
Exploring means to facilitate software debugging
SOLTANI, M.S.

Citation
SOLTANI, M. S. (2020, August 25). Exploring means to facilitate software debugging.
Retrieved from https://hdl.handle.net/1887/135948
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/135948
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/135948


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/135948 holds various files of this Leiden University 
dissertation. 
 
Author: Soltani, M.S. 
Title: Exploring means to facilitate software debugging 
Issue Date: 2020-08-25 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/135948
https://openaccess.leidenuniv.nl/handle/1887/1�


8
English Summary

Today we rely on computer systems in numerous ways. Yet, these systems are sus-
ceptible to failure. These failures may disrupt lives, cause deaths, and cost billions of
dollars. Thus, software testing and verification play paramount roles in attempting
to prevent such catastrophic failures. Since software testing and verification activit-
ies are costly and labor-intensive, much effort has been put into automating as many
activities in these areas as possible. In this thesis, the overarching goal is to investigate
different means to facilitate automated software debugging.

We present EvoCrash, which is a search-based approach to automated crash reproduc-
tion. EvoCrash applies a genetic algorithm to search for a test case that reproduces a
software crash. We performed a large-scale evaluation to asses the performance of the
EvoCrash approach and identify the areas where further improvement is needed.

Furthermore, we introduce the IMaChecker approach, which mines Github bug repos-
itories, using Github APIs. In addition, IMaChecker parses bug reports and identifies
which elements (e.g. reproducing steps) are included in them. Using statistical tests,
IMaChecker identifies the impact of different bug report elements on bug resolution
times.

Finally, we develop static analyzers which detect the use of program contracts in
open source programs which are developed in Java, C++, and Python. In addition,
we develop parsers to identify fixing commits among the entire commit histories.
Using Poisson regression tests, we show there is a negative correlation between the
use of contracts and bug occurrences. Thus, we show one way to avoid bugs is to use
program contracts.




