
Exploring means to facilitate software debugging
SOLTANI, M.S.

Citation
SOLTANI, M. S. (2020, August 25). Exploring means to facilitate software debugging.
Retrieved from https://hdl.handle.net/1887/135948

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/135948

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/135948

Cover Page

The handle http://hdl.handle.net/1887/135948 holds various files of this Leiden University
dissertation.

Author: Soltani, M.S.
Title: Exploring means to facilitate software debugging
Issue Date: 2020-08-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/135948
https://openaccess.leidenuniv.nl/handle/1887/1�

6
The Use of Contracts in Open Source

Software

Design by Contract (DBC) is a software development approach in which contracts are
formally specified between client and supplier components. Specified contracts can
be used in program verification, automated testing, and API documentation, thereby,
helping improve software quality. Assertions and other built-in features of program-
ming languages, as a lightweight form of contracts, have been investigated in related
work. However, the use of DBC in popular languages has been underexplored. In this
study, we present results of an empirical evaluation on the use of contracts in 124
open source projects, written in Java, C++, and Python. Our findings show that the
average use of different types of contracts differ depending on the program language.
In addition, we derived the following use cases of contracts: checking null condi-
tions, as well as checking equality and semantics of objects, data collections, strings,
and numbers. Furthermore, the results of regression analysis shows there is a neg-
ative relation between the number of contracts and frequency of defect occurrence
in a method. These results are statistically significant for all Java, C++, and Python
projects.

6.1 Introduction

Delivering a reliable software product is a pressing concern in software development.
Software reliability is especially important when software components are designed to

186 6.1. Introduction

be reused in various applications. In order to support the goal of developing reliable
software, Meyer [162] [163] presents pragmatic guidelines based on the theory of
Design By Contract (DBC).

The underlying idea in DBC is that software components are expected to collaborate
based on mutual expectations and benefits, which are formally specified in software
programs. In a program, if a client routine calls a supplier routine, the client must
meet certain requirements on entry, which are typically referred to as preconditions.
At the exit, the supplier routine may guarantee certain properties, named postcondi-
tions. class invariants are certain conditions which must be always guaranteed. Thus,
program contracts are used for various purposes such as static and runtime verifica-
tion, API documentation, and automated software testing [98].

Recently, Casalnuovo et al. [78] explored the connection between the use of asser-
tions and occurrence of defects in C and C++ projects from Github. They report
that the use of assertions does have small (yet significant) effect on reducing the de-
fect density. In addition, they report that assertions tend to be added to methods by
developers who have a larger ownership of those methods. Kochhar and Lo [144] per-
formed a partial replication of the study by Casalnuovo et al. [78] on Java programs
from Github. Their results confirm the findings reported by Casalnuovo et al. [78].
Furthermore, Estler et al. [98] study the use of contracts in 21 projects developed
in Eiffel, C#, and Java. Their findings show that contracts are quite stable and may
change infrequently. In addition, they report that there is no strong preference for
different types of contracts.

In this study, we intend to broaden the scope of the studies which were previously
performed with regards to the use of contracts. Therefore, we aim to investigate how
often different types of contracts are used and for what purposes. In addition, similar
to the studies by Casalnuovo et al. [78] and Kochhar and Lo [144] which analyze the
relation between use of assertions and occurrence of defects, we aim to analyze the
relation between the use of contracts and occurrence of defects. Therefore, we devise
the following research questions:

• RQ1: How often are different types of contracts used?

• RQ2: For which use cases do developers use contracts?

• RQ3: Does the use of contracts relate to occurrence of defects?

To answer the above research questions, we study three popular programming lan-
guages in Github [16] [17]: Java, Python and C++, which support design by con-
tract (DBC). Java and C++ are popular instances of strongly typed object-oriented
and semi object-oriented programming languages, respectively. Python is a popular

Chapter 6. The Use of Contracts in Open Source Software 187

instance of a high-level interpreted programming language. For each language we
selected popular libraries that support DBC, namely: JML [31, 149], Valid4j [37],
Cofoja [23], Boost.contract [20], Icontract [27,146], and Pycontracts [34]. We selec-
ted projects that use these libraries from Github, thereby, we created a corpus that
contains 124 projects.

For each library we developed a static source code parser which can detect and record
the use of contracts. In addition, for each language, we developed a Git commit log
parser, which can detect and record methods that are changed in commits. Moreover,
we manually analyzed a subset of 1505 (out of 18494) automatically identified con-
tracts that we randomly selected from each project.

Our results indicate that in Java projects, on average, 56% of the contracts are pre-
conditions while 31% of them are postconditions, and 13% are class invariants. These
results contradict the results reported by Estler et al. [98] showing that there is indeed
strong preference for using preconditions, compared to postconditions and invariants.
On the other hand, in C++ projects, on average, 46% of the contacts are postcondi-
tions, %29 are preconditions, and 19% are class invariants. For Python projects, on
average, 77% of the contracts are preconditions, 16% of the contracts are postcondi-
tions, and 7% of the contracts are invariants. In addition, we derived five categories of
use cases for contracts: contracts for objects, contracts for data collections, contracts
for numbers, contracts for strings, and contracts for null conditions. These categories
are further divided into: equality checks on objects, boundary checks and equality
checks for numbers, semantic checks and equality checks for strings, size checks and
semantic checks for data collections.

Regarding the analysis on the relation between use of contracts and occurrence of
defects, we parsed the Git commit logs and filtered the fixing commits using the
same heuristics used by Kochhar and Lo [144]. We used Poisson regression analysis
[198] on the parsed commits. The results show negative relation between the use
of contracts and occurrence of defects. For all Java, C++, and Python libraries, the
results are statistically significant.

The contributions in this paper are the following:1

1. a set of six open source static parsers written in Python, for six different libraries
that support DBC in Java, C++, and Python programs,

2. a set of three open source Git commit log parsers written in Python, for Java,
C++, and Python projects,

1The corpus of projects, extracted contracts, extracted Git commit logs, the results of Git commit analysis
and R scripts are provided through the following DOI link: 10.5281/zenodo.3610696
Upon acceptance of the paper, all contributions will be made publicly available.

188 6.2. Related Work

3. the collection of 124 Java, C++, and Python projects in which DBC is used,

4. an extensive data set that contains the results of automated contract detection
on 124 projects, and automated change detection from Git logs,

5. the results of the manual analysis on 1505 contracts which were automatically
detected, and

6. all R scripts used to analyze the results.

The remainder of the chapter is organized as follows: Section 6.2 provides related
work. Section 6.3 presents the research methodology. Section 6.4 presents the res-
ults. Section 6.5 and 6.6 provide discussion and threats to validity, respectively. Sec-
tion 6.7 concludes the paper.

6.2 Related Work

In this section, we present the related work about the use of assertions and their effect
on defect occurrence, in addition to the related work about empirical studies using
projects which are hosted on Github.

6.2.1 Assertion Use and Impact on Quality

Prior to the analysis Casalnuovo et al. [78] performed on the use of assertions in
Github projects, Kudrjavets et al. [147] performed an empirical case study on two
software components from Microsoft to investigate the relation between software
assertions and software faults. According to their observations, with an increase in
the assertion density in a file, there is a statistically significant decrease in the fault
density.

Later, Casalnuovo et al. [78] studied the use of assertions in Github projects which
were developed in C and C++. They found out that assertions are widely used in
popular C and C++ projects. They further explored the connection between the use
of assertions and occurrence of defects in these projects. Therefore, they report that
the use of assertions does have small, but significant, effect on reducing the frequency
of defect occurrence. In addition, they report that assertions tend to be added to
methods by developers who have a larger contribution to those methods.

Recently, Kochhar and Lo [144] performed a partial replication of the study by Casal-
nuovo et al. [78] on 185 Java projects from Github. Their results confirm the findings

Chapter 6. The Use of Contracts in Open Source Software 189

reported by Casalnuovo et al. [78]. Additionally, they performed manual analysis and
identified eight categories of assertions that developers used in the Java projects.
The identified categories are: null condition check, process state check, initialization
check, resource check, resource lock check, minimum and maximum value constraint
check, collection data and length check, and implausible condition check.

In order to support development of reliable software, Meyer [162] [163] provided
pragmatic techniques which are based on the theory of Design By Contract (DBC).
Contracts are executable form of formal specifications, which are typically expressed
as method preconditions, method postconditions, and class invariants. Estler et al.
[98] performed an empirical study on 21 Eiffel, C# and Java projects to investigate
which types of contracts are used more often, and how contracts are evolved over
time. Estler et al. [98] report that they did not observe strong preference for a certain
type of contract. However, when preconditions are used, they typically include more
predicates than when postconditions are used. In addition, they observe that the use
of contracts tends to be quite stable over time.

Moreover, Dietrich et al. [94] report from an empirical study on 200 Java programs
and highlight that while the adoption of contracts has been slow in reality, the adop-
tion of lightweight contracts through utilizing built-in features of programming lan-
guages and runtime checking has progressed. Thus a wide range of techniques and
constructs are used to represent contracts. Often the same program uses different
techniques at the same time. Therefore, Dietrich et al. [94] catalogue 25 techniques
and tools for lightweight contract checking, using built-in features of the language
such as assertions and exceptions.

6.2.2 Empirical Studies on Github Projects

Jiang et al. [133] explore why and how developers fork what from whom in GitHub.
Therefore they collect a dataset containing 236,344 developers and 1,841,324 forks.
Their observations indicate developers fork repositories to submit pull requests, fix
bugs, add new features and keep copies. Developers find repositories to fork from
various sources: search engines, external sites (e.g., Twitter, Reddit), social relation-
ships, etc. More than 42 % of developers that they surveyed agree that an automated
recommendation tool is useful to help them pick repositories to fork, while more than
44.4 % of developers do not value a recommendation tool. Moreover, their findings
indicate that a repository written in a developer’s preferred programming language is
more likely to be forked.

Kochhar et al. [141] [142] explore 50,000 projects and investigate the correlation

190 6.3. Research Methodology

between the presence of test cases and various project development characteristics,
including the lines of code and the size of development teams. According to their find-
ings, projects having test cases are bigger in size than projects without test cases. How-
ever, as projects get larger the number of tests per line of code decreases. Moreover,
they report that projects having bigger team size have higher number of test cases
whereas the number of test cases per developer decreases with an increase in the size
of the development team.

Kochhar et al. [145] perform a large scale empirical study where they gather a large
dataset consisting of popular projects from Github (628 projects, 85 million SLOC,
134 thousand authors, 3 million commits, in 17 languages) to understand the im-
pact of using multiple languages on software quality. They build multiple regression
models to study the effects of using different languages on the number of bug fixing
commits while controlling for factors such as project age, project size, team size, and
the number of commits. Their findings show that in general implementing a project
with more languages has a significant effect on project quality, as it increases defect
proneness. Moreover, they find specific languages that are statistically significantly
more defect prone when they are used in a multi-language setting. These languages
are popular languages like C++, Objective-C, and Java.

6.3 Research Methodology

The overarching goal of this paper is to investigate the use of Design By Contract
(DBC) in open source projects. More specifically, we aim to identify how often dif-
ferent types of contracts are used as well as the use cases in which contracts are
specified. To this end, we develop a set of 6 parsers to statically analyze source code
and detect contract specifications.

To derive the use cases in which contracts are used we took the following approach.
First, we select a random number of contracts from each project. To preserve a lower
bound in the selection process, we made sure to select at least 10 contracts from each
project. We then analyze the source code manually to understand the context and
rationale for specifying the contracts. We identify a category for each contract as we
analyze it. These categories are not predefined, but rather formed as we comprehend
the context and rationale behind the usage of the contracts. At the end, we revise
the identified categories and if the categories are too fine-grained, we may combine
a number of categories to form larger groups of contracts. To extend our perspective
and minimize the risk of making mistakes, we ask five independent (non-author)
developers to double check our analysis. Each of the developers has at least 5 years

Chapter 6. The Use of Contracts in Open Source Software 191

of professional experience in programming with either Java, or Python, or C++.

In addition, we aim to investigate the relation between using contracts and occur-
rence of defects. To that end, we develop a set of three commit log parsers for Java,
C++, and Python. Similar to Casalnuovo et al. [78] and Kochhar and Lo, [144] for
each project, we extract the commit logs using git log -U1 -W. The -U1 argument is
used to get the commit patches and -W is used to get the source contexts in which
the patches were provided. After extracting the Git commit logs, we filter the fixing
commits, using the same heuristics that were also used by Casalnuovo et al. [78]
and Kochhar and Lo, [144], namely: “fix”, “issue”, “bug”, “defect”, “incorrect”, “er-
ror”, “fault”, “mistake”, and “flaw”. We then use the commit log parsers to record an
account of every method that is changed in the fixing patches.

To analyze the relation between using contracts and occurrence of defects, we use
Poisson regression analysis [198], as opposed to Casalnuovo et al. [78] and Koch-
har and Lo, [144] who use Hurdle regression model to analyze relation between
developer experience, use of assertions, and frequency of defect occurrences. Hurdle
regression analysis is used when the minimum value in the dependent variable is 0.
Therefore, Hurdle analysis has two components: Hurdle and Count. Hurdle compon-
ent measures the effect of overcoming the hurdle, which is 0. On the other hand,
the count component measures the effect of going from a non-zero value to another
non-zero value.

In our case, the minimum value of the defect occurrence is 1 because all methods were
recorded from bug fixing commits where the methods were updated. As a result, we
use Poisson regression which is similar to regular multiple regression analysis, which
is used to model observed counts. Therefore, the possible values of the dependent
variable are non-negative integers in this analysis. In our case, the dependent variable
is the number of times a method is updated in the fix patches. The independent
variable is the number of contracts used in the methods.

We devise the research questions presented in Section 6.1. In what follows, we fur-
ther describe our approach to developing the contract and commit log parsers.

6.3.1 Automated Contract Detection

Dataset Collection. According to The State of Octoverse [16, 17], Java, C++ and
Python are among the ten most popular languages used in Github. At the same time,
these languages are popular instances of strongly typed object oriented, semi object
oriented, and high-level interpreted programming languages, respectively, which sup-

192 6.3. Research Methodology

port the use of DBC. Therefore, we collected 124 projects which are written in these
languages from Github.

Table 6.1: Strings used to search for projects

Library String
Cofoja “com.google.java.contract”
Valid4j “org.valid4j”
JML “org.jmlspecs.models”
Icontract “import icontract”
Pycontracts “from contracts import”
Boost.contract “boost::contract::check”

Table 6.2: Statistics of the projects

Language Library Projects Files KLOC
Java Cofoja 21 6340 767,809
Java Valid4j 15 1353 72,900
Java JML 8 15171 1376,265
C++ Boost.contract 48 389146 54239,413
Python Icontract 9 408 49,010
Python Pycontracts 23 12787 1839,081

For each language we selected popular libraries that support DBC, namely: JML
[31, 149], Valid4j [37], and Cofoja [23] for Java projects, Boost.contract [20] for
C++ projects, Icontract [27,146], and Pycontracts [34] for Python projects. Next, in
order to collect the projects using these libraries, we used Github explore [26]. To
this end, we first familiarized ourselves with the use of these libraries through their
official tutorials. We identified specific key strings, presented in Table 6.1, which are
used within source code to import the aforementioned libraries. Therefore, using Git-
hub explore, we used the identified strings to search for projects that use a certain
library. We then manually investigated the repositories. As long as the contracts were
used in the source code and not only in the test code, we included the projects. Later
on, contract parsers filter the test files in the projects in order to prevent combining
test case assertions with source code contracts in the evaluation. Thereby, we collec-
ted 124 projects. Table 6.2 presents the statistics of the collected projects, which are
produced by CLOC [19,22].

Chapter 6. The Use of Contracts in Open Source Software 193

Listing 6.1: An example of Cofoja contract specifications.

import com.google.java.contract.Ensures;
import com.google.java.contract.Invariant;
import com.google.java.contract.Requires;

@Invariant({ "elements != null", "isEmpty() || top() != null" }) // (1)
public class CofojaStack<T> {

private final LinkedList<T> elements = new LinkedList<T>();

@Requires("o != null") // (2)
@Ensures({ "!isEmpty()", "top() == o" }) // (3)
public void push(T o) {

elements.add(o);
}
... }

Developing Contract Analyzers. Each of the DBC libraries provide unique syntax
for specifying the contracts. Using Cofoja, to define class invariants @Invariants are
used in the source code. Preconditions and postconditions are specified through @Re-
quires and @Ensures, respectively. To analyze these contracts, every time these tags
are included in a source code line, the Cofoja parser expects to arrive at a class or
method declaration line. Therefore, every successive line would be checked until a
line where a method declaration is defined arrives. Once the line is found, all the pre-
dicates defined within the contract blocks are summed and an account of file names,
class names, method names, and the identified contracts is recorded. Listing 6.1 is an
example from [25] which illustrates how Cofoja contracts are specified.

On the other hand, using Valid4j, to define preconditions and postconditions, require
and ensure blocks are specified within the method declarations, respectively. In ad-
dition, for error handling purposes, validate blocks are specified, and unreachable
code is specified using neverGetHere checks. Therefore, Valid4j parser first identifies
method declarations. Once a method declaration is found, the parser checks every
successive line in order to identify the contracts. Once end of a method is reached, an
account of the file name, class name, method names, and identified contracts are re-
corded. Listing 6.2 is an example [38] of specifying a precondition for a client method
that invokes the Country constructor.

Using JML, several different types of contracts can be specified, namely: requires,

194 6.3. Research Methodology

ensures, signals, invariant, non_null, pure, etc. Similar to Cofoja, JML contracts are
specified before method declarations begin. Therefore the JML parser takes the same
approach as earlier presented for Cofoja. Thus, the JML parser first looks for JML tags,
and if any of them is detected, then the following method together with an account of
the detected contracts are recorded. Listing 6.3 shows an example [30] of specifying
jml contracts.

Listing 6.2: An example of precondition specification using Valid4j.

public class Country {

// Use contract to specify that it is the _clients_ responsibility
// to make sure only valid country codes are given to the constructor.
// Invoking this constructor with an invalid country code is considered
// to be a programming error on the clients part.
public Country(String code) {

require(isValidCountryCode(code));
//

}
...}

Listing 6.3: An example of contract specification using JML.

/*@ protected normal_behavior
@ assignable size , theStack;
@ assignable_redundantly theItems, nextFree;
@ ensures nextFree == 0;
@*/

public BoundedStackImplementation()
{

theItems = new Object[MAX_STACK_ITEMS];
nextFree = 0;

}

Class invariants, preconditions, postconditions, exception guarantees, and old value
copies can be specified as contracts, using Boost.contract [21]. Listing 6.6 is an ex-
ample [21] that shows how these contracts are specified using Boost.contract.

As Listing 6.6 illustrates, Class invariants are declared using the void invariant() const
method declaration. Therefore, when the Boost parser identifies the invariant declar-

Chapter 6. The Use of Contracts in Open Source Software 195

ations, it will expect the successive lines to include assertions. The parser continues
to sum the number of assertions until it reaches the end of the method declaration.
As for the rest of the contracts, since they are embedded within the method declara-
tions, the Boost parser detects them in a similar way as the Valid4j parser. Thus, every
time a method declaration is detected, Boost parser counts the embedded assertions,
if there is any.

Using Icontract, it is possible to specify preconditions, postconditions, invariants,
and snapshots, using @icontract.require, @icontract.ensure, @icontract.invariant, and
@icontract.snapshot, respectively.

@icontract.snapshot are similar to old contracts using Boost.contract which record old
values of the arguments before state transitions. Therefore, this type of contract can
be used to verify the state transitions of arguments [27]. Listing 6.5 shows an example
of using @icontract.snapshot and @icontract.ensure contracts.

Preconditions and postconditions can be specified in three ways, using Pycontract.
@contract decorators can be used to embed the contract specifications. Therefore,
every time the Pycontract parser detects a @contract decorator, it counts the number
of predicates that are defined within the @contract block. In addition, if annotations
are used, using Python 3, preconditions and postconditions can also be defined within
the method signatures. Therefore, if the Pycontract parser detects a @contract tag and
Python 3 annotations, it looks for possible contract specifications within the method
signatures. Otherwise, if the parser detects a @contract tag and no Python 3 annota-
tion is detected, then the parser looks for docstrings with :type: and :rtype: tags which
are used to specify preconditions and postconditions. Listing 6.4 illustrates three ex-
ample of how to specify contracts, using Pycontracts.

Listing 6.4: Three examples of contract specification using Pycontract.

using an @contract decorator
@contract(a=’int,>0’, b=’list[N],N>0’, returns=’list[N]’)
def my_function(a, b):

...
using an @contract tag and Python 3 annotations
@contract
def my_function(a : ’ int,>0’, b : ’ list [N],N>0’) −> ’list[N]’:

Requires b to be a nonempty list, and the return
value to have the same length.
...

using an @contract tag and docstrings

196 6.3. Research Methodology

@contract
def my_function(a, b):

""" Function description.
:type a: int,>0
:type b: list [N],N>0
:rtype: list [N]

"""
...

Listing 6.5: An example of contract specification using Icontract.

>>> @icontract.snapshot(lambda lst: lst[:])
... @icontract.ensure(lambda OLD, lst, value: lst == OLD.lst + [value])
... def some_func(lst: List [int], value: int) −> None:
... lst .append(value)
... lst .append(1984) # bug

6.3.2 Parsing Commit Logs

Listing 6.7 illustrates an excerpt from git commit log from the library-manager [32]
project, which was generated by the git log -U1 -W command. As the listing shows,
a git diff that is included in a commit is indicated by the line that starts with diff
–git. When this line is detected, the parsers record the file name that is referred to
in this line. After the commit index, a relative number of changes are indicated by +
or − symbols next to the file name. A pair of @@ opening symbols indicate chunk
headers where the changed lines are shown. Additional context information such
as method names may be provided after the closing @@ symbols, which to a large
extent depends on the programming language used in the project and if git internal
configurations support the language.

Listing 6.7: Excerpt of a sample git commit log.

diff −−git a/src/main/java/com/mykosoft/librarymanager/options
/common/BookSelectingById.java
b/src/main/java/com/mykosoft/librarymanager/options/common
/BookSelectingById.java
index 27feeac..a905857 100644

Chapter 6. The Use of Contracts in Open Source Software 197

Listing 6.6: An example of contract specification using Boost.contract.

void invariant() const { // Checked in AND with base class invariants.
BOOST_CONTRACT_ASSERT(size() <= capacity());

}

virtual void push_back(T const& value,
boost::contract :: virtual_* v = 0) /* override */ { // For virtuals .

boost::contract ::old_ptr<unsigned> old_size =
BOOST_CONTRACT_OLDOF(v, size()); // Old values for virtuals.

boost::contract :: check c = boost::contract ::public_function< // For overrides.
override_push_back>(v, &vector::push_back, this, value)

.precondition([&] { // Checked in OR with base preconditions.
BOOST_CONTRACT_ASSERT(size() < max_size());

})
.postcondition([&] { // Checked in AND with base postconditions.

BOOST_CONTRACT_ASSERT(size() == *old_size + 1);
});
vect_.push_back(value);

}

198 6.3. Research Methodology

−−− a/src/main/java/com/mykosoft/librarymanager/options/
common/BookSelectingById.java
+++ b/src/main/java/com/mykosoft/librarymanager/options/
common/BookSelectingById.java
@@ −10,28 +10,27 @@
public class BookSelectingById implements BookSelectingStrategy {

private static ConsoleReader reader = new ConsoleReader();

@Override
public Book selectBookFromCollection(Collection<Book> booksByTitle)

throws IOException{
Book book = null;

if (booksByTitle.size() > 1) {
System.out.println("Multiple books exist with that title ! ");
...

} else {
− reader.readLine("One book found");
− System.out.println(book);

book = booksByTitle.iterator().next();
+ reader.readLine("One book found\n" + book.toString());

}

return book;
}

}

The context of changes begins after the chunk headers. In Listing 6.7, this is where
the BookSelectingById class is declared. Commit parsers record class names at this
point depending on the programming language being analyzed. For example, Python
scripts may or may not define classes. From this point onwards, the parsers analyze
each successive line until a method declaration arrives. Once a method declaration
is detected, the method name and method signature are temporarily recorded. If
inside the method, lines indicate changes (by starting with + or −), then the recorded
method name and signatures are stored permanently. The parsers continue analyzing
the lines and looking for changed methods until the next patch (diff –git) or the next
commit is detected.

Chapter 6. The Use of Contracts in Open Source Software 199

Listing 6.8 is another example of an excerpt from git commit log from the Mapry
project [28] which is developed in Python. As the listing shows, the initial lines which
indicate the diff –git, commit index, and header chunk follow the same format. In this
case, the name of the method where the changes were made is also indicate after
the closing @@. However, to detect the defective method, parsing Python syntax is
required. This is why we developed three git commit parsers for Java, C++, and
Python.

In addition, prior to detecting defective methods, merge commits are filtered. In ad-
dition, test files are excluded from the analysis in order to maintain the focus on the
use of contracts in source code.

Listing 6.8: Another excerpt of a sample git commit log.

diff −−git a/docs/source/conf.py b/docs/source/conf.py
index 787f476..086ca83 100644
−−− a/docs/source/conf.py
+++ b/docs/source/conf.py
@@ −40,11 +40,13 @@ mapry_meta.__version__
Add any Sphinx extension module names here, as strings. They can be
extensions coming with Sphinx (named ’sphinx.ext.*’) or your custom
ones.
extensions = [

’ sphinx.ext.autodoc’,
’ sphinx.ext.doctest ’ ,
’ sphinx_autodoc_typehints’,

− ’ sphinx_icontract ’
+ ’ sphinx_icontract ’ ,
+ ’ sphinx.ext. autosectionlabel ’
]

+autosectionlabel_prefix_document = True

Add any paths that contain templates here, relative to this directory .

6.4 Results

In this paper, we aim to investigate the use of contracts in open source projects which
are developed in popular programming languages. In this section, we present the

200 6.4. Results

results of our empirical analysis on the use of contracts in open source Java, C++,
and Python programs. Thereby, we answer the three research questions presented in
Section 6.1.

6.4.1 RQ1. How often are different types of contracts used?

To answer RQ1, we used the set of parsers we developed in Python in order to
automatically detect the specified contracts in Java, C++, and Python projects. As
Table 6.3 shows, 57% of the contracts are preconditions in Cofoja projects while 36%
are postconditions, and 7% are invariants. 59% of the contracts are preconditions in
Valid4j, while 23% are exception guarantees, and 18% are postconditions.

In JML, 35% of the contracts are generic postconditions, while 24% are generic pre-
conditions. In addition, specific contracts are also used as the following: 13% of the
contracts in JML are none_null checks, 11% are assignable contracts, 7% are invari-
ants, and 2% are exception signals.

In C++ projects, 46% of the contracts are postconditions, while 29% are precondi-
tions, 18% are invariants, 4% indicate old parameter values, and 2% are exception
guarantees.

In Icontract, 65% of the contracts are preconditions, 20% are postconditions, and
15% are invariants. Finally, in Pycontracts, 89% of the contracts are preconditions,
while 11% are postconditions.

Table 6.3: Percentages of contract use in Java, C++, and Python projects. Pre.,
Post., Inv., Exc., Val., Pure, Nnull, Sig., Assign., and Nget indicate “precondition”,
“postcondition”, “invariant”, “exception”, “non_null”, “signals”, “assignable”, “never-
gethere” contracts, respectively. - indicates that the type of contract is not supported
by the given library.

Library Pre. Post. Inv. Old Exc. Val. Pure Nnull Sig. Assign. Nget.
Cofoja 57 36 7 - - - - - - - -
Valid4j 59 18 - - - 23 - - - - 0
JML 24 35 7 - - - 8 13 2 11 -
Boost.
contract

29 46 18 4 2 - - - - -

Icontract 65 20 15 - - - - - - - -
Py
contracts

89 11 - - - - - - - - -

Chapter 6. The Use of Contracts in Open Source Software 201

6.4.2 RQ2. For which use cases do developers use contracts?

To answer RQ2, we randomly selected at least 10 contracts from each project (unless
there were less than 10 contracts in a project), which are in total 1505 contracts out of
18494 (8%). We performed manual analysis to identify categories for each contract.
At the end, if the categories were too fine-grained, we aggregated them to form a
larger group, and vice versa, if a category seemed too coarse grained, we further
broke it down to more accurate categories.

As a result, we identify five use cases for contracts, namely: checking null condi-
tions, evaluating objects, evaluating data collections, evaluating strings, and evaluat-
ing numbers. The evaluations on the data types are further divided into qualitative
and quantitative checks on the values. In what follows, we provide examples we iden-
tified during the manual analysis.

Listing 6.9 presents four invariants, from the Cofoja-api project [24], which perform
semantic checks on a string. In this case, the string under question is a class name
which must always be a simple, qualified, and binary name, according to the invari-
ants.

Listing 6.9: Examples of invariants that evaluate string format.

@Invariant({
"isSimpleName(getSimpleName())",
"isQualifiedName(getQualifiedName())",
"isQualifiedName(getSemiQualifiedName())",
"isBinaryName(getBinaryName())"

})

In addition, Listing 6.10 presents examples of contracts, from the Streamline project
[36], which provide quantitative and qualitative checks on two lists, joinPointA
and joinPointsB. According to the contracts, the lengths of the lists must be equal
while none of the lists can have duplicates. Furthermore, both lists must be sorted,
while each member of the lists must be within certain bounds.

Listing 6.10: Examples of qualitative and quantitative checks on lists.

public void validateStreamlineConfiguration(
Integer[] jointPointsA , Integer[] jointPointsB , Integer capacityA,

Integer capacityB) {
valid4jValidator . validate(jointPointsA .length == jointPointsB.length,

"Number of point pairs must be mutually equal");

202 6.4. Results

valid4jValidator . validate(ifNoRepetitions(jointPointsA , jointPointsB),
"None joint points array must contain duplicates");

valid4jValidator . validate(ifSorted(jointPointsA , jointPointsB),
"Joint points within arrays must be sorted in increasing order");

valid4jValidator . validate(ifPointsAreWithinBounds(joint
PointsA, jointPointsB , capacityA, capacityB),

"Joint point must be within capacity bounds");
}

Furthermore, Listing 6.11, illustrates contracts, from the MiniUrl project [33], which
perform null checks, string semantics checks, and boundary checks on objects. In
this case, the contracts require that originalUrl and hashedUrl arguments are
not null, not can hashedUrl be an empty string. In addition, the ttl which is an
immutable instance of Duration, cannot be null, 0, or negative.

Listing 6.11: Examples of preconditions and postconditions which perform null checks
and boundary checks, respectively.

//Proper domain validation when instantiating
public ShortenedUrl(URI originalUrl,

String hashedUrl,
Duration ttl) {

this . originalUrl = require(originalUrl , notNullValue());
this .hashedUrl = require(hashedUrl, notEmptyString());
this . ttl = require(ttl , notNullValue());
ensure(!(ttl . isZero() && ttl .isNegative())); //Ensure ttl is positive

}

Finally, Listing 6.12, from the INF3143_TP2 project [29], illustrates preconditions
which perform semantic checks on an object called target. In this case, target
represents a player, which can neither be null, nor can it be the same as the current
instance of a player. In addition, target must be still alive so it can be attacked by
the current player.

Listing 6.12: An example of preconditions which perform semantic checks on an Ob-
ject.

@Requires({ "target != null" , // A target can not be null .
" target != this " , // A Player can not attack himself.
" isAlive ()" }) // A Player can not attack if he is dead.

Chapter 6. The Use of Contracts in Open Source Software 203

// The attacking player wins.
@Ensures("getXp() > old(getXp())")
public void attack(Player target) {

int dmg = 20 + this.getStrength() − target.getEndurance();
Logger.getLogger().log("Player " + this + " attacks " + target);
target .hurt(dmg);
this .gainXp(dmg * 2);

}

6.4.3 RQ3. Does the use of contracts relate to occurrence of de-
fects?

To answer RQ3, we performed Poisson regression analysis in order to identify if there
is a relation between the use of contracts and occurrence of defects in a method.
Table 6.4 presents the results of the regression analysis. According to the table, all
estimates are negative, which means that there is a negative relation between the use
of contracts and the frequency of defect occurrence. In other words, the results of
the regression analysis show that defect density is lower when contracts are used in
projects. In addition, as the table shows, all p values are less than 0.05, which means
the observed relation is statistically significant.

In addition, we further performed regression analysis for each project separately in
order to observe the results of each project independently. The same observation holds
for the majority of the projects in Java, C++, and Python. For 2% of the projects
which use Cofoja, 3% of the projects which use Valid4j, 7% of the projects which
use Boost.contract, and 5% of the projects which use Pycontracts, we did not observe
statistically significant effects for using contracts on defect occurrence.

6.5 Discussion

6.5.1 Preference for Different Contracts

Estler et al. [98] investigated 21 contract-equipped Eiffel, C#, and Java projects to
identify which types of contracts are used more often, and how contracts evolve over

204 6.5. Discussion

Table 6.4: The results from Poisson regression analysis to analyze the relation between
the number of contracts and frequency of defect occurrence.*** indicates that p <
0.001. * indicates that p < 0.05.

Library Coefficients: Std. Error Z value Pr(>|z|)
Cofoja -5.473595 0.288201 -18.99 2e−16 ***
Valid4j -0.79738 0.35435 -2.25 0.0244 *
JML -5.451936 0.407862 -13.37 2e−16 ***
Boost -3.61906 0.15130 -23.92 2e−16 ***
Icontract -4.43053 0.46262 -9.577 2e−16 ***
Pycontracts -3.706112 0.226755 -16.34 2e−16 ***

time. They report that contracts are stable over time and that they did not observe
strong preference for different contracts.

The results of our analysis on 124 Java, C++, and Python projects show, in average,
preconditions form the majority of the contracts used in projects which use Cofoja,
Valid4j, Icontract and Pycontracts. However, in the case of JML, in average, generic
postconditions were used more often compared to generic preconditions. At the same
time, JML provides more specific contracts, namely, pure, non_null, signal, and as-
signable, which together, in average, form 33% of the JML contracts that are used in
Java projects.

In the case of Boost.contract, in average, postconditions form the majority of the
contracts used in C++ projects. Finally, in the case of Icontract and Pycontracts,
similar trends as Cofoja and Valid4j are observed, meaning, preconditions are, in
average, the majority of the contracts used in Python projects.

Therefore, we observe that our results contradict the results reported by Estler et al.
[98] in that we observe strong preferences for using generic preconditions in several
cases. Future research may investigate developers’ underlying reasons for preferring
different types of contracts for specification purposes.

6.5.2 Automated Semantic Analysis of Contracts

We observe that JML, Boost.contract, and Valid4j provide more specific constructs
to indicate specific conditions. On the other hand, Cofoja, Icontract, and Pycontract
provide standard constructs to specify generic preconditions, postconditions, and in-
variants.

Using specific contracts facilitates means to develop automated approaches to detect-

Chapter 6. The Use of Contracts in Open Source Software 205

ing the semantic use cases of contracts. However, currently there is little support for
fine-grain contract specification.

Furthermore, in the case of JML, even though various specific constructs are available
for contract specification, in average, generic postconditions still form the majority
of the contracts that are used in open source projects. Future work may pursue fur-
ther advancements in development and analysis of using fine-grained constructs for
contracts specifications.

6.5.3 Effect of Using Contracts

As Dietrich et al. [94] highlight, projects which use contracts continue to do so, as
a result, they will expand the use of contracts as they evolve. However, in general,
contracts are used less than expected. On the other hand, according to the results
from Poisson regression analysis, we observe that using contracts does impact the
frequency of defect occurrences in open source projects. Despite the advantages of
contracts, the use of contracts does not progress fast. Future research may investigate
the perception of developers in this regard.

6.6 Threats to Validity

In what follows, we present the threats to internal and external validities, respectively.

6.6.1 Threats to Internal Validity

In order to minimize the risk of having faults in the developed Python code, we re-
viewed the source code and wrote test cases. However, with this approach, it is not
possible to entirely guarantee absence of defects. As mentioned in Section 6.1, we
provide a replication package and intend to make all contributions publicly available
in the future. We believe taking this approach and fostering openness increases the
possibilities to identify potential faults.

With reards to defect identification from commit logs, we used the same approach as
Casalnuovo et al. [78] and Kochhar and Lo, [144], instead of using defect databases.
This approach entails false positives and or false negatives, similar to links to defects
in defect databases which may also contain errors according to Bird et al. [66]. On
the other hand, according to Bissyandé et al. [67], not all projects use issue trackers.

206 6.7. Conclusion

Also, not all bugs are recorded in issue trackers. In our case, a defect may appear
in several bug fixing commits. In addition, if bug fixing commits are not sufficiently
accurate, bug fixing commits may be missed.

During the manual analysis process, we asked feedback from five independent de-
velopers who had several years of professional experience in programming. Incor-
porating the feedback from professional developers helped us minimize the risk of
making mistakes in our manual analysis.

6.6.2 Generalizability of Findings

We used Github to collect the projects. Github is a popular platform which hosts over
96 million repositories [35]. Over 31 million developers contribute to projects which
are hosted on Github. In addition, we studied three different programming languages
and formed a large corpus of projects.

Moreover, we used statistical regression model to perform analysis on the relation of
defect occurrence and contracts use. Since the results of the regression analysis are
statistically significant, it is possible to extrapolate the observations reported in this
paper.

However, while we tried to minimize the threats to generalizability, we cannot ar-
gue that our results generalize to industrial closed-source software. Therefore, future
studies may replicate this study in closed-source projects and compare the outcomes.

6.7 Conclusion

Delivering robust and reliable software is a pressing demand for software developers.
These qualities matter even more when software components are developed to be
reused in many applications. To support development of reliable software, Meyer
[162] [163] provides pragmatic techniques and guidelines based on the concept of
Design By Contract (DBC).

DBC is based on the idea that software components collaborate with each other based
on mutual expectations and benefits. Thus is a client component uses services of a
supplier component, the client needs to guarantee preconditions of the supplier. The
supplier in return guarantees certain conditions at the time of delivering the services.
Thus, contracts are a kind of formal specifications that can be used for different pur-
poses such as automated testing, and static and dynamic verifications.

Chapter 6. The Use of Contracts in Open Source Software 207

Despite the advantages of using contracts, contracts are used less than expected ac-
cording to Dietrich et al. [94]. On the other hand, assertions, exceptions and other
built-in features of programming languages are used as lightweight contracts. There-
fore, the use of assertions and other lightweight contracts have been studied in depth
by Kudrjavets et al. [147], Casalnuovo et al. [78], and Kochhar and Lo [144]. How-
ever, the use of contracts has been underexplored to the best of our knowledge. In this
paper, we aim to investigate the use of contracts in open source projects. In addition,
we aim to analyze the relation between using contracts and frequency of defect oc-
currences. Therefore, we studied 124 Java, C++, and Python projects. We developed
a set of contract parsers which we used to parse contract-equipped source code. The
results of automated contract detection show in most cases, except for C++ projects,
the use of preconditions, in average, forms the majority of the contract specifications.
We derived five categories of contracts which are: null checks, checks on objects,
checks on data collections, checks on strings, checks on numbers, Moreover, we use
Poisson regression analysis to identify the relation between the use of contracts and
defect occurrences. The results of the regression analysis confirms there is a statistic-
ally significant negative relation between the use of contracts and defect occurrences.
Thus, when methods use contracts, the rate of defect occurrences becomes smaller.

