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A short history of anesthetic monitoring

The first documented anesthetic death was the death of a healthy 15-year-old girl named 
Hannah Greener, in 1848, after she received chloroform anesthesia for the removal of a 
toenail. An account of her death was published in the Edinburgh Medical and Surgical 
Journal(1): 

‘I seated her in a chair, and put a teaspoon of chloroform into a tablecloth, and held it to her 
nose. After she had drawn her breath twice, she pulled my hand down. I told her to draw her 
breath naturally, which she did, and in about a half a minute I observed muscles of the arm 
become rigid, and her breathing a little quickened, but not stertorous. I had my hand on her 
pulse, which was natural, until the muscles became rigid. It then appeared somewhat weaker—
not altered in frequency. I then told Mr. Lloyd, my assistant, to begin the operation, which he 
did, and took the nail off. When the semicircular incision was made, she gave a struggle or jerk, 
which I thought was from the chloroform not having taken sufficient effect. I did not apply 
anymore. Her eyes were closed, and I opened them, and they remained open. Her mouth was 
open, and her lips and face blanched. When I opened her eyes, they were congested. I called 
for water when I saw her face blanched, and I dashed some of it in her face. It had no effect. I 
then gave her some brandy, a little of which she swallowed with difficulty. I then laid her on 
the floor and attempted to bleed her in the arm and jugular vein, but only obtained about a 
spoonful. She was dead, I believe, at the time I attempted to bleed her. The last time I felt her 
pulse was immediately previously to the blanched appearance coming on, and when she gave 
a jerk. The time would not have been more than 3 min from her first inhaling the chloroform 
till her death.’

The cause of her death was much debated at the time, and still is, as evidenced by an 
analysis of the case published in Anesthesiology as recently as 2002(2). The possible causes 
include an arrhythmia, possibly triggered by a ‘light’ anesthetic, pulmonary aspiration with 
asphyxia or overdosing of chloroform, which would lead to the cessation of respiration.  
Whatever the cause, it seems highly likely that a more sophisticated form of monitoring 
than we see described here could have prevented her death. 

The case of Hannah Greener sparked a debate that led to increased awareness of 
the importance of monitoring vital signs and depth of anesthesia. Around the time of 
Hannah’s death, dr. John Snow, anesthetist to Queen Victoria, published a case series(3) of 
80 patients anesthetized by ether, in which he describes the five stages of anesthesia that 
later formed the basis for Arthur Ernest Guedell’s more commonly known classification 
(which was published in 1937(4)). In his work, dr. Snow mentions the monitoring of 
respiration depth and frequency, pulse, muscle movement and skin color as a way to 
assess the degree of etherization of the patient. In the century that followed, technological 
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advances permitted more advanced monitoring, including the indirect measurement of 
blood pressure described by Korotkoff in 1905 and the first use of the electrocardiogram 
in theatre in 1922. However, it would take more than another fifty years before the next 
significant improvement in the field of anesthetic monitoring.

From the 1960’s onwards, outcome studies repeatedly identified adverse respiratory 
events as a leading cause of anesthetic morbidity and mortality. This is clearly illustrated 
by the first ASA closed claims analysis, published in 1990, which structurally evaluated 
adverse anesthetic outcomes obtained from closed claims primarily occurring from 
1975 to 1985(5).They concluded that respiratory events constituted the single largest 
source of adverse outcome and that better monitoring would have prevented the 
adverse outcome in 72% of the cases. Increasing awareness of the respiratory origin 
of anesthetic complications led to the widespread adoption of capnography and 
pulse oximetry in the operating room and ultimately to the adoption of minimal 
monitoring standards by the American Society of Anesthesiologists in 1986(6). From 
this date, continuous monitoring of the oxygenation, ventilation, circulation and 
temperature of the anesthetized patient became mandatory, as did the presence of 
qualified personnel throughout the conduct of all general and regional anesthetics.  
Nowadays, an anesthesia-related death like Hanna Greeners has thankfully become a 
rare event. Rates of perioperative mortality where anesthesia is the sole contributor 
have declined from approximately 1 death in a 1000 anesthesia procedures in the 1940s, 
to 1 in 3000 anesthesia procedures in the 1970s and 1 in 30,000 at the start of the 21st 
century(7-10).

Although there have never been prospective, randomized, clinical studies evaluating the 
relationship between basic monitoring and anesthetic outcome, it is so widely accepted 
that the introduction of these standards has been instrumental to the reduction in 
perioperative and anesthesia-related mortality that was seen around that time, that to 
perform such trials now would be regarded as highly unethical(11-13).

Unfortunately, with the increasing complexity of surgical procedures performed in an 
ageing population with an escalating number of comorbidities, perioperative mortality 
rate remains much higher than anesthetic mortality rate. In developed countries, the 
perioperative mortality rate (varyingly defined as 30-day mortality or mortality until 
discharge) ranges from 0.8 to 1.5%(9, 14). These patients generally do not   die on the 
operating table. Rather, they deteriorate in the days following surgery, when the stress 
response elicited by the surgical intervention results in a metabolic demand that their 
organs, chronically diseased at baseline, cannot meet(15). Although intended to decrease 
this stress response, anesthetic agents, including opioids, used per- and postoperatively put 
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patients at additional risk by their residual effects, especially on the respiratory system(16). 

As has been the case in the past, technological advancements have made available 
new monitoring technologies   that are aimed at further reducing the harm that can 
occur during or following anesthesia and surgery. Some are aimed at optimizing and 
individualizing the intraoperative administration of anesthetic agents, such as depth-of-
anesthesia monitors or monitors of nociception. Others have been developed to function 
as algorithm-based alarms in the postoperative period, or even mobile applications that 
monitor the patient after discharge(17). 

Thesis Outline

The aim of the current thesis is to evaluate the use of a variety of monitoring modalities in 
various stages of validation and implementation, that have been developed to reduce the 
risk of potential harm associated with the use of anesthetic agents, in particular the risk 
of respiratory depression associated with the use of opioids and neuromuscular blocking 
drugs. 

In the following paragraphs, a brief introduction of the monitoring  modalities of each 
section of this thesis will be provided. 

Section 1: Monitoring of Nociception
Noxious stimuli, such as occur during surgical procedures, are processed by the body 
through a neural process referred to as nociception. Nociception elicits a surgical stress 
response when insufficiently suppressed by anesthetics. The resulting activation of 
neuroendocrine pathways negatively influences wound healing, immune function 
and metabolic response(15). It is also thought to affect cancer progression(18). At 
present, the amount of opioids administered to patients during surgery to suppress 
nociceptive pathways and thus surgical stress is determined by measurement of heart 
rate and (intermittent) blood pressure. As these are neither very sensitive or very specific 
measures of nociception, under- and overdosing of opioids frequently occurs(19). Where 
underdosing is associated with the aforementioned neuroendocrine response as well 
as the development of acute and chronic pain, overdosing is associated with prolonged 
emergence, the development of hyperalgesia and increased risk of postoperative 
respiratory depression. Opioids may also affect the immune system and oncogenetic 
factors such as angiogenesis, apoptosis, and invasion in a deleterious manner(20).

Several monitors have been developed that aim to enable more optimal titration of 
perioperative opioids in search of the nociception/antinociception balance that is 
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associated with the most favorable postoperative outcome. Most of these monitors rely on 
detection of a single or multiple parameters that reflect autonomic activity, such as heart 
rate variability, pulse wave amplitude or skin conductance. Other monitors use spinal 
reflexes (such as the withdrawal reflex or the ciliospinal reflex) to more directly measure 
the activation or suppression of nociceptive pathways. A third monitoring modality uses 
EEG derived variables as a measure of nociception.

Current research efforts attempt to either evaluate the ability of new monitors to  
differentiate between nociceptive and non-nociceptive events or to evaluate the 
intraoperative use of existing monitors and their effects on clinical outcomes in 
randomized trials(19, 21). A recent review of the literature suggest that intra-operative 
opioid consumption may be less with nociception monitoring, with no difference 
in postoperative pain and opioid consumption(22). Data in these studies have been 
insufficient to demonstrate an effect on intra-operative hemodynamics or adverse events. 

Section 1 of this thesis presents two monitoring devices that rely on different parameters 
that reflect activation of the sympathetic nervous system to provide a measure of 
nociception. Their ability to differentiate between states of nociception and non-
nociception is assessed. 

Chapter 2 introduces a new method for detection of nociceptive events by quantifying 
skin blood flow dynamics using a miniaturized dynamic light scattering (mDLS) sensor. 
The ability of the mDLS sensor to detect a physiological response to noxious stimulation 
is tested in healthy volunteers.

In Chapter 3 a new multidimensional index of nociception, derived from a composite 
of parameters that reflect autonomous activity, is used to assess nociception in surgical 
patients during propofol-remifentanil anesthesia. Its ability to detect noxious from non-
noxious stimuli is compared to heart rate and mean arterial blood pressure. 

Section 2: Monitoring of Neuromuscular Block
The introduction of neuromuscular blocking drugs revolutionized anesthetic practice by 
allowing for longer and more complex surgical procedures. More recently, several studies 
have demonstrated the potential of a deep neuromuscular block to improve surgical 
conditions in laparoscopic surgery(23-25). However, use of neuromuscular blocking agents 
is not without risk. Return to normal neuromuscular function is an absolute prerequisite 
for the safe emergence from anesthesia. Monitoring the depth of neuromuscular block 
is usually done with devices that measure the muscle response to peripheral nerve 
stimulation via acceleromyography. The resulting Train-of-Four (TOF) ratio determines the 
level of neuromuscular block and consequently the reversal strategy. When neuromuscular 
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blocking drugs are not, or incompletely, reversed, partial paralysis may continue into the 
early postoperative period. This is likely why the use of neuromuscular blocking drugs 
is associated with postoperative respiratory complications(26). Even small degrees of 
residual neuromuscular block (at TOF ratio's >0.6 and <0.9) have been shown to affect 
lung volumes, swallowing and upper airway patency in volunteers(27). The routine use 
of objective neuromuscular monitoring has therefore been advocated by experts in 
order to improve postoperative outcome. However, adherence to this recommendation 
in clinical practice is low and the incidence of postoperative residual neuromuscular 
block remains substantial (as high as 65%)(28, 29). Current research focuses on strategies 
to prevent postoperative respiratory complications by the appropriate use of reversal 
agents and routine use of neuromuscular monitors(30). In this context, the use of 
sugammadex, a relatively new reversal agent introduced in Europe in 2008, is increasingly 
advocated to prevent postoperative respiratory complications, as is an increasingly high 
TOF ratio as a threshold for extubation(28). Despite the attention given to the adverse 
effects of neuromuscular blocking drugs on respiratory mechanics via their effect on the 
neuromuscular junction, their effect on the ventilatory response to hypoxia mediated by 
the carotid bodies(31) is consistently overlooked. 

Section 2 of this thesis is concerned with the respiratory effect of neuromuscular blocking 
agents mediated by the carotid bodies and the consequences of this effect for reversal 
strategies and monitoring practices. 

Chapter 4 describes the effect of a modern neuromuscular blocking agent on the hypoxic 
ventilatory response (HVR) in healthy volunteers. The effect of several reversal strategies 
on HVR is evaluated with the use of a neuromuscular function monitoring device.  

Section 3: Postoperative Respiratory Monitoring
No universal definition for postoperative adverse respiratory events has been established 
and as a result the incidence reported in the literature varies from as low as 0.3% to as high 
as 17%(32). Adequate oxygenation and ventilation can be compromised postoperatively 
as a result of a variety of surgical, anesthetic and patient-related factors. Surgical incision 
site and pain can lead to altered respiratory mechanics and atelectasis. The residual effect 
of anesthetics and neuromuscular blocking agents as well as the use of sedatives and 
opioids blunt the physiologic response to the resulting hypoxia and hypercarbia. Certain 
co-morbid conditions, such as the presence of sleep disordered breathing, which causes 
an increased sensitivity to the central and peripheral effects of opioids, place patients 
at risk even further(33). When the presence of hypoxia or respiratory depression is not 
identified, this can lead to cardiorespiratory arrest, brain injury and death(34). 
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Many of these risk factors cannot be modified. Currently available risk prediction tools 
based on the presence of these risk factors do not predict serious adverse respiratory 
events reliably(35). Therefore, research efforts have focused on monitoring strategies to 
identify patients experiencing respiratory events and institute timely interventions to 
prevent further deterioration. 

A systematic review and meta-analysis published in 2017(36) compared the effectiveness 
of either continuous pulse oximetry or continuous capnography to routine nursing care. 
The analysis showed that both pulse oximetry and capnography outperformed routine 
nursing care in recognizing desaturation or opioid-induced respiratory depression, 
respectively. At the same time, both methods have their drawbacks. Hypoxemia is a 
late sign of respiratory depression in the presence of supplemental O2. Capnography 
is more sensitive for the detection of opioid-induced respiratory depression than pulse 
oximetry, because it measures ventilation rather than oxygenation. However, when it is 
measured non-invasively, it can generate a significant amount of false positive alarms 
when the sensor is malpositioned, or when airflow is inadequate for detection of ETCO2 
(such as occurs with mouth breathing or snoring)(37, 38). Monitoring devices using smart 
algorithms that rely on multiple physiological parameters aim to increase sensitivity and 
reduce the number of false positive alarms(39). 

In Section 3, two respiratory monitors are introduced and used to assess the incidence of 
adverse respiratory events in the postoperative period. Additionally, the effect of the use 
of a smart respiratory monitor on the incidence of and response to adverse respiratory 
events is evaluated.

In Chapter 5, the Respir8 monitor, a monitor for the continuous measurement of 
respiratory rate, is used in a population of postoperative patients aged sixty years or older 
in the first 6 hours following surgery to quantify the incidence of adverse respiratory 
events and identify risk factors. 

In Chapter 6, the Integrated Pulmonary Index (IPI), an index derived from a smart 
algorithm based on multiple physiological parameters, is used in a population of surgical 
patients on the first postoperative night in the post anesthesia care unit (PACU) to assess 
the feasibility of clinical use of the monitor, as well as to quantify incidence of respiratory 
events.

Chapter 7 describes a randomized controlled trial in which the use of the IPI monitor is 
compared to routine PACU care, consisting of continuous monitoring of respiratory rate 
and pulse oximetry. The effect on the incidence of and response to adverse respiratory 
events is assessed.  
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