetic targets concerning the pathobiology in PD brains.
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6.5 METHODS

6.5.1 ALLEN HUMAN BRAIN ATLAS
To examine gene expression patterns across brain regions involved in PD, we used

normalized gene expression data from the AHBA [15], a human post-mortem microarray
dataset of 3,702 anatomical brain regions from six non-neurological individuals (five males
and one female, mean age 42, range 24-57 years). We downloaded the data from
http://human.brain-map.org/. To filter and map probes to genes, the data were
concatenated across the six donors. We removed 10,521 probes with missing Entrez IDs,
and 6,068 probes with low presence as they were expressed above background in <1% of
samples (PA-call containing presence/absence flag [15]). The remaining 44,072 probes were
mapped to 20,017 genes with unique Entrez IDs using the collapseRows-function in R-
package WGCNA v1.64.1 [22] as follows: (i) if there is one probe, that one probe is chosen, (ii)
if there are two probes, the one with maximum variance across all samples is chosen
(method=maxRowVariance), (iii) if there are more than two probes, the probe with the
highest connectivity (summed adjacency) is chosen (connectivityBasedCollapsing=TRUE).
Based on the anatomical labels given in the AHBA, 2,334 out of 3,702 samples were mapped
to Braak stage-related regions Ri-R6 as defined by the BrainNet Europe protocol [18] and
each region corresponds to one or multiple anatomical structures (Supplementary Table 1).
The locus coeruleus and pontine raphe nucleus are both part of the pontine tegmentum in
R2.
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6.5.2 UKBRAIN EXPRESSION CONSORTIUM (UKBEC)

UKBEC [20] (http://www.braineac.org) contains microarray expression data from 10 brain
regions of 134 non-neurological donors (74.5% males, mean age 59, range 16—102 years) for
which their control status was confirmed by histology. We used the biomaRt R-package
version 2.38 [23] to map Affymetrix probe IDs from UKBEC to gene Entrez IDs; 262,134 out
of 318,197 probes could be mapped. Similar as with the AHBA, expression data for all probes
and samples was concatenated across the 10 brain regions before mapping probes to 18,333
genes with unique Entrez IDs using the collapseRows-function.

6.5.3 GENOTYPE-TISSUE EXPRESSION CONSORTIUM (GTEX)

From GTEx [19] (https://gtexportal.org), we obtained RNA-sequencing (RNA-seq) samples
from four brain tissues from multiple non-neurological subjects (65.7% males, range 20-79
years): substantia nigra (88 samples), amygdala (121 samples), anterior cingulate cortex (100
samples), and frontal cortex (129 samples). These brain regions corresponded to Braak
stage-related regions R3-Ré, respectively. We downloaded gene read counts (v7) for
differential expression analysis and gene transcript per million (TPM) expression values (v7)
for visualization. Out of 56,202 genes, we selected 19,820 protein coding genes and removed
405 genes with zero counts in one of the four regions of interest; 19,415 genes were left for
analysis.

6.5.4 PD MICROARRAY DATASET

In the PD microarray dataset, samples were collected from the medulla oblongata (R1), locus
coeruleus (R2), and substantia nigra (R3) from PD patients (67.6% males, mean age 78, range
61-87 years), iLBD patients (42.4% males, mean age 80, range 56-98 years), and non-
demented controls (54.5% males, mean age 77, range 60-91 years) (Supplementary Table 2
and Supplementary Data 4). The PD microarray data of the substantia nigra (R3) was
previously published in Dijkstra et al. [11] (GEO accession number GSE49036). Based on
pathological examination, PD patients in the microarray dataset revealed LB pathology in
accordance with Braak stages 4-6, and iLBD patients showed LB pathology in the brainstem
(Braak stages 1-3), and therefore represent the early stages of PD. Additional samples from
the medulla oblongata (R1) and locus coeruleus (R2) were collected and processed of the
same cohort in the same manner for hybridization on GeneChip® Human Genome U 133
Plus 2.0 arrays. Probe IDs were mapped to Entrez IDs with the maplds-function in the
hgui33plus2.db R-package v3.2.3. We removed 10,324 out of 54,675 probes with missing
Entrez IDs. The remaining 44,351 probes were mapped to 20,988 genes with unique Entrez
IDs using the collapseRows-function similarly as was done for the AHBA.

6.5.5 PD RNA-SEQUENCING DATASET

In the PD RNA-seq dataset, samples from the substantia nigra (R3) and medial temporal
gyrus (R4/R5) were collected from PD patients (61.1% males, mean age 79, range 57—88
years), and non-demented age-matched controls (48.0% males, mean age 78, range 59-93
years) (Supplementary Table 3 and Supplementary Data 5). The extracted RNA was
quantified using an Ozyme NanoDrop System, of which 500 ng of total RNA from each
sample was further processed for purification of ribosomal RNA (rRNA) using human
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[lumina Ribo-Zero™ rRNA Removal Kit. Then the Illumina TruSeq stranded total RNA
protocol was used for library preparation. The library was sequenced on a Hiseq4000. RNA-
seq reads were aligned to human genome (GRCh 38) with TopHat software (version: 2.1.1)
using reference gene annotations (Ensembl GRCh38.p3) to guide the alignment. The count
of reads per gene were determined from the alignment file (bam) and reference gene
annotations (Ensembl) using FeatureCounts software (version: 1.5.3), resulting in 52,411
transcripts with Ensembl IDs. Entrez IDs of 20,017 genes in the AHBA were mapped to
Ensembl IDs using biomaRt R-package version 2..38.

The brain samples for the PD microarray and RNA-seq analysis were obtained from The
Netherlands Brain Bank (NBB), Netherlands Institute for Neuroscience, Amsterdam (open
access: www.brainbank.nl). All Material has been collected from donors for or from whom a
written informed consent for a brain autopsy and the use of the material and clinical
information for research purposes had been obtained by the NBB. All procedures performed
in studies involving human participants were in accordance with the ethical standards of
the VU University Medical Center (VUmc, Amsterdam) and local Medical Ethics Committee
(METC VUmc, reference number 2009/148) and with the 1964 Helsinki declaration and its
later amendments or comparable ethical standards.

6.5.6 BRAAK STAGE-RELATED GENES (BRGS)
Two analysis methods were used to find BRGs for which the spatial expression in the AHBA

is related to the progression of the disease: (i) Pearson’s correlation between gene expression
and labels 1-6 according to their assignment to one of the Braak stage-related regions R1-R6,
and (i) differential expression between Braak stage-related regions R1 and Ré. As the
expression values were log,-transformed, the mean difference between two regions was
interpreted as the FC. Genes were assigned as BRGs based on the overlap of the top 10%
(2,001) ranked genes with: (i) highest absolute correlation between gene expression and
Braak stage labels, (ii) highest absolute FC between R1 and Ré, and (iii) lowest Benjamini-
Hochberg (BH) corrected P-value of the FC.

To avoid capturing donor-specific changes, we applied correlation and differential
expression analyses for each of the six brain donors separately, and effect sizes were then
combined by meta-analysis (metafor R-package 2.0). A random effects model was applied
which assumes that each brain is considered to be from a larger population of brains and
therefore takes the within-brain and between-brain variance into account. The between-
brain variance (tau® was estimated with the Dersimonian-Delaird model. Variances and
confidence intervals were obtained using the escalc-function. Correlations were Fisher-
transformed (z = arctanh(r)) to obtain summary estimates, which were then back-
transformed to correlation values ranging between -1 and +1. The significance of summary
effect sizes (correlations and FCs) was assessed through a two-sided t-test with 5 degrees of
freedom (Ho: FC=0). P-values were BH-corrected for all 20,017 genes. The weights used in
the meta-analysis are based on the non-pooled expression variance in R1-R6.
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The negatively and positively correlated BRGs were assessed for enrichment of functional
GO terms using RDAVIDWebService R-package 1.20. The 20,017 genes from the AHBA were
used as background genes. Functional GO terms were selected when BH-corrected P-value <
0.05 and gene count was at least 20.

6.5.7 DIFFERENTIAL GENE EXPRESSION IN VALIDATION DATASETS

A two-sided unpaired t-test was used to assess expression differences between conditions
(PD, iLBD, and age-matched controls) and brain regions (R1-R6) in the AHBA, UKBEC, and
PD microarray dataset. For GTEx, we used DESeq2 version 1.22.2 [24]. For the PD RNA-seq
dataset, normalization and differential expression was done with 'DESeq2' R-package
version 1.10.1, with age and sex introduced in the statistical model to take into account
possible biases. Each analysis done with DESeqz2 used a two-sided Wald test. The cut-off for
differentially expressed genes was P < 0.05 (BH-corrected). For microarray experiments, the
FC was interpreted as the difference in mean expression us-pa, with p as the mean
expression in either group A and B. For RNA-seq experiments, FC is the log. FC obtained
from DESeqz.

6.5.8 CELL-TYPE SPECIFIC ANALYSIS

To assess whether results were confounded by cell-type composition in different brain
regions and conditions, we applied PSEA [25] in the AHBA, PD microarray dataset, and PD
RNA-seq datasets. Data from the AHBA were first concatenated across the six donors before
applying PSEA. This method applies linear regression to examine whether the expression
between two groups of samples is different (two-tailed t-test) while correcting for cell-type
composition estimated from cell-type markers. To define cell-type markers, we used gene
expression data from sorted cells of the mouse cerebral cortex [26]. Genes were selected as
markers when they had a 20-fold higher expression compared to the mean of the other cell-
types. All genes were analyzed while correcting for five main cell-types for which the cell-
type signal was estimated by taking the mean expression of markers: 628 neurons, 332
astrocytes, 186 oligodendrocytes, 520 microglia, and 456 endothelial cells. P-values were
BH-corrected across all genes in a dataset and significant when <0.05.

6.5.9 GENE CO-EXPRESSION MODULES IN BRAAK STAGE-RELATED REGIONS

Gene co-expression matrices (pairwise Pearson’s correlation, 7, across Braak stage-related
regions R1-R6) were calculated for each one of the six brain donors in the AHBA separately,
and then combined into one consensus matrix based on the element-wise mean across all
donors. Co-expression was converted to dissimilarity based on 1 — r; in this way only
positively co-expressed genes were taken into account. All genes were hierarchically
clustered using single, complete, and average linkage and co-expression modules were
obtained with the cutreeDynamicTree-function in the dynamicTreeCut R-package 1.63;
minimum module size was set to 50 by default. The weighted correlation network analysis
(WGCNA) R-package version 1.64.1 [22] was used for further analysis of the modules.
Hierarchical clustering by average linkage resulted in an acceptable number of missing
genes while retaining the maximum number of modules (Supplementary Figure 15; 167
modules with sizes up to 297 genes). For each module, the eigengene was obtained based on

125



CHAPTER 6

the first principle component and thus summarizes the expression of all genes within a
module across all samples in Braak stage-related regions Ri-Ré. This was done for each
brain donor separately. The sign of the eigengene expression was corrected based on the
sign of its Pearson’s correlation with the mean expression of all genes within the module.
Similar to the BRGs, the eigengene of each module was correlated with Braak stage labels
for each donor separately and correlations were combined across donors using meta-
analysis.

6.5.10 GENE SET ENRICHMENT ANALYSIS OF BRAAK STAGE-RELATED MODULES

The one-sided hypergeometric test was used to identify modules that are significantly
enriched for BRGs, cell-type markers [26], gene ontology- (GO), and disease-associated
genes from DisGeNET [27]. A table of 561,119 gene-disease associations were obtained from
DisGeNET version 5.0 (May, 2017) from http://www.disgenet.org/. Gene sets associated
with 17,857 GO terms were obtained from the Ensembl dataset hsapiens_gene_ensembl version
92 through biomaRt R-package version 2.38. All gene sets were filtered to contain only genes
matching the 20,017 genes in the AHBA and at least 10 genes. Modules were significantly
enriched when P < 0.05 (BH-corrected for number of modules and gene sets) using all 20,017
genes from the AHBA as background genes.

6.5.11 DATA AND CODE AVAILABILITY

Gene expression data from healthy subjects used in this study are publicly available at brain-
map.org, braineac.org, and gtexportal.org. Microarray data from PD, and iLBD patients,
and controls were collected and shared by Amsterdam University Medical Center, the
Netherlands. More details are described in the above sections. Scripts to run all analyses can
be found online: https://github.com/arlinkeo/pd_braak. Scripts to analyze the microarray
and RNA-seq datasets of PD patients were run in R version 3.4. The DESeqz2 analysis of the
PD RNA-seq data is shared on https://gitlab.univ-lille.fr/bilille/2017-mc-chartier-rna-seq.
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Despite many efforts to identify genes associated with neurodegenerative diseases, the
disease etiology leading to the formation of protein inclusions and neuronal cell death
largely remains unclear. This is mainly due to the complexity of both polygenic and
environmental factors that contribute to the progression of neurodegenerative diseases.
Expression profiles of samples derived from patients are affected by ongoing inflammation,
oxidative stress, and other immune mechanisms and it is not known whether such
molecular mechanisms are a cause or consequence of the disease. By using different
approaches to combine neuroimaging data with a spatial gene expression atlas of the
human brain, we revealed healthy state transcriptomic signatures occurring in brain
regions that are selectively vulnerable in neurodegenerative diseases. We showed that
structural brain networks that are associated with gray matter loss in PD patients are
enriched for the expression of cholinergic genes. In structural networks associated with
gray matter loss in HD, we found strong co-expression between polyglutamine (polyQ)
genes HTT, ATXN2, and ATNi. Similar relationships were found in anatomical brain
structures that are known to be affected in HD. In the stress response network of
individuals at risk of schizophrenia, we found that upregulated genes were associated with
psychiatric disorders. The integrated analysis of both gene expression data and
neuroimaging data revealed that the expression of genes involved in cellular maintenance
mechanisms are correlated with cortical thickness in PD patients. Finally, we identified a
module of dopaminergic genes for which its expression is correlated with the PD Braak
staging of brain regions. Overall, we showed how the AHBA can be combined with brain
phenotypes observed in neurodegenerative diseases such as gray matter loss, neuronal loss,
accumulation of disease-specific protein aggregates, and changes in functional activity or
cortical thickness. Our findings point towards local molecular events and enable a better
understanding of the spatial organization of brain functions that are impaired in
neurodegenerative diseases.

7.1 SAMPLING RESOLUTION OF BRAIN TRANSCRIPTOMIC DATA

Spatial transcriptomics can reveal gene expression patterns that are indicative of local gene
functions. Although case-control studies are important to understand gene expression
changes in health and disease, more profound differences in gene expression are found
between brain regions than between disease conditions [1]. This supports the idea that
genes fulfill specific functions in different brain regions. The AHBA allows analyzing gene
expression at an unprecedented spatial resolution. Yet, due to this high resolution, results
cannot be directly compared to other datasets with a case-control setting, since these
datasets usually lack this high sampling resolution. This emphasizes the need for high-
resolution sampling datasets in both control and patient data. The unavailability of high-
resolution gene expression data from PD patients makes it difficult to compare expression
patterns from the AHBA to data from PD patients. Nevertheless, in Chapter 6, we analyzed
two datasets of healthy individuals and two datasets of PD patients that had samples from
several brain regions associated with Braak stages. Here, we also found more differentially
expressed genes between brain regions than between disease conditions in two PD datasets
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with samples from several brain regions that are involved in the Braak staging scheme.
Interestingly, this is still true when correcting the analyses for cell-type composition.

While neurodegenerative diseases are age-related diseases, we did not take the age
difference between elderly with PD and healthy adult donors from the AHBA into account.
Moreover, the individual variability not only depends on age, but also gender, genetic
background and other factors that were also not taken into account in our analyses, all
because of the limited number of brain donors in the AHBA. Finding donors representing a
healthy brain is challenging and requires thorough screening and quality control tests to
make sure they are eligible for inclusion. Besides that, some brain regions are also
vulnerable to neurodegeneration during healthy aging. Hence, to better understand the
molecular processes underlying neurodegenerative diseases, it is important to understand
healthy aging in relation to a disease. This will help to even better understand early changes
in disease and enable diagnosis before disease onset.

7.2 IMAGING COHORTS OF PD ARE HETEROGENEOUS

Approaches to combine neuroimaging with brain-wide transcriptomic data allow analyzing
the functional organization of gene expression across the brain, which is important to better
understand patterns of neurodegeneration. Although many brain regions have been
associated with the pathology of PD, it is not well understood what determines the typical
patterns of atrophy in all PD subtypes or differences in atypical PD. Imaging cohorts of HD
patients are better characterized genetically, compared to cohorts of PD patients, as HD
diagnosis is confirmed based on genetic tests to determine whether the CAG-repeat length
in the HTT gene is expanded. Since the CAG-repeat length determines the age of onset and
therefore also the severity and progression of the disease, this determines the rate of brain
atrophy and causes differences in MRI scans of HD patients [2,3]. As such, imaging studies
should take into account the CAG repeat length. PD cohorts likely have more heterogeneous
groups of patients, as PD diagnosis cannot be confirmed with genetic tests yet and is
nowadays based on the observation of clinical symptoms during life. Moreover, PD is a
complex disorder in which not all patients have the same symptoms and the severity of
symptoms varies substantially. True PD diagnosis can only be confirmed after death upon
pathological examination. Interestingly, it may turn out that a patient actually suffered a
similar but different disease, such incidental Lewy body disease, or dementia with Lewy
bodies. This impacts the group coherence of a PD cohort and lowers the significance of
results in an MRI study. Thus, it is important to acknowledge that PD is a complex disorder
with a wide spectrum of symptoms and that this heterogeneity may influence findings.

7.3 STUDY DESIGN AND INTERPRETATION

To analyze the transcriptome of a group of samples, gene expression levels need to be
compared to a control group. While this is straightforward in case-control studies, in our
studies of the healthy human brain, we assessed differential expression between the region
of interest (associated with the disease) and a control region (assumed to not be associated
with disease). It is not always clear whether a region is really unaffected in a disease.
Therefore, choosing the control region for comparison depends on the research question
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that has to be answered and will influence findings. For example, studies should take into
account that expression patterns within regions may be dominated by differently sized or
distinct anatomical structures, such as the cortex or cerebellum being quite different from
the other brain regions. Hence, it might not be clear whether the comparison with a control
region might result in biases in the analysis or that the results indeed are biologically
associated with the disease. One way to solve this is to repeat the analysis with and without
such regions and find the overlap in results as we did when analyzing the stress network of
individuals at risk of schizophrenia in Chapter 4. In this study, we also excluded the
cerebellum from this analysis because it has as transcriptomic signature that is quite
heterogeneous and very distinct from the rest of the brain. When analyzing polyQ co-
expression patterns in the cerebellum in Chapter 3, we excluded the cerebellar nuclei from
the cerebellar cortex as these samples showed strong expression differences. Depending on
the study design, brain regions may be excluded if their distinct expression can cause biases
in the analysis.

For functional interpretation of results, we relied on databases with functional annotation
of genes describing molecular processes, biological components, or pathways. In general,
we found that genes enriched in brain regions associated with HD and PD were related to
lysosomal, mitochondrial and DNA repair pathways, ubiquitin, and the cell cycle, which
have been described before in HD and PD studies. Genes that have been well-studied are
highly annotated, while other genes received less attention. This annotation inequality may
lead researchers to focus mostly on richly annotated genes, while other genes with statistical
significance or large effect sizes may be neglected [4]. In this case, data-driven studies fail to
identify unknown mechanisms involved in disease. As such, it is good practice that studies
report all significant findings so these can always be searched for in the future by scientists
that are interested in unraveling the role of particular genes.

7.4 EXPRESSION OF GENETIC RISK FACTORS

Rare genetic variants that are highly penetrant have been identified in large families with
PD and more common variants with smaller effect sizes were discovered in genome wide
association studies (GWAS) of sporadic PD. How these mutation variants lead to the
molecular consequences observed in PD generally remains unclear. One of the many
hypotheses is that these mutations result in misfolded toxic proteins that affect other
proteins and gradually spread through the brain [5]. Analyzing the spatial expression of
genetic risk factors allows to better understand the consequence of genetic risk variants and
how they influence the progression to neurodegenerative disease. In our PD studies results,
we analyzed the whole genome and looked up whether our findings included PD-related
genes. For some PD-related genes we could indeed find an association with regional
vulnerability, but for many PD-related genes we could not find interesting expression
patterns across the brain. One reason for this could be that we looked at gene expression in
healthy adults and the effects of variants on gene expression may only be apparent in PD
patients or elderly. On the other hand, it is not known whether the donors from the AHBA
that were considered neurologically healthy could have developed PD at a later stage in life.
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Moreover, it is possible that the identified variants in GWAS of PD affect other genes than
those that were linked in those studies. To pinpoint variants and genes that may be
associated with a trait, GWAS rely on linkage disequilibrium patterns and information on
the functional consequences of the variant. During this analysis step, GWAS hits can be
erroneously mapped to genes.

Furthermore, GWAS have been mostly facilitated by inexpensive SNP arrays that are
designed to target common variants across the whole genome [6]. Arrays like the NeuroX-
chip have been designed to also include more rare risk variants that may be related to
neurodegenerative diseases [7], but these arrays still require predesigned DNA probes to
target the mutations. Future studies will likely make more use of next-generation
sequencing techniques, such as whole genome sequencing (WGS) which can cover more
variation in the genome and also the spectrum of minor allele frequencies of variants.
GWAS using WGS increases the power and precision of analyses which is likely due to more
accurate determination of genotypes [8].

For complex disorders like PD, many loci contribute to the genetic variation observed in PD
and the proportion of variance explained by individual variants is small. The polygenic risk
score is a popular method to assess the status of multiple disease-related variants and the
aggregated effect size to highlight an individual’s risk to develop a disease [9]. Moreover,
polygenic risk scores (PRS) can help to better understand the shared genetic architecture of
neurodegenerative diseases by determining whether variants with pleiotropic effects
identified in one disease can lead to an increased risk for another disease [10]. It would be
interesting to see how polygenic effects of common and rare variants can change gene
expression levels of disease-related tissues. A promising direction is to use RNA-sequencing
to perform expression quantitative trait loci (eQTL) mapping and find regulatory variants
that can explain variation in gene expression levels. Future studies may consider using a
PRS calculated based on effect sizes obtained with eQTL instead of GWAS and assess the
polygenic effect across populations, multiple tissues, cell-types, or even single cells. In
addition, an omnigenic model integrating the effect of rare and common variants along
with gene co-expression networks can aid in better understanding the genetic architecture
of complex disorders like PD [11].

7.5 GENE NETWORK ANALYSIS

Co-expression is the correlation between the expression patterns of two genes and can be
used to construct weighted gene networks that reflect functional associations between
genes. One of the goals in co-expression analysis is the detection of gene modules that
represent tightly connected subnetworks of co-expressed genes and allows inferring gene
function with the guilt-by-association principle. While many studies analyzed gene co-
expression across samples from individuals, here, we exploit the AHBA to analyze spatial
co-expression across samples from different brain regions. Since gene expression can be
highly tissue-specific we assessed spatial co-expression patterns that could be indicative of a
relationship between two genes with different levels of interactions across the brain.
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In our studies, we used Pearson’s correlation as a measure for co-expression which can
capture co-expression patterns that are informative, but can only capture monotonic linear
relationships. Other popular measures of co-expression are Spearman’s rank correlation,
mutual information and biweight midcorrelation [12,13], but the efficiency of different
methods depends on the data properties and varies with biological processes [14]. More
recently, it has been demonstrated that with increasing sample sizes Pearson’s correlation
coefficient with highest reciprocal ranking is well-suited to create robust gene co-
expression networks [15] and the quality of co-expression networks can be further improved
by down-sampling the expression dataset and integrating smaller networks into stronger
networks [16].

There are several ways to determine the threshold used for constructing gene co-expression
networks. These include setting a hard threshold at a co-expression cut-off value or
determining the statistical significance of the correlation and set a P-value cut-off. In both
cases the cut-off is arbitrary chosen and not necessarily biologically relevant. WGCNA
proposed a method where the cut-off threshold is selected by choosing a soft thresholding
power such that the gene network approximates a scale-free topology [17]. It is often
claimed that real-world networks are scale-free, meaning that a fraction of nodes with
degree k follows a power-law k*. However, there is evidence across social, biological, and
technological domains that scale-free networks are empirically rare and that the power law
is not a good fit for network degree distribution [18]. Furthermore, the power-
transformation may put more emphasis on stronger associations and mitigate weaker
associations by raising the co-expression similarity to a power, but we argue that this
transformation is equivalent to changing the hierarchical tree cutting threshold to obtain
larger clusters. A higher power applied to the similarity matrix will result in a smaller
number of clusters, which are essentially superclusters of the clusters obtained with a
power-transformation. Therefore, we believe that soft-thresholding has no additional value
to our analyses.

7.6 CORRECTING FOR CELL-TYPE COMPOSITION IN BULK TISSUE

The expression of cell-type markers can be analyzed to understand the distribution of
different cell-types across the brain. Here, we have assessed the presence of cell-type
markers among our results to find out which cell-types are related to the brain region of
interest. While the AHBA has a high sampling resolution, samples were collected from bulk
tissues. This means that one sample is characterized by the composition of present cell-
types which likely affects gene expression measurements. Brain regions of patients with
neurodegenerative diseases show changes in cell-type composition compared to age-
matched controls. During disease progression neurons are lost but other cell-types become
more abundant such as astrocytes and microglia. Therefore, it is important to find
differentially expressed genes in case-control studies that do not result from differences in
cell-type composition between patients and controls.
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Multiple cell-type deconvolution methods have been proposed to analyze differential
expression while correcting for cell-type composition between samples from patients and
controls. We have explored one of these cell-type deconvolution methods to correct for cell-
type composition between different brain regions as the cell-type composition likely differs
between brain regions according to their structural and anatomical functions. Since the
cell-type composition is unknown for samples from bulk tissue, the correction methods
require cell-type markers to estimate the cell-type composition of a sample. The existing
methods use linear models to correct fold-changes in cell-type specific expression between
two groups of samples. The proportions of each cell-type can be estimated by taking the
mean expression of markers for a specific cell-type. Some methods use PCA or SVD to
calculate the eigengene, but the eigengene expression level of a cell-type cannot be relatively
compared to the eigengene expression of other cell-types, and therefore the gene expression
of all cell-types should not be summed in a linear equation. Additionally, cell-type
proportions should be non-negative and sum up to one. Methods to deal with these
constrains include non-negative matrix factorization and non-negative least squares [19].

Another problem that deconvolution methods deal with is the choice of reference markers.
There are only few robust cell-type markers for which their exclusive expression in a specific
cell-type is certain. Finding an optimal set of cell-type markers is not straightforward
because the definition of a cell-type remains an open question in biological research. Cells of
the central nervous system are divided into neurons and glia each consisting of many
subtypes with their own molecular properties. The main cell-types that are recognized have
been defined based on morphological and physiological features, but more recent studies
have identified many more subclasses based on the gene expression of groups of cells to
understand their molecular properties. In our studies with the AHBA, we relied on cell-type
markers that have been defined in other studies with mouse brains. Cells were disassociated
and sorted to find sets of cells with a common transcriptomic signature that is different
from other cells. While most genes may serve as orthologs for other species, some genes
may be absent or perform different functions in the human brain [20]. Better markers are
needed that can robustly identify the presence of specific cell-types. Advances in single cell
technologies enable the transcriptomic analysis of single cells and the growing interest in
single cell analysis is rapidly leading to the discovery of more cell-types and a better
understanding the cellular heterogeneity within the brain. Several methods have been
proposed to infer cell-type composition of RNA-seq bulk tissue using single cell RNA-seq
(scRNA-seq) data as a reference [21-25]. A benchmarking study of deconvolution methods
explained relevant factors that should be taken into account when using cell-type
deconvolution methods, mainly the input data should be kept in a linear scale, and missing
cell-types in the reference lead to erroneous estimations of cell-type proportions [26].

7.7 SINGLE CELL TRANSCRIPTOMICS
Single cell transcriptomics can exploit the cellular diversity and unravel the cell-type

composition of selected brain areas. To identify cell-types and their associated
transcriptome, most studies look for cell-types that have already been defined in literature.

137



CHAPTER7

For example, a study that identified cell-types from single cell human data still relied on
prior knowledge of mouse cell-types [27]. To identify groups of cells with similar
transcriptomes, clustering methods are used to construct a cell-type taxonomy tree and can
therefore identify known and new cell-types [28]. Once the cell-types have been established,
cell-type classifiers can be applied to unseen single cell data to label cells based on their
transcriptomic signature. Since the advance of scRNA-seq, several classification methods
for single cell data have been developed that seem to perform well on multiple single cell
datasets [29]. With these recent advances in single cell analysis, many subclasses of known
cell-types have been discovered expanding our knowledge on cellular diversity. However,
subclasses at the bottom of the cell hierarchy are based on the analysis of only few cells, and
these detailed findings may not be reproducible. In addition, newly identified cell-types
may be falsely discovered when there are unforeseen biological factors that influence the
transcriptome of as cell, such as the transitional state during cell cycle processes. For
example, the transcriptome of cells changes to perform functions related to cell division or
cell development. The Allen institute for Brain Science (AIBS) provides a cell-type database
that contains electrophysiological, morphological, and transcriptomic data from single cells
in the human and mouse brain. This database allows analyzing multiple properties of the
cell to help researchers gain more insights into cell-types characteristics.

Single cell studies of PD are mostly done with mouse models of PD or induced pluripotent
stem cells (iPSC) from PD patients that are differentiated into dopaminergic cells to study
them in vitro. To date, scRNA-seq data for human striatum or substantia nigra is very
limited, but more data of disease-related tissues is expected in the near future. Analyzing
differences in cell-type composition of specific brain regions in PD and control can aid in
better understanding how different cell-types play a role in neurodegeneration. The analysis
of transcriptomic data from brain single cells and bulk tissue of case-control studies has led
to the identification of cell-types that are susceptible in neurological disorders, such as
epilepsy, schizophrenia and AD [30]. The numerous possibilities of single cell analysis holds
promise for the future to better understand cellular changes between health and disease and
we expect that more studies of neurodegenerative diseases will make use of scRNA-seq
either from patient or healthy controls. Currently, single cell samples are collected from
selected brain areas to understand the regional diversity of cells. Whole brain single cell
analysis is not yet feasible as an adult human brain consists of 100 billion cells which will
generate an enormous amount of data. Most of the data may not even contain any useful
information for which complex methods are needed to provide useful insights. Although,
single cell analyses suffers from sparsity and low-throughput, increasing interest and
research efforts may help to improve the sequencing throughput of single cell analysis in the
near future.

7.8 SPATIAL TRANSCRIPTOMICS

In our studies, we analyzed spatial transcriptomics across the whole brain, however small-
scale spatial expression patterns can provide more detailed analysis of smaller tissues.
Emerging technologies in the field of spatial transcriptomics extend on microscopy
methods to study single cells in situ while retaining the spatial context [31-33]. Using these

138



DiSCUSSION

visual methods enables profiling RNA while it is in the tissue to capture spatial
heterogeneity of smaller pieces of tissue, for example the transcriptomic differences
between cortical layers. For this purpose, a tissue is cut into sections and slices, stained for a
specific transcript using fluorescent hybridization probes, and visualized under a
microscope to localize and quantify gene expression. Combinatorial approaches enable the
analysis of multiple gene transcripts on one piece of tissue, but hybridization approaches
are still limited in the number of genes; now up to 10,000 genes can be measured on a single
tissue [34].Although scRNA-seq can measure gene expression over the whole genome, the
spatial information is lost when single cells are dissected. To overcome the limitations of
both scRNA-seq and hybridization technologies in spatial transcriptomics, new
technologies have been developed to transfer RNA from tissue sections onto a surface with
DNA barcoded beads for spatial indexing and genome-wide analysis using scRNA-seq
[35,36]. Moreover, computational methods have been developed to infer the spatial locations
of dissociated scRNA-seq samples by using information from complementary in situ
hybridization data [37-39]. Spatial transcriptomics is a fast moving field and continuous
efforts provide hope for the future to have a spatial gene expression atlas of the human brain
at the single cell level. Having such information available can help to elucidate brain-wide as
well as local molecular mechanisms and is a promising direction to study cellular
differences in neurodegenerative diseases and health.

7.9 COMMON MECHANISMS IN NEURODEGENERATIVE DISEASES AND HEALTHY AGING
Each neurodegenerative disease is characterized by different associated symptoms and
pathology. But next to the degeneration of neuronal cells, there are also many common
mechanisms between neurodegenerative diseases. Multiple studies, including our own,
pointed towards similar functions that are disrupted in neurodegenerative diseases, such as
ubiquitination, oxidative stress, and mitochondrial dysfunction. Similar deficits in brain
functions are thought to underlie impaired movement and cognition in HD and PD. One
thing that is common between our studies in HD and PD and other studies of
neurodegenerative diseases is that resulting genes are generally associated with DNA repair
mechanisms and protein degradation pathways. There is also an overlap in symptoms and
the pathology between neurodegenerative diseases, e.g., Lewy bodies have also been found
in patients with Alzheimer’s disease, and tau and B-amyloid inclusion can also appear in PD.
In addition, there are co-occurring diseases and deficits such as dementia, mental
disorders, and cognitive impairments. The term parkinsonism or parkinsonian syndrome
describes the combination of symptoms of PD that may also occur in other diseases. The
fact that there is no clear boundary between neurodegenerative diseases, also explains why
there are different forms of PD with different symptoms. Neurodegenerative diseases may
have different causes, but the functional organization of the brain may eventually be
disrupted in similar ways. Future studies should focus on both common mechanisms and
differences in neurodegenerative and neurological disorders. To do so, studies may rely on
meta-analysis approaches to combine the analysis of multiple cohorts. Ideally, samples
should also be collected from both hemispheres, as asymptotic symptoms seem to be
apparent in all neurodegenerative diseases.
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Neurodegeneration also occurs during healthy aging and the differences between normal
aging and neurodegenerative diseases are not fully understood. To further unravel the cause
of neurodegenerative diseases, future studies may focus on analyzing spatial gene
expression in brains considered in extremely opposite conditions. More research is being
conducted into differences between extreme healthy elderly and patients with
neurodegenerative disease which could better expose genes with a higher significance of
differential expression. Samples from patients are often derived in the late stage of the
disease, while PD and HD can also occur at early ages. This is because early symptoms are
harder to distinguish from normal aging as the decline in motor functions is still relatively
small. Case-control studies only allow for binary outcomes, but multi-cohort studies may as
well focus on analyzing the gene expression differences in ordinal groups of individuals:
early onset, late onset, healthy elderly, and extreme healthy elderly. Ordinal analysis
approaches may be used for this purpose. While groups should be clearly defined, patients
with multiple conditions that are considered in between disease boundaries should also be
included as long as samples are well annotated. This will help to better understand the wide
spectrum of PD cases.

7.10 CONCLUSION AND FUTURE OUTLOOK

We showed that the AHBA is useful for analyzing the transcriptome of vulnerable brain
regions in neurodegenerative diseases. How these vulnerable brain regions are defined
depends on what is currently known about the disease pathology and remains a debatable
line of topic. Diagnostic gold standards for PD remain an issue and there is a need to extend
our knowledge about the pathology to be able to intervene early in the course of the disease.
Future studies will make more use of multi-omics data to reveal better insights into the
different molecular mechanism, such as the integration of transcriptomics with proteomics
and epigenomics. This holds promise for the future to have such technologies and methods
available. Large projects like these require collaborations with experts from different fields
of neurobiology and computational biology. To make this possible scientists have to work in
close collaboration and have to be multidisciplinary to allow for effective communication
between different fields. Furthermore, emerging technologies such as scRNA-seq and
machine learning will take its place in PD research. By analyzing the spatial transcriptomics
of the healthy brain we revealed known and new genes that may be involved in
neurodegenerative diseases, but to confirm a relationship to PD or HD, results need to be
validated in wet-lab experiments with samples that represent health and disease conditions.
While post-mortem human tissues are scarce and animal models and cell lines of PD do not
well translate to human PD, studies will make more use of brain organoids that are three-
dimensional structures generated from iPSC. Finally, by combining spatial transcriptomics
of the healthy brain with neuroimaging data, we revealed that molecular mechanisms such
as mitochondrial function and cellular stress response may be involved in
neurodegenerative diseases, but may also be essential for maintaining health and increased
longevity.
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SUMMARY

Neurodegenerative diseases are hallmarked by protein inclusions and cell loss in disease-
related brain regions. Many studies have tried to understand the molecular mechanisms
that lead to the pathological and symptomatic hallmarks of neurodegeneration. Although
studies highlighted important genes and biological pathways, the exact disease mechanisms
are still not fully understood.

In this thesis, we make use of bioinformatics approaches to analyze spatial molecular data
from the human brain. Using different computational methods, we mainly focused our
research on Parkinson’s disease (PD) that is characterized by the loss of dopaminergic
neurons in the substantia nigra and the progressive deposition of protein inclusions, called
Lewy bodies, across the brain. These pathological findings are associated with symptoms
including slowing of movements, tremor, and cognitive impairment, but the exact cause for
PD remains unknown. To better understand the molecular mechanisms within brain
regions associated with PD, and more general neurodegenerative diseases, we exploited a
high-resolution spatial gene expression atlas of the healthy human brain generated by the
Allen Institute of Brain Science. Spatial transcriptomics allows examining the molecular
and functional organization of the human brain and can be combined with neuroimaging
data to identify brain regions and anatomical structures that are vulnerable to cell loss in
neurodegenerative diseases. By combining both data modalities, we examined healthy
molecular functions in brain regions associated with disease vulnerability based on
neuroimaging features, namely gray matter loss within brain networks in individuals with
Parkinson’s disease, Huntington’s disease, and individuals at risk of schizophrenia. Here,
the analyses were based on gene expression differences between regions associated with a
disease in neuroimaging studies and a region that is considered unaffected (non-
susceptible). While the consecutive analyses of both data modalities revealed interesting
associations, integrated analysis of both data modalities revealed possible new relationships
between gene expression levels and disease-related changes measured with neuroimaging.
Since our main focus is on Parkinson’s disease, we were also interested in gene expression
patterns across Braak stage-related regions and our analyses revealed genes that may play a
role in the progression and the pathological spreading of Lewy bodies in PD.

With this thesis, we have shown that by applying data-driven computational methods we
can explore the whole genome and find gene expression patterns informative of regional
brain vulnerability in neurodegenerative diseases. Our methods can similarly be applied to
unravel the molecular mechanisms in other neurodegenerative diseases, and potentially
even reveal shared mechanisms between neurological disorders.
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SAMENVATTING

Neurodegeneratieve ziekten worden gekenmerkt door eiwitinsluitingen en het verlies van
cellen in hersengebieden die verband houden met deze ziekten. Meerdere onderzoeken
hebben geprobeerd de moleculaire mechanismen te begrijpen die leiden tot de
pathologische en symptomatische kenmerken van neurodegeneratie. Hoewel de
onderzoeken belangrijke genen en biologische processen hebben blootgelegd, zijn de exacte
mechanismen van deze ziekten nog steeds niet volledig begrepen.

In dit proefschrift gebruiken we bioinformatica benaderingen om de ruimtelijke
moleculaire gegevens van het menselijk brein te analyseren. Met behulp van verschillende
berekeningsmethoden hebben we ons onderzoek voornamelijk gericht op de ziekte van
Parkinson (ZvP). Parkinson wordt gekenmerkt door het verlies van dopaminerge neuronen
in de substantia nigra en de progressieve afzetting van eiwitinsluitingen, Lewy-lichaampjes
genaamd, door het gehele brein. Deze pathologische bevindingen gaan gepaard met allerlei
symptomen, waaronder vertraagde bewegingen, trillingen en cognitieve stoornissen. Maar
de exacte oorzaak van de ZvP blijft vooralsnog onbekend. Om de moleculaire mechanismen
in hersengebieden geassocieerd met de ZvP en andere neurodegeneratieve ziekten beter te
begrijpen, hebben we gebruik gemaakt van een hoge resolutie ruimtelijke atlas van de
expressie van alle genen in breinen van gezonde mensen, gegenereerd door het Allen
Institute of Brain Science. Ruimtelijke genexpressiepatronen stellen ons in staat de
moleculaire en functionele organisatie van het menselijk brein te bestuderen en deze data
kan gecombineerd worden met medische beelddata voor het identificeren van
hersengebieden en anatomische structuren die kwetsbaar zijn voor celverlies bij
neurodegeneratieve ziekten. Door de twee datamodaliteiten te combineren, hebben we de
gezonde moleculaire functies in hersengebieden onderzocht die verband houden met de
kwetsbaarheid voor ziekten op basis van kenmerken uit beelddata, namelijk het verlies van
grijze materie in hersennetwerken bij mensen met de ziekte van Parkinson, de ziekte van
Huntington en mensen met een verhoogde kans op schizofrenie. Hierbij waren de analyses
gebaseerd op verschillen in genexpressie tussen de gebieden die geassocieerd zijn met een
ziekte in medische beelddata studies en gebieden die beschouwd wordt als onaangetast.
Hoewel de opeenvolgende analyses van beide datamodaliteiten interessante associaties
opleverden, onthulde de geintegreerde analyse van de twee datamodaliteiten nieuwe
mogelijke relaties tussen niveaus van genexpressie en ziektegerelateerde veranderingen die
zijn waargenomen met beelddata. Aangezien we ons voornamelijk op de ZvP richten,
hebben we ook gekeken naar genexpressiepatronen in regio’s die verband houden met het
Braak-stadium en uit onze analyses bleek dat genen een rol zouden kunnen spelen in de
progressie en de pathologische verspreiding van Lewy-lichaampjes bij de ZvP.

Met dit proefschrift hebben we aangetoond dat we door het toepassen van data-gedreven
computationele methoden het hele genoom kunnen verkennen en dat we
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genexpressiepatronen kunnen vinden die indicatie verschaffen over de regionale
kwetsbaarheid van de hersenen bij neurogeneratieve ziekten. Onze methoden kunnen ook
worden toegepast om de moleculaire mechanismen bij andere neurodegeneratieve ziekten
te ontrafelen en mogelijk zelfs gedeelde mechanismen tussen neurologische aandoeningen
te onthullen.
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