
Exploring means to facilitate software debugging
SOLTANI, M.S.

Citation
SOLTANI, M. S. (2020, August 25). Exploring means to facilitate software debugging.
Retrieved from https://hdl.handle.net/1887/135948
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/135948
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/135948


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/135948 holds various files of this Leiden University 
dissertation. 
 
Author: Soltani, M.S. 
Title: Exploring means to facilitate software debugging 
Issue Date: 2020-08-25 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/135948
https://openaccess.leidenuniv.nl/handle/1887/1�


5
The Significance of Bug Report

Elements

Open source software projects often use issue repositories, where project contributors
submit bug reports. Using these repositories, more bugs in software projects may
be identified and fixed. However, the content and therefore quality of bug reports
vary. In this study, we aim to understand the significance of different elements in bug
reports. We interviewed 35 developers to gain insights into their perceptions on the
importance of various contents in bug reports. To assess our findings, we surveyed
305 developers. The results show developers find it highly important that bug reports
include crash description, reproducing steps or test cases, and stack traces. Software
version, fix suggestions, code snippets, and attached contents have lower importance
for software debugging. Furthermore, to evaluate the quality of currently available
bug reports, we mined issue repositories of 250 most popular projects on Github.
Statistical analysis on the mined issues shows that crash reproducing steps, stack
traces, fix suggestions, and user contents, have statistically significant impact on bug
resolution times, for ∼70%, ∼76%, ∼55%, and ∼33% of the projects. However, on
average, over 70% of bug reports lack these elements.

5.1 Introduction

Open source software projects often maintain issue repositories to manage feature re-
quests and bug reports. There are potential advantages to using open issue repositor-



142 5.1. Introduction

ies [45]. Contributors of software projects provide their inputs and maintain focused
conversations over them. As a result, more bugs in software projects may be identified
and fixed [45].

Bug reports contain various types of information, including: software version, crash
description, reproducing steps, reproducing test cases, crash stack traces, and fix sug-
gestions. To make bug reports consistent, often default templates are provided in
project repositories, where certain required or at least recommended fields are spe-
cified to be filled by the contributors. Yet, the content and therefore quality of bug
reports vary [224]. Potential reasons for this issue include: data loss during a soft-
ware crash, difficulty to find crash data in log files, and lack of sufficient technical
experience [224].

If too little data is provided in bug reports, then understanding the problem, and
therefore reproducing it is nontrivial and time-consuming. On the other hand, re-
producing software crashes is a vital step in software debugging. Developers need
to know how to reproduce the crashes to be able to confirm the fixes they deliver.
Furthermore, low quality bug reports may demotivate developers and therefore take
longer to be processed.

The following are examples of bug reports from various popular projects on Github
[1–8]. These examples illustrate when a crash stack trace or reproducing test case
are missing, developers respond by first asking the bug reporter to provide these
elements. Figure 5.1 shows a bug report [1] as well as the responses to the bug
report. As Figure 5.1a shows, the bug report includes various elements such as actual
behavior, reproducing steps, versions of various components, etc. However, the bug
report misses a crash stack trace. As Figure 5.1b shows, the developers explicitly ask
for the crash stack trace. Since after one month, this information is not provided, the
bug report is closed.

We aim to understand the significance of various information in bug reports for soft-
ware debugging. To gain an in-depth understanding of developers’ perceptions, we
interviewed 35 developers. We used Grounded Theory [40] [111] techniques to ana-
lyse the interview results. To examine the findings from the interviews, we surveyed
305 developers. Our findings confirm that crash description, crash reproducing steps
and test cases, and stack traces are of high importance for developers when debug-
ging. On the other hand, developers find extra information that users may provide
such as fix suggestions, code snippets, and links to user content, such as screenshots,
of lower importance.

To gain insights on how often important elements are included in bug reports and
their impact on bug resolution times, we developed the IMaChecker approach. IMa-



Chapter 5. The Significance of Bug Report Elements 143

Checker receives Github repositories as input, then mines all issues posted in the input
repository. Once the issues are downloaded, IMaChecker analyses the issues to check
whether they are bug reports, and if they contain elements including: crash descrip-
tion, reproducing steps or test cases, stack traces, code snippets, links to user content,
or fix suggestions.

To create a corpus of repositories for evaluation, we first selected five popular lan-
guages used in Github according to The State of Octoverse [16] [17], which are
namely: Javascript, Python, Java, PHP, and Ruby. For each language, we selected 50
most popular repositories, resulting in 250 repositories in total, on Github.

To analyse the impact of various elements of bug reports on bug resolution times, we
used the Wilcoxon-Mann Whitney test.

To study realistic projects and maintain statistical power, only those projects which
provided at least 10 issues for both experimental and control groups, were analysed.
Experimental groups contained issues which only included the element of interest in
the bug report (e.g., the issue only included stack traces). Control groups contained
issues which only included general description of the crash. The results confirm that
reproducing steps, stack traces, fix suggestions, and user contents have statistically
significant impact on bug resolution times, for ∼70%, ∼76%, ∼55%, and ∼33% of
the projects, respectively. For code snippets, representative projects were not found.

Furthermore, we used descriptive statistics to report the average percentages of bug
reports that include different bug report elements. Despite our findings on important
bug report elements and their impact on bug resolution times, on average, over ∼70%
of bug reports lack all important elements.

The above results help to raise awareness of the significance of various contents in
bug reports for software debugging. Developers can use this information to prepare
better templates for bug reports, in which all important elements are explicitly asked
for. Furthermore, future work may investigate means to support and enable users to
find and provide the information elements.

The contributions of the paper1 are the following:

1. an extensive report from developer interviews and surveys, in addition to the
interview and survey questionnaires,

2. IMaChecker as an open source tool, written in Python, which can be used to
mine and analyse issues from Github repositories, and

1 The interview and survey questions, as well as the dataset package are available via the following
DOI: 10.5281/zenodo.3666763



144 5.2. Research Methodology

3. a reproducible package which contains the data set of all mined issues from 250
most popular Github repositories, together with the R scripts used to analyse the
mined data.

The remainder of this chapter is organized as following: Section 5.2 presents the
research methodology. Section 5.3 presents the IMaChecker approach. Section 5.4
presents the results. Section 5.5 provides discussion on the findings of the paper.
Section 5.6 provides related work. Finally, Section 5.7 concludes the paper.

5.2 Research Methodology

The overarching goal of this study is to identify the significance of elements of bug
reports for software debugging. Therefore we define the following research questions:

• RQ1: What types of information do developers perceive as important in bug
reports?

Motivation: The quality of bug reports varies depending on the kinds of inform-
ation which are included in them. The study by Zimmermann et al. [224] shows
developers and user of Apache, Eclipse, and Mozilla find reproduction steps and
crash stack traces to be the most useful elements in bug reports. However, there
is little knowledge about the other elements in bug reports and the extent to
which they are perceived as important for software debugging. We raise RQ1 to
broaden our perspective and gain a holistic understanding about the extent to
which different bug report elements are of importance for software debugging
in developers’ perception.

Data collection and analysis: To answer RQ1 we aim to combine interviewing
developers with surveying them. By conducting interviews, we intend to gain
a preliminary understanding of developers’ views on bug reports and the role
that each bug report element plays in the process of software debugging. We use
thematic analysis and coding techniques to analyse the interview data. Using the
information from the interviews, we devise a survey study where we examine
and quantify the results from the interviews. We use descriptive statistics to
measure the percentages of participants who consider a bug report element as
highly important, moderately important, slightly important, or not important
for software debugging.

• RQ2: Do the important elements in bug reports impact bug resolution times?



Chapter 5. The Significance of Bug Report Elements 145

Motivation: While with RQ1 we identify the extent to which different bug re-
port elements are important in developers’ perception, it would still be unclear
what impact these elements may have on bug resolution times. Therefore, we
raise RQ2 to understand the effect of different bug report elements on the time
it takes to resolve bug reports.

Data collection and analysis: To answer RQ2, we use Github APIs to mine bug
report repositories from Github. Once we obtain the bug reports from Github,
we use the IMaChecker technique (presented in Section 3) to parse the bug
reports statically. Once the static analysis is done, we then use statistical tests to
measure the impact of various bug report elements on bug resolution times.

• RQ3: How often do bug reports contain the important elements?

Motivation: With RQ1 and RQ2, we gain an understanding about the extent
to which different bug report elements are important for bug resolution. How-
ever, it would still be unclear how often these important elements are actually
provided in bug reports. For example, as the study by Zimmermann et al. [224]
shows, elements such as crash stack traces are difficult to provide.

Data collection and analysis: To answer RQ3, we use the results from the static
analysis which is performed by IMaChecker on the mined bug reports. As a result
of this analysis, different elements of bug reports are identified. Therefore, we
use descriptive statistics to report how often various elements appear in bug
reports.

By combining qualitative and quantitative research methods, we use a mixed-method
research approach [89] to answer the research questions. In what follows, we further
present the research techniques we used.

5.2.1 Interviews

To answer RQ1, we followed a qualitative research method [89]. We interviewed 35
developers in order to gain an understanding of their debugging techniques and the
kind of information they find important to receive in bug reports. In what follows, we
present the interview protocol, the participants, and data analysis technique we used
for the interviews.



146 5.2. Research Methodology

5.2.1.1 Protocol

We conducted semi-structured interviews [125], in which we combined broad and
open-ended questions2 with specific questions. In this way, we let participants freely
respond and explore relevant topics, while we made sure the intended topics were
also explored by asking specific questions. As suggested by Barriball et al. [62] [126],
we conducted four pilot interviews before we performed the main interviews. As a
result, we received feedback on the general flow of the questions from two of the
pilot interviews. According to this feedback, we should have noted the role the parti-
cipants play in their organization. Therefore, we added two questions in the interview
instrument where we specifically ask about the role of the participant and we ask if
the participant can briefly explain what this role entails.

We let the participants know in advance that we intend to use the data anonym-
ously. Prior to the interviews we got permission from the participants to record the
interviews. Furthermore, 15 out of 35 interviews were conducted through online calls
because the developers were not available in person. Each interview took between 20
minutes to 60 minutes.

5.2.1.2 Participants

We intended to form a diverse group of participants. Thus, using our social con-
tacts, we reached out to developers who work in the following areas: e-commerce
development, ERP application development, automotive industry, artificial intelli-
gence, embedded programming, and database administrating. We sent personalized
emails to 50 developers who worked in these industries. 40 people with background
in e-commerce development, ERP application development, and automotive industry
agreed to participate in this study. After 35 interviews we reached theoretical satur-
ation [111]. Figure 5.2 shows the years of professional experience of the interview
participants. The participants had at least five and at most 25 years of professional
experience as a developer.

5.2.1.3 Data Analysis

After the interviews, we manually transcribed the recorded interviews. To analyse the
collected data, we used thematic analysis [110] [71] to identify emerging categories

2The interview questions are provided in the reproduction package, via DOI: 10.5281/zenodo.3666763



Chapter 5. The Significance of Bug Report Elements 147

in the transcripts. Thematic analysis is a technique that is used when analysing tex-
tual data. Using this technique, the first author read the transcripts intensively. The
first author then used open and axial coding techniques [164] to tag the pieces of
text which would relate to RQ1. After identifying the tags, the first author reviewed
them and grouped them together to form more generic themes. Ultimately, the iden-
tified themes addressed two main categories: the debugging techniques developers
used, and the kind of information in bug reports they considered important for soft-
ware debugging. Figure 5.3 is a visual representation of the main themes that were
identified throughout this process.

5.2.2 Surveying Developers

To generalize the findings from the interviews, and measure the prevalence of the de-
bugging practices and developers’ perceptions on the importance of different bug re-
port elements for software debugging, we surveyed 305 developers. In what follows,
we describe the survey protocol, survey participants, and our data analysis approach.

5.2.2.1 protocol

To construct the survey3, we used guidelines from Fink [100], De Vaus [91], Pfleeger
and Kitchenham [183], and Kitchenham and Pfleeger [139]. We used closed questions
to make the survey more compelling for the participants to fill in. To avoid forcing
the participants to choose an option, for each closed question, there was an option
where the participants could write their responses. We provided a brief overview of
the purpose of the survey in the introduction. We let participants know we would use
the data anonymously.

Before sending out the survey, we used pilot studies with four participants who were
professional developers. We asked the participants to fill in the survey, and provide us
with their feedback about the structure and questions of the survey. One feedback we
received was about the length of the introduction at the beginning of the survey. The
participant mentioned that the introduction could be shortened for more readability.
In addition, another feedback was about asking the participants if they wish to receive
the results after the survey is done. This is why we added one last question at the end
of survey where the participants can leave their contact information if they wish to
receive the results. We discarded the results of the pilot studies from the main results
in this paper.

3The survey questions are provided in the reproduction package, via DOI: 10.5281/zenodo.3666763



148 5.2. Research Methodology

5.2.2.2 Participants

To find participants for the survey, we searched for trending developers4. In addition,
we searched for active developers from 85 popular software projects on Github. The
main rationale behind this approach for selecting the participants is that we intended
to involve participants who are selected from a pool of experienced developers. From
each project we selected three to four active developers. This way we reached out to
317 people. We sent personalized emails to these developers, and briefly explained
the purpose of the study to them. We received 222 responses. In addition, we used
the snowballing technique [167] to collect more participants. After the participants
responded to the survey, we asked them if they could introduce us to colleagues who
would be interested to participate in the study. We sent personalized emails to 105
developers, and we received 83 responses. In total, we received 305 responses for
the survey. Figure 5.4 shows the years of professional experience of the survey parti-
cipants.

5.2.2.3 Data Analysis

To analyse the results of the survey, we used descriptive statistics to report the findings
from the closed questions. Therefore, for each bug report element, we simply measure
the percentages of participants who perceive the element as highly important, mod-
erately important, slightly important, or not important. Furthermore, we count the
number of participants who are project manager, software developer, software tester,
software maintainer, scrum master, or those who indicate any other type of role they
play. We also count the number of years of professional experience the participants in-
dicate to have. For the questions which let the participants write an answer in text, we
use thematic textual analysis to identify emerging categories from the written texts.

5.2.3 Mining Github Issues

To answer RQ2 and RQ3, we mined and analysed issues from 250 projects on Git-
hub. To do so, we developed the Issue Miner and Checker (IMaChecker) approach.
IMaChecker mines the issues of the received repositories, and further checks them to
detect whether stack traces, reproducing steps, fix suggestions, code snippets, and
user content are provided in the issues. In Section 5.4 we will further describe the
IMaChecker approach.

4Through https://github.com/trending/developers



Chapter 5. The Significance of Bug Report Elements 149

To select the projects, we first identified the five most popular programming languages
used in Github. According to The State of Octoverse [16] [17], the languages are:
Javascript, Python, Java, PhP, and Ruby. Next, based on the measures of popularity
that Borgens et al. identify [68], for each language, we selected 50 projects, 250
projects in total, that have the most number of stars and forks. Table 4 (in Appendix
A) presents an overview of the projects, the number of stars, forks, contributors, as
well as the year in which the first commits were provided in the project5.

5.2.3.1 Analysis of the Mined Issues

To measure the impact of various elements of bug reports on bug resolution times, we
use the Wilcoxon-Mann Whitney statistical test. This is a non-parametric test that is
used to analyse the impact of an independent variable that is at least ordinal. When
it is not possible to make assumptions about whether the data is normally distributed
or not, Wilcoxon-Mann Whitney is an alternative approach that can be used instead
of techniques such as the independent samples t-test. Since in this case the dependent
variable is resolution time, we only consider closed issues where the reported bug is
fixed. The null hypotheses in these experiments are the following:

• H01: the time it takes to close a bug report which only includes a problem
description and crash stack trace is the same as the time it takes to close a bug
report that only includes a problem description.

• H02: the time it takes to close a bug report which only includes a problem
description and reproduction steps is the same as the time it takes to close a
bug report that only includes a problem description.

• H03: the time it takes to close a bug report which only includes a problem
description and fix suggestion is the same as the time it takes to close a bug
report that only includes a problem description.

• H04: the time it takes to close a bug report which only includes a problem
description and user content is the same as the time it takes to close a bug
report that only includes a problem description.

• H05: the time it takes to close a bug report which only includes a problem
description and code snippet is the same as the time it takes to close a bug
report that only includes a problem description.

We use experimental and control groups. In experimental groups, only those issues
are present which only include one of the bug report elements e.g., stack traces,

5The results were collected on 2019-05-15.



150 5.3. The IMaChecker Approach

depending on the element under analysis. Control groups contain those issues in
which none of the bug report elements are present. To analyse realistic projects and
maintain statistical power, we make sure that the sample sizes are at least 10, i.e.,
at least 10 issues are analysed in each group. Furthermore, the test does not assume
that the samples are normally distributed. We consider α=0.05 for Type I errors to
assess the significance of the results.

We use the Vargha-Delaney Â12 statistic [207] to assess the effect sizes. Vargha-
Delaney Â12 is also a non-parametric approach for comparing performances of two
independent groups. The outcome of this test is a value between 0 and 1. Therefore,
if the outcome of Vargha-Delaney Â12 is 0.5, the two groups perform the same. On
the other hand, if the result of Vargha-Delaney Â12 is less than 0.5, the first group
performs worse, while if the outcome is larger than 0.5, the first group perform bet-
ter than the second group. Using Vargha-Delaney Â12, we report effect magnitudes
which indicate the following effect sizes: negligible, small, medium, and large.

5.3 The IMaChecker Approach

To mine and analyse the issues, we developed the Issue Miner and Checker (IMaChecker)
in Python 3. This approach has been tested on a Linux kernel version 4.15, as well as
a MacOS 10.14 machine.

Figure 5.5 presents an overview of the approach. IMaChecker receives the list of Git-
hub Repositories as input. Next, IMaChecker downloads all issues posted to the repos-
itory, using the Github API [9]. After the issues of all projects are downloaded, the
user can use the APIs that IMaChecker provides to analyse the downloaded issues.

Mine Issues 
for All 

Repositories

Repositories
and 

Configurations
Mined Issues Detect 

Elements
Analysed 

Issues

Figure 5.5: The figure presents an overview of the IMaChecker Approach.

IMaChecker uses regular expressions to detect issues that are originally labeled as



Chapter 5. The Significance of Bug Report Elements 151

bugs. Often various terms (e.g. “crash") are used to mark an issue as a bug in issue
repositories. Therefore, it is possible to feed IMaChecker with specific terms of interest
to detect originally labeled bugs.

IMaChecker uses specific strings and regular expressions to detect whether the issues
include stack traces, reproducing steps, fix suggestions, code snippets, and links to
user contents. To identify the strings and design the regular expressions, we studied
255 bug reports which were randomly selected from the projects presented in Table 4
(in Appendix A). After we reached the saturation point and did not find any new keys
in the context of the bug reports, we collected a pool of strings which were commonly
used to refer to different bug report elements. Table 2 shows these strings and regular
expressions.

Table 5.1: The strings and regular expressions we used to parse reproduction steps,
fix suggestions, user contents, and code snippets in bug reports.

Element Strings or regular expressions
Reproduction Step “reproducing steps"

“steps to reproduce"
“reproduce"
“reproducible test case"
“reproducible"
“to reproduce"
“minimal reproduction"

Fix Suggestion “fix suggestion"
“suggestion to fix"
“suggestions to fix"
“suggest"
“suggestions"

User Content https://user-images.githubusercontent.com/[\Sa-z0-9A-Z]+.[a-zA-z]
Code Snippet [\w+\s]+```` \\r \\n

Since each programming language uses a specific format to generate stack traces,
IMaChecker uses five different regular expressions that are adjusted to the five dif-
ferent stack trace formats in Javascript, Python, Java, PhP, and Ruby. Table 2 shows
examples of stack traces for different languages as well as the regular expressions
used to detect them.

If IMaChecker detects a stack trace in the issue, the exception type of the stack trace
is recorded as well. This can be used when one wishes to report frequency of various
exception types. In addition, if IMaChecker detects crash reproducing steps or stack
traces, or fix suggestions, then it automatically marks the issue as a bug. This can be



152 5.3. The IMaChecker Approach

Table 5.2: Examples of stack traces in different languages as well as the regular ex-
pressions used to detect them.

Language Example Regular Expression
Javascript at split (angular.js:27114)

at updateClasses (angular.js:27043)
..., from [10]

[\s]+at[\s]+[\w+.]+[\s]+\([/*\
w+]+.js:[0-9]+:*[0-9]*\)\\r\\n

Python Traceback (most recent call last):
File “facedetect.py", line 251,
in <module> main loop()
..., from [11]

Traceback\s\Smost\srecent\scall\s
last\S: |File[\s].+,[\s]+line[\s]
+[0-9]+,[\s]+in[\s]+.+\\r\\n

Java at android.view.ViewGroup.
dispatchDraw(ViewGroup.java:3554)
at android.view.View.updateDisplay
ListIfDirty(View.java:15237) ..., from [12]

[\s]+at[\s]+[\w+.\S]+\(\w+.java
:[0-9]+\)

PHP #0 /Applications/MAMP/htdocs/
learning/laravel/larabootstrap5/
vendor/laravel/framework/src/
Illuminate/Foundation/Bootstrap/
HandleExceptions.php(118):
..., from [13]

\#[0-9]+\s+[\w+\S]+.php
\([0-9]+\):

Ruby /home/navin/.rvm/gems/
ruby-2.2.1/gems/sprockets-3.4.0/lib/
sprockets/sass processor.rb:278:in
sprockets context
..., from [14]

[\w+\S]+.rb:[0-9]+:in\s+

useful as not always the issues are labeled in a Github Repository.

Furthermore, Figure 5.6 shows an example6 of a bug report from the AngularJS
project. As the example shows, this bug report contains a description of a memory
allocation problem together with a snapshot that is included as a .png file. When
IMaChecker parses the bug report content, it detects the user content is provided
through the .png file.

6This bug report can be found via: https://github.com/angular/angular.js/issues/16853



Chapter 5. The Significance of Bug Report Elements 153

Figure 5.6: An example of a bug report from the AngularJS project.

To evaluate the precision of the IMaChecker approach, we randomly selected 100
bug reports from the projects in Table 4 (in Appendix A). We manually analyzed the
bug reports and made an account of the elements included in them. We then ran
IMaChecker in order to detect the bug report elements automatically. The precision
was around 92%. This was because there were bug reports in which reproduction
steps or stack traces were provided through user contents (e.g., through links to ex-
ternal pages). Therefore, it was not possible for the IMaChecker approach to detect
these elements by parsing the texts.

5.4 Results

We used a mixed-method research approach to discover the significance of bug re-
port elements in software debugging. To answer the research questions, we combined
interviewing developers with surveying them. In addition, we mined 250 issue repos-



154 5.4. Results

itories and used descriptive statistics as well as statistical tests on the mined issues.
In this section, we present the results and thereby answer RQ1, RQ2, and RQ3.

5.4.1 RQ1. What types of information do developers perceive as
important in bug reports?

During the interviews, in order to get a broad understanding of the debugging process
the developers have, we asked the participants to describe the debugging approach
they take typically. In this regard, we gained the following insights. The interview
participants often prefer using printfs for debugging. When a crash is complex, then
45% of the interview participants indicated they would use a debugger to further
analyse the execution scenarios. In addition, all participants indicated that especially
when they face a new error they have not seen before, they typically google the error
message. Often it is the case that on platforms such as stackoverflow7, someone else
has posted a similar problem, which provides the participants an opportunity to get
further insights. Otherwise, they may open a new issue on those platforms, share their
problem, and ask the community to look into the questions.

To answer RQ1, we derived 7 categories from the interview results which indicate the
information elements that developers perceive as important, which they prefer to be
included in bug reports: crash description, software version, reproduction steps, stack
traces, code snippets, user content and fix suggestions. To quantify these results and
gain insights into the extent to which these elements are of importance for debugging,
we surveyed the developers.

Figure 5.7 presents the results from the surveys. According to the results, 96% of the
participants find reproduction steps or test cases of high importance while 4% of them
believe reproducing steps or tests are moderately important. 95% of the participants
find crash stack traces of high importance while 5% of them find crash stack traces of
moderate importance.

In addition, around 89% of the participants find crash description of high importance,
while 11% of them believe crash descriptions are of average importance. Around
12% of the participants find software version of high importance, while 66% of them
believe software versions are of average importance.

Around 14% of the participants find code snippets of high importance, while 68% of
them believe code snippets are of average importance. 16% of the participants find
code snippets of slight importance. 2% of the participants find code snippets of no

7https://stackoverflow.com/



Chapter 5. The Significance of Bug Report Elements 155

importance for software debugging. In this regard, a participant mentioned: “I prefer
to receive them in a pull request not in a bug report."

13% of the participants find software versions of slight importance. 9% of the par-
ticipants do not find software version important for software debugging. One of the
participants indicated: “Often the version is understood from the context of the bug
report. For example, certain features are only available in our latest release."

Around 8% of the participants find fix suggestions of high importance, while around
81% of them believe fix sugestions are of average importance. 11% of the participants
believe fix suggestions are of little importance.

Around 3% of the participants find user contents of high importance, while 74% of
them believe user contents are of average importance. 19% of the participants find
user contents of slight importance. 3% of the participants find user contents of no
importance for software debugging. In this regard, a participant mentioned: “User
content could be anything. They are supplementary."

5.4.2 RQ2. Do the important elements in bug reports impact bug
resolution times?

Table 3 presents the results of Wilcoxon-Mann Whitney and Vargha Delaney Â12
statistical analysis on four elements of bug reports, namely: stack traces, crash repro-
ducing steps or test cases, fix suggestions, and user contents.

Since we compare resolution times, we only consider closed issues where the reported
bug is fixed. To maintain statistical power, we made sure that in each project, there
are at least 10 issues which have none of the comparison elements in the description
(control group), and there are at least 10 issues which have only the comparison
factor (e.g., stack traces) in the description (experimental group). If a project does
not provide such groups, we excluded it from the analysis.

To analyse the impact of stack traces, we found 139 projects, which provide the con-
trol and experimental groups. In 106 projects out of 139 projects (∼76%) statistically
significant results show that including stack traces impacts the bug resolution times.
For 33 projects (∼24%) no conclusion was drawn.

To analyse the impact of reproducing steps or test cases, we found 142 projects, which
provide the control and experimental groups. In 100 projects out of 142 projects



156 5.4. Results

(∼70%) statistically significant results show that including reproducing steps impacts
the bug resolution times. For 42 projects (∼30%) no conclusion was drawn.

To analyse the impact of fix suggestions, we found 148 projects, which provide the
control and experimental groups. In 81 projects out of 148 projects (∼55%) statistic-
ally significant results show that including fix suggestions impacts the bug resolution
times. For 67 projects (∼45%) no conclusion was drawn.

To analyse the impact of user contents, we found 33 projects, which provide the
control and experimental groups. In 11 projects out of 33 projects (∼33%) statistically
significant results show that including user contents impacts the bug resolution times.
For 22 projects (∼67%) no conclusion was drawn.

Table 5.3: The table shows the results from the Wilcoxon-Mann Whitney, and Vargha
Delaney Â12 statistical analysis on four elements of bug reports, namely: Stack Traces,
crash Reproducing Steps, Fix Suggestions, and User Contents. p indicates the p values
from the Wilcoxon test. v-mag. indicates the Vargha Delaney measures of magnitude,
which show the effect sizes. l,m,s, and n, indicate large, medium, small, and negli-
gible effect sizes, respectively. - indicates that control or experimental groups were
not found for the comparison factor.

Stack Trace Reproducing Step Fix Suggestion User Content
Repository p v-mag. p v-mag. p v-mag. p v-mag.
30-seconds/30-
seconds-of-code

- - 0.094 m 0.561 n - -

activeadmin/
activeadmin

0 l 0 l 0 m - -

adobe/brackets - - 0 m 0 s - -
angular/angular.js - - 0 m 0 s - -
ansible/ansible 0 m 0 n 0.001 n 0.015 m
apache/incubator-
dubbo

0 m 0.005 s 0.125 s - -

apache/incubator
-echarts

- - 0 m 0.485 n 0.745 n

apache/incubator
-zipkin

0.09 s 0.146 s 0.026 m 0.499 n

atech/postal 0.517 s - - - - - -
atom/atom 0 l 0 m 0 s - -
axios/axios 0.048 s 0.088 s 0.714 n - -
babel/babel 0 s 0.02 n 0 s 0.002 m
bazelbuild/bazel0.002 s 0.002 n 0.059 n - -



Chapter 5. The Significance of Bug Report Elements 157

bcit-ci/CodeIgni
ter

- - 0.701 n 0.281 n - -

BetterErrors/
better_errors

0.209 s - - - - - -

briannesbitt/
Carbon

- - 0.025 m 0.503 s - -

bumptech/glide 0.02 n 0.17 n 0.046 s - -
CachetHQ/Cach
et

0 s 0 s 0.065 s 0 l

cakephp/cake
php

0.003 m 0.047 s 0.389 n - -

capistrano/capis
trano

0 l 0 l 0.001 m - -

carrierwaveupload
er/carrierwave

0 l 0 l 0 l - -

celery/celery 0 m 0 s 0.001 s - -
certbot/certbot 0 s 0.026 s 0.046 n - -
chartjs/Chart.js - - 0 s 0.001 s 0.172 n
chrisbanes/Photo
View

0 l - - - - - -

composer/comp
oser

0.002 m 0 s 0 s - -

deeplearning4j/
deeplearning4j

0 s 0.412 n 0.979 n 0.507 n

deployphp/deplo
yer

- - 0 s 0.357 n - -

diaspora/diaspo
ra

0.081 n 0.014 n 0.009 s - -

dingo/api 0 l 0.009 m 0 l - -
docker/compose0.005 n 0 s 0.697 n - -
Dogfalo/material
ize

0 l 0 l 0 l - -

elastic/elastic
search

0.786 n 0 n 0 s - -

elastic/logstash 0.001 n 0 s 0.031 n - -
encode/django-
rest-framework

0 m 0 m 0 s - -



158 5.4. Results

explosion/spaCy0.002 s 0.025 n 0.945 n - -
expressjs/exp
ress

0.006 s 0.003 s 0.036 s - -

facebook/create-
react-app

0 m 0 s 0.615 n - -

facebook/fresco 0 m 0 m 0.025 s 0.015 m
facebook/react 0 l 0 l 0 s - -
facebook/react-
native

0 m 0.969 n 0.12 n 0.051 s

facebook/stetho 0.77 n - - - - - -
fastlane/fastlane 0 s 0.898 n 0 s 0.478 n
fluent/fluentd 0.001 s 0.04 s 0.193 s - -
FortAwesome/
Font-Awesome

- - 0 m 0 s 0.546 n

freeCodeCamp/
devdocs

0.523 n 0.124 s 0.006 l - -

freeCodeCamp/
freeCodeCamp

- - 0 l 0.072 n 0.7 n

FriendsOfPHP/
PHP-CS-Fixer

- - 0.681 n 0.117 s - -

gatsbyjs/gatsby 0.007 s 0 s 0.649 n 0.218 s
getgrav/grav 0.057 s 0.602 n 0.178 n - -
getredash/redash 0 m 0.037 n 0.021 m 0.158 s
getsentry/sentry0.094 s 0.968 n 0.01 s - -
github/linguist 0.071 m - - 0.327 s - -
gollum/gollum 0 m 0.084 s 0.059 s - -
google/ExoPlayer 0 m 0 s 0 s 0.029 m
GoogleChrome/
puppeteer

0 m 0.001 s 0.394 n - -

greenrobot/
greenDAO

0.405 n - - - - - -

gulpjs/gulp 0 l 0 l 0 l - -
guzzle/guzzle 0.005 l 0.092 s 0.318 s - -
h5bp/html5-
boilerplate

- - 0.083 m 0.028 s - -

hakimel/reveal.js - - 0.115 s 0.407 n - -
hashicorp/vagrant 0 l 0 s 0 s - -
HelloZeroNet/
ZeroNet

0.146 s 0.313 n 0.312 s - -



Chapter 5. The Significance of Bug Report Elements 159

home-assistant/
home-assistant

0.007 s 0.925 n 0.595 n - -

Homebrew/brew 0 l 0 m 0 m - -
huge-success/
sanic

0.054 s - - 0.752 n - -

huginn/huginn 0.046 m - - 0.567 n - -
imathis/octopress 0 m 0.735 n 0.096 s - -
ipython/ipython 0 m 0 s 0.043 n - -
jakubroztocil/
httpie

0.02 s - - - - - -

javan/whenever 0 l - - 0.001 l - -
jordansissel/
fpm

0.116 s - - - - - -

jquery/jquery - - 0 l 0 l - -
kaminari/kami
nari

0 l 0.108 s 0.236 s - -

kennethreitz/
requests

0 l 0 l 0 l - -

keras-team/
keras

0.048 s 0.02 s 0.005 m - -

Konloch/byte
code-viewer

0.865 n - - - - - -

laravel/frame
work

0 l 0 l 0 l - -

localstack/local
stack

0.251 n 0.529 n - - - -

lodash/lodash 0.058 s 0.021 s 0.01 s - -
magento/magent
o2

0 m 0 s 0 m - -

matomo-org/
matomo

0.699 n 0.244 n 0 s 0.28 n

meteor/meteor 0 l 0 s 0 s - -
Microsoft/vscode 0 s 0 n 0.889 n 0.007 n
middleman/mid
dleman

0 l 0.001 m 0.09 s - -

mikepenz/Mate
rialDrawer

0.541 n 0.299 n 0.054 s - -



160 5.4. Results

mitmproxy/mitmpr
oxy

0 m 0.002 s 0.563 n - -

mockery/mockery - - 0.003 l 0.026 m - -
moment/moment - - 0 m 0.005 s - -
monicahq/
monica

0.595 n 0.192 s - - 0.011 s

mrdoob/three.js0.002 m 0.002 s 0.005 n 0.696 n
mui-org/
material-ui

0 l 0 m 0 m 0 m

mybatis/my
batis-3

0.615 n 0.196 n 0.876 n - -

NationalSecurity
Agency/ghidra

- - 0.731 n - - 0.819 n

netty/netty 0.002 s 0 s 0 m - -
nextcloud/
server

0.458 n 0.549 n 0.033 n 0.505 n

nicolargo/
glances

0.333 n - - 0.998 n - -

nodejs/node 0 m 0 s 0.049 n - -
nostra13/And
roid-Universal-
Image-Loader

0.001 m - - 0.005 m - -

octobercms/oct
ober

0 l 0 s 0 m 0.057 s

omniauth/omni
auth

0.01 l - - 0.406 s - -

pallets/flask 0 l 0.025 m 0.021 m - -
pandas-
dev/pandas

0 s 0 s 0.512 n - -

parcel-
bundler/parcel

0 m 0 s 0.029 s 0.896 n

phalcon/cphalcon 0 s 0 s 0.528 n - -
phanan/koel - - 0.038 s 0.014 m - -
PhilJay/MP
AndroidChart

0.365 n 0.226 s 0.24 n - -

plataformatec/
devise

0 l 0 m 0 l - -

plataformatec/
simple_form

0 l 0.018 m 0 l - -



Chapter 5. The Significance of Bug Report Elements 161

prettier/prettier 0 l 0.005 s 0.674 n 0.271 s
pypa/pipenv 0 l 0 l 0 m - -
rapid7/metasploit
-framework

0 s 0 m 0.428 n - -

react-native-
community/lottie
-react-native

- - 0.06 m - - - -

ReactiveX/Rx
Java

0.637 n 0 m 0.042 s - -

ReactTraining/
react-router

0 l 0 l 0 l - -

realm/realm-java 0 s 0 s 0.01 s - -

reduxjs/redux - - 0.002 l 0.203 s - -
resque/resque 0 l - - 0.007 m - -
roots/sage - - 0 l 0.01 m - -
rubocop-hq/ru
bocop

0 m 0.447 n 0.23 n - -

ruby-grape/grape 0 s - - 0.525 n - -

scikit-learn/
scikit-learn

0 s 0 m 0.2 n - -

scrapy/scrapy 0 m 0.02 m 0.013 s - -
sebastianberg
mann/phpunit

0.167 n 0.491 n 0.305 n - -

Seldaek/mono
log

0.002 l - - 0.004 l - -

Semantic-Org/
Semantic-UI

0.577 n 0.99 n 0.149 n 0.008 m

serverless/ser
verless

0.001 s 0.346 n 0.089 n 0.635 n

sferik/rails_
admin

0.005 s 0.457 n 0.954 n - -

Shopify/liquid 0.001 l - - - - - -
signalapp/
Signal-Android

0 l 0 l 0 l - -

sinatra/sinatra 0.001 m 0.189 s 0.407 n - -
skylot/jadx 0.191 s - - - - - -
slimphp/Slim 0.992 n 0.478 n 0.12 s - -



162 5.4. Results

socketio/socket
.io

- - 0.001 s 0.018 s - -

spring-projects/
spring-boot

0 n 0 s 0.069 n - -

spring-projects/
spring-framework

0 n 0 s 0 s - -

sqlmapproject/
sqlmap

0.359 n 0.054 n 0.031 s - -

square/okhttp 0 m 0 m 0.002 s - -
square/retrofit 0.001 l 0.131 m 0.057 m - -
StevenBlack/
hosts

0.93 n - - 0.467 s - -

storybooks/
storybook

0.037 s 0 s 0.507 n 0.67 n

stympy/faker 0.002 l - - - - - -
symfony/symfony 0 m 0 s 0.587 n 0.034 s
teamcapybara/
capybara

0 l 0 l 0 l - -

Tencent/tinker 0 l - - - - - -
tensorflow/models 0 m 0 l 0.001 m - -
the-control-group/
voyager

- - 0 s 0.372 n 0.652 n

thepracticaldev/
dev.to

- - 0 l 0.763 n 0.049 s

thoughtbot/bour
bon

- - 0 l 0.001 l - -

thoughtbot/
factory_bot

0.01 m 0.325 s 0.317 s - -

thoughtbot/pap
erclip

0 l 0 l 0.005 s - -

tmuxinator/
tmuxinator

0.006 m 0.827 n - - - -

tootsuite/masto
don

0 s 0 m 0.622 n 0.902 n

trailofbits/algo - - 0.007 s 0.873 n - -
TryGhost/Ghost 0 l 0 s 0.001 s 0.515 n
twbs/bootstrap 0.009 m 0 s 0 m - -



Chapter 5. The Significance of Bug Report Elements 163

twbs/bootstrap-
sass

0.626 n 0.909 n 0.067 s - -

vuejs/vue 0 l 0 l 0 m - -
webpack/web
pack

0 l 0 l 0 s - -

wix/react-
native-
navigation

0.707 n 0.825 n 1 n - -

yarnpkg/yarn 0.016 s 0.029 n 0.429 n - -
yiisoft/yii2 0 s 0 s 0 n - -
ytdl-org/youtu
be-dl

0 m 0 m 0 l - -

zeit/next.js 0 m 0 s 0.067 n - -
zxing/zxing 0.001 l 0 l 0 l - -

5.4.3 RQ3. How often do bug reports contain the important ele-
ments?

To identify how often various bug report elements are included in bug reports, we
used IMaChecker8 to mine and analyse issue repositories from 250 Github projects.
In total, 835381 issues were mined, out of which 89761 issues (∼11%) were open
while 745620 issues (∼89%) were closed. 114053 bug reports (∼29.64%) were ori-
ginally labeled as bugs in bug repositories while 219803 bug reports (∼70.36%) were
automatically detected.

According to the results, for 228 projects, crash reproducing steps and stack traces
were detected. For 244 projects fix suggestions were detected. For 226 projects user
contents were detected. For 178 projects code snippets were identified. Finally, for 34
projects no bugs were originally labeled while IMaChecker detected bugs.

For kilimchoi/engineering-blogs, doctrine/inflector, and doctrine/lexer repositories no
issues were originally or automatically marked as bugs. These repositories have 66,
27, and 2 issues, respectively. For these repositories, no reproducing steps, stack
traces, fix suggestions, code snippets, or user contents were detected. For more de-
tailed results, please see Table 5 in Appendix B.

8The mining was done on 2019-05-13.



164 5.5. Discussion

In addition, Figure 5.8 presents the average percentages of different bug report ele-
ments. According to Figure 5.8, on average, ∼27.16% of the bug reports included
stack traces, ∼27.07% of the bug reports included reproducing steps, and ∼20.59%
of the bug reports included fix suggestions. In addition, on average, ∼14.23% of the
bug reports included user contents, and ∼1.06% of the bug reports included code
snippets.

5.5 Discussion

In this paper, we aim to identify the contents in bug reports that are of importance
for debugging. Therefore, we sought for developers’ perceptions in this regard, we
analysed whether any of the bug report elements impact bug resolution times, and
we measured how often various information elements are included in bug reports.

Our results show that certain elements, namely: crash description, reproducing steps,
and stack traces are of high importance for debugging in developers’ perceptions. Ac-
cording to the statistical analysis, reproducing steps, stack traces, fix suggestions, and
user contents have statistically significant impacts on bug resolution times. Despite
the above findings, as Figure 5.8 shows, on average, over ∼ 70% of the bug reports
lack these elements. In what follows we further discuss the findings.

5.5.1 Bug Report Templates and User Support

In order to keep the issues consistent, and make sure certain elements are provided
in bug reports, repositories often provide templates for reporting issues. The specified
elements in such templates vary. While these templates often specify reproducing
steps, or fix suggestions as fields to be filled by the users, stack traces, user contents
or code snippets are not mentioned in the templates. Therefore, it is up to the issue
reporter to provide them.

Our results show each of those elements, particularly stack traces, impact the bug
resolution times. Therefore, to help keep the structure of issues consistent, and make
sure important elements of bug reports are asked for, it is important to provide com-
plete and well-structured bug report templates. The results presented in this paper
help increase awareness in this regard.



Chapter 5. The Significance of Bug Report Elements 165

On the other hand, as Zimmermann et al. [224] report, it may not be possible for
users to provide certain information in their bug reports while at the same time it is
important to do so. It is simply because important information are not always easy
to be found. For example, stack traces are often hidden in log files, and therefore, it
is not easy to find them, even if the issue templates ask for them. Therefore, future
work may investigate means to support users and enable them to provide important
information in bug reports.

5.5.2 Representative Samples

When analysing the impact of various bug report elements, many projects were ex-
cluded from the analysis because they did not offer representative samples for exper-
iment and control groups. This is why it was not possible to analyse the impact of
code snippets on bug resolution times.

The automated mechanism in IMaChecker helps increase the number of bug reports,
thereby the sample sizes for experimental groups. IMaChecker detects whether an
issue is a potential bug if a certain element such as stack trace or fix suggestion is
included in the reported issue.

However, if an issue does not include any of the elements, the only way to identify
whether it is a bug report would be to check the labels put on the issue. At the same
time, many of the bug reports were not originally labeled as bugs. Therefore, they
could not be used in the control groups. As a result, many projects were excluded
from the analysis.

This observation highlights the importance of properly documenting the bug reports.
The IMaChecker approach provides a more accurate overview of the issues if bug
reports are properly marked by developers.

5.5.3 Internal Validity of the Experiments

Internal validity of a study refers to how well the findings of the study explain a claim
about a cause and effect. In the context of our study, threats to internal validity refer
to alternative reasons why a bug report is closed more quickly than others.

In some cases, bug reports are created, however they either have no content or very
minimal amount of information. We have observed that these kinds of bug reports
are typically very quickly closed because there is not much that can be done for them.
When developers close such bug reports, often they ask the contributors who opened



166 5.5. Discussion

the bug reports to provide further information. Furthermore, sometimes bug reports
are re-opened. One possible explanation is that the issue, which was addressed previ-
ously, resurfaces, either for the same contributor who previously opened the issue or
someone else.

In our experiments, IMaChecker automatically checks the contents in experimental
groups and control groups before they are included in the statistical tests. Therefore,
the bug reports used in these experiments are never entirely empty. However, it could
be that they are closed because they included too little information. In addition, in
these experiments, we do not check whether an issue is re-opened later on. This is
mainly due to the fact that the information that can be retrieved through the Git-
hub API does not include sufficient details with regards to whether the issue was
re-opened or not.

5.5.4 Generalizability of Results

As Basili et al. [63] discuss, carrying out empirical work in software engineering is
complex and time consuming. They argue that one reason for such complexity is
that there are a large number of context variables. Therefore, creating a cohesive
understanding of the experimental results requires effort.

We selected participants from three different industries, e-commerce, ERP, and auto-
motive. In addition, the survey participants were either trending developers on Github
or selected from over 85 distinct popular software projects. The professional exper-
ience of these participants ranged from one year to 27 years. While we intended to
involve experienced developers in the survey, we did not ensure if the developers have
experience in developing closed source projects or not.

To make a corpus of open-source projects, we selected 250 projects from Github.
Github is a popular platform where over 2 million organizations and 96 million re-
positories are hosted to which over 31 million developers contribute, according to The
State of Octoverse [15]. To select the open source projects, first we chose five popu-
lar programming languages, and then we used common measures of popularity, i.e.,
number of stars and forks, to identify the projects. Furthermore, we used statistical
tests to analyse the results.

However, we can not claim that the findings are transferable to closed-source projects.
Communication with users and debugging practices differ in closed-source projects.
Future work may investigate closed-source projects as well as expert developers in
the field, and compare the results with the findings reported in this paper.



Chapter 5. The Significance of Bug Report Elements 167

5.5.5 Automated Crash Reproduction

Depending on the available information and complexity of the reported crash, repro-
ducing the crash may be a complex and time consuming task for developers. Research-
ers have proposed several approaches to automated crash reproduction. The state of
the art techniques are: STAR [81], EVOCRASH [204], and JCHARMING [171].

Each of the proposed approaches have certain advantages and limitations, which are
to some extent reported in [204]. Upon further advances in this direction, automated
crash reproduction may compensate for lack of crash reproducing steps in bug reports.

5.5.6 What Do User Contents Provide?

The results show that user contents have statistically significant impact on bug resol-
ution times for ∼33% of the projects. User contents are provided through a link in the
bug reports. However, their contents vary. In our manual analysis, we found out that
the links may refer to long stack traces that the users preferred to provide separately
from the main bug report. It is also possible for user contents to address fix sugges-
tions or UI features. Future work may investigate the kinds of data provided through
user contents and their frequencies. Such investigation helps analyse the impact of
user contents more accurately.

5.6 Related Work

To understand what makes a good bug report, Zimmermann et el. [224] conducted a
survey among developers and users of Apache, Eclipse, and Mozilla. They found out
that across all three projects, crash reproducing steps, and stack traces, are most use-
ful. At the same time these types of information are most difficult for users to provide.
Their results show, to a large extent, lack of tool support causes this mismatch. For
example, while stack traces are hidden in log files, experienced users of Eclipse know
that Error logs exists. Therefore, experienced users can provide stack traces while for
other users it is difficult to do so [224].

In addition, Zimmermann et al. [224] asked developers to rate 289 bug reports, that
were selected randomly, from very poor to very good, using a five-point Likert scale
[153]. They use the rated bug reports to train the CUEZILLA approach they propose.
CUEZILLA measures the quality of bug reports, and recommends which elements
should be added to improve the quality of bug reports.



168 5.6. Related Work

This paper builds on the work by Zimmermann et al. [224] in that we interviewed
and surveyed developers to understand their perceptions on the importance of dif-
ferent bug report elements. However, while Zimmermann et al. [224] surveyed the
developers and users of Apache, Eclipse, and Mozilla, our approach to finding inter-
view and survey participants were different. We first found participants from ERP, E-
commerce, and automotive industries to execute the interviews. We used the insights
from the interviews to construct a survey study where we contacted active developers
from 85 different trending projects on Github. Furthermore, while CUEZILLA uses de-
velopers’ ratings to measure the quality of bug reports, IMaChecker takes a different
approach for analyzing the bug reports. IMaChecker statically parses the bug reports
from 250 projects (developed in five different languages) to identify which elements
are present in the bug reports, and using this information, IMaChecker applies statist-
ical tests to identify the impact of the bug report elements on bug resolution times.
Our findings with regards to the impact of bug report elements on bug resolution
times are aligned with the findings reported by Zimmermann et al. [224] in that the
results from interviews, surveys, and statistical tests show crash reproduction steps
and stack traces are most useful for processing bug reports. Furthermore, despite the
indicated importance, our results show that the majority of times, these elements are
not included in bug reports.

Schroter et al. [197] conducted an empirical study with the Eclipse project to under-
stand the extent to which stack traces are useful when debugging. Their findings show
that the average lifetimes of bug reports which include stack traces are significantly
lower than of other bugs. Furthermore, their findings show up to 60% of bug reports
which included stack traces involved changes to one of the stack frames.

In this paper, we expand the findings reported by Schroter et al. [197] in that we study
bug reports from 250 projects to assess the impact of several different bug report
elements, including crash stack traces. Our results on the importance of crash stack
traces for bug resolution times are aligned with the findings reported by Schroter et
al. [197].

With regard to characterizing bug report quality, Hooimeijer and Weimer [123] provide
a descriptive model based on a statistical analysis of 27000 publicly available bug re-
ports for the Mozilla Firefox project. The proposed model predicts whether a reported
bug is fixed within a given amount of time.

With regards to estimating the time it take to fix a bug report, [222] present a non-
parametric approach based on using dissimilarity matrix and self-organizing neural
networks. They used NASA’s KC1 data set to evaluate their approach. The results
indicated that their clustering approach performs well when applied on a family of



Chapter 5. The Significance of Bug Report Elements 169

products such as software projects in product lines. However, the defect fix estimation
performed poorly when applied on software projects from different environments.
Moreover, Weiss et al. [211] propose an approach that automatically predicts the time
it takes to fix a bug. Given a new reported issue, their technique finds similar older
issues and uses their resolution time for prediction. They evaluated their approach
using effort data from JBoss project. For bug reports, their technique is off by one
hour.

In this paper, rather than providing a prediction model for estimating the time it takes
to fix a bug, we use statistical tests to show how different bug report elements impact
the time it takes to close bug reports. Furthermore, rather than looking into a single
case study, we studied bug reports from 250 open source projects from Github.

5.7 Conclusions

Software projects often have open issue repositories. Bug reports that are submitted
to issue repositories have varying contents. Therefore it is important to gain under-
standing about the significance of different elements in bug reports.

To understand the extent to which developers perceive various types of information
important, we interviewed 35 developers. To asses the findings, we further surveyed
305 developers. The results show crash description, reproducing steps, and stack
traces are of high importance in developers’ perceptions.

To identify how often the important information elements are provided in bug re-
ports, and what their impact is on bug resolution times, we developed IMaChecker to
mine and analyse issues from Github repositories. Our statistical analysis, on issues
from 250 projects on Github, confirms that crash reproducing steps, stack traces, fix
suggestions and user contents have statistically significant impact on bug resolution
times. However, on average, over ∼70% of the bug reports of a given repository lack
these elements. Future work may investigate means to support users and developers
for providing high quality bug reports.

Appendix A

Table 5.4 shows the corpus of 250 open source projects we selected from Github.

Table 5.4: This table shows the repositories we use in the evaluation.



170 5.7. Conclusions

Repository Since Stars Language Forks Contributors
30-seconds/30-seconds-of-code 2017 43.1k Javascript 4.7k 164
achael/eht-imaging 2016 4.6k Python 414 9
activeadmin/activeadmin 2010 8.4k Ruby 2.9k 569
adam-p/markdown-here 2012 37.3k Javascript 6.3k 12
adobe/brackets 2011 29.7k Javascript 6k 355
ageitgey/face_recognition 2017 23.7k Python 6.2k 23
airbnb/lottie-android 2016 25.3k Java 3.9k 71
androidannotations/
androidannotations

2010 10.7k Java 2.4k 56

angular/angular.js 2010 59.5k Javascript 28.9k 1595
ansible/ansible 2012 37.1k Python 15.1k 4372
apache/incubator-dubbo 2012 25.9k Java 17.2k 198
apache/incubator-echarts 2013 33.6k Javascript 9.8k 71
apache/incubator-zipkin 2015 10.9k Java 1.9k 78
atech/postal 2017 8.9k Ruby 522 14
atom/atom 2011 48.5k Javascript 11.4k 431
axios/axios 2014 58.2k Javascript 4.5k 164
aymericdamien/TensorFlow-Examples 2015 30.9k Python 11.7k 54
babel/babel 2012 32.8k Javascript 3.4k 724
barryvdh/laravel-debugbar 2013 9.3k PHP 905 95
barryvdh/laravel-ide-helper 2013 8.2k PHP 782 107
bazelbuild/bazel 2015 11.9k Java 1.9k 441
bcit-ci/CodeIgniter 2006 17.2k PHP 7.6k 441
BetterErrors/better_errors 2012 6.5k Ruby 430 75
binux/pyspider 2014 13k Python 3.2k 51
bobthecow/psysh 2012 7.4 PHP 216 48
briannesbitt/Carbon 2012 12.4k PHP 1k 197
bumptech/glide 2013 26k Java 9k 96
CachetHQ/Cachet 2014 9.6k PHP 1.1k 161
cakephp/cakephp 2005 7.8k PHP 3.4k 523
capistrano/capistrano 2013 11k Ruby 1.7k 215
carrierwaveuploader/
carrierwave

2008 8.3k Ruby 1.4k 326

celery/celery 2009 12.3k Python 3.2k 714
certbot/certbot 2012 25k Python 2.5k 352
chartjs/Chart.js 2013 43k Javascript 9.5k 298
chrisbanes/PhotoView 2012 15.2k Java 3.5k 34
CocoaPods/CocoaPods 2011 11.6k Ruby 2k 266
composer/composer 2011 19.6k PHP 5.4k 729
daimajia/AndroidSwipe
Layout

2014 11.1k Java 2.6k 16

daimajia/AndroidView
Animations

2014 10.5k Java 2.2k 17

deeplearning4j/deep
learning4j

2013 10.7k Java 4.6k 250

deployphp/deployer 2013 6.7k PHP 977 174
diaspora/diaspora 2010 12.2k Ruby 2.9k 342
dingo/api 2014 8.3k PHP 1.1k 96
docker/compose 2013 16k Python 2.4k 299
doctrine/inflector 2009 7k PHP 90 55
doctrine/instantiator 2014 6.8k PHP 42 22
doctrine/lexer 2013 6.8k PHP 29 16
Dogfalo/materialize 2014 35.6k Javascript 4.7k 252
donnemartin/system-design-primer 2017 62.9k Python 9.2k 65
egulias/EmailValidator 2013 6.7k PHP 91 37
elastic/elasticsearch 2010 40.3k Java 13.4k 1205
elastic/logstash 2009 10.2k Ruby 2.7k 398
encode/django-rest-
framework

2010 14k Python 4.1k 851

EnterpriseQualityCoding
/FizzBuzzEnterpriseEdition

2012 10.8k Java 505 30

erusev/parsedown 2013 10.8k PHP 881 39
eugenp/tutorials 2013 14k Java 20.4k 500
explosion/spaCy 2014 13.2k Python 2.2k 333
expressjs/express 2009 43.4k Javascript 7.4k 220
facebook/create-react-app 2016 66.5k Javascript 14.8k 672
facebook/fresco 2015 15.5k Java 3.6k 152
facebook/react 2013 127k Javascript 23.2k 1296
facebook/react-native 2015 76.2k Javascript 17k 1947
facebook/stetho 2015 11k Java 1k 49
facebookresearch/Detectron 2018 20.3k Python 4.3k 27
faif/python-patterns 2012 20.4k Python 4.4k 86
fastlane/fastlane 2014 25.4k Ruby 3.8k 961
filp/whoops 2013 10k PHP 523 99
fluent/fluentd 2011 7.8k Ruby 913 169
FortAwesome/Font-Awesome 2018 59.5k Javascript 10k 5



Chapter 5. The Significance of Bug Report Elements 171

freeCodeCamp/devdocs 2013 20.5k Ruby 1.3k 93
freeCodeCamp/freeCode
Camp

2013 302k Javascript 21.6k 3532

FriendsOfPHP/Goutte 2010 7.2k PHP 871 66
FriendsOfPHP/PHP-CS-Fixer 2012 7.5k PHP 203k 1k
gatsbyjs/gatsby 2015 33.9k Javascript 4.8k 1954
getgrav/grav 2014 10.8k PHP 1k 148
getredash/redash 2013 12.5k Python 2k 247
getsentry/sentry 2008 20.7k Python 2.3k 383
github/linguist 2011 6.7k Ruby 2.4k 748
gollum/gollum 2010 9.9k Ruby 1.4k 144
google-research/bert 2018 14.8k Python 3.4k 26
google/ExoPlayer 2014 12.9k Java 3.9k 135
google/gson 2008 15.5k Java 3.1k 93
google/guava 2011 31.1k Java 7k 185
google/python-fire 2017 14k Python 818 28
GoogleChrome/puppeteer 2017 48.2k Javascript 4.2k 208
greenrobot/greenDAO 2011 11.2k Java 2.7k 6
gulpjs/gulp 2013 31.1k Javascript 4.4k 216
guzzle/guzzle 2011 16.6k PHP 1.9k 294
h5bp/html5-boilerplate 2010 42.6k Javascript 10.1k 231
hakimel/reveal.js 2011 45.8k Javascript 13.2k 245
hashicorp/vagrant 2010 18.4k Ruby 3.7k 884
hdodenhof/CircleImageView 2014 11.7k Java 2.6k 12
HelloZeroNet/ZeroNet 2015 13.7k Python 1.7k 101
home-assistant/home-assistant 2013 23.5k Python 6.8k 1441
Homebrew/brew 2009 17.6k Ruby 3.9k 669
Homebrew/homebrew-cask 2012 15.2k Ruby 7.2k 5214
huge-success/sanic 2016 12k Python 1.1k 206
huginn/huginn 2013 21.3k Ruby 2.3k 171
iluwatar/java-design-patterns 2014 46.8k Java 15.1k 145
imathis/octopress 2009 9.5k Ruby 2.9k 111
impress/impress.js 2011 34.7k Javascript 6.8k 63
Intervention/image 2013 9.2k PHP 1k 71
ipython/ipython 2008 13.5k Python 3.8k 593
JakeWharton/butterknife 2013 23.7k Java 4.5k 83
jakubroztocil/httpie 2012 41.1k Python 2.6k 74
javan/whenever 2009 7.9k Ruby 685 82
jekyll/jekyll 2008 37.7k Ruby 8.2k 852
jfeinstein10/SlidingMenu 2012 11.1k Java 5.3k 21
jordansissel/fpm 2011 9.1k Ruby 915 234
josephmisiti/awesome-machine-learning 2014 39.8k Python 9.7k 371
jquery/jquery 2006 51.4k Javascript 18k 275
juliangarnier/anime 2016 30.7 Javascript 2.2k 27
kaminari/kaminari 2011 7.4k Ruby 958 133
kennethreitz/requests 2011 38.6k Python 6.9k 533
keon/algorithms 2016 14.9k Python 2.7k 105
keras-team/keras 2015 41.1k Python 15.3k 795
kilimchoi/engineering-blogs 2015 15.2k Ruby 1.7k 303
Konloch/bytecode-viewer 2014 10.1k Java 637 15
laravel/framework 2013 17.2k PHP 6.4k 1944
lgvalle/Material-Animations 2015 12.7k Java 2.5k 9
LMAX-Exchange/disruptor 2011 10.3k Java 2.6k 31
localstack/localstack 2016 16.7k Python 1.1k 157
lodash/lodash 2009 38.7k Javascript 22.5k 280
loopj/android-async-http 2011 10.4k Java 4.2k 75
Maatwebsite/Laravel-Excel 2013 6.9k PHP 1.1k 95
magento/magento2 2011 7.3k PHP 6.3k 1129
mame/quine-relay 2013 7.8k Ruby 383 12
matomo-org/matomo 2007 11.1k PHP 1.7k 224
matterport/Mask_RCNN 2017 11.9k Python 5.1k 40
meteor/meteor 2011 41k Javascript 5k 402
Microsoft/vscode 2015 73.9k Javascript 10k 871
middleman/middleman 2009 6.4k Ruby 694 182
mikepenz/MaterialDrawer 2014 10.3k Java 2k 87
minimaxir/big-list-of-naughty-strings 2015 32.3k Python 1.3k 56
mitmproxy/mitmproxy 2010 14.9k Python 1.9k 253
mockery/mockery 2009 7.7k PHP 356 139
moment/moment 2011 40.9k Javascript 6.1k 492
monicahq/monica 2017 7.1k PHP 838 158
mperham/sidekiq 2012 9.6k Ruby 1.6k 397
mrdoob/three.js 2010 50.7k Javascript 19k 1077
mui-org/material-ui 2014 46.1k Javascript 9.9k 1229
mybatis/mybatis-3 2010 10.6k Java 6.6k 121
NARKOZ/hacker-scripts 2015 34.9k Javascript 5.9k 41
NationalSecurityAgency
/ghidra

2019 15.3k Java 1.8k 40



172 5.7. Conclusions

netty/netty 2008 18.8k Java 8.4k 373
nextcloud/server 2010 7.4k PHP 1.3k 601
nicolargo/glances 2011 13.3k Python 906 92
nikic/PHP-Parser 2011 10.4k PHP 614 82
nodejs/node 2009 60.3k Javascript 13.4k 2444
nostra13/Android-Universal-Image-Loader 2011 16.4k Java 6.3k 35
nvbn/thefuck 2015 43.7k Python 2.1k 123
octobercms/october 2013 8.5k PHP 1.9k 303
omniauth/omniauth 2010 6.8k Ruby 870 143
openai/gym 2016 16.6k Python 4.4k 176
orhanobut/logger 2015 11.1k Java 1.7k 10
overtrue/wechat 2015 7.8k PHP 1.9k 98
pallets/flask 2010 44k Python 12.2k 507
pandas-dev/pandas 2009 19.4k Python 7.7k 1479
parcel-bundler/parcel 2017 31.3k Javascript 1.4k 204
phalcon/cphalcon 2012 9.6k PHP 1.7k 226
phanan/koel 2015 10.2k PHP 1.2k 45
PhilJay/MPAndroidChart 2014 27k Java 7k 67
php-ai/php-ml 2016 6.8k PHP 947 28
PHPMailer/PHPMailer 2008 13.1k PHP 7.2k 168
plataformatec/devise 2009 19.9k Ruby 4.6k 541
plataformatec/simple_form 2009 7.3k Ruby 1.2k 219
prettier/prettier 2916 31.4k Javascript 1.7k 413
pypa/pipenv 2017 16.8k Python 1.2k 276
rails/rails 2004 43.1k Ruby 17.3k 3818
ramsey/uuid 2012 8.7k PHP 315 59
rapid7/metasploit-framework 2005 16.3k Ruby 8.1k 628
react-native-community/lottie-react-native 2016 11.2k Java 1k 53
ReactiveX/RxAndroid 2013 17.9k Java 2.8k 59
ReactiveX/RxJava 2012 38.6k Java 6.5k 240
reactphp/react 2012 6.8k PHP 672 29
ReactTraining/react-router 2014 35.9k Javascript 7.3k 548
realm/realm-java 2012 10.4k Java 1.6k 80
reduxjs/redux 2015 48.1k Javascript 12.3k 673
resque/resque 2009 8.5k Ruby 1.5k 207
resume/resume.github.com 2011 40.3k Javascript 1k 48
roots/sage 2011 10k PHP 2.8k 193
rubocop-hq/rubocop 2012 9.9k Ruby 2k 596
ruby-grape/grape 2010 8.8k Ruby 1k 319
ryanb/cancan 2009 6.3k Ruby 839 54
scikit-learn/scikit-learn 2010 35k Python 16.9k 1304
scrapy/scrapy 2008 32.8k Python 7.6k 313
sebastianbergmann/phpunit 2006 13.8k PHP 1.7k 358
Seldaek/monolog 2011 14.6k PHP 1.5k 324
SeleniumHQ/selenium 2004 14.3k Java 4.8k 429
Semantic-Org/Semantic-UI 2013 45.2k Javascript 4.8k 190
serbanghita/Mobile-Detect 2012 8.6k PHP 2.3k 83
serverless/serverless 2015 29.9k Javascript 3k 571
sferik/rails_admin 2010 7k Ruby 2k 357
Shopify/liquid 2008 7.1k Ruby 931 121
signalapp/Signal-Android 2011 11.4k Java 2.9k 183
sinatra/sinatra 2007 10.6k Ruby 1.9k 361
skylot/jadx 2013 18.5k Java 2k 31
slimphp/Slim 2010 9.8k PHP 1.8k 202
socketio/socket.io 2004 46k Javascript 8.5k 154
spree/spree 2008 9.7k Ruby 4.2k 252
spring-projects/spring-boot 2012 36.8k Java 24.1k 571
spring-projects/spring-framework 2008 29k Java 19k 364
sqlmapproject/sqlmap 2008 14.1k Python 3k 79
square/okhttp 2012 31.8k Java 7k 182
square/picasso 2013 16.7k Java 3.9 91
square/retrofit 2010 32k Java 5.9k 125
StevenBlack/hosts 2012 12k Python 1.1k 61
storybooks/storybook 2015 36.7k Javascript 2.9k 677
stympy/faker 2007 7.7k Ruby 1.9k 585
swiftmailer/swiftmailer 2007 7.8k PHP 738 133
symfony/symfony 2010 20.6k PHP 6.8k 1866
teamcapybara/capybara 2009 8.7k Ruby 1.2k 259
Tencent/tinker 2016 13.6k Java 2.7k 22
tensorflow/magenta 2016 13.1k Python 2.5k 97
tensorflow/models 2016 52.6k Python 31.7k 497
the-control-group/voyager 2016 8k PHP 1.9k 288
TheAlgorithms/Java 2016 13.5k Java 5k 137
TheAlgorithms/Python 2016 38.4k Python 10.9k 218
thedaviddias/Front-End-Checklist 2017 34.2k Javascript 3.2k 82
thephpleague/flysystem 2013 9.3k PHP 512 171
thepracticaldev/dev.to 2018 9.1k Ruby 1k 187



Chapter 5. The Significance of Bug Report Elements 173

thoughtbot/bourbon 2011 8.8k Ruby 918 101
thoughtbot/factory_bot 2008 6.4k Ruby 1.7k 187
thoughtbot/guides 2012 8k Ruby 1.2k 98
thoughtbot/paperclip 2008 9k Ruby 2k 371
tmuxinator/tmuxinator 2010 8.9k Ruby 549 109
toddmotto/public-apis 2016 56.8k Python 5.7k 475
tootsuite/mastodon 2016 17.6k Ruby 3.1k 558
tornadoweb/tornado 2009 17.7k Python 4.9k 304
trailofbits/algo 2016 13.1k Python 1.1k 119
trekhleb/Javascript-algorithms 2018 47.9k Javascript 6.7k 89
TryGhost/Ghost 2013 29.6k Javascript 6.3k 314
twbs/bootstrap 2011 133k Javascript 64.9k 1074
twbs/bootstrap-sass 2011 12.7k Ruby 3.5k 95
tymondesigns/jwt-auth 2014 7.7k PHP 968 65
typicode/json-server 2013 39.6k Javascript 3.5k 61
udacity/fullstack-nanodegree-vm 2015 263 Python 11.3k 7
Valloric/YouCompleteMe 2012 19k Python 2.1k 136
varvet/pundit 2012 6.4k Ruby 489 92
vinta/awesome-python 2014 67.2k Python 12.7k 306
vlucas/phpdotenv 2013 9.2k PHP 439 47
vuejs/vue 2016 136k Javascript 19.3k 274
walkor/Workerman 2013 7.4k PHP 1.9k 49
webpack/webpack 2012 48.3k Javascript 6k 516
wix/react-native-navigation 2016 10.2k Java 2.2k 280
yarnpkg/yarn 2016 35.5k Javascript 2.1k 496
yiisoft/yii2 2011 12.8k PHP 6.7k 961
ytdl-org/youtube-dl 2008 50.3k Python 8.5k 671
zeit/next.js 2016 36.7k Javascript 4.2k 700
zxing/zxing 2013 22.4k Java 8.1k 94

Appendix B

Table 5.5 presents the results of mining 250 issue repositories in detail.

Table 5.5: This table shows the frequencies of various elements in bug reports for
different projects. O/C indicates the ratio between open issues and closed one. bugA
indicates that the issues is originally labeled as a bug, whereas bugB indicates that
IMaChecker detected the issue as a bug. ST indicates Stack Traces, RS indicates Re-
producing Steps, FS indicates Fix Suggestions, UC shows User Content, and C shows
Code.

Repository #O/C #bugA #bugB #ST #RS #FS #UC #C
30-seconds/30-
seconds-of-code

9/184 23 49 0 17 32 11 1

achael/eht-imag
ing

1 0 2 2 0 0 0 0

activeadmin/
activeadmin

34/541 203 527 317 130 101 17 4

adam-p/
markdown-here

227/284 86 21 0 6 15 14 1

adobe/
brackets

1169/3474 160 1148 4 923 238 253 2

ageitgey/
face_recognition

302/431 0 175 114 41 26 44 1

airbnb/
lottie-android

33/853 3 158 75 67 21 70 0

android
annotations/
android
annotations

43/1564 0 253 150 67 52 3 3



174 5.7. Conclusions

angular/
angular.js

129/2849 1622 1214 14 944 727 37 3

ansible/ansible 280/1349 13982 15790 3367 14834 612 97 83
apache/
incubator
-dubbo

331/2032 99 394 90 294 27 140 3

apache/
incubator
-echarts

3209/6916 566 1442 18 1397 28 1309 5

apache/incubator
-zipkin

13/41 88 95 45 23 29 49 0

atech/postal 93/161 20 52 27 2 24 49 2
atom/atom 557/14128 2937 5693 816 5343 672 600 5
axios/axios 515/1168 86 138 50 37 56 99 9
aymericdamien/
TensorFlow-
Examples

129/53 0 21 20 0 2 3 0

babel/babel 625/5711 795 852 142 477 492 146 18
barryvdh/
laravel-debugbar

107/120 0 28 7 6 15 27 0

barryvdh/
laravel-ide-helper

294/257 0 28 6 4 18 24 3

bazelbuild/
bazel

875/2251 1931 1724 217 1426 177 27 18

bcit-ci/
CodeIgniter

45/2944 161 132 4 33 97 17 2

BetterErrors/
better_errors

42/209 16 46 37 1 8 3 0

binux/pyspider 219/529 6 166 110 50 17 11 1
bobthecow/psysh 55/282 39 16 4 6 7 11 1
briannesbitt/
Carbon

7/698 15 45 5 29 12 5 3

bumptech/glide 137/3205 395 538 414 71 87 129 5
CachetHQ/
Cachet

127/1859 432 266 129 100 50 82 1

cakephp/cake
php

65/1704 30 379 68 88 231 31 10

capistrano/
capistrano

18/509 77 220 141 56 42 0 2

carrierwave
uploader/carrier
wave

169/1489 30 236 165 26 51 4 1

celery/celery 383/3441 376 1476 884 751 117 32 11
certbot/certbot 352/1629 470 837 606 69 184 11 4
chartjs/
Chart.js

424/4137 1003 684 6 497 382 353 11

chrisbanes/
PhotoView

116/451 39 59 44 7 10 10 0

CocoaPods/
CocoaPods

178/6943 0 1778 1168 482 191 63 15

composer/
composer

87/1280 663 577 35 163 395 45 14

daimajia/
AndroidSwipe
Layout

30/13 9 27 15 5 7 5 1

daimajia/Android
ViewAnimations

14/23 1 9 6 1 2 0 0

deeplearning4j/
deeplearning4j

391/1780 967 533 306 138 108 122 6

deployphp/
deployer

20/93 171 310 18 274 44 8 5

diaspora/
diaspora

418/4141 1761 564 264 176 149 33 2

dingo/api 67/359 52 133 52 57 28 6 2
docker/
compose

505/3891 511 970 461 488 109 24 17

doctrine/inflector 4/23 0 0 0 0 0 0 0
doctrine/instantiator 1/9 3 1 0 1 0 0 0
doctrine/lexer Inf 0 0 0 0 0 0 0
Dogfalo/
materialize

481/4486 279 533 22 390 222 176 7

donnemartin/
system-design
-primer

29/14 9 2 1 0 1 2 0

egulias/Email
Validator

21/83 24 2 0 1 1 1 0

elastic/
elasticsearch

1736/18139 3510 5540 1719 3898 832 165 47



Chapter 5. The Significance of Bug Report Elements 175

elastic/log
stash

1366/3745 965 1071 506 457 200 41 7

encode/django
-rest-framework

143/3023 311 812 158 608 120 35 3

EnterpriseQuality
Coding/FizzBuzz
EnterpriseEdition

134/27 1 15 2 0 13 0 0

erusev/parsedown 2/29 89 23 0 7 16 6 4
eugenp/tutorials 2/65 0 27 15 1 12 4 2
explosion/spaCy 70/1363 411 896 444 452 125 65 14
expressjs/
express

111/2956 90 178 48 58 73 29 4

facebook/
create-react-app

317/4174 400 1453 177 1243 181 338 12

facebook/fresco 79/1897 282 351 267 75 26 61 3
facebook/react 503/6964 369 1435 55 1212 204 217 10
facebook/react-
native

219/7931 1319 4847 285 4329 436 1490 46

facebook/stetho 1/9 39 62 54 8 3 11 1
facebook
research/Detectron

213/571 6 256 139 130 24 36 0

faif/python-
patterns

9/47 1 3 1 0 2 1 0

fastlane/
fastlane

171/9137 522 2085 1754 69 332 140 24

filp/whoops 42/251 0 18 3 0 15 4 0
fluent/fluentd 197/960 106 290 232 52 36 16 3
FortAwesome/
Font-Awesome

4769/9638 385 456 6 143 312 1079 4

freeCodeCamp/
devdocs

77/647 102 51 14 21 17 24 0

freeCodeCamp/
freeCodeCamp

75/4444 261 7730 26 7465 366 944 9

FriendsOfPHP/
Goutte

105/131 0 9 4 3 2 3 0

FriendsOfPHP/
PHP-CS-Fixer

234/1373 247 77 9 23 48 8 4

gatsbyjs/gatsby 419/6047 534 2005 148 1611 564 442 27
getgrav/grav 103/556 219 121 24 39 59 75 5
getredash/redash 43/148 220 499 120 407 36 102 2
getsentry/sentry 68/253 73 489 291 152 72 184 0
github/linguist 5/417 16 62 17 7 38 30 0
gollum/gollum 14/449 212 114 66 24 25 4 0
google/Exo
Player

294/4849 841 1334 756 524 171 112 3

google/gson 8/19 2 345 92 273 30 6 1
google/guava 371/1104 0 249 27 90 136 7 0
google/
python-fire

23/31 13 14 8 1 6 1 1

google-
research/bert

11/8 0 71 42 13 21 23 0

GoogleChrome/
puppeteer

376/2539 186 1271 227 1115 83 226 26

greenrobot/
greenDAO

31/181 35 67 54 6 12 15 1

gulpjs/gulp 17/1707 27 116 47 20 52 22 3
guzzle/guzzle 127/597 24 194 30 138 40 17 3
h5bp/html5-
boilerplate

1/1142 38 78 1 12 65 0 0

hakimel/
reveal.js

370/1269 49 80 3 35 42 19 1

hashicorp/
vagrant

199/3767 1600 2657 869 1738 256 54 14

hdodenhof/Circle
ImageView

9/275 3 35 29 2 5 10 0

HelloZeroNet/
ZeroNet

535/1064 98 231 82 118 41 56 0

home-assistant
/home-assistant

1007/8670 143 4607 2641 2840 158 545 19

Homebrew/brew 3/707 86 647 239 406 111 19 13
Homebrew/
homebrew-cask

1/222 18 1090 956 31 138 20 3

huge-success/
sanic

21/223 42 119 91 14 21 11 1

huginn/huginn 288/1207 20 223 160 9 65 20 2
iluwatar/java-
design-patterns

181/263 40 9 2 0 7 0 0



176 5.7. Conclusions

imathis/
octopress

179/808 70 140 101 16 30 0 1

impress/
impress.js

46/379 5 28 0 16 12 0 0

Intervention/
image

229/500 8 29 6 4 19 19 1

ipython/ipython 144/611 930 1118 679 266 240 73 8
JakeWharton/
butterknife

39/484 9 103 65 12 30 32 4

jakubroztocil/
httpie

13/41 81 79 61 8 13 9 0

javan/whenever 55/463 25 87 69 2 16 0 0
jekyll/jekyll 67/3872 23 833 318 421 136 25 2
jfeinstein10/
SlidingMenu

263/381 6 72 43 13 21 1 0

jordansissel/fpm 14/13 64 188 146 24 34 2 0
josephmisiti/
awesome-machine-
learning

1/57 0 3 0 1 2 0 0

jquery/jquery 13/358 103 145 5 84 59 38 1
juliangarnier/
anime

68/377 23 34 1 25 8 15 2

kaminari/kaminari 5/146 57 66 42 16 11 1 1
kennethreitz/
requests

25/391 137 655 512 107 94 27 6

keon/algorithms 14/29 7 5 1 0 4 3 0
keras-team/
keras

2323/6809 112 2479 1044 1324 389 212 21

kilimchoi/
engineering-blogs

7/59 0 0 0 0 0 0 0

Konloch/
bytecode-viewer

29/154 35 37 27 3 8 3 0

laravel/
framework

29/4011 346 3704 197 3255 431 176 49

lgvalle/Material-
Animations

1/2 0 2 1 0 1 0 0

LMAX-Exchange/
disruptor

6/187 2 33 10 16 8 3 2

localstack/
localstack

410/489 199 256 210 38 26 11 4

lodash/lodash 0 227 154 12 49 94 40 2
loopj/android-
async-http

243/799 0 134 107 2 28 2 0

Maatwebsite/
Laravel-Excel

27/1832 18 418 18 378 42 104 8

magento/
magento2

557/6754 3604 9383 664 8826 445 1787 15

mame/quine-
relay

1/8 0 3 0 0 3 0 0

matomo-
org/matomo

1717/8490 4102 920 85 439 416 301 3

matterport/
Mask_RCNN

857/483 0 203 143 4 61 99 5

meteor/meteor 290/7729 553 994 250 506 300 90 16
Microsoft/
vscode

2743/31334 17233 28328 503 25881 3228 10134 119

middleman/
middleman

123/1426 56 366 226 130 41 1 2

mikepenz/
MaterialDrawer

8/2269 120 180 100 40 45 89 4

minimaxir/big-list
-of-naughty-strings

43/24 0 7 0 1 6 1 0

mitmproxy/
mitmproxy

53/425 368 1002 456 777 42 51 2

mockery/mockery 52/437 62 36 8 15 15 2 1
moment/moment 47/628 252 550 15 478 73 47 8
monicahq/
monica

332/717 199 65 15 22 29 103 0

mperham/
sidekiq

12/3073 0 575 414 69 128 31 13

mrdoob/
three.js

629/8187 900 571 28 172 378 322 8

mui-org/material-
ui

281/8286 1286 3057 74 2716 868 779 21

mybatis/
mybatis-3

95/763 113 259 73 190 21 16 1



Chapter 5. The Significance of Bug Report Elements 177

NARKOZ/hacker-
scripts

9/8 0 2 0 1 1 0 0

NationalSecurity
Agency/ghidra

241/276 258 176 6 163 14 109 1

netty/netty 388/4203 231 1332 565 776 112 46 1
nextcloud/
server

1961/5781 3389 4114 546 3891 206 828 26

nicolargo/
glances

107/955 345 284 258 22 23 30 3

nikic/PHP-Parser 41/343 0 33 8 7 18 2 1
nodejs/node 337/4612 645 1727 799 599 419 192 40
nostra13/
Android-Universal
-Image-Loader

273/472 89 181 145 10 31 2 0

nvbn/thefuck 37/80 3 156 76 60 48 11 0
octobercms/
october

163/1164 717 779 23 696 85 179 13

omniauth/
omniauth

29/263 15 87 57 19 17 2 0

openai/gym 175/689 1 191 136 21 43 22 1
orhanobut/logger 44/129 13 11 6 0 5 7 1
overtrue/wechat 22/719 8 17 17 0 0 72 3
pallets/flask 1/52 28 275 204 37 53 13 4
pandas-
dev/pandas

963/4034 4242 1798 1144 354 377 138 16

parcel-
bundler/parcel

321/715 779 598 126 387 349 151 9

phalcon/
cphalcon

48/2011 630 351 82 184 100 19 5

phanan/koel 8/79 26 94 9 67 23 11 1
PhilJay/MP
AndroidChart

201/389 82 314 174 40 112 342 2

php-ai/php-ml 26/35 0 10 4 0 6 7 0
PHPMailer/
PHPMailer

29/1306 8 201 13 140 50 22 1

plataformatec/
devise

5/764 147 586 416 87 114 11 5

plataformatec/
simple_form

17/1099 61 76 39 15 25 8 0

prettier/
prettier

583/2822 1142 220 41 126 60 96 41

pypa/pipenv 281/2355 332 877 733 118 80 46 9
rails/rails 371/12260 0 4799 1535 3541 361 86 30
ramsey/uuid 27/89 15 11 0 2 9 2 0
rapid7/
metasploit-
framework

637/2466 1032 1265 531 892 65 91 1

react-native-
community/lottie-
react-native

29/151 23 63 10 46 8 29 6

ReactiveX/
RxAndroid

0 0 35 22 3 12 3 0

ReactiveX/
RxJava

14/1333 237 347 164 95 102 13 8

reactphp/react 0 14 10 1 1 8 0 0
ReactTraining/
react-router

7/988 141 871 25 731 138 90 10

realm/realm-java 425/3378 589 1161 568 694 102 38 14
reduxjs/redux 26/1615 16 209 8 113 96 33 1
resque/resque 34/769 113 104 79 12 19 2 0
resume/resume
.github.com

29/54 11 6 0 4 2 0 0

roots/sage 17/1124 40 123 7 93 29 4 5
rubocop-
hq/rubocop

225/2999 615 1312 341 1000 170 13 10

ruby-grape/
grape

59/244 313 121 87 15 25 2 0

ryanb/cancan 68/215 15 84 50 3 33 0 0
scikit-learn/scikit-
learn

1253/4945 930 1748 628 1111 248 61 12

scrapy/scrapy 59/149 141 384 282 42 79 17 4
sebastianberg
mann/phpunit

69/2329 170 187 55 71 68 25 5

Seldaek/monolog 7/85 35 37 12 5 21 2 1
SeleniumHQ/
selenium

365/5286 0 2941 251 2701 162 157 16



178 5.7. Conclusions

Semantic-Org/
Semantic-UI

781/5176 1190 487 22 322 149 180 5

serbanghita/
Mobile-Detect

36/109 78 39 0 0 39 5 1

serverless/
serverless

497/3000 793 363 209 72 93 45 11

sferik/rails
_admin

340/1787 151 258 192 24 55 14 0

Shopify/liquid 27/106 46 36 16 10 10 4 2
signalapp/
Signal-Android

282/6443 104 2417 224 2064 597 345 2

sinatra/sinatra 65/638 86 98 64 18 21 0 0
skylot/jadx 39/188 31 29 21 4 5 33 0
slimphp/Slim 2/713 54 95 28 15 54 6 1
socketio/socket
.io

377/2333 108 343 20 265 219 26 2

spree/spree 33/1186 0 838 394 404 152 31 2
spring-
projects/spring
-boot

381/13093 1375 2164 802 1187 298 110 30

spring-
projects/spring
-framework

731/17331 4006 1422 323 505 656 13 2

sqlmapproject/
sqlmap

4/281 828 1611 1451 226 80 26 1

square/okhttp 85/1228 508 611 492 107 60 33 5
square/picasso 27/214 8 207 161 25 30 9 0
square/retrofit 29/1051 19 295 230 31 45 19 5
StevenBlack/
hosts

28/307 17 42 23 3 16 19 1

storybooks/
storybook

111/1010 706 1106 105 992 87 405 15

stympy/faker 47/334 35 49 30 13 9 9 0
swiftmailer/
swiftmailer

151/223 0 87 29 37 23 3 3

symfony/
symfony

635/11437 2787 1747 109 1225 560 268 35

teamcapybara/
capybara

1/1302 78 304 156 146 44 7 0

Tencent/tinker 69/440 63 198 197 0 3 34 0
tensorflow/
magenta

173/381 0 132 109 5 25 28 0

tensorflow/
models

1269/2959 112 1904 913 1226 141 207 10

the-control-
group/voyager

66/773 470 1289 6 1239 68 350 7

TheAlgorithms/
Java

1/10 2 6 0 0 6 1 1

TheAlgorithms/
Python

35/86 3 5 2 0 3 3 0

thedaviddias/
Front-End-Checklist

3/88 14 7 0 1 6 7 0

thephpleague/
flysystem

9/520 5 52 15 18 21 2 4

thepracticaldev/
dev.to

11/35 332 317 9 274 39 291 3

thoughtbot/
bourbon

1/275 18 45 8 24 15 0 0

thoughtbot/
factory_bot

18/767 25 129 88 15 30 3 1

thoughtbot/guides 1/15 0 3 0 0 3 1 0
thoughtbot/
paperclip

15/1801 138 243 170 24 58 3 1

tmuxinator/
tmuxinator

80/321 41 50 28 13 10 1 0

toddmotto/public-
apis

8/95 0 10 0 1 9 2 0

tootsuite/
mastodon

1175/3353 779 741 169 270 325 412 8

tornadoweb/
tornado

142/1301 0 313 251 39 51 9 2

trailofbits/algo 4/109 77 478 46 454 28 22 1
trekhleb/
Javascript-algorithms

33/68 13 9 0 4 5 5 0

TryGhost/Ghost 81/5305 1424 1659 90 1459 215 205 5
twbs/
bootstrap

329/18145 200 1185 18 473 708 601 13



Chapter 5. The Significance of Bug Report Elements 179

twbs/bootstrap-
sass

3/811 39 71 36 15 23 4 1

tymondesigns/
jwt-auth

397/892 6 158 21 101 42 24 2

typicode/json-
server

199/183 3 42 21 7 15 15 5

udacity/fullstack-
nanodegree-vm

3/2 0 4 1 3 3 3 0

Valloric/You
CompleteMe

42/2609 5 927 376 546 181 62 1

varvet/pundit 8/329 4 48 29 1 18 1 1
vinta/awesome-
python

71/69 0 5 0 1 4 0 1

vlucas/phpdotenv 0 0 11 1 3 7 0 0
vuejs/vue 67/2606 330 3150 47 2991 176 146 26
walkor/
Workerman

8/255 10 10 6 0 4 10 1

webpack/
webpack

442/5893 811 2404 176 2222 185 195 21

wix/react-
native-navigation

69/1738 119 1549 77 1461 75 459 18

yarnpkg/yarn 347/674 571 2627 309 2447 80 108 31
yiisoft/yii2 14/249 1638 2214 189 1763 376 87 28
ytdl-org/
youtube-dl

2352/14395 474 9337 6980 127 4517 97 10

zeit/next.js 205/3877 208 1336 254 1064 324 319 16
zxing/zxing 2/223 40 123 48 53 29 70 1



180 5.7. Conclusions

(a) Snapshot of the bug report [1].

(b) Snapshot of the responses to the bug report [1].

Figure 5.1: An snapshot of a bug report [1] which is missing a crash stack trace, as
well as the responses to it.



Chapter 5. The Significance of Bug Report Elements 181

5
1

0
1

5
2

0
2

5

Years of Professional Experience

Y
e

a
rs

Figure 5.2: The years of professional experience of the interview participants.

Figure 5.3: The identified themes after analysing the interview transcripts.



182 5.7. Conclusions

0
5

1
0

1
5

2
0

2
5

Years of Professional Experience

Y
e

a
rs

Figure 5.4: The figure presents the years of professional experience of the survey
participants.

R
e

p
ro

d
u

ct
io

n
 S

te
p

s/
T
e

st
s

S
ta

ck
 T

ra
ce

C
ra

sh
 D

e
sc

ri
p

tio
n

C
o

d
e

 S
n

ip
p

e
t

S
o

ft
w

a
re

 V
e

rs
io

n

F
ix

 S
u

g
g

e
st

io
n

U
se

r 
C

o
n

te
n

t

Not at all
Slightly
Moderately
Highly

The Extent of Importance of Bug Report Elements

0

50

100

150

200

250

300

Figure 5.7: Developers’ perception on the importance of various data for bug
resolution time.



Chapter 5. The Significance of Bug Report Elements 183

st
ac

k 
tr

ac
es

re
pr

od
uc

in
g 

st
ep

s

fix
 s

ug
ge

st
io

ns

us
er

 c
on

te
nt

s

co
de

 s
ni

pp
et

s

Average of Percentages

0

20

40

60

80

27.16% 27.07%

20.59%
14.23%

1.06%

Figure 5.8: Average percentages of various elements of bug reports.




