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8
English Summary

Today we rely on computer systems in numerous ways. Yet, these systems are sus-
ceptible to failure. These failures may disrupt lives, cause deaths, and cost billions of
dollars. Thus, software testing and verification play paramount roles in attempting
to prevent such catastrophic failures. Since software testing and verification activit-
ies are costly and labor-intensive, much effort has been put into automating as many
activities in these areas as possible. In this thesis, the overarching goal is to investigate
different means to facilitate automated software debugging.

We present EvoCrash, which is a search-based approach to automated crash reproduc-
tion. EvoCrash applies a genetic algorithm to search for a test case that reproduces a
software crash. We performed a large-scale evaluation to asses the performance of the
EvoCrash approach and identify the areas where further improvement is needed.

Furthermore, we introduce the IMaChecker approach, which mines Github bug repos-
itories, using Github APIs. In addition, IMaChecker parses bug reports and identifies
which elements (e.g. reproducing steps) are included in them. Using statistical tests,
IMaChecker identifies the impact of different bug report elements on bug resolution
times.

Finally, we develop static analyzers which detect the use of program contracts in
open source programs which are developed in Java, C++, and Python. In addition,
we develop parsers to identify fixing commits among the entire commit histories.
Using Poisson regression tests, we show there is a negative correlation between the
use of contracts and bug occurrences. Thus, we show one way to avoid bugs is to use
program contracts.




