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1 Introduction

Noncommutative topology is rooted in the equivalence of categories between locally
compact topological spaces and commutative C∗-algebras. This duality allows for a
transfer of ideas, constructions, and results between topology and operator algebras.
This interplay has been fruitful for the advancement of both fields. Notable examples
are the Connes–Skandalis foliation index theorem [17], the K-theory proof of the
Atiyah–Singer index theorem [4, 5], and Cuntz’s proof of Bott periodicity in K-
theory [22]. Each of these demonstrates how techniques from operator algebras
lead to new results in topology, or simplify their proofs. In the other direction,
Connes’ development of noncommutative geometry [19] by using techniques from
Riemannian geometry to study C∗-algebras, led to the discovery of cyclic homology
[18], a homology theory for noncommutative algebras that generalises de Rham
cohomology.
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Noncommutative geometry and topology techniques have found ample applica-
tions in mathematical physics, ranging from Connes’ reformulation of the standard
model of particle physics [20], to quantum field theory [21], and to solid-state
physics. The noncommutative approach to the study of complex solid-state systems
was initiated and developed in [6, 8], focusing on the quantum Hall effect and
resulting in the computation of topological invariants via pairings between K-theory
and cyclic homology. Noncommutative geometry techniques have proven to be a
key tool in this field, and applications include the study of disordered systems,
quasi-crystals and aperiodic solids [44, 45]. The correct framework to describe
such systems, as has been shown recently, is via KK-theory elements for certain
observable C∗-algebras.

This review is dedicated to a discussion of Toeplitz algebras and more generally
C∗-extensions, and their role in noncommutative index theory. It is aimed at readers
interested in the more recent applications of Toeplitz extensions and should serve as
a brief overview and introduction to the subject. We shall provide an exposition of
operator algebra techniques recently used in mathematical physics, in particular in
the study of solid-state systems.

The paper is structured as follows. In Sect. 2 we review the construction of the
classical one-dimensional Toeplitz algebra as the universal C∗-algebra generated
by a single isometry, and we recall its role in the Noether–Gohberg–Krein index
theorem, which relates the index of Toeplitz operators to the winding number of
their symbol. We conclude the section by discussing how the construction can be
extended to higher dimensions. In Sect. 3 we take a deep dive into the world of
noncommutative topology and discuss the role of Toeplitz extensions in operator
K-theory, namely in Cuntz’s proof of Bott periodicity and in the development of
Kasparov’s bivariant K-theory. This rather technical section allows us to introduce
the tools that are needed in the noncommutative approach to solid-state physics.
In Sect. 4, we describe two constructions of universal C∗-algebras that will later
play a crucial role in the study of solid-state systems, namely crossed products by
the integers, Cuntz–Pimsner algebras, and their Toeplitz algebras. Finally, Sect. 5 is
devoted to describing how Toeplitz extensions and the associated maps in K-theory
provide the natural framework for implementing the bulk-edge correspondence from
solid-state physics.

2 Toeplitz Algebras of Operators

2.1 Shifts, Winding Numbers, and the
Noether–Gohberg–Krein Index Theorem

In view of the Gelfand–Naimark theorem [25], every abstract C∗-algebra, commu-
tative or not, admits a faithful representation as a subalgebra of the algebra B(H)

of bounded operators on some Hilbert space H . In this section, we will start by
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constructing two concrete examples of C∗-algebras of operators. As mentioned in
the Introduction, we are interested in how the commutative algebra of functions
on the circle and the noncommutative algebra generated by a single isometry fit
together in a short exact sequence. This extension will later serve as our prototypical
example illustrating the use of C∗-algebraic techniques in solid-state physics.

Let S1 := {z ∈ C | zz = 1} denote the unit circle in the complex plane. The
corresponding C∗-algebra, C(S1), is the closure in the supremum norm of the
algebra of Laurent polynomials

O(S1) = C[z, z]
〈zz = 1〉 .

The algebra C(S1) admits a convenient representation on the Hilbert space L2(S1)

of square-integrable functions on S1. This Hilbert space is isomorphic to the Hilbert
space of sequences �2(Z), and the isomorphism is implemented by the discrete
Fourier transform

F : �2(Z) → L2(S1), (Fφ)(z) = (2π)−
1
2
∑

n∈Z
φne

−in·z. (1)

Under this isomorphism, the operator of multiplication by z is mapped to the
bilateral shift operator U , defined on the standard basis {en}n∈Z of �2(Z) via

U(en) = (en+1), U∗(en) = en−1. (2)

It is easy to see that U is a unitary operator, i.e. U∗U = 1 = UU∗. The algebra
C(S1) is then isomorphic to the smallest C∗-subalgebra of B(�2(Z)) that contains
U .

In order to define the second C∗-algebra we are interested in, which is genuinely
non-commutative, we shall consider the Hardy space H 2(S1). This is defined as the
subset of L2(S1) consisting of continuous functions that extend holomorphically to
the unit disk. The projection P : L2(S1) → H(S1) is called the Hardy projection.
Under the discrete Fourier transform, it corresponds to the projection p : �2(Z) →
�2(N).

Multiplication by z on the Hardy space corresponds to a shift operator on �2(N),
called the unilateral shift, expressed on the standard basis {fn}n∈N of �2(N) via:

T (fn) = (fn+1).

Its adjoint is not invertible, as

T ∗(fn) =
{

fn−1 n ≥ 1

0 n = 0
.
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This motivates the following:

Definition 1 The Toeplitz algebra T is the smallest C∗-subalgebra of B(�2(N))

that contains T .

It is easy to see that the Toeplitz algebra T is not commutative, as

T ∗T = 1, T T ∗ = 1 − pker(T ∗). (3)

In particular, it follows from (3) that elements of T commute up to compact
operators, and in particular the generator T is unitary modulo compact operators.
In other words, the Toeplitz algebra can be viewed as the C∗-algebra extension of
continuous functions on the circle by the compact operators:

0 K 2(N))
π

C(S1) 0. (4)

The extension (4) admits a completely positive and completely contractive splitting
given by the Hardy projection P . Indeed, for every f ∈ C(S1), the assignment

Tf (g) = P(fg), g ∈ H 2(S1) (5)

defines a bounded operator on the Hardy space H 2(S1), where, under Fourier
transform, Tz corresponds to the unilateral shift. As the function z generates C(S1)

as a C∗-algebra, every such Tf is an element of T .
The following result implies that the Toeplitz algebra is the universal C∗-algebra

generated by an element T satisfying T ∗T = 1:

Theorem 2 (Coburn [16]) Suppose v is an isometry in a unital C∗-algebra A. Let
T = Tz ∈ T . Then there exists a unique unital ∗-homomorphism φ : T → A such
that φ(T ) = v. Moreover, if vv∗ �= 1, then the map φ is isometric.

2.1.1 The Noether–Gohberg–Krein Index Theorem

Recall that an operator F ∈ B(H) is a Fredholm operator if F has closed range
and both ker F and ker F ∗ are finite-dimensional. The Fredholm index of such an
operator is the integer

Ind(F ) = dim ker F − dim ker F ∗ ∈ Z.

One of the key properties of the Fredholm index is that it is constant along
continuous paths of Fredholm operators. As such it is a homotopy invariant.

The completely positive linear splitting f 	→ Tf allows one to give a precise
characterisation of which Toeplitz operators Tf are Fredholm. Moreover, the index
of a Fredholm Toeplitz operator Tf can be described entirely in terms of a familiar
homotopy invariant of the complex function f . This is the content of the Toeplitz
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index theorem, due to F. Noether and later reproved independently by Gohberg and
Krein. It was one of the first results linking index theory to topology and should be
viewed as an ancestor to the celebrated Atiyah–Singer index theorem.

Theorem 3 (Noether [41], Gohberg–Krein [27]) For f : S1 → C× the operator
Tf : H 2(S1) → H 2(S1) is Fredholm and

Ind
(
Tf

) = −w(f ),

with w(f ) the winding number of f . If f is a C1-function, then the winding number
can be computed as

w(f ) =
∫

S1

f ′(z)
f (z)

dz.

The latter, explicit expression for the winding number shows that the Toeplitz
index should be viewed as a result of differential topology: By choosing a nice
representative in the homotopy class of the function f , the differential calculus can
be employed to compute a topological invariant. We will see an application of this
computation in Sect. 5.

2.2 Generalisation: Higher Toeplitz Algebras

2.2.1 Toeplitz Operators on Strongly Pseudo-Convex Domains

The definition of Toeplitz operators on the circle in terms of the Hardy space lends
itself to generalisations to higher dimensions. The crucial observation here is that
the Hardy space H 2(S1) can be defined as the closure of the space of boundary
values of holomorphic functions on the unit disk that admit a continuous extension
to the closed unit disk.

Definition 4 ([48, Definition 1.2.18]) Let � be a smooth domain in C
n with

defining function ρ ∈ C∞(Cn):

� = {z ∈ C
n : ρ(z) < 0}

and boundary ∂� = {z ∈ Cn : ρ(z) = 0}. For every z ∈ ∂�, the Levi form 〈 , 〉z is
defined as

〈u, v〉z :=
∑

1≤i,j≤n

∂2ρ

∂zi∂zj
(z)ujvj , u, v ∈ C

n.



8 F. Arici and B. Mesland

Then � is called a strongly pseudo-convex domain if the Levi form is positive semi-
definite on the complex tangent space at every point z ∈ ∂�. That, for every nonzero
u ∈ Tz(∂Ω) it holds that 〈u, u〉z > 0.

Open balls in Cn are examples of strongly pseudo-convex domains. However,
the product of two open balls is not strongly pseudo-convex, showing the notion is
somewhat subtle.

Given a strongly pseudo-convex domain � ⊆ Cn with smooth boundary, we
denote by L2(∂�) the Hilbert space of square integrable functions on the boundary
∂�. The Hardy space H 2(∂�) is defined as the Hilbert space closure in L2(∂�) of
boundary values of holomorphic functions on � that admit a continuous extensions
to the boundary ∂� (cf. [48, Definition 2.3]). The orthogonal projection

PCS : L2(∂�) → H 2(∂�),

called the Cauchy–Szegö projection, is used to define Toeplitz operators, in analogy
with (5). Indeed, let f be a continuous function on ∂�, the Toeplitz operator with
symbol f is defined as

Tf (g) = PCS(fg),

for all g ∈ H 2(∂�).
For any two f, f ′ ∈ C(∂�), the product of Toeplitz operators Tf ◦ Tf ′ is equal

to Tff ′ modulo compact operators. Moreover, for any f ∈ C(∂�), the operator Tf

is compact if and only if f is identically zero. These two facts combined lead to the
following:

Theorem 5 Let � be a strongly pseudo-convex domain. Let T (∂�) be the closed
subalgebra of B(H 2(∂�)) that contains all the Toeplitz operators. There is an
extension of C∗-algebras

0 K(H 2 0.

The extension admits a completely positive and completely contractive linear
splitting given by the Cauchy–Szegö projection.

Applied to the unit ball in Cn this construction yields the Toeplitz extensions for
odd-dimensional spheres as a special case:

0 K(H 2(S2d−1)) (S2d−1) C(S2d−1) 0,

which clearly recover (4) for d = 1.
The Toeplitz algebra T (S2d−1) admits an equivalent description in terms of so-

called d-shifts, as described in [3, Theorem 5.7]. For an overview of the interplay
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of Toeplitz C∗-algebras and index theory, as well as their role in the computation of
noncommutative invariants, we refer the reader to the excellent survey [38].

3 Toeplitz Algebras in Operator K-Theory and Bivariant
K-Theory

An indispensable tool in Fredholm index theory is operator K-theory, a functor
associating to a C∗-algebra A two Abelian groups K∗(A), ∗ = 0, 1. Functoriality
means that for a ∗-homomorphism ϕ : A → B between C∗-algebras A and B, there
are induced homomorphism of Abelian groups

ϕ∗ : K∗(A) → K∗(B).

The key properties of the operator K-theory functor are that it is homotopy
invariant, half-exact and Morita invariant. We now define each of these properties
more precisely.

Homotopy invariance is the property that if ϕ and ψ are connected by a
continuous path of ∗-homomorphisms, then the induced maps on K-theory coincide,
that is ϕ∗ = ψ∗.

Half-exactness is the property that for any extension of C∗-algebras

0 I
i

E
p

A 0, (6)

the corresponding sequence of groups

K∗(I)
i∗

K∗(E)
p∗

K∗(A),

is exact at K∗(E).
Lastly, Morita invariance entails that for any rank-one projection p ∈ K =

K(�2(N)), the ∗-homomorphism

A → K ⊗ A, a 	→ p ⊗ a,

induces an isomorphism in K-theory.
Recall that the suspension SA of a C∗-algebra A is defined to be

SA := C0(0, 1) ⊗ A � C0((0, 1), A),

which is a C∗-algebra in the sup-norm, and pointwise product and involution
inherited from A.

The operation A → SA is functorial for ∗-homomorphisms, and it is customary
to define the higher K-groups as Kn(A) := K0(S

nA). Via a general construction in
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topology, it follows that the extension (6) induces a long exact sequence

· · · → Kn+1(A) → Kn(I) → Kn(E) → Kn(A) → Kn−1(I) → · · · , (7)

of Abelian groups.
The boundary maps in such exact sequences are often related to index theory. For

instance, for the Toeplitz extension (4), the boundary map

∂ : K1(C(S1)) → K0(K(�2(N)) � Z, (8)

maps the class of a nonzero function f ∈ C(S1) to the index of the corresponding
Toeplitz operator Tf .

One of the key features of operator K-theory is Bott periodicity. It states that
for any C∗-algebra A there are natural isomorphisms between its K-theory and
the K-theory of its double suspension S2A. It turns out that the three properties
of homotopy invariance, half-exactness and Morita invariance suffice to deduce
the existence of natural Bott periodicity isomorphisms K∗(A) � K∗(S2A). As a
consequence, there are only two K-functors, K0 and K1, and the exact sequence (7)
reduces the cyclic six-term exact sequence

K0(I)
i∗

K0(E)
p∗

K0(A)

K1(A) K1(E)
p∗ K1(I).

i∗

3.1 Cuntz’s Proof of Bott Periodicity

Apart from the invariance properties of the K-functor, Cuntz’s proof of Bott
periodicity (cf. [22]) exploits essential properties of the Toeplitz extension (4). By
composing the projection homomorphism π : T → C(S1) with the evaluation map
ev1 : C(S1) → C, given by ev1(f ) = f (1), we obtain a character of T :

χ := ev1 ◦ π : T → C. (9)

The unital embedding ι : C → T splits the homomorphism χ in the sense that
χ ◦ ι = idC. It is a non-trivial fact that these ∗-homomorphisms are mutually inverse
in K-theory, in a strong sense made precise below.

To state the result, which lies at the heart of the proof of the Bott periodicity
theorem, we shall recall the construction of the spatial or minimal tensor product
A1⊗A2 of C∗-algebras Ai, i = 1, 2. Choose faithful representations πi : Ai →
B(Hi ) and let H1 ⊗ H2 be the completed tensor product of Hilbert spaces. One
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defines A⊗B to be the completion of the algebraic tensor product A ⊗ B in the
norm inherited from the representation

π1 ⊗ π2 : A1 ⊗ A2 → B(H1 ⊗ H2).

Proposition 6 ([22, Proposition 4.3]) Let A be a C∗-algebra. The map χ ⊗ 1 :
T ⊗A → A induces an isomorphism χ∗ ⊗ 1 : K0(T ⊗A)

∼−→ K0(A).

Tensor products of C∗-algebras are not unique, and the spatial tensor product is the
completion in the minimal C∗-norm on the algebraic tensor product A ⊗ B. There
is also a maximal C∗-norm on A ⊗ B, which involves taking the supremum over
all representations. A C∗-algebra N is nuclear, if for any other C∗-algebra A, the
minimal and maximal C∗-tensor norms on N ⊗ A coincide. For our purposes it
suffices to know that all commutative C∗-algebras are nuclear. Given an extension
of C∗-algebras

0 I E B 0 , (10)

the sequence of tensor products

0 I⊗A E⊗A B⊗A 0 , (11)

may fail to be exact in the middle. However, nuclearity of the C∗-algebra B

guarantees exactness.

Lemma 7 (cf. [15, Corollary 3.7.4]) Let A be a C∗-algebra and consider an
extension (10). If the C∗-algebra B is nuclear, then the sequence (11) is exact.

We can now exploit Proposition 6, Lemma 7, and the exactness properties of the
K-functor to deduce Bott periodicity.

Theorem 8 For any C∗-algebra A there are natural isomorphisms Kn(A) �
Kn+2(A).

Proof Consider the character χ defined in (9) and let T0 := ker χ , so that we have
an extension

0 0 C 0 .

As C is nuclear, this extension has the property that the induced sequence

0 0⊗A ⊗A A 0 ,

is exact for any C∗-algebra A as well, by Lemma 7.
The long exact sequence (7), together with the fact that S(A⊗B) � A⊗SB and

Proposition 6, imply that χ∗ : Kn(T ⊗A) → Kn(A) is an isomorphism for all n.
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Consequently Kn(T0⊗A) = 0 for all n. Now observe that, after identifying ker ev1
with C0(0, 1), we can construct a second extension

0 K 0 C0(0, 1) 0 .

As C0(0, 1) is nuclear, this extension, too, has the property that

0 K⊗A 0⊗A C0(0, 1)⊗A 0

is exact for any C∗-algebra A, by Lemma 7. Since C0(0, 1)⊗A � SA, the long
exact sequence (7) gives an isomorphism

Kn+1(C(0, 1)⊗A)
∼−→ Kn(K⊗A).

Now we use the Morita invariance isomorphism Kn(K⊗A) � Kn(A) and the fact
that C(0, 1)⊗A � SA to deduce that

Kn+2(A) � Kn+1(C(0, 1)⊗A)
∼−→ Kn(K⊗A) � K0(A),

which yields the Bott periodicity isomorphism. ��
We remark that, in fact, the theorem holds if we replace K by any functor that is
homotopy invariant, half-exact and Morita invariant. We also note that earlier work
of Karoubi [31] provides another short and conceptual proof of Bott periodicity.
Although Bott periodicity does not hold in algebraic K-theory, Karoubi’s proof puts
algebraic and topological K-theory of Banach algebras on the same footing.

3.2 Toeplitz Extensions and Bivariant K-Theory

As we have seen so far in the Toeplitz index and Bott periodicity theorems,
extensions of C∗-algebras play a crucial role in K-theory and henceforth in index
theory. An extension of a C∗-algebra A by B should be viewed as a new C∗-algebra,
built by “gluing together” A and B in a possibly topologically nontrivial way.

In [14], Brown, Douglas, and Fillmore initiated the study of extensions by
considering exact sequences of the form

0 K(H) E C(M) 0,

for some Hilbert space H and some compact Hausdorff topological space M . They
proved that such extensions form an Abelian group by defining addition via an
appropriate version of the Baer sum. They also showed that their Abelian group
is dual to K-theory in a precise sense governed by Fredholm index theory.
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Kasparov generalised this construction to extensions

0 K(X) E A 0,

where A is a separable C∗-algebra and X a countably generated Hilbert C∗-
module over a second, σ -unital C∗-algebra B. A technical assumption on such
extensions is that they admit a completely positive and completely contractive linear
splitting � : A → E such that � ◦ π = idA. This assumption is automatically
satisfied when the quotient algebra in the extension is nuclear. Commutative C∗-
algebras are nuclear, and thus the Toeplitz extensions discussed previously satisfy
this assumption. The isomorphism classes of such extensions form an Abelian group
Ext1(A,B) which is isomorphic to the Kasparov group KK1(A,B). This section
is devoted to making this statement more precise. An excellent reference for this
discussion is [28, Chapter 3].

3.2.1 Hilbert Modules and C∗-Correspondences

Before we proceed, we need to recall some results from the theory of Hilbert
C∗-modules. For more details on the latter, we refer the interested reader to the
monograph [37] and to the recent article [36].

Definition 9 A pre-Hilbert module over a C∗-algebra B is a right B-module X with
a B-valued Hermitian product, i.e. a map 〈·, ·〉B : X × X → B satisfying

〈ξ, η + ζ 〉B = 〈ξ, η〉B + 〈ξ, ζ 〉B,

〈ξ, η〉B = 〈η, ξ〉∗B, 〈ξ, ηb〉B = 〈ξ, η〉Bb,

〈ξ, ξ〉B ≥ 0, 〈ξ, ξ〉B = 0 ⇔ ξ = 0,

for all ξ, η, ζ ∈ X and for all b ∈ B.

Note that using the existence of approximate units in C∗-algebras, one can prove
that the inner product automatically satisfies 〈ξ, λη〉B = λ〈ξ, η〉B for all ξ, η ∈ X

and λ ∈ C (cf. [36, Section 2]).
For a pre-Hilbert module X, one can define a scalar valued norm ‖ · ‖ using the

C∗-norm on B:

‖ξ‖2 = ‖〈ξ, ξ〉B‖B. (12)

Definition 10 A Hilbert C∗-module is a pre-Hilbert module that is complete in the
norm (12).

If one defines 〈X,X〉 to be the linear span of elements of the form 〈ξ, η〉 for ξ, η ∈
X, then its closure is a two-sided ideal in B. We say that the Hilbert module X is
full whenever 〈X,X〉 is dense in B.
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Let now X,Y be two Hilbert C∗-modules over the same C∗-algebra B.

Definition 11 A map T : X → Y is said to be an adjointable operator if there
exists another map T ∗ : Y → X with the property that

〈T ξ, η〉 = 〈ξ, T ∗η〉 for all ξ ∈ X, η ∈ Y .

Every adjointable operator is automatically right B-linear and bounded. However,
the converse is in general not true: a bounded linear map between Hilbert modules
need not be adjointable. We denote the collection of adjointable operators from X

to Y by Hom∗
B(X, Y ). When X = Y , the adjointable operators form a C∗-algebra in

the operator norm, that is denoted by End∗
B(X).

Inside the adjointable operators one can single out a particular subspace, which
is analogous to that of finite-rank operators on a Hilbert space. More precisely, for
every ξ ∈ Y, η ∈ X one defines the operator θξ,η : X → Y as

θξ,η(ζ ) = ξ 〈η, ζ 〉, ∀ζ ∈ X. (13)

This is an adjointable operator, with adjoint θ∗
ξ,η : Y → X given by θη,ξ .

We denote by KB(X, Y ) the closure of the linear span of

{θξ,η | ξ, η ∈ X} ⊆ Hom∗
B(X, Y ), (14)

and we refer to it as the space of compact adjointable operators. In particular
KB(X) := KB(X,X) ⊆ End∗

B(X) is a closed two-sided ideal in the C∗-algebra
End∗

B(X), hence a C∗-subalgebra, whose elements are referred to as compact
endomorphisms. Elements of KB(X) and of End∗

B(X) act on X from the left,
motivating the following:

Definition 12 A C∗-correspondence (X, φ) from A to B, is a right Hilbert B-
module X endowed with a ∗-homomorphism φ : A → End∗

B(X). If φ : A →
KB(X) we refer to (X, φ) as a compact C∗-correspondence and in the case A = B

we refer to (X, φ) as a C∗-correspondence over B.

When no confusion arises, we will omit the map φ and simply write X.
Two C∗-correspondences (X, φ) and (Y,ψ) over the same algebra B are called

isomorphic if and only if there exists a unitary U ∈ End∗
B(X, Y ) intertwining φ and

ψ .
Given an (A,B)-correspondence (X, φ) and a (B,C)-correspondence (Y,ψ),

one can construct an (A,C)-correspondence, named the interior tensor product of
(X, φ) and (Y,ψ). As a first step, one constructs the balanced tensor product X ⊗B

Y which is a quotient of the algebraic tensor product X ⊗alg Y by the subspace
generated by elements of the form

ξb ⊗ η − ξ ⊗ ψ(b)η, (15)

for all ξ ∈ X, η ∈ Y, b ∈ B.
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This has a natural structure of right module over C given by

(ξ ⊗ η)c = ξ ⊗ (ηc),

and a C-valued inner product defined on simple tensors as

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉C := 〈η1, ψ(〈ξ1, ξ2〉B)η2〉C, (16)

and extended by linearity.
The inner product is well-defined (cf. [37, Proposition 4.5]); in particular, the

null space N = {ζ ∈ X ⊗alg Y ; 〈ζ, η〉 = 0} can be shown to coincide with the
subspace generated by elements of the form in (15).

One then defines X⊗̂ψY to be the right Hilbert module obtained by completing
X⊗BY in the norm induced by (16). Moreover for every T ∈ End∗

B(X), the operator
defined on simple tensors by

ξ ⊗ η 	→ T (ξ) ⊗ η

extends to a well-defined operator φ∗(T ) := T ⊗ 1. It is adjointable with adjoint
given by T ∗ ⊗ 1 = φ∗(T ∗). In particular, this means that there is a left action of A

defined on simple tensors by

(φ ⊗ψ 1)(a)(ξ ⊗ η) = φ(a)ξ ⊗ η,

and extended by linearity to a map

φ ⊗ψ 1 : A → End∗
C(X⊗̂ψY ),

thus turning X⊗̂ψY into an (A,C)-correspondence. For all the details, we refer the
reader once more to [37, Chapter 4].

We remark that the interior tensor product induces an associative operation on
isomorphism classes of C∗-correspondences.

3.2.2 Kasparov Modules and the Theory of Extensions

We now come to defining the key objects in Kasparov’s bivariant K-theory [34],
which are inspired by the geometry of elliptic operators on manifolds. For technical
reasons, Kasparov theory is developed under some mild countability assumptions.
Recall that a C∗-algebra B is σ -unital if it admits a countable approximate unit, and
separable if it admits a countable dense subset. Separable C∗-algebras are σ -unital.
A Hilbert C∗-module X over B is countably generated if there is a countable subset
{xi} ⊂ X such that the right B submodule generated by {xi} is dense in X.
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Definition 13 An odd Kasparov (A,B)-bimodule is a pair (Y, F ) where Y =
(Y, φ) is a countably generated Hilbert C∗-correspondence from A to B, and
F ∈ End∗

B(Y ) is a self-adjoint operator such that F 2 = 1 and [F, φ(a)] ∈ K(Y ).
An even Kasparov module is a triple (Y, F, γ ) such that (Y, F ) is an odd Kasparov
module and γ ∈ End∗

B(Y ) is a self-adjoint unitary that commutes with A and
anticommutes with F .

The natural equivalence relation of homotopy of Kasparov modules is conve-
niently defined via Kasparov modules for (A,C([0, 1], B)). The homotopy classes
of odd Kasparov (A,B)-modules form an Abelian group denoted KK1(A,B).
Similarly, the homotopy classes of even Kasparov modules form an Abelian
group KK0(A,B). If we choose A = C then there are natural isomorphisms
KK∗(C, B) � K∗(B), and as such KK-theory generalises K-theory. The main
feature of the theory is the existence of an associative, bilinear product structure

KKi(A,B) × KKj(B,C) → KKi+j (A,C), (17)

the Kasparov product, defined whenever A is separable and B is σ -unital. Again,
if we set A = C, we see that elements in KKj(B,C) induce maps K∗(B) →
K∗+j (C) by taking products from the right.

There is a close relationship between the Abelian groups KK1(A,B) and
Ext1(A,B) which can be understood via the following Kasparov–Stinespring
theorem, first proved in [33].

Theorem 14 (See the Proof of Theorem 3.2.7 in [28]) Let A,B be C∗-algebras,
with A separable and B σ -unital. Let X be a countably generated Hilbert C∗-
module over B and ρ : A → End∗

B(X) be a completely positive contraction. There
exists a countably generated Hilbert C∗-module Y over B, a ∗-homomorphism
π : A → End∗

B(Y ) and an isometry v : X → Y such that ρ(a) = v∗π(a)v.

A proof of the above theorem is obtained by combining the proof of Theorem
3.2.7 in [28] with Kasparov’s stabilisation theorem for countably generated C∗-
modules [33, Theorem 3.2]. For our KK-theoretic purposes, remaining in the
countably generated category is of vital importance, but the reader is invited to
consult the more general versions of this result that are available, see for instance
[37, Theorem 5.6].

It is worth noting that such an isometry v : X → Y immediately gives rise to a
Toeplitz type algebra

Tv := vv∗End∗
B(Y )vv∗ � End∗

B(X).

To an extension

0 K(X) E A 0,

with a completely positive linear splitting � : A → E, we can associate an
odd Kasparov module by observing that, as K(X) is an ideal in E, there is a
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∗-homomorphism ϕ : E → End∗
B(X). We consider the completely positive

contraction ρ := ϕ ◦ � : A → End∗
B(X) and obtain an (A,B)-bimodule Y and

an isometry v : X → Y via Theorem 14.

Theorem 15 Let X be a countably generated Hilbert C∗-module over the σ -unital
C∗-algebra B and A a separable C∗-algebra. If

0 K(X) E A 0,

is a semisplit extension with completely contractive and completely positive linear
splitting � : A → E, then the Stinespring dilation v : X → Y of ρ := ϕ ◦ � : A →
End∗

B(X) makes (Y, 2vv∗ − 1) into an odd Kasparov module for (A,B).

Proof As Y is an (A,B)-correspondence and F = 2vv∗ − 1 it holds that F 2 = 1
and F ∗ = F . Hence all we need to check is that [F, π(a)] = 2[vv∗, π(a)] is an
element of K(Y ). Write p = vv∗, so p2 = p∗ = p and

[p, π(a)] = pπ(a)(1 − p) − (1 − p)π(a)p.

It thus suffices to show that pπ(a)(1 − p)π(a)∗p ∈ K(Y ), for K(Y ) is an ideal
in End∗

B(Y ) and thus for T ∈ End∗
B(Y ) it holds that T ∈ K(Y ) if and only if

T T ∗ ∈ K(Y ) (see for instance [10, Proposition II.5.1.1.ii]). Now vK(X)v∗ ⊂ K(Y ),
since for x1, x2 ∈ X it holds that vθx1,x2v

∗ = θv(x1),v(x2), and we compute

pπ(a)(1 − p)π(a∗)p = vv∗π(a)(1 − vv∗)π(a∗)vv∗

= v(v∗π(a)vv∗π(a∗)v − v∗π(aa∗)v)v∗

= v(�(a)�(a∗) − �(aa∗))v∗ ∈ vK(X)v∗.

This proves that (Y, F ) is a Kasparov module. ��
By the previous theorem, we see that an extension of C∗-algebras induces an
element in KK1(A,B). Using the product structure (17), this leads to the elegant
viewpoint that an extension induces maps

⊗A[(Y, F )] : K∗(A) → K∗+1(B),

via the Kasparov product. These maps coincide with the boundary maps in the
long exact sequence associated to the extension. For instance, the product with the
extension

0 K⊗A 0⊗A C0(0, 1)⊗A 0 ,



18 F. Arici and B. Mesland

of the previous section induces the Bott periodicity isomorphisms Kn(S
2A) �

Kn(A). In fact, the extension above, in combination with the Kasparov product,
can be used to prove the general bivariant Bott periodicity isomorphisms

KK∗(S2A,B) � KK∗(A,B) � KK∗(A, S2B),

for any pair of separable C∗-algebras (A,B).
The Kasparov–Stinespring construction can be inverted up to homotopy, yielding

the statement that KK1(A,B) is isomorphic to Ext1(A,B). Effectively, this
amounts to the observation that KK-theory is nothing but the study of extensions
of C∗-algebras.

To conclude, let us sketch the inverse construction. An odd Kasparov module
(X, F ) for (A,B) defines an adjointable projection P := 1

2 (F + 1) and hence a
complemented submodule X := PY ⊂ Y . The C∗-subalgebra

E := {
(PT P, a) ∈ End∗

B(X) ⊕ A : T ∈ End∗
B(Y ), P (T − a)P ∈ K(Y )

}
,

of End∗
B(Y ) ⊕ A is an extension of A by K(X). To see that E is closed under

products, we use that

PSPT P − PabP = P(S − a)PT P + PaP(T − b)P − Pa(1 − P)bP

= P(S − a)PT P + PaP(T − b)P − [P, a](1 − P)bP,

which is an element of K(X). The quotient map E → A, given by (PT P, a) 	→ a

has kernel K(X) = K(PY ). Moreover, it admits the completely contractive linear
splitting

� : A → E, � : a 	→ (PaP, a).

The C∗-algebra E can be viewed as an abstract Toeplitz algebra associated to the
Kasparov module (Y, F ). This inverts the Kasparov–Stinespring construction, as is
easily checked.

4 Toeplitz Algebras, Crossed Products by the Integers,
and Cuntz–Pimsner Algebras

We will now describe two constructions of Toeplitz C∗-algebras and quotients
thereof that appear in the study of solid-state systems, as they provide the natural
framework for implementing the bulk-edge correspondence.
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4.1 Crossed Products by the Integers and the
Pimsner–Voiculescu Toeplitz Algebra

Our first object of study are crossed products by the integers. They constitute one of
the simplest and most well-understood examples of C∗-algebras associated to C∗-
dynamical systems, a class of objects which were introduced to study group actions
on C∗-algebras.

Let α be an automorphism of a unital C∗-algebra B. This defines an action of the
additive group Z of integers on B given by

Z → Aut(B), n 	→ αn.

The crossed product C∗-algebra B �α Z is realised as the universal C∗-algebra
generated by B and a unitary u satisfying the covariance condition

αn(b) = unbu∗n, ∀b ∈ B, n ∈ Z.

As described in [42], crossed products by a single automorphism can be realised as
quotients in a Toeplitz exact sequence of C∗-algebras, constructed starting from the
Toeplitz extension (4).

Definition 16 Let B a unital C∗-algebra and α an automorphism of B. Let T =
C∗(T ) be the Toeplitz algebra of the unilateral shift. The Pimsner–Voiculescu
Toeplitz algebra T (B, α) is defined as the C∗-subalgebra of (B�αZ)⊗T generated
by B ⊗ 1 and u ⊗ T .

The Pimsner–Voiculescu Toeplitz algebra T (B, α) and the crossed product C∗-
algebra B �α Z fit into a short exact sequence involving the stabilisation of B:

0 K⊗B (B, α) B α Z 0. (18)

Proof of exactness of the above sequence follows after tensoring the Toeplitz exact
sequence (4) with the algebra B, using nuclearity of C(S1) together with Lemma 7,
and by realising B �α Z as a subalgebra of B⊗C(S1) (see [42, Section 2]).

The Pimsner–Voiculescu Toeplitz algebra T (B, α) is KK-equivalent to the
algebra B itself. The exact sequence (18) then induces six-term exact sequences
that allow for an elegant computation of the K-theory and K-homology groups of
the crossed product algebra B �α Z in terms of those of the algebra B. These exact
sequences are a special case of those described in Sect. 4.2.2.
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4.2 Pimsner’s Construction: Universal C∗-Algebras from
C∗-Correspondences

The construction which we shall describe now generalises that of crossed products
by the integers. In [43], starting from a C∗-correspondence (X, φ) such that φ

is injective, Pimsner constructed two C∗-algebras TX and OX, which are now
referred to as the Toeplitz algebra and the Cuntz–Pimsner algebra of the pair (X, φ),
respectively. Both algebras are characterised by universal properties and depend
only on the isomorphism class of the pair (X, φ). We will describe the construction
for compact correspondences, i.e. such that Im(φ) ⊆ KB(X).

4.2.1 The Toeplitz Algebra

As one can take balanced tensor products of C∗-correspondences, as described in
Sect. 3.2.1, we consider the modules

X(k) := X⊗̂k
φ k > 0, (19)

and we take the infinite direct sum

FX = B ⊕
∞⊕

k=1

X(k), (20)

which is referred to as the (positive) Fock correspondence associated to the
correspondence (X, φ).

One can naturally associate to any element ξ ∈ X a shift map:

Tξ (ξ1 ⊗ · · · ⊗ ξk) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξk, Tξ (b) = ξb. (21)

This is an adjointable operator on FX , with adjoint

T ∗
ξ (ξ1 ⊗ · · · ⊗ ξk) = φ(〈ξ, ξ1〉)ξ2 ⊗ · · · ⊗ ξk, T ∗

ξ (b) = 0. (22)

Definition 17 The Toeplitz algebra of the C∗-correspondence Xφ is the smallest
C∗-subalgebra of End∗

B(FX) that contains all the Tξ for ξ ∈ X.

When (X, φ) is a compact C∗-correspondence, the compact operators on the Fock
module sit inside TE as a two-sided ideal, motivating the following:

Definition 18 The Cuntz–Pimsner algebra OX of a compact C∗-correspondence
(X, φ) is the quotient algebra appearing in the exact sequence

0 KB(FX) X
π OX 0. (23)

The image of an element Tξ ∈ TX under the quotient map π will be denoted by Sξ .
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Changing the ideal in the exact sequence (23), one can define the Cuntz–
Pimsner algebra of a general (i.e. non-compact, and possibly non-injective) C∗-
correspondence. We will not be concerned with this more elaborate construction
here. For details see the original papers of Pimsner [43] and Katsura [35], as well as
[15, Section 4.6].

Many well-known examples of C∗-algebras admit a description as Toeplitz–
Pimsner or Cuntz–Pimsner algebras. The theory provides a unifying framework for a
variety of examples, ranging from the study of discrete dynamics to more geometric
situations.

Example Let B = C and X = Cn and φ the left action by multiplication. If one
chooses a basis for Cn, then the Toeplitz algebra of (X, φ) is the universal C∗-
algebra generated by n isometries V1, . . . , Vn satisfying

∑
i ViV

∗
i ≤ 1.

This yields the well known Toeplitz extension for the Cuntz algebras On:

0 K(F) C∗(V1, . . . , Vn) On 0,

where F is the full Fock space on Cn. In particular, for n = 1 one gets back the
classical Toeplitz extension of (4).

Example (cf. [29, Section 2]) If the correspondence X is a finitely generated and
projective module over a unital C∗-algebra, the Pimsner algebra of (X, φ) can be
realised explicitly in terms of generators and relations. Indeed, since X is finitely
generated and projective, there exists a finite set {ηj }nj=1 of elements of X such that

ξ =
∑n

j=1
ηj 〈ηj , ξ〉B, ∀ξ ∈ X.

Then, using the above formula, one can spell out the left B-action on X as

φ(b)ηj =
n∑

j=1

ηi 〈ηi, φ(b)ηj 〉B, ∀b ∈ B.

The C∗-algebra OX is then the universal C∗-algebra generated by B together with
n operators S1, . . . , Sn, satisfying

S∗
i Sj = 〈ηi, ηj 〉B,

∑
j
SjS

∗
j = 1, and bSj =

∑
i
Si 〈ηi, φ(b)ηj 〉B,

(24)

for b ∈ B, and j = 1, . . . , n. The generators Si are partial isometries if and only
if 〈ηi, ηj 〉 = 0 for i �= j . For B = C and E a Hilbert space of dimension n, one
recovers the Cuntz algebra On of Example 4.2.1.
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Example Let B be a C∗-algebra and α : B → B an automorphism of B. Then
X = B, seen as a module over itself, can be naturally made into a compact C∗-
correspondence.

The right Hilbert B-module structure is the standard one, with right B-valued
inner product 〈a, b〉B = a∗b. The automorphism α is used to define the left action
via a · b = α(a)b.

Each module X(k) is isomorphic to B as a right-module, with left action

a · (x1 ⊗ · · · ⊗ xk) = αk(a)αk−1(x1) · · · α(xk−1)xk. (25)

The corresponding Pimsner algebra OX coincides with the crossed product algebra
B �α Z, while the Toeplitz algebra TX agrees with the Toeplitz algebra T (B, α).
The extension (23) then reduces to (18).

4.2.2 Six-Term Exact Sequences

The Toeplitz extension (23) induces a six-term exact sequence in K-theory. In case
the extension is semi-split, it induces six-term exact sequences in KK-theory as
well. Split-exactness is automatic, for instance, when the coefficient algebra B is
nuclear. These exact sequences can be simplified to a great extent after making the
following observations:

• For a compact C∗-correspondence (X, φ), the triple (X, φ, 0) gives a well-
defined even Kasparov module (with trivial grading), whose class we denote by
[X].

• The ideal K(FX) is naturally Morita equivalent to the algebra B itself.
• By [43, Theorem 4.4.], the Toeplitz algebra TX is KK-equivalent to the

coefficient algebra B.

In K-theory, the induced six-term exact sequence reads

K0(B)
⊗(1−[X])

K0(B)
i∗

K0(OX)

∂

K1(OX)

∂

K1(B)
i∗ K1(B)⊗(1−[X])

,

(26)

where i∗ is the map induced by the inclusion B ↪→ OX and the maps ∂ are
connecting homomorphisms. Up to Morita equivalence, the latter can be computed
as Kasparov products with the class of the extension (23). An unbounded repre-
sentative for the extension class was constructed [26] in the setting bi-Hilbertian
bimodules of finite Jones–Watatani index (cf. [30]), subject to some additional
assumptions.
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We conclude this section by remarking that, in the case of a self-Morita
equivalence bimodule—i.e., whenever X is full and φ implements an isomorphism
between B and KB(X)—the exact sequence (26) can be interpreted as a generalisa-
tion of the classical Gysin sequence in K-theory (see [32, IV.1.13]) for the module
of sections E of a noncommutative line bundle. The Kasparov product with the
map 1 − [X] can be interpreted as a noncommutative Euler class. This analogy was
exploited in [2] to compute K-theory groups of algebras presenting a circle bundle
structure.

5 Applications to Topological Insulators

We conclude by discussing the bulk-edge correspondence, a principle in solid-
state physics, according to which one should be able to read the topology of the
bulk physical system from the effects it induces on boundary states. This principle
underlies, for example, the quantization of the Hall current on the boundary of a
sample of a quantum Hall system.

In this section, we illustrate how Toeplitz extensions and the maps they induce
in (bivariant) K-theory are essential for a mathematical understanding of these
phenomena.

5.1 The Bulk-Boundary Correspondence for the
One-Dimensional Su–Schrieffer–Heeger Model
and the Noether–Gohberg–Krein Index Theorem

We will now give an exposition of the key ideas behind the bulk-edge correspon-
dence for the one-dimensional Su–Schrieffer–Heeger model [47], a lattice model
with chiral symmetry. Our main reference for this Subsection is [45, Chapter 1]. On
the Hilbert space C2 ⊗ Cn ⊗ �2(Z) we consider the one dimensional Hamiltonian

H := 1

2
(σ1 + iσ2) ⊗ 1n ⊗ U + 1

2
(σ1 − iσ2) ⊗ 1n ⊗ U∗ + mσ2 ⊗ 1n ⊗ 1, (27)

where 1n and 1 are identity operators on Cn and C2, respectively, m is a mass term,
U is the right shift on �2(Z) defined in (2), and the σi are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
.

This Hamiltonian goes back to work of [47] and models a conducting polymer,
namely polyacetilene. It possess a chiral symmetry, implemented by the unitary
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operator

J = σ3 ⊗ 1n ⊗ 1,

i.e., J ∗HJ = −H .
The model has a spectral gap at m = 0 so there exists ε > 0 and a continuous

function

χ : R → R, χ(x) =
{

0 for x ∈ (−∞,−ε]
1 for x ∈ [0,∞),

so that we can form the Fermi projection PF := χ(H) through functional calculus
with χ . The projection PF satisfies the identity JPF J = 1 − PF , so that the flat
band Hamiltonian

Q := 1 − 2PF = sgn(H)

satisfies again J ∗QJ = −Q. Moreover, Q2 = 1, hence its spectrum consists of the
two isolated points +1 and −1, allowing us to write

Q =
(

0 U∗
F

UF 0

)

for UF a unitary on Cn ⊗ �2(Z). This unitary operator, called the Fermi unitary,
provides us with a natural topological invariant for the boundary system, the first
odd Chern number, which can be computed as follows.

We use the discrete Fourier transform mentioned in (1) to write FQF∗ as a direct
integral

∫ ⊕
S1 Qzdz where each of the Qz’s has the form

Qz =
(

0 U∗
z

Uz 0

)
.

The family of unitary operators is differentiable and the first Chern class can be
computed as the integral

Ch1(UF ) := i

2π

∫ ⊕

S1
tr(Uz∂zUz)dz (28)

This quantity is an invariant under small perturbations.
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5.1.1 The Bulk Boundary Correspondence

We now introduce an edge for the Hamiltonian (27) by restricting it to the Hilbert
space C2 ⊗ C

n ⊗ �2(N) and imposing Dirichlet boundary conditions. The resulting
Hamiltonian is

Ĥ := 1

2
(σ1 + iσ2) ⊗ 1n ⊗ T + 1

2
(σ1 − iσ2) ⊗ 1n ⊗ T ∗ + mσ2 ⊗ 1n ⊗ 1, (29)

with conventions as above, and with S the unilateral shift on �2(N) described in
Sect. 2.1. Similarly to the bulk Hamiltonian, the edge Hamiltonian has a chiral
symmetry implemented by the half-space chiral operator Ĵ = σ3⊗1n⊗1. Moreover,
it has a spectral gap at 0 that we denote by �.

Let us now consider the Hilbert space obtained as the span of all the eigenvectors
with eigenvalues in [−δ, δ] ⊂ �, which we denote by Eδ . The chirality operator Ĵ

can be diagonalised on Eδ , and we have a splitting Eδ = Eδ+ ⊕ Eδ−.
The difference of the dimensions of the spaces Eδ± is the boundary invariant of

the system and it can be computed as a trace:

tr(Ĵ P̂δ) = N+ − N−, N± = dim Eδ±,

where P̂δ := χ(|Ĥ | ≤ δ) is the spectral projection. This invariant is independent of
the choice of δ, as long as it lies in the central gap.

The bulk-edge correspondence is contained in the following identity, that relates
the bulk invariant (winding number of the Fermi unitary) to the boundary invariant
we just introduced.

Theorem 19 ([45, Theorem 1.2.2]) Consider the Hamiltonian (27) and its half-
space restriction (29). If UF is the Fermi unitary and Ch1(UF ) its winding number
defined in (28), then

Ch1(UF ) = Tr(J̃ P̃ (δ)).

We remark that the Toeplitz extension (4) offers an index theoretic interpretation
of this identity. The above equality of classes follows from the six-term exact
sequence coming from the Toeplitz extension (4). Indeed, the boundary map
described in (8) maps classes of unitaries in the bulk algebra C(S1) to classes of
projections in the boundary algebra K(�2(N)), whose integer K-theory classes are
given by the winding number of the relevant unitary.
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5.2 The Role of Toeplitz Extensions in the Bulk-Edge
Correspondence

The example of the Su–Schrieffer–Heeger model is in some sense paradigmatic,
as other solid-state systems can be modelled using related C∗-algebraic extensions,
where Toeplitz algebras serve as models for the half-space system, while quotients
of Toeplitz algebras are used to model the edge system. Likewise, the K-theory
boundary map coming from the extension can be used to implement the bulk-edge
correspondence, relating bulk invariants to edge invariants.

The idea to model the algebra of observables of a solid-state system via
crossed product C∗-algebras of some disorder space goes back to Bellissard [7].
His approach culminated in outlining a full-fledged mathematical programme for
solid-state physics based on Delone sets [6, 9]. These are uniformly discrete and
relatively dense subsets of Euclidean space, but are not required to possess any
translational symmetry. In order to work with them, one needs to replace crossed
products by groupoid C∗-algebras. The recent developments around the bulk-edge
correspondence gave new impetus to this program [44]. We will now present a
selection of contemporary results that make use of Toeplitz extensions and KK-
theory.

In [12], the authors use the techniques from unbounded KK-theory to prove
the bulk-edge correspondence in K-theory for the quantum Hall effect. In their
approach, they are able to represent bulk topological invariants as a Kasparov
product of boundary invariants with the class of a Toeplitz extension that links the
bulk and boundary algebras.

A topological boundary map associated to an extension of a bulk algebra of
observables by a boundary algebra is also used in [40]. The bulk algebra is
constructed as a crossed product of the codimension-one boundary algebra by the
integers, and the K-theoretic invariants are obtained from the associated Toeplitz
extension. In their approach the authors use methods from noncommutative T-
duality [39].

In [13], the observable algebra of the physical system is a twisted crossed product
C∗-algebra. The Toeplitz extensions for twisted crossed products by Zn offers
the natural framework for the investigation of the bulk-edge correspondence, as it
elegantly links the algebras of the bulk and the edge systems.

Crossed product C∗-algebras are also used to describe disordered systems. The
recent paper [1] describes the bulk-boundary correspondence for disordered free-
fermion topological phases in terms of Van Daele K-theory for graded C∗-algebras
[49, 50]. The relevant observable algebra is the crossed product of the algebra of
continuous functions on a compact disorder space by the action of a lattice.

In [11], the authors replaced crossed products C∗-algebras by groupoid C∗-
algebras. While crossed products of commutative C∗-algebras are naturally an
example of groupoid C∗-algebras, the advantage of this more general setting lies
in the possibility of studying systems without translational symmetries, like those
resulting from non-periodic Rd -actions and the above mentioned Delone sets. The
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systems are still linked by a short exact sequence of the form

0 C∗
r (Y, σ ) ⊗ K C∗

r (G, σ ) 0 ,

where σ is a 2-cocycle encoding the magnetic field, Y is a closed subgroupoid of
the groupoid G, and the algebra T models the half-space system.

Quite remarkably, in the one-dimensional case, the groupoid C∗-algebra admits
an alternative description as Cuntz–Pimsner algebra of a self-Morita equivalence
bimodule (cf. [11, Subsection 2.3]). The map implementing the bulk-edge corre-
spondence is realised as a Kasparov product with the unbounded representative
for the class of the extension (23), as constructed in [26] (see also [2]). It remains
an interesting open question whether groupoid C∗-algebras of higher dimensional
systems admit a description in terms of C∗-algebras associated to families of
C∗-correspondences, for instance in terms of product and subproduct systems
[23, 24, 46, 51].
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