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Zebrafish as a model to dissect the effect of glucocorticoids in the immune 

system 

Glucocorticoids (GCs) regulate, through the activation of the glucocorticoid receptor (GR), a wide 

variety of systems, like the metabolic, reproductive, cardiovascular, nervous and immune system [1-

3]. Due to their well-established immunosuppressive effects, GCs are widely prescribed as anti-

inflammatory drugs. However, their utilization is severely limited by the occurrence of side effects and 

drug resistance [4, 5]. Therefore, there is still a major need to investigate the molecular and cellular 

mechanisms underlying the effects of GCs. These mechanisms appear to be highly complex, since the 

effects of GCs are cell type- and context-specific and their transcriptional regulatory effects on pro-

inflammatory genes are not strictly suppressive [6, 7].  

Zebrafish are increasingly used as an in vivo model system for studying the immune system, in 

particular the inflammatory response, for research aimed at the discovery of novel drug targets and 

for screening of drug libraries [8-10]. The advantages of this model system include its evolutionally 

conserved immune system, the accessibility of embryos for genetic manipulation and non-invasive live 

imaging and the cost-effective maintenance [10-13]. In Chapter 2, an overview is presented of how 

the zebrafish is used as an animal model for inflammatory diseases. Different models are described, 

and how they are used for research on the mechanisms underlying the inflammatory response and for 

testing of  potential novel anti-inflammatory drugs, in particular GCs. In addition, the structure and 

function of the zebrafish Gr and the regulation of the secretion of the endogenous GC cortisol are 

highly similar to the human system [14-17]. This makes the zebrafish a valuable tool to study the 

complex modulatory effects of GCs on the immune system. In this thesis, we have used this model 

system to study molecular and cellular mechanisms of GC action on the immune system and to develop 

a model for in vivo screening of the anti-inflammatory effects as well as possible adverse effects of 

novel GC therapies. For this purpose, we have studied the effect of GCs on leukocyte migration and 

differentiation during an inflammatory response (Chapter 3), how GCs modulate the immune response 

to a mycobacterial infection (Chapter 4), and we have investigated targeting of GCs to inflamed tissue 

by liposomal delivery (Chapter 5). In figure 1, a graphical overview of the experimental chapters is 

presented. 

Glucocorticoids inhibit the differentiation of macrophages towards a pro-

inflammatory phenotype through transcriptional regulation 

In Chapter 3, studies are described in which we have used the zebrafish tail fin amputation model as a 

model for inflammation. In this model, neutrophils and macrophages migrate towards the area that is  
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wounded by the amputation. Treatment with the GC beclomethasone inhibits the migration of 

neutrophils towards the wound. However, the amputation-induced macrophage migration is not 

decreased by GCs, similar to earlier observations in other studies[18-20]. Our work demonstrated that 

this difference in the response to GCs is related to the GC-induced decrease in the expression of genes 

encoding chemoattractants which are involved in neutrophil recruitment such as Il8 and Cxcl18b, 

whereas the expression of genes encoding chemoattractants involved in macrophage recruitment, 

such as Ccl2 and Cxcl11aa, is unaffected by the GC treatment. Similar to our results, in a human breast 

cancer cell line (T47D) GC treatment has no effect on the IL-1-stimulated CCL2 production [21], and no 

effect of GCs was seen on the IFN-γ-induced CXCL11 production in human lung epithelial cells (A549) 

[22]. However, in most studies different observations have been made, as GCs have been shown to 

inhibit inflammation-induced CCL2 levels in humans and rats [23-25]. Moreover, CXCL11 upregulation 

was inhibited by GCs in isolated human peripheral blood monocytes, IFN-γ- or LPS-stimulated RAW 

264.7 macrophages and multiple tissues of endotoxemia mice [26, 27]. These differences between 

studies suggest that the GC resistance of the ccl2 and cxcl11a transcription observed in our study, 

which causes the GC insensitivity of the macrophage migration, requires a specific context. The 

interaction with GR with other transcription factors and various coregulator proteins has been shown 

to be highly complex and it is often unclear how this results in positive or negative gene regulation [28-

32]. In future studies it will be interesting to unravel the molecular factors determining the resistance 

of the transcription of genes encoding macrophage-specific chemoattractants in our model.  

GCs have been shown to strongly inhibit the immune response by inhibiting the transcriptional activity 

of pro-inflammatory genes and inducing the expression of anti-inflammatory genes [7]. For example, 

in cultured macrophages, it has been reported that the expression of pro-inflammatory regulators are 

efficiently suppressed by GC treatment [28, 29, 32, 33]. Similarly, GC treatment attenuates the vast 

majority of genes induced by tail wounding in zebrafish [19]. To study transcriptional regulation by GCs 

in macrophages in our model, an RNA sequencing analysis was performed on macrophages isolated 

from zebrafish larvae. We observed that GC treatment suppresses virtually all amputation-induced 

changes in gene expression, among which the induction of pro-inflammatory genes. In addition, using 

the Tg(tnfa:eGFP-F) reporter line we showed that the number of macrophages expressing tnfa was 

significantly reduced by GC treatment, and we observed that GCs decreased the percentage of 

macrophages displaying the typical more  rounded morphology that is observed in response to an 

inflammatory stimulus.   

Macrophages display a continuum of phenotypes but two opposite functional phenotypes are often 

distinguished: a classically activated (M1) phenotype which promotes the inflammatory response, and 

an alternatively activated (M2) phenotype which is involved in the resolution of inflammation and 
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wound healing [34, 35]. Our data suggest an inhibitory effect of GC administration on the 

differentiation of macrophages towards an M1 phenotype. Apparently, GCs allow macrophages to 

migrate towards a site of inflammation, but prevent them from becoming pro-inflammatory.  

It is still unclear whether GCs, in addition to the inhibition of the differentiation to an M1 phenotype, 

induce an M2 phenotype. A possible approach to study this would be to establish a reporter zebrafish 

line for the expression of M2 macrophage markers, like arg2, cxcr4b, tgfb1, ccr2, vegf, irf4, or ccl22 

[36, 37]. Several such lines are under being generated in laboratories of our collaborators, but not yet 

available. Therefore, we have analyzed the expression level of several M2 markers in macrophages, 

but results remained inconclusive because the induction of arg2 by wounding was not sensitive to GC 

treatment and the expression of cxcr4b, tgfb1 and ccr2 was not induced by wounding. However, this 

analysis was based on the whole population of macrophages so specific effects in M2 macrophages 

may have been hidden. In order to further study the effect of GCs on the macrophage phenotype, an 

expression analysis of tnfa-positive (M1) versus -negative (M2) populations could be performed, or 

single cell RNA sequencing to discriminate all different subpopulations. 

Glucocorticoid treatment exacerbates mycobacterial infection by decreasing 

macrophage phagocytosis 

To study the functional consequences of the observed GC effects on immune cells, in Chapter 4 we 

have performed research on how GCs modulate an infection with Mycobacterium marinum (Mm), 

which is a species closely related to Mycobacterium tuberculosis (Mtb), the causative agent of 

tuberculosis (TB) in humans. Infectious complications are one of the side effects of GC therapy resulting 

from the compromised immune system [38-40]. Although treatment with GCs is associated with a 

higher risk of developing TB [41, 42], adjunctive GC therapy has been shown to be beneficial for 

patients suffering from certain types of TB that are associated with inflammatory complications [43-

45].  

Mm causes a TB-like infection in zebrafish and other cold-blooded animals naturally [46] and zebrafish 

larvae are widely used to study host-pathogen interactions underlying TB and to investigate potential 

host-directed therapeutic strategies [47-49]. We found that GC treatment increased the infection level 

in zebrafish larvae. This increased Mm infection upon GC treatment is related to an inhibited 

phagocytic activity resulting from adecreased transcription level of phagocytosis-related genes in 

macrophages. When using another intracellular pathogen, Salmonella Typhimurium, the GC-inhibited 

phagocytic activity of macrophages was also observed. Similarly, it has been reported that GCs inhibit 

the phagocytosis of several Escherichia coli strains by PMA-stimulated human monocyte-derived (THP-
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1) macrophages and murine bone marrow-derived macrophages (BMDMs) [50]. In macrophages from 

rats and rheumatoid arthritis patients, GC treatment also inhibits phagocytosis of carbon particles [51, 

52]. However, in some studies GC exposure has been reported to enhance the phagocytosis of 

apoptotic neutrophils by human blood monocyte-derived macrophages, PMA-stimulated THP-1 

macrophages [53-55] and mouse alveolar macrophages [56]. These results suggest that the effects of 

GCs on macrophage phagocytic capacity could mainly be dependent on the particles they encounter 

and the tissue environment. 

The phagocytic activity of macrophages is essential for eliminating harmful components and 

maintaining homeostasis during inflammation and infection. In our study, the decreased phagocytic 

activity of macrophages also resulted in a lower level of macrophage cell death due to the Mm infection 

and exacerbated growth of the extracellular fraction of bacteria. We propose that the increased 

numbers of extracellular bacteria could traverse endothelial barriers directly and grow more rapidly in 

a less restrictive environment outside macrophages. These results may explain the increased 

susceptibility to mycobacterial infections induced by GC treatment. As an adjuvant therapy for severe 

TB, the beneficial effect of GCs was reported to be observed in a subpopulation of patients with 

excessive inflammation resulting from specific polymorphisms in the LTA4H gene, which was modeled 

in zebrafish by lta4h knockdown or overexpression [57, 58]. To further explore the interplay between 

these effects, we may study the effect of GCs in relation to the lta4h polymorphism and the 

involvement of lta4h expression in changes in phagocytosis and bacterial burden induced by GCs. 

Investigating the effect of GCs at later stages of Mm infection may also help to understand the role of 

GCs in exacerbation  of TB. 

Encapsulation of glucocorticoids in liposomes enhances their anti-

inflammatory effects and reduces their side effects 

Chapter 5 describes studies on the targeting of GCs to inflamed tissue by encapsulating them in 

liposomes. Targeted delivery of drugs using nanoparticles like liposomes is a promising approach to 

improve the therapeutic ratio of these drugs, through optimization of their pharmacokinetics [59, 60]. 

Encapsulation of prednisolone phosphate (PLP) in PEGylated liposomes (which contain phospholipids 

linked to a polymer polyethylene glycol (PEG) chain) has been shown to increase the therapeutic 

effects of PLP in several animal models for inflammation-related diseases, such as rheumatoid arthritis 

[61-64], atherosclerosis [65], multiple sclerosis [66] and cancer [67]. However, the occurrence of side 

effects [68, 69], unwanted off-target accumulation [62, 70] and unexpected lack of anti-inflammatory 

effect when applied clinically [71] are still obstacles for the development of liposomal GC drugs. In our 

study, the targeting of PLP encapsulated in liposomes was visualized in zebrafish larvae in which an 
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inflammatory response was triggered by laser wounding. In addition, both the anti-inflammatory 

effects and effects on tissue regeneration after tail fin amputation and the systemic activation of a Gr-

responsive reporter gene (as a proxy for possible adverse effects) were determined. 

We tested two types of liposomes, a PEGylated liposome which was relatively resistant to scavenging, 

and a macrophage-targeting liposome. In the zebrafish laser wounding model, we observed liposome 

accumulation near the wounded area for both liposomes. Our results showed that both liposomes 

enhanced the inhibitory effect of PLP on wounding-induced neutrophilic migration, and that 

encapsulation using the macrophage-targeting liposome was even more effective than encapsulation 

in the PEGylated liposome, probably due an increased accumulation of the liposomes near the wound 

upon delivery by macrophages. The effect of PLP on tissue regeneration was alleviated by 

encapsulation in both liposomes, and the activation of a Gr-responsive reporter gene throughout the 

body of the embryo was only reduced by encapsulation in the PEGylated liposome. This could probably 

be explained by a slower release of PLP from the PEGylated liposomes, which is protected from 

scavenging and degradation by the PEG chain, leading to  lower concentration of ligands available for 

Gr activation. 

Our results suggest that the zebrafish is a useful model for screening different liposomal formulations, 

since the (dynamics of the) bio-distribution of the liposomes can be assessed, as well as their 

therapeutic anti-inflammatory effects and effects on processes such as tissue regeneration, 

exemplifying the side effects of GCs. Using this model, we showed, as a proof-of-principle, that 

encapsulation in both PEGylated and macrophage-targeting liposomes increases the therapeutic ratio 

of PLP treatment. The advantage of using zebrafish includes direct observation on the biodistribution 

of liposomes and the possibility of high-throughput screening, which may promote solving the problem 

of unwanted off-target accumulation [62, 70]. In addition, the side effects such as repressed 

corticosterone level and hyperglycemia [68, 69] could also be assessed using the zebrafish model. In 

future studies, we therefore recommend using this model for optimization of liposomal formulations, 

as a first screening model to be used for pre-selection of liposomes before they are tested in rodent 

models and/or clinical studies. 

Conclusions 

A broad knowledge of the modulatory effects of GCs in the immune system is necessary for the 

improvement of anti-inflammatory GC therapeutics. Our work demonstrates a general inhibitory effect 

of GCs on the pro-inflammatory phenotype and the phagocytic activity of macrophages and illustrates 

an important role for macrophages as a target for anti-inflammatory GC therapy (Chapter 3, 4). Indeed, 
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specific targeting of GCs to macrophages by encapsulation in liposomes increased the therapeutic 

efficacy of these drugs, although encapsulation in liposomes that are not scavenged had a similar effect 

(Chapter 5). The work in this thesis has added to our understanding of how GCs modulate the innate 

immune response upon inflammation and may contribute to the improvement of anti-inflammatory 

therapies by using different zebrafish models for assays to be used in pre-clinical research. 
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