
Exploring means to facilitate software debugging
SOLTANI, M.S.

Citation
SOLTANI, M. S. (2020, August 25). Exploring means to facilitate software debugging.
Retrieved from https://hdl.handle.net/1887/135948
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/135948
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/135948


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/135948 holds various files of this Leiden University 
dissertation. 
 
Author: Soltani, M.S. 
Title: Exploring means to facilitate software debugging 
Issue Date: 2020-08-25 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/135948
https://openaccess.leidenuniv.nl/handle/1887/1�


4
Fitness Function Evaluation

EvoCrash is a recent search-based approach to generate a test case that reproduces
reported crashes. The search is guided by a fitness function that uses a weighted sum
scalarization to combine three different heuristics: (i) code coverage, (ii) crash cov-
erage and (iii) stack trace similarity. In this study, we propose and investigate two
alternatives to the weighted sum scalarization: (i) the simple sum scalarization and
(ii) the multi-objectivization, which decomposes the fitness function into several op-
timization objectives as an attempt to increase test case diversity. We implemented
the three alternative optimizations as an extension of EvoSuite, a popular search-
based unit test generator, and applied them on 33 real-world crashes. Our results
indicate that for complex crashes the weighted sum reduces the test case generation
time, compared to the simple sum, while for simpler crashes the effect is the oppos-
ite. Similarly, for complex crashes, multi-objectivization reduces test generation time
compared to optimizing with the weighted sum; we also observe one crash that can
be replicated only by multi-objectivization. Through our manual analysis, we found
out that when optimizing the original weighted function gets trapped in local optima,
optimization for decomposed objectives improves the search for crash reproduction.
Generally, while multi-objectivization is under-explored, our results are promising
and encourage further investigations of the approach.



124 4.1. Introduction

4.1 Introduction

Crash reproduction is an important step in debugging field crashes. Therefore, various
automated approaches to crash reproduction [65, 81, 173, 194, 202, 215] have been
proposed in the literature. Among these, EvoCrash [202] is a search-based approach,
which applies a Guided Genetic Algorithm (GGA) to generate a crash-reproducing
test. To optimize test generation for crash reproduction, the GGA uses a weighted-
sum scalarized function, which is a sum of three heuristics, namely: (i) line coverage,
(ii) exception coverage, and (iii) stack trace similarity rate. The function resulting
from the sum scalarization is further subject to the constraint that the target excep-
tion has to be thrown at the code line reported in the crash stack trace. Depending
on how close a generated test case may come to trigger a reported crash, its fitness
value may be between 0.0 (i.e., each of the three heuristics evaluates to 0.0), and
6.0 (i.e., none of the heuristics is satisfied by the generated test). Soltani et. al [202]
evaluated EvoCrash on 50 real-world crashes and showed that the search-based ap-
proach improved over other non-search-based approaches proposed in the related
literature [81,173,215].

As any search-based technique, the success of EvoCrash depends on its capability of
maintaining a good balance between exploitation and exploration [88]. The former
refers to the ability to visit regions of the search space within the neighborhood of
the current solutions (i.e., refining previously generated tests); the latter refers to
the ability to generate completely different new test cases. In crash reproduction, the
exploitation is guaranteed by the guided genetic operators that focus the search on
methods appearing in the crash stack trace [202]. However, such a depth and focused
search may lead to a low exploration power. Poor exploration results in low diversity
between the generated test cases and, consequently, the search process easily gets
trapped in local optima [88].

In this paper, we investigate two strategies to increase the diversity of generated test
cases for crash reproduction. While EvoCrash uses one single-objective fitness func-
tion to guide the search, prior studies in evolutionary computation showed that re-
laxing the constraints [87] or multi-objectivizing the fitness function [140] help pro-
moting diversity. Multi-objectivization is the process of (temporarily) decomposing
a single-objective fitness function into multiple sub-objectives to optimize simultan-
eously with multi-objective evolutionary algorithms. At the end of the search, the
global optimal solution of the single-objective problem is one of the points of the
Pareto front generated by the multi-objective algorithms. The decomposed objectives
should be as independent of each other as possible to avoid getting trapped in local
optima [140].



Chapter 4. Fitness Function Evaluation 125

Therefore, we study whether transforming the original weighted scalarized function
in EvoCrash into (i) a simple scalarized function via constraint relaxation, and (ii)
multiple decomposed objectives, impacts the crash reproduction rate, and test gener-
ation time. EvoCrash [202] relies on EvoSuite [103] for test generation, and as such,
we implemented the original weighted function as an extension of EvoSuite. Simil-
arly, we implemented the alternative optimization functions by extending EvoSuite.
We evaluated the alternatives on 33 real-world crashes from four open source pro-
jects. Our results show that indeed, when crashes are complex and require several
generations of test cases, using multi-objectivization reduces the test generation time
compared to the weighted scalarized function, and in turn, the weighted scalarized
function reduces test generation time compared to the simple scalarized function. Fur-
thermore, we observe that one crash can be fully replicated only by multi-objectivized
search and not by the two single-objective strategies. Generally, our results show that
problems that are single-objective by nature can benefit from multi-objectivization.
We believe that our findings will foster the usage of multi-objectivization in search-
based software engineering.

The remainder of the chapter is structured as follows: Section 4.2 provides back-
ground and related work. Section 4.3 describes single and multi-objectivization for
crash reproduction. Sections 4.4 and 4.5 present the evaluation and results, respect-
ively. Discussion follows in Section 4.6. Section 4.7 concludes.

4.2 Background and Related Work

Crash reproduction tools aim at generating a test case able to reproduce a given crash
based on the information gathered during the crash itself. This crash reproduction test
case can help developers to identify the fault causing the crash [81]. For Java pro-
grams, the available information usually consists of a stack trace, i.e., lists of classes,
methods and code lines involved in the crash. For instance, the following stack trace
has been generated by the test cases of LANG v9b from the Defects4J [135] dataset:

0 java.lang.ArrayIndexOutOfBoundsException:
1 at org.apache.commons.lang3.time.FastDateParser.toArray(FastDateParser.java:413)
2 at org.apache.commons.lang3.time.FastDateParser.getDisplayNames(FastDateParser
3 .java:381)
4 ...

It has a thrown exception (ArrayIndexOutOfBoundsException) and different
frames (lines 1 to 3), each one pointing to a method call in the source code.



126 4.2. Background and Related Work

4.2.1 Related Work

Over the years, various Java crash replication approaches that use stack traces as
input have been developed. RECORE [194] is a search-based approach that in addi-
tion to crash stack traces, uses core dumps as input data for automated test gener-
ation. MUCRASH [215] applies mutation operators on existing test cases, for classes
that are present in a reported stack trace, to trigger the reported crash. While BU-
GREDUX [134] is based on forward symbolic execution, STAR [81] is a more recent
approach that applies optimized backward symbolic execution on the method calls re-
corded in a stack trace in order to compute the input parameters that trigger the target
crash. JCHARMING [173] is also based on using crash stack traces as the only source of
information about a reported crash. JCHARMING [173] applies directed model check-
ing to identify the pre-conditions and input parameters that cause the target crash.
Finally, CONCRASH [65] is a recent approach that focuses on reproducing concurrency
crashes, in particular. CONCRASH applies pruning strategies to iteratively look for test
code that triggers the target crash in a thread interleaving.

More recently, Soltani et al. have proposed EVOCRASH [202], an evolutionary search-
based tool for crash replication built on top of EVOSUITE [105]. EvoCrash uses a
novel Guided Genetic Algorithm (GGA), which focuses the search on the method
calls that appear in the crash stack trace rather than maximizing coverage as in clas-
sical coverage-oriented GAs. Their empirical evaluation demonstrated that EvoCrash
outperforms other existing crash reproduction approaches.

4.2.2 EvoCrash

To design EvoCrash, Soltani et al. [202] defined a fitness function (weighted sum
fitness function) and a search algorithm (guided genetic algorithm) dedicated to crash
reproduction. The fitness function is used to characterize the “quality” of test case
generated during each iteration of the guided GA.

4.2.2.1 Weighted Sum (WS) Fitness Function

The three components of the WS fitness function are: (i) the coverage of the code
line (target statement) where the exception is thrown, (ii) the target exception has to
be thrown, and (iii) the similarity between the generated stack trace (if any) and the



Chapter 4. Fitness Function Evaluation 127

original one. Formally, the fitness function for a given test t is defined as [202]:

ƒ (t) =







3 × ds(t) + 2 ×m(decept) +m(dtrce) if the line is not reached
3 ×mn(ds) + 2 × decept(t) +m(dtrce) if the line is reached
3 ×mn(ds) + 2 ×mn(decept) + dtrce(t) if the exception is thrown

(4.1)
where ds(t) ∈ [0,1] denotes how far t is from executing the target statement using
two well-known heuristics, approach level and branch distance [201]. The approach
level measures the minimum number of control dependencies between the path of the
code executed by t and the target statement s. The branch distance scores how close
t is to satisfying the branch condition for the branch on which the target statement
is directly control dependent [160]. In Equation 4.1, decept(t) ∈ {0,1} is a bin-
ary value indicating whether the target exception is thrown (0) or not (1); dtrce(t)
measures the similarity of the generated stack trace with the expected one based on
methods, classes, and line numbers appearing in the stack traces; m(decept) and
m(dtrce) denote the maximum possible value for decept and dtrce, respect-
ively. Therefore, the last two addends of the fitness function (i.e., decept and dtrce)
are computed upon the satisfaction of two constraints. This is because the target ex-
ception has to be thrown in the target line s (first constraint) and the stack trace
similarity should be computed only if the target exception is actually thrown (second
constraint).

4.2.2.2 Guided Genetic Algorithm (GGA)

EvoCrash (as EvoSuite) generates test cases at the unit level, meaning that test cases
are generated by instrumenting and targeting one particular class (the target class).
Contrary to classical unit test generation, EvoCrash does not seek to maximize cover-
age by invoking all the methods of the target class, but privileges those involved in
the target failure. This is why the GGA algorithm relies on the stack trace to guide the
search and reduces the search space at different steps. (i) A target frame is selected
by the user amongst the different frames of the input stack trace. Usually, the target
frame is the last one in the crash trace as it corresponds to the root method call where
the exception was thrown. The class appearing in this target frame corresponds to the
target class for which a test case will be generated. (ii) The initial population of test
cases is generated in such a way that the method m of the target frame (the target
method) is called at least once in each test case [202]: either directly if m is public or
protected, or indirectly by calling another method that invokes the target method if
m is private. (iii) During the search, dedicated guided crossover and guided mutation
operators [202] ensure that newly generated test cases contain at least one call to the



128 4.3. Single-Objective and Multi-Objectivization for Crash Reproduction

target method. (iv) The search is guided by the WS fitness function. (v) Finally, the al-
gorithm stops if the time budget is consumed or when a zero-fitness value is achieved.
In this last case, the test case is minimized by a post-processing that removes randomly
inserted method calls that do not contribute to reproducing the crash.

4.3 Single-Objective and Multi-Objectivization for Crash
Reproduction

A key limitation of evolutionary algorithms (and metaheuristics in general) is that
they may become trapped in local optima due to diversity loss [88], a phenomenon
in which no modification (with crossover and mutation) of the current best solutions
will lead to discovering a better one. This phenomenon is quite common in white-box
unit-level test case/suite generation, as shown by previous studies in search-based
software testing [42, 99, 121, 138]. Many strategies have been investigated by the
evolutionary computation community to alleviate the problem of diversity loss, in-
cluding (i) combining different types of evolutionary algorithms [88,121], (ii) defin-
ing new genetic operators to better promote diversity [88, 93, 121], (iii) altering the
fitness function [88,113,140], and (iv) relaxing the constraints of the problem [87].

In the context of crash replication, most attention has been devoted to improving the
genetic operators [201,202] to better focus the search on method calls related to the
target crash. However, to the best of our knowledge, no previous study investigated
alternative formulations to the fitness function in Equation 4.1 and how they are
related to diversity and convergence to local optima. The original equation by Soltani
et al. [202] (i.e., Equation 4.1) combines three different factors into one single scalar
value based on some constraints. Given this type of equation, there are two possible
alternatives to investigate: (i) relaxing the constraints and (ii) split the fitness function
into three search objectives to optimize simultaneously. The next subsections describe
these two alternative formulations of the crash replication problem and how they are
related to test case diversity.

4.3.1 Constraints Relaxation

As explained in Section 4.2, the crash replication problem has been implicitly formu-
lated in previous studies as a constraint problem. The constraints are handled using
penalties [202], i.e., the fitness score of a test case is penalized by adding (or sub-
tracting in case of a maximization problem) a certain scalar value proportional to the



Chapter 4. Fitness Function Evaluation 129

number of constraints being violated. For example, in Equation 4.1 all test cases that
do not cover the target code line are penalized by the two addends 2×m(decept)
and m(dtrce) as there are two violated constraints (i.e., the line to cover and the
exception to throw in that line). Instead, tests that cover the target line but that do
not trigger the target exception are penalized by the factor m(dtrce) (only one
constraint is violated in this case).

While adding penalties is a well-known strategy to handle constraints in evolution-
ary algorithms [87], it may lead to diversity loss because any test not satisfying the
constraints have very low probability to survive across the generations. For example,
let us assume for example that we have two test cases t1 and t2 for the example
crash reported in Section 4.2. Now, let us assume that both test cases have a distance
ds = 1.0 (i.e., none of the two could cover the target line), but the former test could
generate an exception while the latter does not. Using Equation 4.1, the fitness value
for both t1 and t2 is ƒ (t1) = ƒ (t2) = 3 × ds + 3.0 = 6.0. However, t2 should be
promoted if it can generate the same target exception of the target crash (although
on a different line) and the generated trace is somehow similar to the original one
(e.g., some methods are shared).

Therefore, a first alternative to the fitness function in Equation 4.1 consists of relaxing
the constraints, i.e., removing the penalties. This can be easily implemented with a
Simple Sum Scalarization (SSS):

ƒ (t) = ds(t) + decept(t) + dtrce(t) (4.2)

where ds(t), decept(t) ∈ {0,1}, and dtrce(t) are the same as in Equation 4.1.
This relaxed variant —hereafter referred as simple sum scalarization— helps increase
test case diversity because test cases that lead to better decept(t) or dtrce(t) may
survive across the GGA generation independently from the value of ds(t), which was
not the case for the weighted sum, thanks to the constraints from Equation 4.1. On the
other hand, this reformulation may increase the number of local optima; therefore,
an empirical evaluation of weighted and simple sum variants to the fitness function
is needed.

4.3.2 Multi-objectivization

Knowles et al. [140] suggested to replace the original single-objective fitness function
of a problem with a set of new objectives in an attempt to promote diversity. This
process, called multi-objectivization (MO), can be performed in two ways [127,140]:
(i) by decomposing the single-objective function into multiple sub-objectives, or (ii)



130 4.3. Single-Objective and Multi-Objectivization for Crash Reproduction

by adding new objectives in addition to the original function. The multi-objectivized
problem can then be solved using a multi-objective evolutionary algorithm, such
as NSGA-II [93]. By definition, multi-objectivization preserves the global optimal
solution of the single-objective problem that, after problem transformation, becomes
a Pareto efficient solution, i.e., one point of the Pareto front generated by multi-
objective algorithms.

In our context, applying multi-objectivization is straightforward as the fitness function
in Equation 4.1 is defined as the weighted sum of three components. Therefore, our
multi-objectivized version of the crash replication problem consists of optimizing the
following three objectives:







ƒ1(t) = ds(t)
ƒ2(t) = decept(t)
ƒ3(t) = dtrce(t)

(4.3)

Test cases in this three-objectivized formulation are therefore compared (and selec-
ted) according to the concept of dominance and Pareto optimality. A test case t1 is
said to dominate another test t2 (t1 ≺p t2 in math notation), iff ƒ(t1) ≤ ƒ(t2) for
all  ∈ {1,2,3} and ƒj(t1) < ƒj(t2) for at least one objective ƒj. A test case t is said
Pareto optimal if there does not exist any another test case t3 such that t3 ≺p t1. For
instance, for the test cases (i.e., solutions) generated by a multi-objectivized (Multi-
obj.) search presented in Figure 4.1, A, B, and D dominate C, E, and F.

In our problem, there can be multiple non-dominated solutions within the population
generated by GGA at a given generation. These non-dominated solutions represent
the best trade-offs among the search objectives that have been discovered/gener-
ated during the search so far. Diversity is therefore promoted by considering all non-
dominated test cases (trade-offs) as equally good according to the dominance relation
and that are assigned the same probability to survive in the next generations.

It is worth noting that a test case t that replicates the target crash will achieve the
score ƒ1(t) = ƒ2(t) = ƒ3(t) = 0, which is the optimal value for all objectives. In
terms of optimality, t is the global optimum for the original single-objective problem
but it is also the single Pareto optimal solution because it dominates all other test
cases in the search space. This is exactly the main difference between classical multi-
objective search and multi-objectivization: in multi-objective search we are interested
in generating a well-distributed set of Pareto optimal solutions (or optimal trade-
offs); in multi-objectivization, some trade-offs are generated during the search (and
preserved to help diversity), but there is only one optimal test case, i.e., the one
reproducing the target crash.1

1Note that there might exist multiple tests that can replicate the target crash; however, these tests are



Chapter 4. Fitness Function Evaluation 131

A

C

D

E

F
B

ds

Multi-obj.

dt
ra
ce

A

C

E

F

ds

SSS

D

B

WSS

dt
ra
ce

A

C

E

F

dt
ra
ce

ds
D

B

(a) (b) (c)

Figure 4.1: A Graphical Interpretation of Different Fitness Functions

Non-dominated Sorting Genetic Algorithm II. To solve our multi-objectivized prob-
lem, we use NSGA-II [93], which is a well-known multi-objective genetic algorithm
(GA) that provides well-distributed Pareto fronts and good performance when deal-
ing with up to three objectives [93]. As any genetic algorithm, NSGA-II evolves an ini-
tial population of test cases using crossover and mutation; however, differently from
other GAs, the selection is performed using tournament selection and based on the
dominance relation and the crowding distance. The former plays a role during the non-
dominated sorting procedure, where solutions are ranked in non-dominance fronts ac-
cording to their dominance relation; non-dominated solutions have the highest prob-
ability to survive and to be selected for reproduction. The crowding distance is further
used to promote the more diverse test cases within the same non-dominance front.

In this paper, we implemented a guided variant of NSGA-II, where its genetic operators
are replaced with the guided crossover and guided mutation implemented in GGA. We
used these operators (i) to focus the search on the method call appearing in the
target trace and (ii) to guarantee a fair comparison with GGA by adopting the same
operators.

4.3.3 Graphical Interpretation

Figure 4.1 shows commonalities and differences among the tree alternative formula-
tions of the crash reproduction problem (see sections 4.3.1 and 4.3.2). For simplicity,
let us focus on only two objectives (ds and dtrce) and let us assume that we have
a set of generated tests which are shown as points in the bi-dimensional space de-
limited by the two objectives. As shown in Figure 4.1(c), points (test cases) in multi-
objectivization are compared in terms of non-dominance. In the example, the tests

coincident points as they will all have a zero-value for all objectives.



132 4.4. Empirical Evaluation

A, B, and D are non-dominated tests and all of them are assigned to the first non-
dominance front in NSGA-II, i.e., they have the same probability of being selected.
On the other hand, sum scalarization (either simple or weighted) projects all point to
one single vector, i.e., the blue lines in Figures 4.1(a) and 4.1(b). With weighted sum
scalarization (WSS), the vector of the aggregated fitness function is inclined to the
ds axis due to the higher weight of the line coverage penalty. In contrast, the vector
obtained with simple sum scalarization (SSS) is the bisector of the first quadrant, i.e.,
both objectives share the same weights. While in both Figure 4.1(a) and 4.1(b), the
best solution (point A) is the one closer to the origin of the axes, the order of the
solutions (and their selection probability) can vary. For instance, we can see in the
Figure that case C is a better choice than case D in the weighted sum because it has a
lower value for ds. But, case D is better than C in the simple sum. These differences
in the selection procedure may lead the search toward exploring/exploiting different
regions of the search space.

4.4 Empirical Evaluation

We conducted an empirical evaluation to assess the impact of the single objective or
multi objectivization fitness functions, answering the following research questions:

RQ1 How does crash reproduction with simple sum scalarization compare to crash re-
production using weighted sum scalarization?

RQ2 How does crash reproduction with a multi-objectivized optimization function com-
pare to crash reproduction using weighted sum scalarization?

Comparisons for RQ1 and RQ2 are done by considering the number of crashes re-
produced (crash coverage rate) and the time taken by EvoCrash to generate a crash
reproducing test case (test generation time).

4.4.1 Setup

To perform our evaluation, we randomly selected 33 crashes from five open source
projects: 18 crashes from four projects contained in Defects4J [135], which is a well-
known collection of bugs from popular libraries; and 12 crashes from XWiki,2 a web
application project developed by our industrial partner.

2http://www.xwiki.org/



Chapter 4. Fitness Function Evaluation 133

Table 4.1: Crashes used in the study.

Exception Type Defects4J XWiki

NullPointerException (NPE) 9 9
ArrayIndexOutOfBoundsExceptions (AIOOBE) 7 0
ClassCastException (CCE) 2 3

We execute the EvoSuite extensions, with the three approaches (weighted sum, simple
sum, and multi-objectivization), on 23 virtual machines. Each machine has 8 CPU-
cores, 32 GB of memory, and a 1TB shared hard drive. All of them run CentOs Linux
release 7.4.1708 as operating system, with OpenJDK version 1.8.0-151.

For each crash c, we run each approach in order to generate a test case that repro-
duces c and targeting each frame one by one, starting from the highest one (the last
one in the stack frame). As soon as one of the approaches is able to generate a test
case for the given frame (k), we stop the execution and do not try to generate test
cases for the lower frames (< k). To address the random nature of the evaluated
search approaches, we execute each approach 15 times on each frame for a total
number of 12,022 executions independent runs.

Parameter settings. We use the default parameter configurations from EvoSuite with
functional mocking to minimize the risk of environmental interactions and increase
the coverage [56]. We set the search budget to 10 minutes, which is double of the
maximal amount reported by Soltani et al. [202].

4.4.2 Analysis

Since the crash coverage data is a binary distribution (i.e., a crash is reproduced
or not), we use the Odds Ratio (OR) to measure the impact of the single or multi-
objectivization on the crash coverage rate. A value of OR > 1 for comparing a pair
of factors (A,B) indicates that the coverage rate increases when factor A is applied,
while a value of OR < 1 indicates the opposite. A value of OR = 1 indicates that there
is no difference between A and B. In addition, we use Fisher’s exact test, with α=0.05
for Type I errors to assess the significance of the results. A p-value < 0.05 indicates
the observed impact on the coverage rate is statistically significant, while a value of
p-value > 0.05 indicates the opposite.

Furthermore, we use the Vargha-Delaney Â12 statistic [207] to assess the effect size of
the differences between the two sum scalarization approaches or between weighted
sum and multi-objectivization for test generation time. A value of Â12 < 0.5 for a pair



134 4.5. Results

of factors (A,B) indicates that A reduces the test generation time, while a value of
Â12 > 0.5 indicates that B reduces the generation time. If Â12 = 0.5, there is no dif-
ference between A and B on generation time. To check whether the observed impacts
are statistically significant, we used the non-parametric Wilcoxon Rank Sum test, with
α=0.05 for Type I error. P-values smaller than 0.05 indicate that the observed dif-
ference in the test generation time is statistically significant.

4.5 Results

In this section, we present the results of the experiments. Thereby, we answer the two
research questions on comparing simple and weighted sum aggregation functions as
well as weighted sum and multi-objectivization for crash reproduction.

Results (RQ1). Table 4.2 (please see the end of the chapter) presents the crash re-
production results for the 33 crashes used in the experiment. As the table shows, 21
cases were reproduced using the original weighted sum scalarized function, while 20
cases were reproduced using simple sum scalarization. Thus, MATH-32b is only re-
produced by the weighted sum approach. Both optimization approaches reproduced
the crashes at the same frame level.

As Table 4.3 (please see the end of the chapter) shows, we do not observe any statistic-
ally significant impact on the crash reproduction rate, comparing weighted and simple
sum scalarization. However, for one case, XWIKI-13031, the odds ratio measure is
6.5, which indicates that the rate of crash reproduction using the weighted scalarized
function is 6.5 times larger than the reproduction rate of using the simple scalar-
ized function. In this case, the p value is 0.1, therefore we cannot draw a statistically
significant conclusion.

For four cases, we see a significant impact on the test generation time. Based on
our manual analysis, we observe that when a crash (XWIKI-13031) is complex,
i.e., it takes several generations to produce a crash reproducing test case, weighted
sum reduces execution time. However, when a crash, e.g., XWIKI-13377, is easy to
reproduce, then weighted sum takes longer to find a crash reproducing test.

Results (RQ2). Table 4.2 shows that 22 cases were reproduced using decomposed
crash optimization objectives, while 21 cases were reproduced by the original weighted
sum function. XWIKI-14475 is reproduced by the multi-objectivized approach only.

As Table 4.3 shows, in most cases, we do not observe any impact on the rate of
crash coverage. However, for MATH-81b and LANG-57b, the odds ratio measures are



Chapter 4. Fitness Function Evaluation 135

4.8 and 1.7 respectively, which indicates that the rate of crash reproduction using
multi-objectivized optimization is 4.8 times and 1.7 times higher than the rate of
reproduction using the weighted sum function. For these cases, the p-values are 0.3
and 0.6 respectively, therefore, we cannot draw a statistically significant conclusion
yet.

Moreover, as Table 4.3 shows, for six cases, namely: MATH-100b, MATH-32b, MATH-
4b, MATH-98b, XWIKI-13031, and XWIKI-14319, we observe that using multi-
objectivization reduces the time for test generation (as Â12 measures are lower than
0.5). For all these cases, the p values are lower than 0.05, which indicates the ob-
served impacts are statistically significant. On the other hand, for four other cases,
namely: LANG-33b, LANG-39b, LANG-47b, and MATH-70b, we observe an op-
posite trend, i.e., the weighted sum achieves a lower test generation time (as the Â12
measures are larger than 0.5). Based on our manual analysis, as also indicated by the
average execution time values reported in Table 4.2, when a crash is complex and
the search requires several generations (e.g., XWIKI-13031), multi-objectivization
reduces the execution time. On the other hand, when a crash is easy to be reproduced
and a few generations of test cases quickly converge to a global optimum, then using
the weighted sum approach is more efficient.

4.6 Discussion

As Table 4.3 shows, for only one case, XWIKI-13031, the weighted sum is more effi-
cient than the simple sum, while for two other cases, XWIKI-13377 and CHART-4b,
the simple sum is more efficient. From our manual analysis of these cases, we see
that when the target line is covered in a few seconds (when initializing the first pop-
ulation), the simple sum is more efficient than the weighted sum. However, when
more search iterations (generations) are needed to find a test that reaches the target
line, like for XWIKI-13031, the weighted sum is much faster. As indicated in Section
4.3, while using weights in single-objective optimization may reduce the likelihood of
getting stuck in local optima, it may accept solutions that trigger the target exception
but not at the target code line. Therefore, a possible explanation for these cases is
that while maintaining diversity improves efficiency to a small degree, relaxing the
constraints may penalize the exploitation. In practice, since it is not possible to know
a priori when getting stuck in local optima occurs, using weighted sum (that provides
more guidance, thanks to the constraints it takes into account) seems a more reliable
approach, which might be few seconds less efficient compared to simple sum (in some
cases).



136 4.6. Discussion

As Knowles et. al [140] discussed, when applying multi-objectivization, for a success-
ful search, it is important to derive independent objectives. In our multi-objectivization
approach, as presented in Section 4.3, we decompose the three heuristics in the ori-
ginal scalarized function into three optimization objectives. However, these objectives
are not entirely independent of each other; line coverage is interrelated to the stack
trace similarity. Thus, if the target line is not covered, the stack trace similarity will
never converge to 0.0. This can be one possible explanation for why when the target
frame is one, single-objective optimization performed better for most cases in our ex-
periments. The fewer frames to reproduce, the stronger the interrelation between the
two objectives is.

Furthermore, we observe that when a crash is complex and requires several gener-
ations to be reproduced, the multi-objectivized approach performs more efficiently
than single-objective optimization. On the other hand, when crashes can be repro-
duced in few generations (i.e., the target line is covered by the initial population of
GAs and evolution is mostly needed for triggering the same crash), then the single-
objective approach is more efficient. This is due to the cost of the fast non-domination
sorting algorithm in NSGA-II [93], whose computational complexity is O(MN2), where
M is the number of objectives and N is the population size. Instead, the computational
complexity of the selection in a single-objective GA is O(M), where N is the population
size. Thus, sorting/selecting individuals is computationally more expensive in NSGA-
II and it is worthwhile only when converging to 0.0 requires effective exploration
through the enhanced diversity in NSGA-II.

Insights. From our results and discussion, we formulate the following insights: (i) pre-
fer multi-objectivization, as it substantially reduces the execution time for com-
plex crashes (up to three minutes) and the time loss for simple crashes is small
(few seconds on average); furthermore, it allows to reproduce one additional crash
that weighted sum could not reproduce; (ii) Alternatively, use a hybrid search that
switches from weighted sum to multi-objectivized search when the execution time is
above a certain threshold (20 seconds in our case) or if the target code line is not
covered within the first few generations; and finally, (iii) Avoid simple sum scalariz-
ation as it may get stuck into local optima (multi-objectivization).

Threats to validity. We randomly selected 33 crashes from five different open source
projects for our evaluation. Those crashes come from Defects4J, a collection of defects
from popular libraries, and from the issue tracker of our industrial partner, ensuring
diversity in the considered projects. In addition, the selected crashes contain three
types of commonly occurring exceptions. While we did not analyze the exception
types, they may be a factor that impacts the test generation time and crash reproduc-



Chapter 4. Fitness Function Evaluation 137

tion rate. Finally, our extension to EvoSuite may contain unknown defects. To mitigate
this risk, in addition to testing the extensions, the first three authors reviewed the ar-
tifacts independently.

4.7 Conclusion

Crash reproduction is an important step in the process of debugging field crashes that
are reported by end users. Several automated approaches to crash reproduction have
been proposed in the literature to help developers debug field crashes. EvoCrash is
a recent approach which applies a Guided Genetic Algorithm (GGA) to generate a
crash reproducing test case. GGA uses a weighted scalarized function to optimize test
generation for crash reproduction. In this study, we apply the GGA approach as an
extension of EvoSuite and show that using a weighted sum scalarization fitness func-
tion improves test generation compared to a simple sum scalarization fitness func-
tion when reproducing complex crashes. Moreover, we also investigate the impact of
decomposing the scalarized function into multiple optimization functions. Similarly,
compared to using the weighted scalarized function, we observe that applying multi-
objectivization improves the test generation time when reproducing complex crashes
requiring several generations of test case evolution.

In general, we believe that multi-objectivization is under-explored to tackle (by-nature-
) single-objective problems in search-based software testing. Our results on multi-
objectivization by decomposition of the fitness function for crash reproduction are
promising. This calls for the application of this technique to other (by-nature-) single-
objective search-based problems.



138 4.7. Conclusion

Table 4.2: Experiment results for Multi-objectivized (Multi-obj.), Weighted (WSS) and
Simple Sum (SSS) Scalarization. "-" indicates that the optimization approach did not
reproduce the crash. Bold cases represent the crashes only reproduced by some of the
approaches, not all. Rep., T., and SD indicate reproduction rate, average execution
time, and standard deviation, respectively.

Multi-obj. WSS SSS
Crash ID Exception Frame Rep. T SD Rep. T SD Rep. T SD

CHART-4b NPE 6 15 16.5 1.4 15 16.6 1.4 15 14.8 1.3
LANG-12b AIOOBE 2 15 2.5 0.3 15 2.5 0.5 15 2.4 0.5
LANG-33b NPE 1 15 1.7 0.0 15 1.0 0.2 15 1.0 0.0
LANG-39b NPE 2 15 2.7 1.0 15 1.1 0.5 15 1.6 1.2
LANG-47b NPE 1 15 3.4 1.3 15 2.1 1.1 15 1.0 0.7
LANG-57b NPE 1 11 1.1 0.0 9 185.0 288.0 12 86.1 218.1
LANG-9b AIOOBE - - - -
MATH-100b AIOOBE 1 15 8.4 13.4 15 7.2 1.7 15 8.2 7.3
MATH-32b CCE 1 15 3.9 0.9 15 5.3 2.5 -
MATH-4b NPE 3 15 27.3 49.2 14 21.7 16.1 14 62.0 150.0
MATH-70b NPE 3 15 1.7 0.2 15 1.1 0.3 15 1.0 0.0
MATH-79b NPE 1 15 1.7 0.1 15 1.0 0.2 15 1.0 0.0
MATH-81b AIOOBE 6 9 82.0 63.0 11 180.7 230.5 15 115.0 114.0
MATH-98b AIOOBE 1 15 7.7 5.3 14 9.5 5.7 15 9.9 9.7
MOCKITO-12b CCE - - - -
MOCKITO-34b AIOOBE - - - -
MOCKITO-36b NPE 1 15 10.9 6.9 15 9.2 7.5 15 13.7 11.3
MOCKITO-38b NPE - - - -
MOCKITO-3b AIOOBE - - - -
XRENDERING-418 NPE - - - -
XWIKI-12482 NPE - - - -
XWIKI-12584 CCE - - - -
XWIKI-13031 CCE 3 15 25.8 17.4 15 47.2 67.0 10 249.0 175.0
XWIKI-13096 NPE - - - -
XWIKI-13303 NPE - - - -
XWIKI-13316 NPE 2 15 37.9 47.7 15 16.6 34.6 15 31.3 86.8
XWIKI-13377 CCE 1 15 10.7 8.6 15 11.8 7.7 15 4.8 3.9
XWIKI-13616 NPE 3 15 4.1 0.1 15 4.0 0.0 15 4.0 0.0
XWIKI-14227 NPE - - - -
XWIKI-14319 NPE 1 15 87.0 21.2 15 89.4 17.5 15 87.8 15.2
XWIKI-14475 NPE 1 15 117.1 53.6 - -
XWIKI-13916 CCE 1 15 59.7 19.8 14 65.0 13.6 15 57.6 13.8
XWIKI-14612 NPE 1 15 8.9 2.0 15 8.7 1.8 15 8.5 2.4



Chapter 4. Fitness Function Evaluation 139

Table 4.3: Comparing coverage rate and test generation time between the optimiz-
ation approaches, for cases where both optimization approaches in each pair repro-
duces the crash. P-values for both Wilcoxon tests and odds ratios are reported. Effect
sizes and p-values of the comparisons are in bold when the p-values are lower than
0.05.

Multi-Weighted Weighted-Simple
Crash ID Exception Fr. Â12 p OR p Â12 p OR p

CHART-4b NPE 6 0.3 0.30 0.0 1.0 0.8 <0.01 0.0 1.00
LANG-12b AIOOBE 2 0.5 0.50 0.0 1.0 0.4 0.70 0.0 1.00
LANG-33b NPE 1 0.9 <0.01 0.0 1.0 0.5 0.30 0.0 1.00
LANG-39b NPE 2 0.9 <0.01 0.0 1.0 0.4 0.10 0.0 1.00
LANG-47b NPE 1 0.9 <0.01 0.0 1.0 0.4 0.70 0.0 1.00
LANG-57b NPE 1 0.6 0.20 1.7 0.6 0.5 0.60 0.3 0.40
MATH-100b AIOOBE 1 0.1 <0.01 0.0 1.0 0.5 0.40 0.0 1.00
MATH-32b CCE 2 0.3 <0.01 0.0 0.5 0.4 0.50 0.0 1.00
MATH-4b NPE 3 0.4 0.04 1.0 1.0 0.4 0.70 1.0 1.00
MATH-70b NPE 3 0.8 <0.01 0.0 1.0 0.5 0.10 0.0 1.00
MATH-81b AIOOBE 6 0.5 0.60 4.8 0.3 0.5 0.50 0.0 0.09
MATH-98b AIOOBE 1 0.3 <0.01 0.0 1.0 0.6 0.20 0.0 1.00
MOCKITO-36b NPE 1 0.2 0.60 0.0 1.0 0.3 0.30 Inf 1.00
XWIKI-13031 CCE 3 0.3 0.03 Inf 1.0 0.1 <0.01 6.5 0.10
XWIKI-13316 NPE 2 0.6 0.09 0.0 1.0 0.6 0.10 0.0 1.00
XWIKI-13377 CCE 1 0.6 0.50 0.0 1.0 0.7 0.01 0.0 1.00
XWIKI-13616 NPE 3 0.5 <0.01 0.0 1.0 0.5 <0.01 0.0 1.00
XWIKI-14319 NPE 1 0.4 <0.01 0.0 1.0 0.5 0.70 0.0 1.00
XWIKI-13916 CCE 1 0.3 0.60 0.0 1.0 0.6 0.08 0.0 1.00
XWIKI-14612 NPE 1 0.5 0.40 0.0 1.0 0.4 0.70 0.0 1.00




