
Exploring means to facilitate software debugging
SOLTANI, M.S.

Citation
SOLTANI, M. S. (2020, August 25). Exploring means to facilitate software debugging.
Retrieved from https://hdl.handle.net/1887/135948
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/135948
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/135948


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/135948 holds various files of this Leiden University 
dissertation. 
 
Author: Soltani, M.S. 
Title: Exploring means to facilitate software debugging 
Issue Date: 2020-08-25 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/135948
https://openaccess.leidenuniv.nl/handle/1887/1�


9
About the Author

Mozhan Soltani, born in 1989, received her B.Sc. degree in Software Engineering
and Management from Gothenburg University, Gothenburg, Sweden, in 2014. She re-
ceived her M.Sc. in Software Engineering from Gothenburg University, Gothenburg,
Sweden, in 2016. In 2016, Mozhan Soltani moved to the Netherlands to do her PhD
research on the use of automated test generation for software debugging at the Soft-
ware Engineering Research Group (SERG), at Delft University of Technology. In 2019,
she moved to Leiden University to complete the PhD research on exploring means to
facilitate software debugging.





Bibliography

[1] https://github.com/netty/netty/issues/8285, accessed on 2019-06-20.

[2] https://github.com/axios/axios/issues/376, accessed on 2019-06-20.

[3] https://github.com/axios/axios/issues/246, accessed on 2019-06-20.

[4] https://github.com/apache/dubbo/issues/1500, accessed on 2019-06-20.

[5] https://github.com/apache/dubbo/issues/3236, accessed on 2019-06-20.

[6] https://github.com/activeadmin/activeadmin/issues/2623, accessed on
2019-06-20.

[7] https://github.com/activeadmin/activeadmin/issues/3185, accessed on
2019-06-20.

[8] https://github.com/activeadmin/activeadmin/issues/4650, accessed on
2019-06-20.

[9] https://developer.github.com/v3/issues/, accessed on 2015-05-01.

[10] https://github.com/angular/angular.js/issues/16697, accessed on 2019-06-
20.

[11] https://github.com/ageitgey/face recognition/issues/854, accessed on 2019-
06-20.



216 Bibliography

[12] https://github.com/airbnb/lottie-android/issues/1202, accessed on 2019-06-
20.

[13] https://github.com/barryvdh/laravel-debugbar/issues/237, accessed on
2019-06-20.

[14] https://github.com/activeadmin/activeadmin/issues/4250, accessed on
2019-06-20.

[15] The state of the octoverse. https://octoverse.github.com/, accessed on 2019-
05-01.

[16] The state of the octoverse 2017. https://octoverse.github.com/2017/, ac-
cessed on 2019-05-01.

[17] The state of the octoverse: top programming languages of 2018.
https://github.blog/2018-11-15-state-of-the-octoverse-top-programming-
languages/, accessed on 2019-05-01.

[18] UI/Application Exerciser Monkey. https://developer.android.com/
studio/test/monkey.html, 2017. [Online; accessed 24-July-2017].

[19] Aldanial, 2019. https://github.com/AlDanial/cloc, Accessed: 2019-08-20.

[20] Boost, 2019. https://www.boost.org/, accessed on 2019-07-01.

[21] Boost.contract example, 2019. https://www.boost.org/doc/libs/1_67_0/libs/
contract/doc/html/boost/contract/public_functio_idp69202896.html, Ac-
cessed:
2019-08-20.

[22] Cloc, 2019. http://cloc.sourceforge.net/, Accessed: 2019-08-20.

[23] Cofoja. https://github.com/nhatminhle/cofoja, 2019. accessed on 2019-07-
01.

[24] cofoja-api, 2019. https://github.com/wao/cofoja-api, Accessed: 2019-08-22.

[25] Cofoja example, 2019. http://blog.code-cop.org/2018/02/complete-cofoja-
setup-example.html, Accessed: 2019-08-20.

[26] Github explore, 2019. https://github.com/explore, Accessed: 2019-07-15.

[27] icontract, 2019. https://pypi.org/project/icontract/, accessed on 2019-07-01.

[28] Inf3143_tp2, 2019. https://github.com/Parquery/mapry, Accessed: 2019-08-
22.

https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html


Bibliography 217

[29] Inf3143_tp2, 2019. https://github.com/nic-lovin/INF3143_TP2, Accessed:
2019-08-22.

[30] Jml example, 2019. http://www.eecs.ucf.edu/ leavens/JML-
release/org/jmlspecs/samples/stacks/, Accessed: 2019-08-20.

[31] Jml home page: The java modeling language (jml), 2019.
http://www.eecs.ucf.edu/ leavens/JML/index.shtml, accessed on 2019-07-01.

[32] library-manager, 2019. https://github.com/openminded-oscar/library-
manager, Accessed: 2019-08-22.

[33] Miniurl, 2019. https://github.com/gunbuster135/MiniUrl, Accessed: 2019-
08-22.

[34] Pycontracts, 2019. https://andreacensi.github.io/contracts/, accessed on
2019-07-01.

[35] The state of the octoverse, 2019. https://octoverse.github.com/, accessed on
2019-05-01.

[36] streamline, 2019. https://github.com/denipotapov/streamline, Accessed:
2019-08-22.

[37] Valid4j, 2019. http://www.valid4j.org/, accessed on 2019-07-01.

[38] Valid4j example, 2019. http://www.valid4j.org/concepts.html, Accessed:
2019-08-20.

[39] S. Adee. Bad bugs: The worst disasters caused by software fails, 2019.

[40] S. Adolph, W. Hall, and P. Kruchten. Using grounded theory to study the ex-
perience of software development. Empirical Software Engineering, 16(4):487–
513, 2011.

[41] S. Afshan, P. McMinn, and M. Stevenson. Evolving readable string test inputs
using a natural language model to reduce human oracle cost. In 2013 IEEE
Sixth International Conference on Software Testing, Verification and Validation,
pages 352–361, March 2013.

[42] N. M. Albunian. Diversity in search-based unit test suite generation. In Int’l
Symposium on Search Based Software Engineering, pages 183–189. Springer,
2017.

[43] N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, and
I. Zorin. Deploying Search Based Software Engineering with Sapienz at Face-



218 Bibliography

book. In Search-Based Software Engineering. SSBSE 2018., volume 11036 of
LNCS. Springer, 2018.

[44] A. Ang, A. Perez, A. van Deursen, and R. Abreu. Revisiting the Practical Use of
Automated Software Fault Localization Techniques. IEEE, United States, 2017.

[45] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an open bug repository.
In Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange,
pages 35–39. ACM, 2005.

[46] Apache. Ant. http://ant.apache.org/, 2017. [Online; accessed 25-
January-2018].

[47] Apache. Commons Collections. https://commons.apache.org/
proper/commons-collections/, 2017. [Online; accessed 25-January-
2018].

[48] Apache. Log4j. https://logging.apache.org/log4j/2.x/, 2017.
[Online; accessed 25-January-2018].

[49] A. Arcuri. RESTful API Automated Test Case Generation. In 2017 IEEE Inter-
national Conference on Software Quality, Reliability and Security (QRS), pages
9–20. IEEE, jul 2017.

[50] A. Arcuri and L. Briand. A hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering. Software Testing, Verification
and Reliability, 24(3):219–250, 2014.

[51] A. Arcuri and G. Fraser. On Parameter Tuning in Search Based Software Engin-
eering. In Population English Edition, pages 33–47. 2011.

[52] A. Arcuri and G. Fraser. Parameter tuning or default values? an empirical
investigation in search-based software engineering. Empirical Software Engin-
eering, 18(3):594–623, 2013.

[53] A. Arcuri and G. Fraser. Java enterprise edition support in search-based junit
test generation. In International Symposium on Search Based Software Engin-
eering, pages 3–17. Springer, 2016.

[54] A. Arcuri, G. Fraser, and J. P. Galeotti. Automated unit test generation for
classes with environment dependencies. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering - ASE ’14, pages
79–90, Vasteras, Sweden, 2014. ACM Press.

http://ant.apache.org/
https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/
https://logging.apache.org/log4j/2.x/


Bibliography 219

[55] A. Arcuri, G. Fraser, and J. P. Galeotti. Generating tcp/udp network data for
automated unit test generation. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, pages 155–165. ACM, 2015.

[56] A. Arcuri, G. Fraser, and R. Just. Private api access and functional mocking in
automated unit test generation. In Software Testing, Verification and Validation
(ICST), 2017 IEEE International Conference on, pages 126–137, Tokyo, Japan,
2017. IEEE, IEEE Computer Society.

[57] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Directed test generation for effect-
ive fault localization. In Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA ’10, pages 49–60. ACM, 2010.

[58] S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making software failures repro-
ducible by preserving object states. In Proceedings of the 22Nd European Con-
ference on Object-Oriented Programming, ECOOP ’08, pages 542–565, Berlin,
Heidelberg, 2008. Springer-Verlag.

[59] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, P. Tonella, and
T. Vos. Symbolic search-based testing. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, pages
53–62. IEEE Computer Society, 2011.

[60] C. Baier, J.-P. Katoen, and K. G. Larsen. Principles of model checking. MIT press,
2008.

[61] A. Baresel, D. Binkley, M. Harman, and B. Korel. Evolutionary testing in the
presence of loop-assigned flags: A testability transformation approach. In ACM
SIGSOFT Software Engineering Notes, volume 29, pages 108–118, Boston, Mas-
sachusetts, USA, 2004. ACM, ACM.

[62] K. L. Barriball and A. While. Collecting data using a semi-structured inter-
view: a discussion paper. Journal of Advanced Nursing-Institutional Subscrip-
tion, 19(2):328–335, 1994.

[63] V. R. Basili, F. Shull, and F. Lanubile. Building knowledge through families of
experiments. IEEE Transactions on Software Engineering, 25(4):456–473, 1999.

[64] J. Bell, N. Sarda, and G. Kaiser. Chronicler: Lightweight recording to reproduce
field failures. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 362–371, Piscataway, NJ, USA, 2013. IEEE Press.

[65] F. A. Bianchi, M. Pezzè, and V. Terragni. Reproducing concurrency failures from
crash stacks. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pages 705–716, Paderborn, Germany, 2017. ACM, ACM.



220 Bibliography

[66] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P. Devanbu.
Fair and balanced?: bias in bug-fix datasets. In Proceedings of the the 7th joint
meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 121–130. ACM,
2009.

[67] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, and Y. Le Traon. Got
issues? who cares about it? a large scale investigation of issue trackers from
github. In 2013 IEEE 24th international symposium on software reliability en-
gineering (ISSRE), pages 188–197. IEEE, 2013.

[68] H. Borges, M. T. Valente, A. Hora, and J. Coelho. On the popularity of github
applications: A preliminary note. arXiv preprint arXiv:1507.00604, 2015.

[69] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based
on java predicates. In Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA ’02, pages 123–133, New
York, NY, USA, 2002. ACM.

[70] P. Braione, G. Denaro, A. Mattavelli, and M. Pezzè. Combining symbolic ex-
ecution and search-based testing for programs with complex heap inputs. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2017, pages 90–101, New York, NY, USA, 2017.
ACM.

[71] V. Braun and V. Clarke. Using thematic analysis in psychology. Qualitative
research in psychology, 3(2):77–101, 2006.

[72] L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sabetzadeh. The Case for
Context-Driven Software Engineering Research: Generalizability Is Overrated.
IEEE Software, 34(5):72–75, 2017.

[73] O. Bühler and J. Wegener. Evolutionary functional testing. Computers & Oper-
ations Research, 35(10):3144–3160, 2008.

[74] R. P. Buse, C. Sadowski, and W. Weimer. Benefits and barriers of user eval-
uation in software engineering research. ACM SIGPLAN Notices, 46(10):643–
656, 2011.

[75] B. Cabral and P. Marques. Exception Handling: A Field Study in Java and
.NET. In ECOOP 2007 âĂŞ Object-Oriented Programming, volume 4609, pages
151–175. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.



Bibliography 221

[76] Y. Cao, H. Zhang, and S. Ding. Symcrash: Selective recording for reprodu-
cing crashes. In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, pages 791–802. ACM, 2014.

[77] C. Casalnuovo, P. Devanbu, A. Oliveira, V. Filkov, and B. Ray. Assert use in
github projects. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pages 755–766. IEEE Press, 2015.

[78] C. Casalnuovo, P. Devanbu, A. Oliveira, V. Filkov, and B. Ray. Assert use in
github projects. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pages 755–766. IEEE Press, 2015.

[79] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and P. Tonella. An em-
pirical study about the effectiveness of debugging when random test cases are
used. In Proceedings of the 34th International Conference on Software Engineer-
ing, pages 452–462. IEEE Press, 2012.

[80] S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic debugging. In Pro-
ceedings of the 33rd International Conference on Software Engineering, pages
121–130. ACM, 2011.

[81] N. Chen and S. Kim. Star: Stack trace based automatic crash reproduction via
symbolic execution. IEEE Tr. on Sw. Eng., 41(2):198–220, 2015.

[82] H. Cibulski and A. Yehudai. Regression test selection techniques for test-driven
development. In Software Testing, Verification and Validation Workshops (IC-
STW), 2011 IEEE Fourth International Conference on, pages 115–124, March
2011.

[83] J. Clause and A. Orso. A technique for enabling and supporting debugging
of field failures. In 29th International Conference on Software Engineering
(ICSE’07), pages 261–270. IEEE, 2007.

[84] R. Coelho, L. Almeida, G. Gousios, A. v. Deursen, and C. Treude. Exception
handling bug hazards in android. Empirical Software Engineering, pages 1–41,
2016.

[85] R. Coelho, L. Almeida, G. Gousios, and A. van Deursen. Unveiling exception
handling bug hazards in android based on github and google code issues. In
Proceedings of the 12th Working Conference on Mining Software Repositories,
MSR ’15, pages 134–145. IEEE Press, 2015.

[86] R. Coelho, L. Almeida, G. Gousios, A. van Deursen, and C. Treude. Exception
handling bug hazards in Android. Empirical Software Engineering, 22(3):1264–
1304, jun 2017.



222 Bibliography

[87] C. A. Coello Coello. Constraint-handling techniques used with evolutionary
algorithms. In Proc. of the Genetic and Evolutionary Computation Conference
Companion (GECCO Companion), pages 563–587. ACM, 2016.

[88] M. Črepinšek, S.-H. Liu, and M. Mernik. Exploration and exploitation in evolu-
tionary algorithms: A survey. ACM Computing Surveys (CSUR), 45(3):35, 2013.

[89] J. W. Creswell and J. D. Creswell. Research design: Qualitative, quantitative,
and mixed methods approaches. Sage publications, 2017.

[90] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel. Rebucket: A method for
clustering duplicate crash reports based on call stack similarity. In Proceedings
of the 34th International Conference on Software Engineering, ICSE 2012, pages
1084–1093. IEEE Press, 2012.

[91] D. De Vaus and D. de Vaus. Surveys in social research. Routledge, 2013.

[92] K. Deb. Multi-objective optimization. In Search Methodologies, pages 403–449.
Springer US, 2014.

[93] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobject-
ive genetic algorithm: Nsga-ii. TEVC, 6(2):182–197, 2002.

[94] J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada. Contracts in the wild: A study
of java programs. In 31st European Conference on Object-Oriented Programming
(ECOOP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[95] Dubbo. A high-performance, java based, open source RPC framework. http:
//dubbo.io, 2018. [Online; accessed 25-January-2018].

[96] F. Eichinger, K. Krogmann, R. Klug, and K. Böhm. Software-defect localisation
by mining dataflow-enabled call graphs. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages 425–441. Springer,
2010.

[97] Elastic. Elasticsearch: RESTful, Distributed Search and Analytics. https://
www.elastic.co/products/elasticsearch, 2018. [Online; accessed
25-January-2018].

[98] H.-C. Estler, C. A. Furia, M. Nordio, M. Piccioni, and B. Meyer. Contracts
in practice. In International Symposium on Formal Methods, pages 230–246.
Springer, 2014.

[99] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal. Searching for cognitively diverse
tests: Towards universal test diversity metrics. In Proc. Int’l Conf. Software

http://dubbo.io
http://dubbo.io
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch


Bibliography 223

Testing Verification and Validation Workshops (ICSTW), pages 178–186. IEEE,
2008.

[100] A. Fink. The survey handbook. Sage, 2003.

[101] G. Fraser and A. Arcuri. 1600 faults in 100 projects: Automatically finding
faults while achieving high coverage with evosuite. Empirical Software Engin-
eering, 20(3):611–639, 2013.

[102] G. Fraser and A. Arcuri. Evosuite: On the challenges of test case generation in
the real world. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, pages 362–369. IEEE, 2013.

[103] G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions on
Software Engineering, 39(2):276–291, Feb. 2013.

[104] G. Fraser and A. Arcuri. Automated test generation for java generics. In In-
ternational Conference on Software Quality, pages 185–198, Vienna, Austria,
2014. Springer, Springer.

[105] G. Fraser and A. Arcuri. A large-scale evaluation of automated unit test gener-
ation using evosuite. ACM Transactions on Software Engineering and Methodo-
logy (TOSEM), 24(2):8, 2014.

[106] G. Fraser, A. Arcuri, and P. McMinn. A memetic algorithm for whole test suite
generation. Journal of Systems and Software, 103:311–327, 2015.

[107] G. Fraser, J. M. Rojas, J. Campos, and A. Arcuri. E vo s uite at the sbst 2017 tool
competition. In Proceedings of the 10th International Workshop on Search-Based
Software Testing, pages 39–41. IEEE Press, 2017.

[108] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. Does automated
white-box test generation really help software testers? In Proceedings of the
2013 International Symposium on Software Testing and Analysis, pages 291–
301. ACM, 2013.

[109] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. Does automated
unit test generation really help software testers? A controlled empirical study.
ACM Trans. Softw. Eng. Methodol., 24(4):23:1–23:49, 2015.

[110] G. R. Gibbs. Thematic coding and categorizing. Analyzing qualitative data.
London: Sage, pages 38–56, 2007.

[111] B. G. Glaser and J. Holton. Remodeling grounded theory. In Forum Qualitative
Sozialforschung/Forum: Qualitative Social Research, volume 5, 2004.



224 Bibliography

[112] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random test-
ing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05, pages 213–223, New York, NY,
USA, 2005. ACM.

[113] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for mul-
timodal function optimization. In Proc. Int’l Conf. on Genetic Algorithms and
Their Application, pages 41–49. L. Erlbaum Associates Inc., 1987.

[114] M. Gómez, R. Rouvoy, B. Adams, and L. Seinturier. Reproducing context-
sensitive crashes of mobile apps using crowdsourced monitoring. In Proceed-
ings of the International Conference on Mobile Software Engineering and Systems,
MOBILESoft ’16, pages 88–99, New York, NY, USA, 2016. ACM.

[115] F. Gordon and A. Arcuri. Evosuite at the sbst 2016 tool competition. In The
9th International Workshop on SEARCH-BASED SOFTWARE TESTING (SBST),
2016.

[116] B. Hailpern and P. Santhanam. Software debugging, testing, and verification.
IBM Systems Journal, 41(1):4–12, 2002.

[117] M. Harman. The current state and future of search based software engineer-
ing. In 2007 Future of Software Engineering, pages 342–357. IEEE Computer
Society, 2007.

[118] M. Harman, L. Hu, R. Hierons, A. Baresel, and H. Sthamer. Improving evol-
utionary testing by flag removal. In Proceedings of the 4th Annual Conference
on Genetic and Evolutionary Computation, pages 1359–1366, New York, USA,
2002. Morgan Kaufmann Publishers Inc., Morgan Kaufmann.

[119] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and
M. Roper. Testability transformation. IEEE Transactions on Software Engin-
eering, 30(1):3–16, 2004.

[120] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software engineer-
ing: Trends, techniques and applications. ACM Computing Surveys (CSUR),
45(1):11, 2012.

[121] M. Harman and P. McMinn. A theoretical & empirical analysis of evolutionary
testing and hill climbing for structural test data generation. In Proceedings of
the 2007 international symposium on Software testing and analysis, pages 73–
83. ACM, 2007.



Bibliography 225

[122] M. Harman, P. McMinn, J. De Souza, and S. Yoo. Search based software engin-
eering: Techniques, taxonomy, tutorial. In Empirical software engineering and
verification, pages 1–59. Springer, 2012.

[123] P. Hooimeijer and W. Weimer. Modeling bug report quality. In Proceedings
of the twenty-second IEEE/ACM international conference on Automated software
engineering, pages 34–43. ACM, 2007.

[124] M. Höst, B. Regnell, and C. Wohlin. Using students as subjectsâĂŤa comparat-
ive study of students and professionals in lead-time impact assessment. Empir-
ical Software Engineering, 5(3):201–214, 2000.

[125] S. E. Hove and B. Anda. Experiences from conducting semi-structured inter-
views in empirical software engineering research. In 11th IEEE International
Software Metrics Symposium (METRICS’05), pages 10–pp. IEEE, 2005.

[126] S. A. Jacob and S. P. Furgerson. Writing interview protocols and conducting
interviews: Tips for students new to the field of qualitative research. The qual-
itative report, 17(42):1–10, 2012.

[127] M. Jähne, X. Li, and J. Branke. Evolutionary algorithms and multi-
objectivization for the travelling salesman problem. In Proceedings of the 11th
Annual conference on Genetic and evolutionary computation, pages 595–602.
ACM, 2009.

[128] Java Design Patterns. Design patterns implemented in Java. http://
java-design-patterns.com, 2018. [Online; accessed 25-January-2018].

[129] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. OCAT: Object Capture-based Auto-
mated Testing. In Proceedings of the 19th International Symposium on Software
Testing and Analysis, ISSTA ’10, pages 159–170, New York, NY, USA, 2010.
ACM.

[130] JDK. Stack trace has invalid line numbers. https://bugs.openjdk.java.
net/browse/JDK-7024096, 2016. [Online; accessed 25-January-2018].

[131] C. Jee and T. Macaulay. Top software failures in recent history, 2019.

[132] Y. Jia and M. Harman. Constructing subtle faults using higher order mutation
testing. In Source Code Analysis and Manipulation, 2008 Eighth IEEE Interna-
tional Working Conference on, pages 249–258. IEEE, 2008.

[133] J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang. Why and how
developers fork what from whom in github. Empirical Software Engineering,
22(1):547–578, 2017.

http://java-design-patterns.com
http://java-design-patterns.com
https://bugs.openjdk.java.net/browse/JDK-7024096
https://bugs.openjdk.java.net/browse/JDK-7024096


226 Bibliography

[134] W. Jin and A. Orso. Bugredux: Reproducing field failures for in-house debug-
ging. In Proceedings of the 34th International Conference on Software Engineer-
ing, ICSE ’12, pages 474–484, Piscataway, NJ, USA, 2012. IEEE Press.

[135] R. Just, D. Jalali, and M. D. Ernst. Defects4J: a database of existing faults to
enable controlled testing studies for Java programs. In Proceedings of the 2014
International Symposium on Software Testing and Analysis - ISSTA 2014, pages
437–440, San Jose, CA, USA, 2014. ACM Press.

[136] F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella. Sbfr: A search based
approach for reproducing failures of programs with grammar based input. In
Proceedings of the 28th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE’13, pages 604–609, Piscataway, NJ, USA, 2013. IEEE
Press.

[137] F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella. Reproducing field fail-
ures for programs with complex grammar-based input. In Proceedings of the
2014 IEEE International Conference on Software Testing, Verification, and Valid-
ation, ICST ’14, pages 163–172, Washington, DC, USA, 2014. IEEE Computer
Society.

[138] F. M. Kifetew, A. Panichella, A. De Lucia, R. Oliveto, and P. Tonella. Ortho-
gonal exploration of the search space in evolutionary test case generation. In
Proc. Int’l Symposium on Software Testing and Analysis (ISSTA), pages 257–267.
ACM, 2013.

[139] B. A. Kitchenham and S. L. Pfleeger. Principles of survey research: part 3:
constructing a survey instrument. ACM SIGSOFT Software Engineering Notes,
27(2):20–24, 2002.

[140] J. D. Knowles, R. A. Watson, and D. W. Corne. Reducing local optima in
single-objective problems by multi-objectivization. In International Conference
on Evolutionary Multi-Criterion Optimization, pages 269–283. Springer, 2001.

[141] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang. Adoption of software testing
in open source projects–a preliminary study on 50,000 projects. In 2013 17th
European Conference on Software Maintenance and Reengineering, pages 353–
356. IEEE, 2013.

[142] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang. An empirical study of ad-
option of software testing in open source projects. In 2013 13th International
Conference on Quality Software, pages 103–112. IEEE, 2013.



Bibliography 227

[143] P. S. Kochhar and D. Lo. Revisiting assert use in github projects. In Proceedings
of the 21st International Conference on Evaluation and Assessment in Software
Engineering, pages 298–307. ACM, 2017.

[144] P. S. Kochhar and D. Lo. Revisiting assert use in github projects. In Proceedings
of the 21st International Conference on Evaluation and Assessment in Software
Engineering, pages 298–307. ACM, 2017.

[145] P. S. Kochhar, D. Wijedasa, and D. Lo. A large scale study of multiple program-
ming languages and code quality. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages
563–573. IEEE, 2016.

[146] R. Kramer. icontract-the java/sup tm/design by contract/sup tm/tool. In
Proceedings. Technology of Object-Oriented Languages. TOOLS 26 (Cat. No.
98EX176), pages 295–307. IEEE, 1998.

[147] G. Kudrjavets, N. Nagappan, and T. Ball. Assessing the relationship between
software assertions and faults: An empirical investigation. In 2006 17th Inter-
national Symposium on Software Reliability Engineering, pages 204–212. IEEE,
2006.

[148] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic
method for automatic software repair. Ieee transactions on software engineering,
38(1):54–72, 2011.

[149] G. T. Leavens and Y. Cheon. Design by contract with jml, 2006.

[150] A. Leitner, I. Ciupa, M. Oriol, B. Meyer, and A. Fiva. Contract driven develop-
ment = test driven development - writing test cases. In Proceedings of the the
6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering, ESEC-FSE
’07, pages 425–434, New York, NY, USA, 2007. ACM.

[151] A. Leitner, A. Pretschner, S. Mori, B. Meyer, and M. Oriol. On the effective-
ness of test extraction without overhead. In 2009 International Conference on
Software Testing Verification and Validation, pages 416–425. IEEE, 2009.

[152] Y. Li and G. Fraser. Bytecode testability transformation. In International Sym-
posium on Search Based Software Engineering, pages 237–251, Szeged, Hun-
gary, 2011. Springer, Springer.

[153] R. Likert. A technique for the measurement of attitudes. Archives of psychology,
1932.



228 Bibliography

[154] B. Liskov and J. Guttag. Program development in JAVA: abstraction, specific-
ation, and object-oriented design. Pearson Education, London, England, UK,
2000.

[155] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis of flaky
tests. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering - FSE 2014, pages 643–653, 2014.

[156] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation system
for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pages 224–234. ACM, 2013.

[157] A. Maiga, A. Hamou-Lhadj, M. Nayrolles, K. Koochekian Sabor, and A. Larsson.
An empirical study on the handling of crash reports in a large software com-
pany: An experience report. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 342–351, Bremen, Germany, sep
2015. IEEE.

[158] J. Malburg and G. Fraser. Combining search-based and constraint-based test-
ing. In Automated Software Engineering (ASE), 2011 26th IEEE/ACM Interna-
tional Conference on, pages 436–439, Lawrence, KS, USA, 2011. IEEE, IEEE
Computer Society.

[159] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective automated testing for
android applications. In Proceedings of the 25th International Symposium on
Software Testing and Analysis, pages 94–105. ACM, 2016.

[160] P. McMinn. Search-based software test data generation: a survey. Software
Testing, Verification and Reliability, 14(2):105–156, jun 2004.

[161] P. McMinn. Search-based software testing: Past, present and future. In Soft-
ware testing, verification and validation workshops (icstw), 2011 ieee fourth in-
ternational conference on, pages 153–163, Berlin, Germany, 2011. IEEE, IEEE
Computer Society.

[162] B. Meyer. Applying’design by contract’. Computer, 25(10):40–51, 1992.

[163] B. Meyer. Building bug-free oo software: An introduction to design by contract.
Availabe at http://archive. eiffel. com/doc/manuals/technology/contract, 1998.

[164] A. Moghaddam. Coding issues in grounded theory. Issues in educational re-
search, 16(1):52–66, 2006.

[165] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk. Automatically discovering, reporting and reproducing android



Bibliography 229

application crashes. In 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pages 33–44, April 2016.

[166] T. Mortensen, R. Fisher, and G. Wines. Students as surrogates for practicing
accountants: Further evidence. In Accounting Forum, volume 36, pages 251–
265. Elsevier, 2012.

[167] M. D. Myers and M. Newman. The qualitative interview in is research: Ex-
amining the craft. Information and organization, 17(1):2–26, 2007.

[168] L. Naish, H. J. Lee, and K. Ramamohanarao. A model for spectra-based soft-
ware diagnosis. ACM Transactions on software engineering and methodology
(TOSEM), 20(3):11, 2011.

[169] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously record-
ing program execution for deterministic replay debugging. In Proceedings of
the 32Nd Annual International Symposium on Computer Architecture, ISCA ’05,
pages 284–295, Washington, DC, USA, 2005. IEEE Computer Society.

[170] M. Nayrolles and A. Hamou-Lhadj. BUMPER: A Tool for Coping with Natural
Language Searches of Millions of Bugs and Fixes. In 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER),
pages 649–652, Suita, Osaka, Japan, mar 2016. IEEE.

[171] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, and A. Larsson. Jcharming: A bug
reproduction approach using crash traces and directed model checking. In
2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 101–110. IEEE, 2015.

[172] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, and A. Larsson. A bug reproduction
approach based on directed model checking and crash traces. Journal of Soft-
ware: Evolution and Process, pages n/a–n/a, 2016. JSME-15-0137.R1.

[173] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, and A. Larsson. A bug reproduction
approach based on directed model checking and crash traces. Journal of Soft-
ware: Evolution and Process, 29(3):e1789, mar 2017.

[174] G. News and Media Limited or its affiliated companies. Robot kills worker at
Volkswagen plant in Germany, 2015.

[175] Oracle. What’s New in JDK 8. https://www.oracle.com/technetwork/
java/javase/8-whats-new-2157071.html, 2019. Accessed: 2019-05-
14.

https://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
https://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html


230 Bibliography

[176] A. Orso and G. Rothermel. Software testing: a research travelogue (2000–
2014). In Proceedings of the on Future of Software Engineering, pages 117–132.
ACM, 2014.

[177] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random
test generation. In Proceedings of the 29th International Conference on Soft-
ware Engineering, ICSE ’07, pages 75–84, Washington, DC, USA, 2007. IEEE
Computer Society.

[178] A. Panichella, F. M. Kifetew, and P. Tonella. Reformulating branch coverage
as a many-objective optimization problem. In 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST), pages 1–10,
April 2015.

[179] A. Panichella, R. Oliveto, M. Di Penta, and A. De Lucia. Improving multi-
objective test case selection by injecting diversity in genetic algorithms. IEEE
Trans. Software Eng., 41(4):358–383, 2015.

[180] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall. The impact
of test case summaries on bug fixing performance: an empirical investigation.
In Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 547–558, 2016.

[181] C. Parnin and A. Orso. Are automated debugging techniques actually helping
programmers? In Proceedings of the 2011 international symposium on software
testing and analysis, pages 199–209. ACM, 2011.

[182] S. Parsa, M. Vahidi-Asl, S. Arabi, and B. Minaei-Bidgoli. Software fault localiza-
tion using elastic net: A new statistical approach. In International Conference on
Advanced Software Engineering and Its Applications, pages 127–134. Springer,
2009.

[183] S. L. Pfleeger and B. A. Kitchenham. Principles of survey research: part 1:
turning lemons into lemonade. ACM SIGSOFT Software Engineering Notes,
26(6):16–18, 2001.

[184] I. S. W. B. Prasetya. T3, a Combinator-Based Random Testing Tool for Java:
Benchmarking, pages 101–110. Springer International Publishing, Cham,
2014.

[185] I. W. B. Prasetya. T3, a combinator-based random testing tool for java: bench-
marking. In International Workshop on Future Internet Testing, pages 101–110.
Springer, 2013.



Bibliography 231

[186] W. Prasetya, T. Vos, and A. Baars. Trace-based reflexive testing of oo programs
with t2. In 2008 1st International Conference on Software Testing, Verification,
and Validation, pages 151–160. IEEE, 2008.

[187] P. Puschner and R. Nossal. Testing the results of static worst-case execution-
time analysis. In Real-Time Systems Symposium, 1998. Proceedings. The 19th
IEEE, pages 134–143. IEEE, 1998.

[188] R. Ramler, D. Winkler, and M. Schmidt. Random test case generation and
manual unit testing: Substitute or complement in retrofitting tests for legacy
code? In Software Engineering and Advanced Applications (SEAA), 2012 38th
EUROMICRO Conference on, pages 286–293. IEEE, 2012.

[189] J. Roche. Adopting DevOps practices in quality assurance. Communications of
the ACM, 56(11):38–43, 2013.

[190] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri. Combining multiple
coverage criteria in search-based unit test generation. In International Sym-
posium on Search Based Software Engineering, pages 93–108. Springer, 2015.

[191] J. M. Rojas, G. Fraser, and A. Arcuri. Automated unit test generation during
software development: A controlled experiment and think-aloud observations.
In Proceedings of the 2015 International Symposium on Software Testing and
Analysis, pages 338–349. ACM, 2015.

[192] J. M. Rojas, G. Fraser, and A. Arcuri. Seeding strategies in search-based unit
test generation. Software Testing, Verification and Reliability, 26(5):366–401,
aug 2016.

[193] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser. A detailed investigation of the
effectiveness of whole test suite generation. Empirical Software Engineering,
22(2):852–893, 2017.

[194] J. Rößler, A. Zeller, G. Fraser, C. Zamfir, and G. Candea. Reconstructing core
dumps. In Proceedings - IEEE 6th International Conference on Software Testing,
Verification and Validation, ICST 2013, pages 114–123. IEEE, 2013.

[195] RxJava. Reactive Extensions for the JVM. https://github.com/
ReactiveX/RxJava, 2018. [Online; accessed 25-January-2018].

[196] A. Sakti, G. Pesant, and Y.-G. Guéhéneuc. Instance generator and problem
representation to improve object oriented code coverage. IEEE Transactions on
Software Engineering, 41(3):294–313, 2014.

https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava


232 Bibliography

[197] A. Schroter, A. Schröter, N. Bettenburg, and R. Premraj. Do stack traces help
developers fix bugs? In 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010), pages 118–121. IEEE, 2010.

[198] S. S. Sharma, D. G. Kleinbaum, and L. L. Kupper. Applied regression analysis
and other multivariate methods. 1978.

[199] S. E. Sim, S. Easterbrook, and R. C. Holt. Using Benchmarking to Advance
Research: A Challenge to Software Engineering. In Proceedings of the 25th
International Conference on Software Engineering, ICSE ’03, pages 74–83, Port-
land, Oregon, USA, 2003. IEEE Computer Society.

[200] D. I. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.-
K. Liborg, and A. C. Rekdal. A survey of controlled experiments in software
engineering. IEEE transactions on software engineering, 31(9):733–753, 2005.

[201] M. Soltani, A. Panichella, and A. van Deursen. Evolutionary testing for crash
reproduction. In Proceedings of the 9th International Workshop on Search-Based
Software Testing - SBST ’16, pages 1–4, 2016.

[202] M. Soltani, A. Panichella, and A. van Deursen. A Guided Genetic Algorithm for
Automated Crash Reproduction. In 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering (ICSE), pages 209–220, Buenos Aires, Argentina,
may 2017. IEEE.

[203] M. Soltani, A. Panichella, and A. van Deursen. A guided genetic algorithm
for automated crash reproduction. In Proceedings of the 39th International
Conference on Software Engineering, pages 209–220. IEEE Press, 2017.

[204] M. Soltani, A. Panichella, and A. van Deursen. Search-Based Crash Reproduc-
tion and Its Impact on Debugging. Software Engineering, IEEE Transactions on,
2018.

[205] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jrapture: A capture/replay
tool for observation-based testing. In Proceedings of the 2000 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA ’00, pages
158–167, New York, NY, USA, 2000. ACM.

[206] N. Tillmann and J. De Halleux. Pex: White box test generation for .net. In
Proceedings of the 2Nd International Conference on Tests and Proofs, TAP’08,
pages 134–153, Berlin, Heidelberg, 2008. Springer-Verlag.

[207] A. Vargha and H. D. Delaney. A critique and improvement of the cl common
language effect size statistics of mcgraw and wong. Journal of Educational and
Behavioral Statistics, 25(2):101–132, 2000.



Bibliography 233

[208] D. Weeratunge, X. Zhang, and S. Jagannathan. Analyzing multicore dumps
to facilitate concurrency bug reproduction. SIGARCH Comput. Archit. News,
38(1):155–166, Mar. 2010.

[209] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment
for automatic structural testing. Information and Software Technology,
43(14):841–854, 2001.

[210] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller.
Automated fixing of programs with contracts. In Proceedings of the 19th inter-
national symposium on Software testing and analysis, pages 61–72. ACM, 2010.

[211] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it take to
fix this bug? In Fourth International Workshop on Mining Software Repositories
(MSR’07: ICSE Workshops 2007), pages 1–1. IEEE, 2007.

[212] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: A controlled
experiment. In Proceedings of the 33rd International Conference on Software
Engineering, pages 551–560. ACM, 2011.

[213] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[214] X. Xiao, T. Xie, N. Tillmann, and J. De Halleux. Precise identification of
problems for structural test generation. In Software Engineering (ICSE), 2011
33rd International Conference on, pages 611–620, Waikiki, Honolulu , HI, USA,
2011. IEEE, ACM.

[215] J. Xuan, X. Xie, and M. Monperrus. Crash reproduction via test case mutation:
let existing test cases help. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE 2015, pages 910–913, New
York, New York, USA, 2015. ACM Press.

[216] XWiki. The Advanced Open Source Enterprise and Application Wiki. http:
//www.xwiki.org/, 2018. [Online; accessed 25-January-2018].

[217] T. Yu, T. S. Zaman, and C. Wang. Descry: reproducing system-level concur-
rency failures. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pages 694–704. ACM, 2017.

[218] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. U. Jain,
and M. Stumm. Simple testing can prevent most critical failures: An analysis
of production failures in distributed data-intensive systems. In Proceedings of

http://www.xwiki.org/
http://www.xwiki.org/


234 Bibliography

the 11th USENIX Conference on Operating Systems Design and Implementation,
OSDI’14, pages 249–265, Berkeley, CA, USA, 2014. USENIX Association.

[219] C. Zamfir and G. Candea. Execution synthesis: A technique for automated
software debugging. In Proceedings of the 5th European Conference on Computer
Systems, EuroSys ’10, pages 321–334, New York, NY, USA, 2010. ACM.

[220] A. Zeller. Isolating cause-effect chains from computer programs. In Proceedings
of the 10th ACM SIGSOFT symposium on Foundations of software engineering,
pages 1–10. ACM, 2002.

[221] A. Zeller. Why Programs Fail - A Guide to Systematic Debugging, 2nd Edition.
Academic Press, 2009.

[222] H. Zeng and D. Rine. Estimation of software defects fix effort using neural
networks. In Proceedings of the 28th Annual International Computer Software
and Applications Conference, 2004. COMPSAC 2004., volume 2, pages 20–21.
IEEE, 2004.

[223] C. Zhang, J. Yang, D. Yan, S. Yang, and Y. Chen. Automated breakpoint gener-
ation for debugging. JSW, 8(3):603–616, 2013.

[224] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and C. Weiss.
What makes a good bug report? IEEE Transactions on Software Engineering,
36(5):618–643, 2010.


