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 1 

Abstract 2 

 3 

Linguistic structure co-determines how a speech sound is produced. This study therefore 4 

investigated whether the speaker-dependent information in the vowel [aː] varies when uttered in 5 

different word classes. From two spontaneous speech corpora, [aː] tokens were sampled and 6 

annotated for word class (content, function word). This was done for 50 male adult speakers of 7 

Standard Dutch in face-to-face speech (N = 3,128 tokens), and another 50 male adult speakers in 8 

telephone speech (N = 3,136 tokens). First, the effect of word class on various acoustic variables 9 

in spontaneous speech was tested. Results showed that [aː]s were shorter and more centralized in 10 

function than content words. Next, tokens were used to assess their speaker-dependent 11 

information as a function of word class, by using acoustic-phonetic variables to (a) build speaker 12 

classification models, and (b) compute the strength-of-evidence, a technique from forensic 13 

phonetics. Speaker-classification performance was somewhat better for content than function 14 

words, whereas forensic strength-of-evidence was comparable between the word classes. This 15 

seems explained by how these methods weigh between- and within-speaker variation. Because 16 

these two sources of variation co-varied in size with word class, acoustic word-class variation is 17 

not expected to affect the sampling of tokens in forensic speaker comparisons.  18 

 19 

Keywords: speech production (43.70.-h); forensic acoustics (43.72.Uv);  20 

  21 
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The Effect of Word Class on Speaker-dependent Information in the Standard Dutch Vowel /aː/ 1 

 2 

I. INTRODUCTION 3 

Speech can be defined as a message carried by a speaker’s voice. Speech perception research has 4 

provided much evidence that speaker information interacts with the interpretation and memory of 5 

a spoken message (e.g., Palmeri et al., 1993; Van Berkum et al., 2008). For voice perception, 6 

both within- and between-speaker acoustic variation are important (Lavan et al., 2018), whereas 7 

the speech production literature shows that speech acoustics, and its variation, depend on 8 

linguistic context (e.g., Smorenburg & Heeren, 2020). Taken together, this suggests that also 9 

speaker-dependent voice characteristics may be conditioned by linguistic context. Knowledge on 10 

how language and voice interact in speech production, however, lags behind; it is the core 11 

question of the current paper. 12 

Recent research on voice modelling has investigated which acoustic dimensions may be 13 

important for modelling a multi-variate acoustic voice space (see Lee et al., 2019, and references 14 

therein), but to the author’s knowledge, such research has hardly differentiated between 15 

linguistic contexts. There is evidence, however, that speaker-dependent information in an 16 

utterance is affected by speech style (e.g., Moos, 2010; Dellwo et al., 2015) or speech sound 17 

(Van den Heuvel, 1996; Andics, 2013; Kavanagh, 2014). Moreover, Smorenburg and Heeren 18 

(2020) recently found that the speaker information contained by the Dutch fricatives /s/ and /x/ to 19 

some extent depends on whether the fricative was produced in onset versus coda position. This 20 

finding was explained as articulatorily less-demanding positions, such as codas, allowing for 21 

more between-speaker variation (see He and Dellwo, 2017). In the present study, the distribution 22 

of speaker-dependent information within an utterance is investigated further by examining if 23 
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differences in vowel pronunciation as a function of word class affect the available speaker 1 

information.  2 

In addition to potentially informing voice modelling, the present study is relevant for 3 

forensic phonetics, a subfield of phonetics concerned with speaker correlates rather than 4 

linguistic ones. A main question is how voices can be characterized acoustically. The outcome of 5 

such research feeds into practice; in a forensic speaker comparison (FSC), one or more disputed 6 

speech recordings are compared with one or more reference recordings of a suspect in order to 7 

investigate whether the recordings might have been produced by the same or by different 8 

speakers. To make these comparisons, several methods are in use across the world, varying from 9 

auditory examination to acoustic-phonetic measurement to automatic speaker recognition 10 

(Morrison et al., 2016; Gold and French, 2019). It is theoretically important to not only compare 11 

the disputed and suspect samples to each other, and to thus assess their similarity, but to evaluate 12 

the likelihood of this similarity against background population information, to thus assess the 13 

typicality of the features under study. Automatic speaker recognition (ASR) by default uses 14 

background information, and has the advantages of objectivity and replicability. Even though 15 

this method has demonstrated superior performance in telephone-to-telephone speech 16 

comparisons (e.g. Zhang et al. 2013), it often cannot be applied to case data due to restrictions 17 

imposed by data quantity and quality or because ASR is not admissible in the jurisdiction. 18 

Moreover, not all types of speech features, such as word use, can be included in ASR. Currently, 19 

in international surveys amongst respondents carrying out FSC the majority used an 20 

auditory/acoustic-phonetic approach (Morrison et al., 2016; Gold and French, 2019): acoustic-21 

phonetic features are measured in the different speech samples, and used to assess how similar 22 

these features are between the suspect and the disputed speaker, relative to how typical they are 23 
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of speakers in general. Little is known, however, about how the speaker information carried by 1 

acoustic-phonetic features depends on the linguistic context from which it is sampled.  2 

Theoretically, discriminative (or: speaker-specific) features exhibit small within-speaker 3 

variation while also showing large between-speaker variation, thus differentiating speakers along 4 

some feature dimension. Moreover, features which are frequently available in shorter samples 5 

and measurable in the low-quality and/or noisy recordings typical of FSC are preferred. In the 6 

search for optimal features for acoustic-phonetic FSC, earlier work has compared speaker 7 

information carried by different segments (e.g., Van den Heuvel, 1996; Andics, 2013) and 8 

different speech styles (Moos, 2010; Dellwo et al., 2015). What is largely lacking from the 9 

existing literature, with the exception of Smorenburg and Heeren (2020), is a systematic 10 

investigation of how the speaker information carried by a segment may be affected by its 11 

position in the utterance within the same speech style. A speech sound’s acoustics are altered by 12 

linguistic structure, such as whether it is realized in a lexically-stressed or a focused position. 13 

Therefore, when it – practically – comes to sampling speaker-dependent features optimally for 14 

FSC or – theoretically – comes to understanding how voice information is encoded in speech and 15 

processed by listeners, it is important to know the distribution of speaker information across an 16 

utterance.  17 

 18 

A. The interaction between linguistic and speaker-dependent information 19 

Earlier research has shown that vowels tend to carry more speaker-dependent information than 20 

consonants, both in production (Van den Heuvel, 1996, p. 145-146) and perception (Andics, 21 

2013, ch. 2). Within the classes of consonants and vowels, there is also variation in speaker-22 

dependent information. Using Dutch CVC words as stimuli, Andics (2013, ch. 2) found that the 23 
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perceptual discriminability of voices depended on their segmental composition; better results 1 

were found for onset /m/ than /l/, nucleus /ɛ/ than /ɔ/, and coda /s/ than /t/. The higher speaker-2 

dependency of /m/ and /s/ was also reported for English read speech by Kavanagh (2014, pp. 3 

387-388), relative to nasals /n/ and /ŋ/, and liquid /l/. Using Dutch read nonsense words, Van den 4 

Heuvel (1996) reported similar segmental differences, but he found /n/ to be more speaker-5 

dependent than /m/. A comparison of the three Dutch corner vowels showed that /aː/, which is 6 

also used in the present study, contained most speaker-specific information in both the durational 7 

and spectral domains, relative to /i/ and /u/ (Van den Heuvel, 1996). An explanation for these 8 

differences is mainly given by articulatory differences between speech sounds, also in relation to 9 

their neighboring sounds (Smorenburg and Heeren, 2020), together with the 10 

anatomical/physiological differences between individual speakers.  11 

Speech sounds differ in how many and which articulators are involved in their 12 

production; this creates diversity between speech sounds in the types and amounts of acoustic 13 

speaker correlates. An obvious distinction is that between voiced and unvoiced sounds, which 14 

relates to involvement of the vocal folds and thus the presence or absence of F0 and its 15 

harmonics as a speaker correlate (see Lee et al., 2019). Furthermore, between speakers there are 16 

differences in the shapes of the passive articulators (including the teeth, the alveolar ridge and 17 

the palate), in the movements of the active articulators (e.g. lips, tongue, vocal folds), and in 18 

default articulatory settings (see Laver, 1980, ch. 2). These differences yield speaker-dependent 19 

acoustics, an illustration of which can be found in the well-known vowel chart of Peterson and 20 

Barney (1952): each of the 76 different speakers produced different combinations of first-second 21 

formant values for the same set of vowels. As for the relative contributions of source versus filter 22 

variables, Bachorowski and Owren (1999) found that within the same sex, speaker information 23 
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in vowels was mostly carried by acoustic variables determined by the vocal tract rather than the 1 

vocal folds. A possible explanation is that for the majority of same-sex speakers, the within-2 

speaker variation in F0 is relatively large, whereas between-speaker variation in F0 is relatively 3 

small. 4 

Different speech styles also cause variation in a speaker’s acoustics. In read as opposed to 5 

spontaneous German speech, the same speakers produced higher values for their long-term 6 

second and third formants (Moos, 2010). Additional acoustic variables cueing read versus 7 

spontaneous speech to listeners were reported by Laan (1997); Dutch read speech tended to be 8 

slower, show more variation in F0, and less vowel reduction than spontaneous speech. Similar 9 

acoustic effects were reported by Dellwo et al. (2015) for Zürich German. More importantly, the 10 

latter two studies also found that speakers differed in how they adapted their speech between the 11 

read and spontaneous styles (Laan, 1997; Dellwo et al., 2015, Table 1), thus demonstrating 12 

individual differences. 13 

 Because a speech sound’s linguistic position co-determines its realization, differences in 14 

the available speaker-dependent information are expected between different realizations of the 15 

same segment, within one speech style. For instance, a consonant in initial, prosodically-strong 16 

positions is strengthened in its production relative to that same consonant in non-initial, 17 

prosodically-weaker positions (e.g. Fougeron and Keating, 1997). This yields differences in, for 18 

example, closure (or linguo-palatal) contact duration during articulation, and such articulatory 19 

differences may in turn alter speech sound acoustics. Recently, Smorenburg and Heeren (2020) 20 

showed that speaker classification of fricatives /s/ and /x/ was better with tokens sampled from 21 

coda rather than onset positions. Moreover, that study demonstrated that the amounts of 22 

between- and within-speaker variation depended on syllabic position (see also He and Dellwo, 23 
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2017). Building on this earlier work, the current study investigated how the sampling of tokens 1 

of the vowel [aː] from different word classes influences the availability of speaker information. 2 

 3 

B. Word class  4 

Content words bring richer semantic content to a phrase (i.e. nouns, verbs, adjectives, and 5 

adverbs), whereas function words contribute to the phrase’s grammatical structure (prepositions, 6 

pronouns, auxiliary verbs, etc.). Even though empirical evidence is limited to a handful of 7 

studies, these consistently show that whether a token is a content or function word, influences its 8 

realization.  9 

Bell et al. (2009), amongst others, found that the durations of function words were shorter 10 

than those of content words in conversational speech. Moreover, whereas both higher word 11 

frequency and word repetition shortened content words, function word duration was not affected 12 

by these factors. Studies that investigated the realization of individual segments by word class in 13 

read speech found that duration was longer and intensity was higher for the same English vowel 14 

/ʊ/, when realized in content relative to function words (Shi et al., 2005), and that a variety of 15 

Dutch vowels were more centralized and shorter when pronounced in function words than 16 

content words (Van Bergem, 1993, p. 38-39). Because of the systematic variation in vowel 17 

realization as a function of word class, the speaker information contained by the same speech 18 

sound may be affected by being sampled from a function versus content word. 19 

Function and content words may also differ in phonological properties. For instance, 20 

English content but not function words always contain a strong syllable (Selkirk, 1996). For 21 

function words, this is only the case when produced in isolation, at the right edge of a major 22 

phonological phrase or in focus. A similar pattern is expected in a language like Dutch, which is 23 
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studied here. Strong syllables carrying word stress are the typical landing sites for pitch accents 1 

in Dutch (Sluijter and Van Heuven, 1996), which is why differences in fundamental frequency 2 

may be expected between content and function words. These characteristics of function and 3 

content words will be considered as confounding factors in this study. 4 

 5 

C. Research questions 6 

To further investigate the interaction of linguistic and indexical information, the main research 7 

question in the present work is whether word class, i.e. function versus content words, affects the 8 

speaker-dependent information carried by the Standard Dutch vowel [aː]. This study thus 9 

contributes to understanding if and how sources of variation relevant to voice modelling may 10 

vary with linguistic context, and how token sampling may affect acoustic-phonetic FSC. The 11 

vowel [aː] was chosen, because it is the most speaker-specific of the corner vowels in Dutch 12 

(Van den Heuvel, 1996).  13 

The research question was addressed using data from two corpora, one containing face-14 

to-face conversational speech and one containing telephone conversations. These corpora 15 

represented both wide-band (face-to-face) and narrow-band (telephone) recordings, which 16 

broadened the evidence base by examining the same effect in two independent speech 17 

collections. Moreover, conversational speech, especially when recorded over the telephone, is 18 

relevant for forensic application of the results. Note, however, that only non-contemporaneous 19 

recordings were available, thus potentially over-estimating the validity of results (Enzinger and 20 

Morrison, 2012). A word class effect, however, may be least-confounded in this type of 21 

recording because it allows for a direct comparison of tokens from either word class. Moreover, 22 



PREPRINT VERSION of article published in JASA 14-10-2020, https://doi.org/10.1121/10.0002173 

10 
 

even though background noise was not strictly controlled in these recordings, real forensic data 1 

are fully uncontrolled. 2 

To establish that the word class effect on vowel acoustics is present in Dutch spontaneous 3 

conversational speech, and not only in lab speech (Van Bergem, 1993; Shi et al., 2005) or the 4 

acoustic variable duration (Bell et al., 2009), the word class effect was assessed first in both 5 

databases in a control experiment. The main question regarding speaker-specificity was 6 

subsequently addressed. The hypothesis was that word class affects the speaker-dependent 7 

information contained by the vowel [aː]. This prediction is non-directional, as changes in 8 

acoustics related to increased articulatory precision in content relative to function words may 9 

help or hinder speaker-dependent information. On the one hand, it has been argued that more 10 

precise articulation results in smaller within-speaker variation, which may enhance speaker-11 

specificity (but see McDougall, 2006, fig. 3, for variation in this reduction between speakers). 12 

Content words may also facilitate reliable acoustic analysis, because syllables produced with 13 

more effort may yield longer segments with a higher signal-to-noise ratio. On the other hand, it 14 

has been argued that most speaker-dependent information is found when there is no or a less 15 

strict need to attain specific articulatory targets, here: function words. When speakers may 16 

adhere more to their own articulatory patterns (see e.g., He and Dellwo, 2017; He et al., 2019), 17 

this enlarges between-speaker variation, and as a consequence alters speaker-specificity. As 18 

mentioned above, however, speaker-specificity relates between-speaker variation to within-19 

speaker variation. Smorenburg and Heeren (2020) found that the ratio of between- to within-20 

speaker variation was higher for those acoustic-phonetic features that yielded higher speaker 21 

classification results. Both types of variation were therefore also measured in the current 22 

investigation, as a function of word class. Moreover, in order to study the relationship between 23 
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acoustic realization by word class and the speaker-dependent information carried by those 1 

differential realizations, highly similar acoustic-phonetic features were used in both the control 2 

and the main experiment. This choice reduces the maximally obtainable speaker-discriminatory 3 

power, but allows for a direct comparison of linguistic effects with indexical information.  4 

Finally, as corpus data were used in the present study, rather than lab or read speech, 5 

there are potential confounds to the effect under study. Corpus data were preferred because of 6 

their ecological validity, i.e. its representativeness of daily communication and relative closeness 7 

to the speech style found in forensic investigations. An effect of word class may be confounded 8 

(i) with lexical frequency, i.e. function words tend to be of higher frequency than content words 9 

(e.g., Bell et al., 2009), (ii) with phrasal position, i.e. final positions are subject to boundary 10 

effects (e.g., Cambier-Langeveld, 2000) and may be more frequent in one word class than the 11 

other, and (iii) with pitch accents, as content words, but not function words, are their typical 12 

landing sites. In Dutch, pitch accents occur in contents words only if they land in a focused 13 

position. These confounding effects were tested as part of the control experiment by labelling 14 

[aː] tokens for word frequency, position and the presence/absence of a pitch accent, and 15 

assessing the influence of these effects in linear mixed-effects models. 16 

 17 

II. METHOD 18 

 19 

A. Materials 20 

Spontaneous conversations were taken from the Spoken Dutch Corpus (Oostdijk, 2000). The full 21 

corpus consists of fifteen components, covering different speech styles, such as read and 22 

conversational speech. Here, two components of spontaneous conversational speech were used, 23 



PREPRINT VERSION of article published in JASA 14-10-2020, https://doi.org/10.1121/10.0002173 

12 
 

one containing face-to-face speech, and one containing telephone speech recorded over a 1 

switchboard. The former sub-corpus contains over 1.7 million words of spontaneous Standard 2 

Dutch speech in 925 wave files (stereo recording, 16 kHz sampling frequency), and the latter 3 

contains 0.7 million words in 358 wave files (stereo recording, 8 kHz sampling frequency). From 4 

each of these two sub-corpora, speech from 50 male, adult speakers of Standard Dutch (aged 18-5 

50) was included. For both types of recordings, speakers were located in their home 6 

environments. Interlocutors were instructed to talk for about ten minutes on any topic. For these 7 

materials, human-generated orthographic transcripts were available, and using these, additional 8 

annotation layers were added to the audio files, containing information on: (a) phonemic content, 9 

(b) word class, and (c) word frequency.  10 

To arrive at the phonemic content from the orthography, automatic phonetic transcripts 11 

were created through a script using built-in functionality in Praat (Boersma and Weenink, 2018). 12 

The resulting phonetic transcript was not error-free, but useful to facilitate the manual selection 13 

of vowel tokens (see II.B). Part-Of-Speech (POS) tags were assigned manually to avoid errors, 14 

e.g., when one word form has multiple potential POS tags, as in laat-AUX ‘let’ vs laat-ADJ 15 

‘late’. POS tags were then used for word class labelling into content versus function words. 16 

Word frequency information was taken from SUBTLEX-NL (Keuleers et al., 2010), using its 17 

POS-specific log10 word frequency. For the face-to-face speech, 9.0% of tokens could not be 18 

labelled for frequency, and for the telephone speech, 7.8% were not labelled. 19 

 20 

B. Segmentation procedure 21 

Using the automatically-generated phonemic transcripts and speaker metadata, instances of the 22 

vowel [aː] produced by the adult male speakers were located in the audio, and each token was 23 
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manually assessed for inclusion in the analysis set. Tokens were excluded in the case of (i) 1 

misidentifications of [aː] by the automatic phoneme assignment (e.g., written a in English loan 2 

words pronounced as [ei] rather than [aː]), (ii) strong reduction or assimilation, where [aː] was 3 

not audible or its phonemic nature altered (e.g., allemaal ‘all’ pronounced as /ɑməl/ instead of 4 

/ɑləmal/), (iii) background noise or an interfering talker, (iv) hesitations or false starts in the 5 

token-bearing word, or (v) interfering sounds by the speaker, such as laughter. If necessary, the 6 

automatically determined vowel onset and/or offset locations were adjusted by hand. Using a 7 

default range for formant analysis in males (3 formants in 3 kHz), Praat’s formant tracks were 8 

visually checked against the spectrogram and the analysis range was manually increased or 9 

decreased for formant estimation when needed. In total, 3,128 spontaneous face-to-face tokens 10 

(1,347 content, 1,780 function words) were manually segmented for 50 speakers (median of 58 11 

tokens per speaker, ranging from 28 to 100+ tokens), and 3,136 spontaneous telephone tokens 12 

(1,404 content, 1,732 function words) were manually segmented for another 50 speakers (median 13 

of 62 tokens per speaker, ranging from 54 to 100+ tokens). 14 

 15 

C. Acoustic analysis 16 

Two types of acoustic variables were extracted from each [aː] token: (i) variables that are 17 

expected to vary with word class (and its confounds) based on earlier phonetic research, and (ii) 18 

variables that are commonly used in acoustic-phonetic forensic speaker comparisons. Acoustic-19 

phonetic variables were chosen to tie in with the existing linguistic-phonetic literature and to 20 

capture their direct effect on speaker-dependent information. 21 

Per [aː] token F0, F1, F2, duration, and intensity were measured. These measures were 22 

complemented with formant bandwidth measurements, which may convey articulatory 23 
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differences between speakers due to their relation with vocal tract tension (e.g., Laver, 1980, ch. 1 

4). Even though the telephone band may affect formant measurements, the F1 of [aː] remains 2 

unaffected (Künzel, 2001). All measurements were taken using Praat (Boersma and Weenink, 3 

2018). Segment duration was measured from the manually set onset and offset per token. F1 and 4 

F2 were computed (in Hz) using the Burg method (Childers, 1978, pp. 252-255) over the mid 5 

50% of the vowel’s duration, as this interval was expected to be minimally influenced by co-6 

articulation. Over the mid-vowel interval, F0 (in Hz) was also measured, using an autocorrelation 7 

method. Mean intensity, measured (in dB) as the overall RMS amplitude of the vowel, was 8 

determined over the vowel’s entire duration, from onset to offset. Intensity was normalized by 9 

speaker (z-transforms) to reduce confounding effects of recording conditions. 10 

Polynomial fits of F1 and F2 tracks not only capture resonances at the centre of a vowel, 11 

but also transitions in the course of the vowel’s duration. These have been shown to carry 12 

speaker-dependent information (e.g. Ingram et al., 1996; McDougall, 2004; Morrison, 2009a). 13 

The formants were therefore also measured at nine equidistant steps within the vowel (at 10–14 

90% of its duration, window size: 25 ms) and a cubic polynomial fit of these series of 15 

measurements was determined per token, using the poly() function in R. Per token, this resulted 16 

in four coefficients per formant (f = a0 + a1x + a2x2+ a3x3), where a0 captures static formant 17 

information in the intercept, and the other coefficients capture the dynamics. The R2 values for 18 

model fit on average were 82% for face-to-face and 81% for telephone speech.  19 

 20 

D. Statistical analysis 21 
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This section first describes the analysis for the control experiment, which establishes acoustic 1 

differences between [aː]s sampled from content versus function words. Next, it presents the 2 

analyses run to investigate speaker-dependent information by word class.  3 

 4 

1. Linear mixed-effects models 5 

To investigate if word class affects the vowel’s acoustic realization linear mixed-effects 6 

modelling was used, through the lmer() function from the lme4 package (Bates et al., 2015) in R 7 

(R Core team, 2016). This was done for each acoustic measure separately (F0, formants, 8 

intensity, duration). Significance was evaluated through model comparison using log-likelihood 9 

testing; only effects improving the model in a forward-stepwise process were kept in the final 10 

model. Models included by-speaker and by-word random intercepts, and the effect of extending 11 

the random structure through the addition of by-speaker slopes on final model fit was assessed. A 12 

significant contribution from by-speaker slopes would show that speakers differ in how they 13 

implement the word classes. Because of the multiple models per data set, a Bonferroni correction 14 

was applied to the p-values (.050/5 = .01), and Word Class was binary-coded (content = 0, 15 

function = 1). Model fit was checked through examination of the residuals, and this showed that 16 

F0 needed to be transformed to 1/F0 and durations by log-10.  17 

Three potential confounds were also tested for all acoustic predictors. First, the effect of 18 

including Word Frequency as a factor in the linear mixed-effects models was assessed. Second, 19 

boundary effects on [aː] realization were checked by coding if a vowel was realized in the 20 

phrase-final word or not. If the effect of Word Class would alter in case a word was produced in 21 

non-final position only, this would be indicative of a potential boundary confound in the overall 22 

results. Third, the confound of a pitch accent landing on a lexically stressed syllable in a content 23 
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word was evaluated. Potential pitch accents were acoustically defined as F0 on the target vowel 1 

being at least 25 Hz (3–4 semitones) higher than its left and right neighboring syllables. If the 2 

effect of Word Class is similar in non-accented and accented vowels, pitch accents resulting 3 

from the content word’s position in the utterance cannot (fully) explain the results.  4 

 5 

2. Measuring speaker-dependency 6 

As measures of within-speaker and between-speaker variation, variances were computed for 7 

those acoustic variables showing significant effects in the control experiment. Per acoustic 8 

variable, within-speaker variance was computed as the variance by speaker and averaged; 9 

between-speaker variance was computed using a leave-one-out approach, thus capturing its 10 

variation, and averaged. Through linear mixed-effects modelling (using the same general method 11 

as explained in D.1), the effect of Word Class on the two types of variance was assessed. 12 

Next, the effect of Word Class on the available speaker information in [aː] was evaluated 13 

in two ways, thus comparing a method from acoustic phonetics to one from forensic phonetics: 14 

(i) speaker classification through multinomial logistic regression (MLR), and (ii) the 15 

computation of strength-of-evidence using Bayesian likelihood ratios (LRs), respectively.  16 

 17 

a. Multinomial logistic regression. MLR is a classifier which estimates regression coefficients 18 

per speaker, using as predictors the acoustic variables and the Word Class they were sampled 19 

from. To predict speaker identity, the full set of thirteen acoustic predictors was initially 20 

included: 1/F0 measured over the mid-50% section of the vowel’s duration, the coefficients of 21 

the cubic formant fits (the intercepts showed correlations of over r = .97 with the mid-formant 22 

measurements), log transforms of the formant bandwidths, log transformed duration, and 23 

normalized mean intensity. Correlations between predictors were examined first, and the 24 
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maximum correlation of r = −.43 was not deemed a risk for entering factors together. MLR was 1 

implemented in the multinom function from the nnet package (Venables and Ripley, 2002) in R. 2 

The buildmer package (Voeten, 2019) was used to automatically determine the optimal model.  3 

The initial, maximal model consisted of all acoustic predictors, the linguistic predictor 4 

Word Class, and the first-order interactions of acoustic predictors with Word Class. From this 5 

initial model the maximal converging model was determined first, and then the optimal model 6 

was fit through backward elimination, using likelihood ratio tests. This was done for both 7 

datasets independently: face-to-face and telephone speech.  8 

If the linguistic predictor Word Class was part of an optimal model, likelihood ratio tests 9 

were used to compare the model with Word Class to one without it, to thus evaluate its 10 

contribution. In case of a significant contribution, speaker-classification accuracy was computed 11 

per Word Class by asking the optimal model to predict speaker classifications for tokens from 12 

either class. The contributions of the different types of acoustic predictor to speaker classification 13 

were assessed by comparing classification performance between the optimal model and the 14 

model without a certain predictor type.  15 

 16 

b. Likelihood ratio computation. In forensic phonetics, the speaker discriminatory potential of a 17 

speech feature can be expressed in terms of the strength of evidence (Aitken and Lucy, 2004). 18 

This is computed as the likelihood ratio (LR) of two conditional probabilities; the probability of 19 

obtaining the evidence while assuming that different speech fragments came from the same 20 

speaker, divided by the probability of obtaining the evidence assuming that the different speech 21 

fragments came from different speakers. In the case of Forensic Speaker Comparisons, 22 

‘evidence’ is operationalized as the comparison of measurements taken from the two speech 23 
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fragments. Note that in this study, LRs were used to express the speaker-discriminatory potential 1 

of [aː]s sampled from different word classes, not to build a competitive system for use in FSC.  2 

To evaluate the speaker-discriminant potential of [aː], LRs were computed for known 3 

same-speaker and known different-speaker comparisons. The former ideally yield LRs (well) 4 

above one, whereas the latter yield LRs between zero and one. Because it is customary to convert 5 

LRs to log-LRs (LLRs), the criterion separating ideal same-speaker versus different speaker 6 

scores is placed at zero. In this investigation, there were 50 same-speaker comparisons, and 7 

1,225 (=[50 × 49]/2) different-speaker comparisons, per database. Because there was only one 8 

recording per speaker, speaker data was divided into first and second halves to allow for same-9 

speaker comparisons. In same-speaker comparisons, a speaker’s first half was compared to their 10 

second half. In different-speaker comparisons, one speaker’s first half was compared to a higher-11 

numbered speaker’s second half. Relative to speech collections that have multiple recordings per 12 

speaker, within-speaker variation may be underestimated here. This should mainly be seen as a 13 

restriction on system performance, which may be over-estimated (Enzinger and Morrison, 2012), 14 

but not on an effect of Word Class. For the latter, the same recording poses optimal conditions 15 

for direct comparison. 16 

 LRs were computed, by Word Class and for both speech collections, using three sets of 17 

acoustic features. Firstly, only those acoustic variables were included that significantly differed 18 

between function and content words in the control experiment: formants (here, their fit 19 

coefficients) and duration. Secondly, the same acoustic variables as in the optimal MLR model 20 

were used, thus allowing for the most direct comparison with the MLR results. Thirdly, all 21 

acoustic variables were included.  22 
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 To compute LLRs for the multivariate acoustic representation of [aː] tokens, the first step 1 

was a sequential leave-one-out (or cross-validated) implementation (see Morrison, 2011) of the 2 

method developed in Aitken and Lucy (2004). This method was executed via the MATLAB-script 3 

developed by Morrison (2007). The algorithm models within-speaker variance using a normal 4 

distribution, and between-speaker variance using multivariate kernel density. Thus, scores for 5 

each within-speaker and between-speaker comparison were computed. Next, scores were 6 

transformed to LLRs using logistic regression calibration implemented in MATLAB (Morrison, 7 

2009b). For calibration, again a leave-one-out method was used, in which the speaker or 8 

speakers from whom a score was calibrated were left out of the data set to determine the logistic 9 

regression coefficients for score-to-LR transformation. Finally, to avoid extrapolation errors, 10 

LRs were limited using an Empirical Lower and Upper Bound (ELUB) LR (Vergeer et al., 11 

2016), computed with one consequential misleading LRi.  12 

Results of the three feature sets, on either Word Class, were assessed through the median 13 

LLRs as well as performance measure Cllr (Brümmer and du Preez, 2006).The distance between 14 

the median LLR for same-speaker comparisons versus that of different-speaker comparisons is 15 

representative of the features’ ability to separate the two types of comparisons, and therefore 16 

speakers. Along the LLR scale values above 0 represent stronger evidence for the same-speaker 17 

hypothesis, whereas values below 0 give stronger evidence for the different-speaker hypothesis. 18 

An LLR of 1 means that the evidence is 10 times more likely under the same-speaker hypothesis 19 

than under the different-speaker hypothesis, and an LLR of –1 means that the evidence is 10 20 

times more likely under the different-speaker hypothesis. The log-likelihood ratio cost function 21 

(Cllr) is presented as a performance measure; it not only takes into account the system’s correct 22 
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versus incorrect decisions, but also the values associated with these decisions. It reflects the 1 

validity and quality of a system, and the closer to zero, the better. 2 

 3 

III. RESULTS 4 

 

Figure 1: Scatter plot showing F1-F2 means per speaker, for content words (black, open dots) 5 

and function words (gray, closed dots). The 95% confidence interval is shown per word class. 6 

The plot was created using visiblevowels.org 7 

 8 

A. Control experiment: word class effect on acoustics 9 

Figure 1 shows the mean formant frequency values for each speaker plotted in the F1 by F2 10 

plane for content and function words in face-to-face speech. As can be seen, vowel realization 11 

partly depends on word class, as confirmed by the statistical analyses. For each acoustic variable 12 

in the control experiment, the final mixed-effects model’s coefficients are given in Table I.  The 13 

left half of the table presents results for face-to-face speech (f2f, N = 3,128), the right half for 14 

telephone speech (tel, N = 3,136). The factor Word Class was included in the final models for F1 15 
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(f2f: χ2(1) = 10.6, p = .001; tel: χ2(1) = 14.5, p < .001), duration (f2f: χ2(1) = 19.7, p < .001; tel: 1 

χ2(1) = 44.3, p < .001), and it marginally contributed to F2 (f2f: χ2(1) = 5.5, p = .019; tel: χ2(1) = 2 

6.1, p = .013). Taken together, results reflected that in function relative to content words the F1 3 

of [aː] was decreased, the F2 was marginally increased, and duration was shorter.  4 

In both speech collections, final models contained by-speaker slopes for Word Class for 5 

duration (f2f: χ2(2) = 9.6, p = .004; tel: χ2(2) = 27.3, p < .001), and intensity (f2f: χ2(2) = 14.7, p 6 

< .001; tel: χ2(2) = 25.6, p < .001). In telephone speech, by-speaker slopes also improved the F0, 7 

F1, and F2 models (F0: χ2(2) = 18.2, p < .001; F1: χ2(2) = 62.3, p < .001; F2: χ2(2) = 46.4, p < 8 

.001).  9 

 10 

TABLE I: Linear mixed-effects modelling results for the two data sets, showing significant 11 

model coefficients with their corresponding standard errors between parentheses. 12 

 Face-to-face conversation Telephone conversation 

 

Variable 

β0 

intercept 

β1 

word class* 

β0  

intercept 

β1 

word class* 

F1 [Hz] 640.5  (6.2) –22.7   (7.0) 677.9   (7.0) –28.1   (8.0) 

F2 [Hz] 1308.1 (10.4) 27.3 (11.6) 1348.9 (11.6)  27.1 (11.9) 

F0 [1/Hz] 0.0085  (0.00016)  0.0083  (0.00016)  

duration [log(ms)] –0.952 (0.009) –0.068 (0.016) –0.955 (0.010) –0.124 (0.020) 

intensity [dB] 66.9   (0.7)  67.1   (0.7)  

* reference level = content words 13 

 14 
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As for the analysis of confounding effects, the addition of the factor Word Frequency did not 1 

change model fit, and was therefore not maintained in any of the optimal models. With respect to 2 

boundary effects, when only non-final realizations were included in modelling, all differences 3 

between content and function words were maintained in both datasets, and in the same direction. 4 

As regards a pitch accent confound, all word class differences were maintained when pitch-5 

accented tokens were excluded. In both cases, model coefficients were, of course, not exactly the 6 

same (see Supplement*, Tables I and II). These outcomes indicate that these confounds do not 7 

affect the word class results as presented in Table I. 8 

Using speech from two independent datasets, a systematic effect of Word Class on [aː] 9 

realization was found. In accord with results on Dutch read speech, vowel duration was longer 10 

and formant values were less centralized in content than function words (Van Bergem, 1993, p. 11 

34, 39). Intensity and F0 did not vary by word class. Finally, by-speaker slopes in the modelling 12 

of several acoustic variables indicated differential pronunciation adaptation to word class 13 

between different speakers, especially in the telephone speech collection. With variation in the 14 

realization of [aː] by word class established, combined with individual differences in this 15 

variation, the next step was to examine speaker-discriminatory information by word class. 16 

 17 

B. Speaker-dependency: variances 18 

Using linear mixed-effects models, within-speaker variances were compared between word 19 

classes, for those acoustic variables that were significantly different in the control experiment: 20 

F1, F2 and duration. The same was done for between-speaker variances.  21 

In both speech collections, within-speaker variances were smaller in content words than 22 

function words, for duration and F2 (f2f, F2: χ2(1) = 12.7, p <.001, duration: χ2(1) = 17.4, p 23 
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<.001; tel, F2: χ2(1) = 4.7, p = .03, duration: χ2(1) = 34.3, p <.001). The variances can be found 1 

in the Supplement* (Table III), but as an example: when looking at the within-speaker variability 2 

in the F2 model for face-to-face speech, content words had a 67.3 Hz smaller standard deviationii 3 

than function words. 4 

In both speech collections the between-speaker variance was larger for all variables in 5 

function than content words (f2f, F1: χ2(1) = 237.3, p < .001, F2: χ2(1) = 527.5, p < .001, 6 

duration: χ2(1) = 680.2, p <.001; tel, F1: χ2(1) = 363.5, p < .001, F2: χ2(1) = 372.4, p < .001, 7 

duration: χ2(1) = 676.2, p <.001). For example, the between-speaker standard deviation in the F2 8 

model for face-to-face speech was 71.2 Hz smaller in content words than function words. 9 

For all other acoustic-phonetic measures both within- and between-speaker variances 10 

showed the same trend of reduced size in content words (see Supplement*, Table III).  11 

 12 

C. Speaker-dependency: MLR results 13 

For face-to-face conversation (N = 3,128), the optimal MLR speaker-classification model 14 

included the predictor Word Class (χ2(637) = 1216, p < .001); classification performance was  15 

32.1% correct on content words, and 29.3% on function words (chance level ≈ 2%). The model 16 

also contained formant (bandwidth) information (except fit coefficient a3 for F1), F0, duration, 17 

and intensity, and all acoustic predictors also interacted with Word Class. The order in which 18 

predictors contributed most to classification performance was: formants, F0, intensity, and 19 

duration, with respective reductions in maximal classification performance from 30.7% to 20 

10.7%, 24.3%, 28.1% and 29.0%, when the predictor was left out. Leaving out either formant 21 

intercepts (a0) or dynamic formant information (a1, a2, a3) gave performance reductions from 22 

30.7% to 22.6% and 26.4%, respectively. 23 
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Also for telephone speech (N = 3,136), the optimal speaker model included Word Class 1 

(χ2(490) = 1186, p < .001); speaker classification for content words was 24.0% correct, whereas 2 

for function words it was 21.5% correct. The model furthermore contained the formant 3 

coefficients (except fit coefficient a3 for F2), F0, and duration, and these acoustic predictors also 4 

interacted with Word Class. Not included were formant bandwidths and intensity. The order in 5 

which acoustic predictors contributed most to speaker classification was: formant coefficients, 6 

duration and F0, with respective reductions in maximal classification performance from 22.6% to 7 

8.8%, 15.6% and 17.7%. Leaving out either formant intercepts or the higher coefficients yielded 8 

performance reductions to 14.2% and 18.0%, respectively. 9 

 10 

D. Speaker-dependency: LR results 11 

The median log-likelihood ratios and Cllrs for [aː]s sampled from either Word Class are given in 12 

Table II, for each of the three acoustic feature sets separately (see section II.D.2.b). Median 13 

LLRs were computed for same-speaker comparisons (LLRSS) and for different-speaker 14 

comparisons (LLRDS). 15 

When comparing between the word classes, per feature set, median LLRs are close 16 

together. LLRSS tend to be slightly more positive for function than content words in both speech 17 

collections, whereas LLRDS show this trend for some feature sets, but the opposite trend in 18 

others. However, the order of magnitude of the LLRs remains comparable between word classes. 19 

For face-to-face speech, LRs do not improve when the MLR feature set is extended to all 20 

acoustic-phonetic variables, whereas they do in telephone speech. Remember, however, that for 21 

telephone speech, the MLR predictor set was smaller than for face-to-face speech. This makes 22 
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the difference between the MLR- and all-feature sets larger in telephone speech. The general 1 

trend in Table II is that performance improves with the number of acoustic features included.   2 

 3 

TABLE II: Results for face-to-face (f2f) and telephone (tel) speech, for either content (Nf2f = 4 

1,443; Ntel = 1,318) or function words (Nf2f = 1,492; Ntel = 1,617), showing median LLR for both 5 

same-speaker and different-speaker comparisons, and Cllr.  6 

data feature set word class Md(LLRSS) Md(LLRDS)  Cllr 

f2f formants, duration content 0.41 –0.28 0.850 

  function  0.42 –0.34 0.814 

 as in MLR content 0.90 –1.47 0.590 

  function 0.94 –1.10 0.600 

 all content 0.91 –1.43 0.594 

  function  0.99 –1.10 0.597 

tel formants, duration content 0.68 –1.05 0.665 

  function  0.70 –1.55 0.593 

 as in MLR content 0.74 –1.27 0.636 

  function 0.92 –1.55 0.561 

 all content 0.96 –1.25 0.550 

  function 1.10 –1.25 0.526 

 7 

When looking at the Cllrs the pattern of results seems somewhat different for face-to-face than 8 

telephone speech. In the latter speech type, function word [aː]s do somewhat better than content 9 

word [aː]s. In face-to-face speech, the relation between function and content word Cllrs varies by 10 
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feature set. To illustrate the comparable behavior between the word classes Figure 2 shows 1 

Tippett plots for both collections using results from the MLR feature set.  2 

 3 

 

a. 

 

b. 

Figure 2: Tippett plots for LR results based on the MLR feature sets, showing both same-speaker 4 

(SS, solid line) and different-speaker (DS, dashed line) LLRs. In (a) face-to-face speech and (b) 5 

telephone speech performance is compared between content words (gray) and function words 6 

(black). 7 

 8 

With comparable results for the two word classes, a post-hoc analysis was done using data mixed 9 

between word classes, thus allowing for more data to be included in the computation of strength-10 

of-evidence. LRs were computed including both word classes per speech collection and using all 11 

acoustic variables, i.e. the best-performing feature set. For face-to-face speech, the median 12 

LLRSS was 1.0 and the median LLRDS was –1.16, with the Cllr at 0.616, which gives similar 13 

discriminatory power and a slight reduction in performance relative to one word class only. For 14 
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telephone speech, the median LLRSS was 1.33 and the median LLRDS was –1.7, with the Cllr at 1 

0.429. Here, the mixed condition shows some improvement over the individual word classes.   2 

 3 

IV. GENERAL DISCUSSION 4 

This study investigated if speaker-specific information carried by the Standard Dutch vowel [aː] 5 

varies with the word class tokens are sampled from. Using conversational speech from two 6 

corpora, face-to-face and telephone speech, it was first established that vowel realization in 7 

conversational speech varies by word class along multiple acoustic dimensions, as in lab speech 8 

(Van Bergem, 1993; Shi et al., 2005). As expected, spectral and temporal vowel reduction in 9 

function words resulted in more centralized positions of the vowels in the acoustic space and 10 

shorter durations than in content words. Such differential acoustics would potentially yield 11 

differences in the speaker information available per word class. Therefore, the main experiment 12 

addressed the question of whether the word class from which [aː] samples are taken affects their 13 

amount of speaker-dependent information conveyed.  14 

Results showed that word class impacted both within- and between-speaker variation, but 15 

that the effect of word class on speaker separation was not fully consistent across the two speaker 16 

modelling approaches. The vowel [aː] yielded somewhat better speaker-classification scores in 17 

content than function words, in both speech collections, whereas the strength-of-evidence 18 

derived from the same acoustic feature set did not reflect this difference. What both analyses 19 

agreed on, however, was that there is speaker-dependent information in just the vowel [aː] when 20 

sampled from spontaneous (telephone) speech. This adds to earlier acoustic-phonetic work on 21 

speaker-dependent information in vowels conducted on less spontaneous materials, e.g. read 22 
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speech (e.g., McDougall, 2006; Morrison, 2009a), or semi-spontaneous speech (Gold, 2014, ch. 1 

5; Rose, 2015).  2 

Speaker classification through MLR showed a small, yet consistent, benefit of content 3 

over function words on the speaker information contained by [aː], whereas LRs showed results 4 

that were comparable for both word classes. This discrepancy between the methods must be 5 

explained by differences in the modelling between them. LRs take into account both within-6 

speaker and between-speaker variation. It is not surprising that LRs are comparable for the two 7 

word classes, when considering that the ratio of between-to-within speaker variances remained 8 

comparable between content and function words; when one type of variance increased, the other 9 

one did as well, and vice versa. MLR results are well-explained when taking into account either 10 

within-speaker or between-speaker variation. Comparable statistical techniques have yielded 11 

results consistent with the word class effect obtained here (McDougall, 2004; He and Dellwo 12 

2017; Smorenburg and Heeren, 2020). On the one hand, the more precise articulation in content 13 

as opposed to function words, as reflected by smaller within-speaker variation, is in line with a 14 

speaker-classification advantage in read speech for nuclear-stressed versus non-nuclear-stressed 15 

syllables (McDougall, 2004). In that study, Linear Discriminant Analysis (LDA) was used for 16 

speaker classification. At the same time, more between-speaker variation was here found in 17 

function than content words, that is in contexts with less strict articulatory demands. This has 18 

been reported before by e.g., He and Dellwo (2017), who investigated between-speaker variation 19 

in intensity contours in the opening versus closing gestures of a syllable. Using MLR modelling, 20 

they found that measures taken from that part of the syllable which presumably has less strict 21 

articulatory targets, i.e. the second half of a syllable, accounted for most between-speaker 22 

variation. Recently, similar effects were demonstrated for F1 dynamics, which contained more 23 
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between-speaker variation in closing than opening gestures (He et al., 2019), and for Dutch 1 

fricatives /s, x/ showing more between-speaker variation in codas than onsets (Smorenburg and 2 

Heeren, 2020). The results from the current investigation suggest that speaker classification 3 

models, such as MLR and LDA, do not use within- and between-speaker variation in the same 4 

way for speaker modelling as the forensic standard, LRs, does.  5 

Recall that speaker-specific features for FSC ideally exhibit small within-speaker 6 

variation combined with large between-speaker variation. As the two types of variance were 7 

found to co-vary in size with word class, differences in speaker-specificity by linguistic 8 

condition were minimized in LR computations. Therefore, while acoustic-phonetic research into 9 

individual differences and context-dependent variation within and between speakers is crucial for 10 

understanding speech communication, the speaker-specificity of speech features may be best-11 

captured by the reporting standard of the court, i.e. the LR approach. The relevance of both 12 

within- and between-speaker variation for speaker separation is furthermore consistent with 13 

voice perception models (Lavan et al., 2018). What the current results add to the existing 14 

literature is the consideration that the amount of variation displayed within and between speakers 15 

may depend on the linguistic context from which samples are taken. Models of voice perception 16 

take a prototype-based approach, where it is assumed that unfamiliar voices are processed as 17 

deviations from the prototype, whereas familiar voices are recognized as patterns without 18 

reference to the prototype (see Kreiman and Sidtis, 2011, ch. 5). Especially for the recognition of 19 

unfamiliar speakers, linguistic conditions affecting the size of variances may affect the deviation 20 

from the prototype and thus yield differential performance.  21 

In both MLR and LR modelling various acoustic predictors contributed speaker 22 

information. The predictors that carried most information were spectral in nature: formants’ 23 
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averages, dynamics, and –to some extent– their bandwidths. This was most evident from the 1 

speaker classification results, but is also reflected by comparing LR results between feature sets. 2 

This finding ties in with earlier research on speaker-dependent information in vowel formants 3 

(e.g. McDougall, 2004, 2006), and is in line with the finding by Bachorowski and Owren (1999) 4 

that within a group of same-sex speakers, as used in the current investigation, vocal-tract 5 

variables are more informative than the vocal source variable. In the MLR model for face-to-face 6 

speech, formant bandwidths were also kept, suggesting that they carried speaker-dependent 7 

information, which – to the author’s knowledge – is a first demonstration; their contribution may 8 

be explained by the fact that bandwidths reflect between-speaker differences in vocal tract 9 

tension (Laver, 1980, ch. 4). Duration and intensity held little speaker information. Duration is 10 

strongly influenced by speech tempo (Van den Heuvel, 1996, p. 77), and this – when measured 11 

as articulation rate – contains relatively little information as a speaker discriminant (Quené, 12 

2008; Gold, 2014). Intensity is likely to be influenced by the recording conditions, especially 13 

when spontaneous speech is collected under naturalistic conditions as the data used here, and 14 

probably even more so when uncontrolled recordings are involved as in forensic casework.  15 

Focusing on the formants, earlier studies have reported that dynamic representations of 16 

formant trajectories carry speaker-dependent information (e.g., Ingram et al., 1996; McDougall, 17 

2006; Hughes et al., 2016). In the present study, this was also reflected by the MLR results, but 18 

dynamic formant information, as captured by the higher fit coefficients, contributed less than 19 

static formant intercepts. One reason why the contribution of formant dynamics may be restricted 20 

is that the Dutch vowel /aː/ is not a diphthong, thus containing little inherent transition that may 21 

yield articulatory differences between speakers. In several earlier studies, diphthongs or 22 

segmental combinations were used (e.g., McDougall, 2004; 2006; Morrison, 2009a). In a study 23 
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on the speaker-dependency of hesitation markers sampled from British English spontaneous 1 

speech (i.e. with varying contexts), formant dynamics only aided in um, with inherent vowel-to-2 

consonant transition, not in uh, without transition (Hughes et al., 2016). However, Rose (2015) 3 

found stronger speaker evidence with formant trajectories than mid-vowel measurements only 4 

for steady-state vowel /ɜ/, using samples from eight different word contexts in map task 5 

recordings. Another reason for the absence of a more prominent formant dynamics result may be 6 

that the variable phonetic contexts in the present investigation reduced their information value, 7 

i.e. dynamics were partially determined by neighboring sounds that differed between tokens.  8 

The current results, based on acoustic-phonetic features in vowels in spontaneous speech, 9 

tend to show lower LRs than similar studies in the literature (Gold, 2014: table 5.4; Hughes et 10 

al., 2016). This difference may be partially explained by the larger effects of co-articulation and 11 

contextual variation for [aː] tokens sampled from a large variety of words than for schwa 12 

sampled from hesitation markers only (Hughes et al., 2016). In addition, the use of ELUBs in the 13 

current study strongly limited the range of accepted LRs, whereas earlier work often did not 14 

apply these limits. In comparison with ASR approaches to vowel data, LRs are much lower here; 15 

ASR systems use speech features that generally have a higher discriminatory power, such as 16 

MFCCs or ivectors. However, in order to investigate the effect of word class acoustics on a 17 

vowel’s speaker-specific information in a way that ties in with earlier linguistic-phonetic work, 18 

the current experiments were intentionally restricted to one vowel and its acoustic-phonetic 19 

variables. In FSC casework, acoustic-phonetic analysis includes different aspects of speech (e.g., 20 

various segments, intonation, tempo), thus potentially yielding a higher discriminatory power 21 

due to their complementarity. If case data and legislation allow, ASR might be used as an 22 

additional or even alternative method. What the current results contribute, however, is that the 23 
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sampling of vowel tokens for acoustic-phonetic FSC, and perhaps also for ASR, is unlikely to 1 

depend on the word class from which tokens are sampled. 2 

In this study, LR results (both median LLRs and Cllrs) were somewhat better on narrow-3 

band telephone than broadband face-to-face speech. This is considered unexpected, but there are 4 

multiple factors that may have contributed to this result. First, the set of speakers differed 5 

between speech collections, meaning that the composition of the 50 speakers per database may 6 

have affected the outcome. Speakers are known to differ in discriminability by humans (e.g., 7 

Baumann and Belin, 2010) and by machines (Doddington et al., 1998), so there may be a 8 

sampling effect. Evidence for this is found in the larger number of random slopes in the 9 

telephone speech models, which reflects higher between-speaker variation (see III.A). Second, 10 

speaking behavior varies by speech style (Moos, 2010; Dellwo et al., 2015), and specifically 11 

behavior during telephone conversation may be hypothesized to differ from that in face-to-face 12 

speech as speakers are unable to see each other. It is thinkable that speakers therefore articulate 13 

relatively clearly in comparison with face-to-face speech, which may aid their discriminability. 14 

This explanation is supported by a tendency for smaller within-speaker variances in the 15 

telephone speech relative to the face-to-face speech collection (see Supplement). For MLR 16 

models, optimal performance on face-to-face speech was better than on telephone speech, but 17 

recall that the optimal models for the two collections differed in predictor sets: the former speech 18 

type had a larger set of predictors. 19 

For acoustic-phonetic forensic voice comparisons it is important to not only know which 20 

features convey most speaker information, but also if it matters where the features are sampled 21 

from. The current study shows that even though there are effects of word class on vowel 22 

realization and on within- and between-speaker variances of acoustic-phonetic variables, these 23 
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differences do not affect the strength of evidence contained by [aː]. In casework, there thus 1 

seems no principled reason to carefully balance sampling from different word classes or to use 2 

one class only, when vowel quality is decisive in the inclusion of tokens (whereas generally, 3 

more reduced tokens are expected in function that content words). It remains advisable, however, 4 

to be aware of strongly unbalanced sampling across word classes, as they influence the 5 

measurement outcome of variables bearing speaker information. Moreover, the present study 6 

included speech data with some characteristics also found in casework, but certainly not all. For 7 

instance, the collections used here did not contain non-contemporaneous data, and the 8 

demographic background of the speakers was not specifically selected. Only age, sex and the use 9 

of Standard Dutch were controlled for. This is a limitation, as it is expected to yield a degree of 10 

mismatch with speakers encountered in actual casework, however various they may be. 11 

Moreover, though male speakers are more prevalent in forensic-phonetic casework, female 12 

voices are encountered as well, but they were not part of this study. Although the values of their 13 

acoustic measurements are expected to differ from those of males (duration: Quené, 2008; Bell et 14 

al., 2009; formants: Adank et al., 2004), no fundamental differences in the interaction between 15 

word class and speaker-dependent information are expected between male and female speakers. 16 

Finally, this study was restricted to the most speaker-specific vowel in Dutch, [aː]. As 17 

differences in vowel realization by word class are not expected to be larger for other vowels of 18 

Dutch (van Bergem, 1993), the effect is predicted to transfer to the other vowels. Other linguistic 19 

contexts, however, may affect other acoustic variables and thus impact speaker-dependent 20 

information differently. 21 

 22 

 23 
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V. CONCLUSION 1 

Not only speech sound or speech style matters as to how much speaker information is available, 2 

but – to some degree – also the class of word in which a speech sound is located. Using two 3 

independent databases of conversational speech, analyses showed that [aː] acoustics vary with 4 

the word class the vowel is realized in, and that [aː] contains less within-speaker variation in 5 

content than function words, but also less between-speaker variation in content than function 6 

words. Even though this results in slightly better speaker classification for content words, the 7 

forensic strength-of-evidence computed from [aː] was comparable between word classes, 8 

presumably because it depends on both types of variation.  9 

 10 
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*  See supplementary material at [URL will be inserted by AIP] for mixed-effect modelling results of the 1 

confound analyses, and for within-speaker and between-speaker variances of all variables in the speaker-2 

dependency analysis. 3 

i ELUBs were computed using an R script developed by the first author of Vergeer et al. (2016). 
ii Standard deviation is given instead of the variance, as the former has an interpretable measurement unit (here: 
Hertz).  
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