
Exploring means to facilitate software debugging
SOLTANI, M.S.

Citation
SOLTANI, M. S. (2020, August 25). Exploring means to facilitate software debugging.
Retrieved from https://hdl.handle.net/1887/135948

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/135948

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/135948

Cover Page

The handle http://hdl.handle.net/1887/135948 holds various files of this Leiden University
dissertation.

Author: Soltani, M.S.
Title: Exploring means to facilitate software debugging
Issue Date: 2020-08-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/135948
https://openaccess.leidenuniv.nl/handle/1887/1�

3
Large-scale Evaluation of EvoCrash

Crash reproduction approaches help developers during debugging by generating a
test case that reproduces a given crash. Several solutions have been proposed to
automate this task. However, the proposed solutions have been evaluated on a lim-
ited number of projects, making comparison difficult. In this paper, we enhance this
line of research by proposing JCrashPack, an extensible benchmark for Java crash
reproduction, together with ExRunner, a tool to simply and systematically run eval-
uations. JCrashPack contains 200 stack traces from various Java projects, including
industrial open source ones, on which we run an extensive evaluation of EvoCrash,
the state-of-the-art tool for search-based crash reproduction. EvoCrash successfully
reproduced 43% of the crashes. Furthermore, we observed that reproducing Null-
PointerException, IllegalArgumentException, and IllegalStateException is relatively
easier than reproducing ClassCastException, ArrayIndexOutOfBoundsException and
StringIndexOutOfBoundsException. Our results include a detailed manual analysis of
EvoCrash outputs, from which we derive 14 current challenges for crash reproduc-
tion, among which the generation of input data and the handling of abstract and
anonymous classes are the most frequents. Finally, based on those challenges, we
discuss future research directions for search-based crash reproduction for Java.

3.1 Introduction

Software crashes commonly occur in operating environments and are reported to de-
velopers for inspection. When debugging, reproducing a reported crash is among the

74 3.1. Introduction

tasks a developer needs to do in order to identify the conditions under which the
reported crash is triggered [221]. To help developers in this process, various auto-
mated techniques have been suggested. These techniques typically either use program
runtime data [?, 58, 64, 76, 114, 169, 194, 205] or crash stack traces [65, 81, 173, 202,
215] to generate a test case that triggers the reported crash.

When available, runtime data offer more information to accurately reproduce a crash.
However, it also raises various concerns (for instance, privacy violation) and may in-
duce a significant overhead during data collection [81,173,194]. Instead, we focus on
crash reproduction based on a crash stack trace generated by a failing system. Practic-
ally, those stack traces are collected from the logs produced by the operating environ-
ment or reported by users in an issue tracking system. Various auromated crash stack
trace-based reproduction approaches have been implemented and evaluated on dif-
ferent benchmarks [81,173,202,215]. However, those benchmarks contains a limited
number of crashes and associated stack traces.

In a recent study, we presented a search-based approach called EvoCrash, which ap-
plies a guided genetic algorithm to search for a crash reproducing test case [202], and
demonstrated its relevance for debugging [204]. We conducted an empirical evalu-
ation on 54 crashes from commonly used utility libraries to compare EvoCrash with
state-of-the-art techniques for crash reproduction [202]. This was enough to show
that the search-based crash reproduction outperformed other approaches based on
backward symbolic execution [81], test case mutation [215], and model-checking
[173], evaluated on smaller benchmarks.

However, all those crashes benchmarks were not selected to reflect challenges that
are likely to occur in real life stack traces, raising threats to external validity. Thus the
questions whether the selected applications and crashes were sufficiently represent-
ative, if EvoCrash will work in other contexts, and what limitations are still there to
address, remained unanswered.

The goal of this paper is to facilitate sound empirical evaluation on automated crash
reproduction approaches. To that end, we devise a new benchmark of real-world
crashes, called JCrashPack. It contains 200 crashes from seven actively maintained
open-source and industrial projects. These projects vary in their domain application
and include an enterprise wiki application, a distributed RESTful search engine, sev-
eral popular APIs, and a mocking framework for unit testing Java programs. JCrash-
Pack is extensible, and can be used for large-scale evaluation and comparison of auto-
mated crash reproduction techniques for Java programs.

To illustrate the use of JCrashPack, we adopt it to extend the reported evaluation on
EvoCrash [202] and identify the areas where the approach can be improved. In this

Chapter 3. Large-scale Evaluation of EvoCrash 75

experience report, we provide an account of the cases that were successfully repro-
duced by EvoCrash (87 crashes out of 200). We also analyze all failed reproductions
and distill 14 categories of research and engineering limitations that negatively af-
fected reproducing crashes in our study. Some of those limitations are in line with
challenges commonly reported for search-based structural software testing in the
community [105, 161, 214] and others are specific to search-based crash reproduc-
tion.

Our categorization of challenges indicates that environmental dependencies, code
complexity, and limitations of automated input data generation often hinder success-
ful crash reproduction. In addition, stack frames (i.e., lines in a stack trace), pointing
to varying types of program elements, such as interfaces, abstract classes, and an-
onymous objects, influence the extent to which a stack trace-based approach to crash
reproduction is effective.

Finally, we observe that the percentage of successfully reproduced crashes drops from
85% (46 crashes out of 54 reported by Soltani et al. [204]) to 43% (87 out of 200)
when evaluating crashes that are from industrial projects. In our observations, gen-
erating input data for microservices, and unit testing for classes with environmental
dependencies, which may frequently exist in enterprise applications, are among the
major reasons for the observed drop in the reproduction rate. These results are con-
sistent with the paradigm shift to context-based software engineering research that
has been proposed by Briand et al. [72].

The key contributions of our paper are:

• JCrashPack,1 a carefully composed benchmark of 200 crashes, as well as their
correct system version and its libraries, from seven real-world Java projects,
together with an account of our manual analysis on the characteristics of the
selected crashes and their constituting frames, including size of the stack traces,
complexity measures, and identification of buggy and fixed versions.

• ExRunner,2 a Python library for automatically running experiments with crash
reproduction tools in Java.

• Empirical evidence,3 demonstrating the effectiveness of search-based crash re-
production on real world crashes taken from JCrashPack.

1Available at https://github.com/STAMP-project/JCrashPack.
2Available at https://github.com/STAMP-project/ExRunner
3A replication package for EvoCrash results, their automated analysis, and the res-

ults of our manual analysis is available at https://github.com/STAMP-project/
EvoCrash-JCrashPack-application.

https://github.com/STAMP-project/JCrashPack
https://github.com/STAMP-project/ExRunner
https://github.com/STAMP-project/EvoCrash-JCrashPack-application
https://github.com/STAMP-project/EvoCrash-JCrashPack-application

76 3.2. Background and related work

• The identification of 14 categories of research and engineering challenges for
search-based crash reproduction that need to be addressed in order to facilitate
uptake in practice of crash reproduction research.

The remainder of the chapter is structured as follows: Section 3.2 presents back-
ground on crash reproduction. Sections 3.3 to 3.5 describe the design protocol for
the benchmark, the resulting benchmark JCrashPack, as well as the ExRunner tool to
run experiments on JCrashPack. Sections 3.6 to 3.8 cover the experimental setup for
the EvoCrash evaluation, the results from our evaluation, and the results challenges
that we identified through our evaluation. Sections 3.9 to 3.12 provide a discussion
of our results and future research directions, an analysis of the threats to validity, and
a summary of our overall conclusions.

3.2 Background and related work

3.2.1 Crash reproduction

Crash reproduction approaches can be divided into three categories, based on the kind
of data used for crash reproduction: record-replay approaches record data from the
running program; post-failure approaches collect data from the crash, like a memory
dump; and stack-trace based post-failure use only the stack trace produced by the
crash. We briefly describe each category hereafter.

Record-replay approaches.

These approaches record the program runtime data and use them during crash re-
production. The main limitation is the availability of the required data. Monitoring
software execution may violate privacy by collecting sensitive data, the monitoring
process can be an expensive task for the large scale software and may induce a sig-
nificant overhead [81, 173, 194]. Tools like ReCrash [58], ADDA [?], Bugnet [169],
jRapture [205], MoTiF [114], Chronicler [64], and SymCrash [76] fall in this cat-
egory.

Post-failure approaches.

Tools from this category use the software data collected directly after the occurrence
of a failure. For instance, RECORE [194] applies a search-based approach to repro-
duce a crash. RECORE requires both a stack trace and a core dump, produced by the
system when the crash happened, to guide the search. Although these tools limit the
quantity of monitored and recorded data, the availability of such data still repres-

Chapter 3. Large-scale Evaluation of EvoCrash 77

Table 3.1: The crash stack trace for Apache Ant-49755.

java.lang.NullPointerException:
Level Frame

1 at org.apache.tools.ant.util.FileUtils.createTempFile(FileUtils.java:888)
2 at org.apache.tools.ant.taskdefs.TempFile.execute(TempFile.java:158)
3 at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java

:291)

ents a challenge. For instance, if the crash is reported trough an issue tracking system
or if the core dump contains sensitive data. Other post-failure approaches inlcude:
DESCRY [217], and other tools by Weeratunge et al. [208], Leitner et al. [150, 151],
or Kifetew et al. [136,137].

Stack-trace based post-failure.

Recent studies in crash reproduction [65, 81, 173, 202, 215] focuses on utilizing data
only from a given crash stack trace to enhance the practical application of the tools.
For instance, in contrast to the previously introduced approaches, EvoCrash only con-
siders the stack trace (usually provided when a bug is reported in an issue tracker)
and a distance, similar to the one described by Rossler et al. [194], to guide the search.
Table 3.1 illustrates an example of a crash stack trace from Apache Ant4 [46] which
is comprised of a crash type (java.lang.NullPointerException) and a stack
of frames pointing to all method calls that were involved in the execution when the
crash happened. From a crash stack frame, we can retrieve information about: the
crashing method, the line number in the method where the crash happened, and the
fully qualifying name of the class where the crashing method is declared.

The state of the research in crash reproduction [65,81,134,173,202,215,219] aims
at generating test code that, once executed, produces a stack trace that is as sim-
ilar to the original one as possible. They, however, differ in their means to achieve
this task: for instance, ESD [219] and BugRedux [134] use forward symbolic execu-
tion; STAR [81] applies optimized backward symbolic execution and a novel tech-
nique for method sequence composition; JCHARMING [173] applies model check-
ing; MuCrash [215] is based on exploiting existing test cases that are written by
developers, and mutating them until they trigger the target crash; and Concrash [65]
focuses on reproducing concurrency failures that violate thread-safety of a class by
using search pruning strategies.

4ANT-49755: https://bz.apache.org/bugzilla/show_bug.cgi?id=49755

https://bz.apache.org/bugzilla/show_bug.cgi?id=49755

78 3.2. Background and related work

3.2.2 Search-based crash reproduction with EvoCrash

Search-based algorithms have been increasingly used for software engineering prob-
lems since they are shown to suite complex, non-linear problems, with multiple op-
timization objectives which may be in conflict or competing [120]. Recently, Soltani
et al. [202, 204] introduced a search-based approach to crash reproduction, called
EvoCrash. EvoCrash applies a guided genetic algorithm to search for a unit test that
reproduces the target crash. To generate the unit tests, EvoCrash relies on a search-
based test generator called EvoSuite [103].

EvoCrash takes as input a stack trace with one of its frames set as the target frame.
The target frame is composed of a target class, the class to which the exception has
been propagated, a target method, the method in that class, and a target line, the
line in that method where the exception has been propagated. Then, it seeks to gen-
erate a unit test which replicates the given stack trace from the target frame (at
level n) to the deepest frame (at level 1). For instance, if we pass the stack trace in
Table 3.1 as the given trace and indicate the second frame as the target frame (level
2), the output of EvoCrash will be a unit test for the class TempFile which replic-
ates first two frames of the given stack trace with the same type of the exception
(NullPointerException).

3.2.2.1 Guided genetic algorithm

The search process in EvoCrash begins by randomly generating unit tests for the target
frame. In this phase, called guided initialization, the target method corresponding to
the selected frame (i.e., the failing method to which the exception is propagated)
is injected in every randomly generated unit test. During subsequent phases of the
search, guided crossover and guided mutation, standard evolutionary operations are
applied to the unit tests. However, applying these operations involves the risk of losing
the injected failing method. Therefore, the algorithm ensures that only unit tests with
the injected failing method call remain in the evolution loop. If the generated test by
crossover does not contain the failing method, the algorithm replaces it with one of
its parents. Also, if after a mutation, the resulting test does not contain the failing
method, the algorithm redoes the mutation until the the failing method is added to
the test again. The search process continues until either the search budget is over or
a crash reproducing test case is found.

To evaluate the generated tests, EvoCrash applies the following weighted sum fitness

Chapter 3. Large-scale Evaluation of EvoCrash 79

function [204] to a generated test t:

ƒ (t) =

3 × ds(t) + 2 ×m(decept) +m(dtrce) if the line is not reached
3 ×mn(ds) + 2 × decept(t) +m(dtrce) if the line is reached
3 ×mn(ds) + 2 ×mn(decept) + dtrce(t) if the exception is thrown

(3.1)
Where:

• ds ∈ [0,1] indicates the distance between the execution of t and the target
statement s located at the target line. This distance is computed using the ap-
proach level, measuring the minimum number of control dependencies between
the path of the code executed by t and s, and normalized branch distance, scor-
ing how close t is to satisfying the branch condition for the branch on whichs is
directly control dependent [160]. If the target line is reached by the test case,
d(t) equals to 0.0;

• decept(t) ∈ {0,1} indicates if the target exception is thrown (de = 0) or not
(de = 1);

• dtrce(t) ∈ [0,1] indicates the similarity of the input stack trace and the one
generated by t by looking at class names, methods names and line numbers;

• m(·) denotes the maximum possible value for the function.

Since the stack trace similarity is relevant only if the expected exception is thrown
by t, and the check whether the expected exception is thrown or not is relevant only
if the target line where the exception propagates is reached, decept and dtrce are
computed only upon the satisfaction of two constraints: the target exception has to be
thrown in the target line s and the stack trace similarity should be computed only if
the target exception is actually thrown.

Unlike other stack trace similarity measures (e.g., [194]), Soltani et al. [204] do not
require two stack traces to share the same common prefix to avoid rejecting stack
traces where the difference is only in one intermediate frame. Instead, for each frame,
dtrce(t) looks at the closest frame and compute a distance value. Formally, for an
original stack trace S∗ and a test case t producing a stack trace S, dtrce(t) is defined
as follows:

dtrce(t) = φ

∑

ƒ∗∈S∗
mn{dƒ ƒ (ƒ∗, ƒ) : ƒ ∈ S}

!

(3.2)

Where φ() = /(+1) is a normalization function [160] and dƒ ƒ (ƒ∗, ƒ)measures

80 3.3. Benchmark design

the difference between two frames as follows:

dƒ ƒ (ƒ∗, ƒ) =

3 if the classes are different
2 if the classes are equal but the methods are different
φ (|∗ −|) otherwise

(3.3)
Where (resp. ∗) is the line number of the frame ƒ (resp. ƒ∗).

Each of the three components if the fitness function defined in Equation 3.1 ranges
from 0.0 to 1.0, the overall fitness value for a given test case ranges from 0.0 (crash
is fully reproduced) to 6.0 (no test was generated), depending on the conditions it
satisfies.

3.2.2.2 Comparison with the state-of-the-art

Crash reproduction tools. Table 3.2 presents the number of crashes used in the
benchmarks used to evaluated stack-trace based post-failure crash reproduction tools
as well as their crash reproduction rates. EvoCrash has been evaluated on various
crashes reported in other studies and has the highest reproduction rate.

EvoSuite. Table 3.2 also reports the comparison of EvoCrash with EvoSuite, using
exception coverage as the primary objective, applied by Soltani et al. [204]. All the
crashes reproduced by EvoSuite could also be reproduced by EvoCrash on average
170% faster and with a higher reproduction rate.

3.3 Benchmark design

Benchmarking is a common practice to assess a new technique and compare it to the
state of the art [199]. For instance, SF110 [105] is a sample of 100 Java projects from
SourceForge, and 10 popular Java projects from GitHub, that may be used to assess
(search based) test case selection techniques. In the same way, Defects4J [135] is a
collection of bugs coming from popular open-source projects: for each bug, a buggy
and a fixed version of the projects, as well as bug revealing test case, are provided.
Defects4J is aimed to assess various testing techniques like test case selection or fault
localization.

In their previous work, Soltani et al. [202], Xuan et al. [215], and Chen and Kim [81]
used Apache Commons Collections [47], Apache Ant [46], and Apache Log4j [48]
libraries. In addition to Apache Ant and Apache Log4j, Nayrolles et al. [173] used
bug reports from 8 other open-source software.

Chapter 3. Large-scale Evaluation of EvoCrash 81

Table 3.2: The number of crashes used in each crash reproduction tool experiment,
the gained reproduction by them, and the involved projects.

Tool Reproduced/Total Rate Projects

EvoCrash [202,204] 46/54 85%

Apache Commons Collections
Apache Ant

Apache Log4j
ActiveMQ
DnsJava

JFreeChart

EvoSuite [204] 18/54 33%

Apache Commons Collections
Apache Ant

Apache Log4j
ActiveMQ
DnsJava

JFreeChart

STAR [81] 30/51 59%
Apache Commons Collections

Apache Ant
Apache Log4j

MuCrash [215] 8/12 66% Apache Commons Collections

JCharming [173] 8/12 66%

Apache Ant
Apache Log4j

ActiveMQ
DnsJava

JFreeChart

In this paper we enhance previous efforts to build a benchmark dedicated to crash re-
production by collecting cases coming from both state of the art literature and actively
maintained industrial open-source projects with well documented bug trackers.

3.3.1 Projects selection protocol

As Table 3.2 clearly shows, current crash reproduction tools are not evaluated using a
common benchmark. This hampers progress in the field as it makes it hard to compare
approaches. To be able to perform analysis of the results of a crash reproduction
attempt, we define the following benchmark requirements for our benchmark:

BR1, to be part of the benchmark, the projects should have openly accessible binar-
ies, source code, and crash stack traces (in an issue tracker for instance);

82 3.3. Benchmark design

BR2, they should be under active maintenance to be representative of current soft-
ware engineering practices and ease communication with developers;

BR3, each stack trace should indicate the version of the project that generated the
stack trace; and

BR4, the benchmark should include projects of varying size.

To best of our knowledge, there is no benchmark fulfilling those requirements. The
closest benchmark is Defects4j. However, only 25% of the defects manifest trough a
crash stack trace (BR1) and the projects are relatively small (BR4). To address those
limitations, we built a new benchmark dedicated to the crash reproduction tools.

To build our benchmark, we took the following approach. First, we investigated pro-
jects collected in SF110 [105] and Defects4J [135] as state of the art benchmarks.
However, as most projects in SF110 have not been updated since 2010 or earlier,
we discarded them from our analysis (BR2). From Defects4J, we collected 73 cases
where bugs correspond to actual crashes: i.e., the execution of the test case highlight-
ing the bug in a given buggy version of a project generates a stack trace that is not a
test case assertion failure.

As also discussed by Fraser and Arcuri [105], to increase the representativeness of
a benchmark, it is important to include projects that are popular and attractive to
end-users. Additionally to Defects4J, we selected two industrial open-source projects:
XWiki [216] and Elasticsearch [97]. XWiki is a popular enterprise wiki management
system. Elasticsearch, a distributed RESTful search and analytic engine, is one of the
ten most popular projects on GitHub5. To identify the top ten popular projects from
Github, we took the following approach: (i) we queried the top ten projects that had
the highest number of forks; (ii) we queried the top ten projects that had the highest
number of stars; (iii) we queried the top ten trending projects; and (iv) took the
intersection of the three.

Four projects were shared among the above top-ten projects, namely: Java-design-
patterns [128], Dubbo [95], RxJava [195], and Elasticsearch. To narrow down the
scope of the study, we selected Elasticsearch, which ranked the highest among the
four shared projects.

5This selection was performed on 26/10/2017.

Chapter 3. Large-scale Evaluation of EvoCrash 83

3.3.2 Stack trace collection and preprocessing

For each project, we collected stack traces to be reproduced as well as the project
binaries, with specific versions on which the exceptions happened.

3.3.2.0.1 Defects4J. From the 395 buggy versions of the Defects4J projects, we
kept only the bugs relevant to our crash reproduction context (73 cases), i.e., the
bugs that manifest as crashes. We manually inspected the stack traces generated by
the failing tests and collected those which are not JUnit assertion failures (i.e., those
which are due to an exception thrown by the code under test and not by the JUnit
framework). For instance, for one stack trace from the Joda-Time project:

0 java.lang.IllegalArgumentException:
1 at org.joda.time.Partial.<init>(Partial.java:224)
2 at org.joda.time.Partial.with(Partial.java:466)
3 at org.joda.time.TestPartial_Basics.testWith_baseAndArgHaveNoRange(...)

We only consider the first and second frames (lines 1 and 2). The third and following
lines concern testing classes of the project, which are irrelevant for crash reproduc-
tion. They are removed from the benchmark, resulting in the following stack trace
with two frames:

0 java.lang.IllegalArgumentException:
1 at org.joda.time.Partial.<init>(Partial.java:224)
2 at org.joda.time.Partial.with(Partial.java:466)

We proceeded in the same way for each Defects4J project and collected a total of
73 stack traces coming from five (out of the six) projects: JFreeChart, Commons-
lang, Commons-math, Mockito, and Joda-Time. All the stack traces generated by the
Closure compiler test cases are JUnit assertion failures.

3.3.2.0.2 Elasticsearch. Crashes for Elasticsearch are publicly reported to the is-
sue tracker of the project on GitHub6. Therefore, we queried the reported crashes,
which were labelled as bugs, using the following string "exception is:issue
label:bug". From the resulting issues (600 approx.), we manually collected the
most recent ones (reported since 2016), which addressed the following: (i) the ver-
sion which crashed was reported, (ii) the issue was discussed by the developers and
approved as a valid crash to be fixed. The above manual process resulted in 76 crash
stack traces.

6https://github.com/elastic/elasticsearch/issues

https://github.com/elastic/elasticsearch/issues

84 3.4. The JCrashPack benchmark

3.3.2.0.3 XWiki. XWiki is an open source project which has a public issue tracker7.
We investigated first 1000 issues which are reported for XWIK-7.2 (released in Septem-
ber 2015) to XWIK-9.6 (released in July 2017). We selected the issues where: (i) the
stack trace of the crash was included in the reported issue, and (ii) the reported issue
was approved by developers as a valid crash to be fixed. Eventually, we selected a
total of 51 crashes for XWIKI.

3.4 The JCrashPack benchmark

The result of our selection protocol is a benchmark with 200 stack traces called
JCrashPack. For each stack trace, based on the information from the issue tracker and
the Defects4J data, we collected: the Java project in which the crash happened, the
version of the project where the crash happened and (when available) the fixed version
or the fixing commit reference of the project; the buggy frame (i.e., the frame in the
stack trace targeting the method where the bug lays); and the Cyclomatic Complexity
Number (CCN) and the Non-Commenting Sources Statements (NCSS) of the project,
presented in Figure 3.1. Due to the manual effort involved in filtering, verifying and
cleaning up stack traces, issues, the collection of stack traces and binaries (including
the project’s dependencies binaries) took about 4.5 person-months in total.

Figure 3.1 presents the average Cyclomatic Complexity Number (CCN) per method
for each project and the Non-Commenting Sources Statements (NCSS) per project,
ordered by version number, to give an idea of the complexity of a project. Also, Table
3.3 gives the number of versions and the average number of non-commenting source
statement for each project in JCrashPack. As illustrated in the table and figure, JCrash-
Pack contains projects of diverse complexities (the CCN for the least complex project
is 1.77, and for the most complex is 3.38) and sizes (the largest project has 177,840
statements, and the smallest one holds 6,060 statements on average), distributed
among different versions.

Table 3.4 shows the distribution of stack traces per exception type for the six most
common ones, the Other category denoting remaining exception types. According
to this table, the included stack traces in JCrashPack covers different types of the
exceptions. Also, they are varied in the size (number of frames): the smallest stack
traces have one frame and the largest, a user-defined exception in Other, has 175
frames.

7https://jira.xwiki.org/browse/XWIKI/

https://jira.xwiki.org/browse/XWIKI/

Chapter 3. Large-scale Evaluation of EvoCrash 85

Commons−lang Commons−math Mockito Joda−Time JFreechart XWiki Elasticsearch

0

1

2

3

4

Application version

A
ve

ra
ge

 C
C

N

(a) Average methods Cyclomatic Complexity Number (CCN)

Commons−lang Commons−math Mockito Joda−Time JFreechart XWiki Elasticsearch

0

100

200

300

Application version

K
N

C
S

S

(b) Thousands of Non-Commenting Sources Statements (KNCSS)

Figure 3.1: Complexity and size of the different projects

JCrashPack is extensible and publicly available on GitHub.8 We provide guidelines
to add new crashes to the benchmark and make a pull request to include them in
JCrashPack master branch. The detailed numbers for each stack trace and its project
are available on the JCrashPack website.

3.5 Running experiments with ExRunner

We combine JCrashPack with ExRunner, a tool that can be used for running experi-
ments with a given stack trace-based crash reproduction tool. This tool (i) facilitates
the automatic parallel execution of the crash reproduction instances, (ii) ensures ro-
bustness in the presence of failures during the crash reproduction failure, and (iii) al-
lows to plug different crash reproduction tools to allow a comparison of their capab-
ilities.

Figure 3.2 gives an overview of ExRunner architecture. The job generator takes as
input the stack traces to reproduce, the path to the Jar files associated to each stack
trace, and the configurations to use for the stack trace reproduction tool under study.
For each stack trace, the job generator analyzes the stack frames and discards those

8At https://github.com/STAMP-project/JCrashPack

https://github.com/STAMP-project/JCrashPack

86 3.5. Running experiments with ExRunner

Table 3.3: The number of versions and average number of statements (NCSS) for
each project.

Applications Number of versions NCSS
Commons-lang 22 13.38k
Commons-math 27 29.98k
Mockito 14 6.06k
Joda-Time 8 19.41k
JFreechart 2 63.01k
XWiki 32 177.84k
Elasticsearch 46 124.36k
Total 151 62.01k

Stack traces

Jo
b

ge
ne

ra
to

r

Observer

Thread 1

Thread n

.

.

Job 1
Logs

Results

Tool configuration Job n

Test case

Jar files
.
.

Logs

Results
Test case

Figure 3.2: ExRunner overview

with a target method that does not belong to the target system, based on the package
name. For instance, frames with a target method belonging to the Java SDK or other
external dependencies are discarded from the evaluation. For each configuration and
stack trace, the job generator creates a new job description (i.e., a JSON object with
all the information needed to run the tool under study) and adds it to a queue.

To speed-up the evaluation, ExRunner multithreads the execution of the jobs. The
number of threads is provided by the user in the configuration of ExRunner and de-
pends on the resources available on the machine and required by one job execution.
Each thread picks a job from the waiting queue and executes it. ExRunner users may
activate an observer that monitors the jobs and takes care of killing (and reporting)
those that do not show any sign of activity (by monitoring the job outputs) for a user-
defined amount of time. The outputs of every job are written to separate files, with
the generated test case (if any) and the results of the job execution (output results
from the tool under study).

For instance, when used with EvoCrash, the log files contain data about the target

Chapter 3. Large-scale Evaluation of EvoCrash 87

method, progress of the fitness function value during the execution, and branches
covered by the execution of the current test case (in order to see if the line where the
exception is thrown is reached). In addition, the results contain information about
the progress of search (best fitness function, best line coverage, and if the target
exception is thrown), and number of fitness evaluations performed by EvoCrash in
an output CSV file. If EvoCrash succeeds to replicate the crash, the generated test is
stored separately.

As mentioned by Fraser et al. [102], any research tool developed to generate test cases
may face specific challenges. One of these is long (or infinite) execution time of the
test during the generation process. To manage this problem, EvoSuite uses a timeout
for each test execution, but sometimes it fails to kill sub-processes spawned during
the search [102]. We also experienced EvoCrash freezing during our evaluation. In
order to handle this problem, ExRunner creates an observer to check the status of each
thread executing an EvoCrash instance. If one EvoCrash execution does not respond
for 10 minutes (66% of the expected execution time), the Python script kills the
EvoCrash process and all of its spawned threads.

Another challenge relates to garbage collection: we noticed that, at some point of the
execution, one job (i.e., one JVM instance) allocated all the CPU cores for the execu-
tion of the garbage collector, preventing other jobs to run normally. Moreover, since
EvoCrash allocates a large amount of heap space to each sub-process responsible to
generate a new test case (since the execution of the target application may require
a large amount of memory) [102], the garbage collection process could not retrieve
enough memory and got stuck, stopping all jobs on the machine. To prevent this beha-
viour, we set -XX:ParallelGCThreads JVM parameter to 1, enabling only one thread for
garbage collection, and limited the number of parallel threads per machine, depend-
ing on the maximal amount of allocated memory space. We set the number of active
threads to 5 for running on virtual machines, and 25 for running on two powerful ma-
chines. Using the logging mechanism in EvoCrash, we are able to see when individual
executions ran out of memory.

ExRunner is available together with JCrashPack.9 It presently has only been used to
perform EvoCrash benchmarking, yet it has been designed to be extensible to other
available stack trace reproduction tools using a plugin mechanism. Integrating an-
other crash reproduction tool requires the definition of two handlers, called by Ex-
Runner: one to run the tool with the inputs provided by ExRunner (i.e. the stack
trace, the target frame, and the classpath of the software under test); and one to
parse the output produced by the tool to pick up relevant data (e.g., the final status

9See https://github.com/STAMP-project/ExRunner.

https://github.com/STAMP-project/ExRunner

88 3.6. Application to EvoCrash: setup

of the crash reproduction, progress of the tool during the execution, etc.). Relevant
data are stored in a CSV file, readily available for analysis.10

3.6 Application to EvoCrash: setup

Having JCrashPack available allowed us to perform an extensive evaluation of Evo-
Crash, a state-of-the-art tool in search-based crash replication [204]. Naturally, our
first research question deals with the capability of EvoCrash to reproduce crashes
from JCrashPack:

RQ1.1 To what extent can EvoCrash reproduce crashes from JCrashPack?

Since the primary goal of our evaluation is to identify current limitations, we refine
the previous research question to examine which frames of the different crashes Evo-
Crash is able to reproduce:

RQ1.2 To what extent can EvoCrash reproduce the different frames of the crashes from
JCrashPack?

The diversity of crashes in JCrashPack also allows us to investigate how certain types
of crashes affect reproducibility. Thus, we investigate whether the exception type and
the project nature have an influence on the reproduction rate:

RQ2.1 How does project type influence performance of EvoCrash for crash reproduction?

In addition, different types of projects might have impact on how costly it is to repro-
duce the reported crashes for them. The second research question studies the influ-
ence of the exception and project type on the performance of EvoCrash:

RQ2.2 How does exception type influence performance of EvoCrash for crash reproduc-
tion?

Finally, we seek to understand why crashes could not be reproduced:

RQ3 What are the main challenges that impede successful search-based crash reproduc-
tion?

10 The ExRunner documentation includes a detailed tutorial describing how to proceed, avail-
able at https://github.com/STAMP-project/EvoCrash-JCrashPack-application#
run-other-crash-replication-tools-with-exrunner.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application#run-other-crash-replication-tools-with-exrunner
https://github.com/STAMP-project/EvoCrash-JCrashPack-application#run-other-crash-replication-tools-with-exrunner

Chapter 3. Large-scale Evaluation of EvoCrash 89

3.6.1 Evaluation setup

Number of executions. Due to the randomness of Guided Genetic Algorithm in Evo-
Crash, we executed the tool multiple times on each frame. The number of executions
has to strike a balance between the threats to external validity (i.e., the number of
stack traces considered) and the statistical power (i.e., number of runs) [50, 105].
In our case, we do not compare EvoCrash to other tools (see for instance Soltani et
al. [202, 204]), but rather seek to identify challenges for crash reproduction. Hence
we favor external validity by considering a larger amount of crashes compared to pre-
vious studies [204] and ran EvoCrash 10 times on each frame. In total, we executed
18,590 EvoCrash runs.

Search parameters. We used the default parameter values [51, 105] with the fol-
lowing additional configuration options: we chose to keep the reflection mechanisms,
used to call private methods, deactivated. The rationale behind this decision is that
using reflection can lead to generating invalid objects that break the class invari-
ant [154] during the search, which results in test cases helplessly trying to reproduce
a given crash [81].

After a few trials, we also decided to activate the implementation of functional mock-
ing available from EvoSuite [56] in order to minimize possible risks of environmental
interactions on crash reproduction. Functional mocking works as follows: when, in a
test case, a statement that requires new specific objects to be created (as parameters
of a method call for instance) is inserted, either a plain object is instantiated by invok-
ing its constructor, or (with a defined probability, left to its default value in our case)
a mock object is created. This mock object is then refined using when-thenReturn
statements, based on the methods called during the execution of the generated test
case. Functional mocking is particularly useful in the cases where the required object
cannot be successfully initialized (for instance, if it relies on environmental interac-
tions or if the constructor is accessible only trough a factory).

Investigating the impact of those parameters and other parameters (e.g., crossover
rate, mutation rate, etc. to overcome the challenges as identified in RQ3) is part of
our future work.

Search budget. Since our evaluation is executed in parallel on different machines, we
choose to express the budget time in terms of number of fitness evaluations: i.e., the
number of times the fitness function is called to evaluate a generated test case during
the execution of the guided generic algorithm. We set this number to 62,328, which
corresponds to the average number of fitness evaluations performed by EvoCrash
when running it during 15 minutes on each frame of a subset of 4 randomly selected

90 3.7. Application to EvoCrash: results

stack traces on one out of our two machines. Both of the machines have the same
configuration: A cluster running Linux Ubuntu 14.04.4 LTS with 20 CPU-cores, 384
GB memory, and a 482 GB hard drive.

We partitioned the evaluation into two, one per available machine: all the stack traces
with the same kind of exception have been run on one machine for 10 rounds. For
each run, we measure the number of fitness evaluations needed to achieve reproduc-
tion (or the exhaustion of the budget if EvoCrash fails to reproduce the crash) and
the best fitness value achieved by EvoCrash (0 if the crash is reproduced and higher
otherwise). The whole process is managed using ExRunner. The evaluation itself was
executed during 10 days on our 2 machines.

3.7 Application to EvoCrash: results

In this section, we answer the first two research questions on the extent to which
the selected crashes and their frames were reproduced and the impact of the project
and the exception type on the performance of EvoCrash. We detail the results by
analyzing the outcome of EvoCrash in a majority of 10 executions for each frame of
each stack trace. We classify the outcome of each execution in one of the five following
categories:

reproduced: when EvoCrash generated a test that successfully reproduced the stack
trace at the given frame level;

ex. thrown: when EvoCrash generated a test that cannot fully reproduce the stack
trace, but covers the target line and throws the desired exception. The frames
of the exception thrown, however, do not contain all the original frames;

line reached: when EvoCrash generated a test that covers the target line, but does
not throw the desired exception;

line not reached: when none of the tests produced by EvoCrash could cover the tar-
get line within the available time budget; and

aborted: when EvoCrash could not generate an initial population to start the search
process.

Each outcome denotes a particular state of the search process. For the reproduced fra-
mes, EvoCrash could generate a crash-reproducing test within the given time budget
(here, 62,328 fitness evaluations). For the frames that could not be reproduced, either
EvoCrash exhausted the time budget (for ex. thrown, line reached, and line not reached
outcomes) or could not perform the guided initialization (i.e., generate at least one

Chapter 3. Large-scale Evaluation of EvoCrash 91

17 5

4 2

4 2

2

3

4 1

1 1

1

1

22 5

11 3

1

2

3 1

3

2 1

22 29

3 17

1

4 2

4

10 10

2 10

1 5

2

2

1 1

17 58

8 21

2 3

1

6

3 12

4 15

6 2

3 2

3

87 110

30 50

2 3

6 2

6 5

5 9

16 13

22 28

JFreechart XWiki Elasticsearch (all)

Commons−lang Commons−math Mockito Joda−Time

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

(all)

Other

ISE

SIOOBE

CCE

AIOOBE

IAE

NPE

(all)

Other

ISE

SIOOBE

CCE

AIOOBE

IAE

NPE

not reproduced reproduced

Figure 3.3: Reproduction outcome for the different crashes

test case with the target method) and did not start the search process (aborted out-
comes). For instance, if the class in the target frame is abstract, EvoCrash may fail to
find an adequate implementation of the abstract class to instantiate an object of this
class during the guided initialization.

3.7.1 Crash Reproduction Outcomes (RQ1)

For RQ1, we first look at the reproduced and non-reproduced crashes to answer
RQ1.1. If EvoCrash was successful in reproducing any frame of a stack trace in a
majority of 10 executions, we count the crash as a reproduced crash. Otherwise, we
count the crash as not reproduced. To answer RQ1.2, we detail the results by ana-
lyzing the outcome of EvoCrash in a majority of 10 executions for each frame of each
stack trace.

Figure 3.3 shows the number of reproduced and not reproduced crashes for each pro-
ject (and all the projects) and type of exception. EvoCrash is successful in reproducing
the majority of crashes (more than 75%) from Commons-lang, Commons-math, and
Joda-Time. For the other projects, EvoCrash reproduced 50% or less of the crashes,
with only 2 out of 12 crashes reproduced for Mockito. Crashes with an IllegalArgu-
mentException are the most frequently reproduced crashed: 16 out of 29 (55%).

92 3.7. Application to EvoCrash: results

Before detailing the results of each frame of each crash, we first look at the frame
levels that could be reproduced. Figure 3.4 presents for the 87 stack traces that could
be reproduced, the distribution of the highest frame level that could be reproduced for
the different crashes for each type of exception (in Figure 3.4a) and each application
(in Figure 3.4b). As we can see, EvoCrash replicates lower frame levels more often
than higher levels. For instance, for 39 out of the 87 reproduced stack traces, EvoCrash
could not reproduce frames beyond level 1 and could reproduce frames up to level 5
for only 9 crashes.

Figure 3.4a indicates that EvoCrash can replicate only the first frame in 14 out of 22
NPE crashes, while there is only one NPE crash for which EvoCrash could reproduce
a frame above level 3. In contrast, it is more frequent for EvoCrash to reproduce
higher frame levels of IAE stack traces: the highest reproduced frames in 6 out of 16
IAE crashes are higher than 3. Those results suggest that, when trying to reproduce
a crash, propagating an illegal argument value trough a chain of method calls (i.e.,
the frames of the stack trace) is easier than propagating a null value. According to
Figure 3.4b, EvoCrash can reproduce frames higher than 6 only for Commons-math
crashes. The highest reproduced frames in most of the reproduced crashes in this
project are higher than level 2 (12 out of 22). In contrast, for Elasticsearch the highest
reproduced frame is 1 in most of the crashes.

Both the number of crashes reproduced and the highest level at which crashes could
be reproduced confirm the relevance of our choice to consider crashes from XWiki
and Elasticsearch, for which the average number of frames (resp. 27.5 and 17.7) is
higher than for Defects4J projects (at most 6.0 for JFreeChart), as they represent an
opportunity to evaluate and understand current limitations.

3.7.1.1 Frames Reproduction Outcomes

To answer RQ1.2, we analyze the results for each frame individually. Figure 3.5
presents a summary of the results with the number of frames for the different out-
comes. Figure 3.6 details the same results by application and exception.

Overall, we see in Figure 3.5 that EvoCrash reproduced 171 frames (out of 1,859),
from 87 different crashes (out of 200) in the majority of the ten rounds. If we consider
the frames for which EvoCrash generated a crash-reproducing test at least once in the
ten rounds, the number of reproduced frames increases to 201 (from 96 different
crashes). In total, EvoCrash exhausted the time budget for 950 frames: 219 with a
test case able to throw the target exception, 245 with a test case able to reach the
target line, and 486 without a test case able to reach the line. EvoCrash aborted

Chapter 3. Large-scale Evaluation of EvoCrash 93

the search for 738 frames, 455 of which were from Elasticsearch, the application for
which EvoCrash had the most difficulties to reproduce a stack trace.

Figure 3.6 details the results by applications (columns) and exceptions (lines). The
last line (resp. column), denoted (all), provides the global results for the applications
(resp. exceptions). In the remainder of this section, we discuss the results for the
different applications and exceptions.

3.7.1.2 Defects4J applications

For the Defects4J applications, presented in the first five columns in Figure 3.6, in
total, 90 (out of 244) of the frames from 48 (out of 71) different crashes were re-
produced. For 94 frames, EvoCrash exhausted the time budget (46 ex. thrown, 25
line reached, and 23 line not reached) and aborted for 60 frames from the Defects4J
projects.

In particular, only 4 frames out of 61 frames for Mockito were successfully repro-
duced. For instance, EvoCrash could not reproduce MOCKITO-4b, which has only one
frame. From our evaluation, we observe that one very common problem when trying
to reproduce a ClassCastException is to find which class should be used to trigger the
exception.

public void noMoreInteractionsWantedInOrder(Invocation undesired){
throw new VerificationInOrderFailure(join(...,

" ... " + undesired.getMock() + "’:", ...));
}

The exception happens when the undesired.getMock() call returns an object that
cannot be cast to String. During the search, EvoCrash mocks the undesired object
and assigns some random value to return when the getMock method is called. Evo-
Crash generates a test able to cover the target line, but failing to trigger an exception.
Since the signature of this method is Object getMock(), EvoCrash assigns only
random Object values to return, where, from the original stack trace, a Boolean
value is required to trigger the exception.

3.7.1.3 XWiki and Elasticsearch

XWiki is one of the industrial open source cases in the evaluation, for which 53 (out
of 706) frames were successfully reproduced, 430 could not be reproduced with the

94 3.7. Application to EvoCrash: results

given time budget (125 ex. thrown, 127 line reached, and 178 line not reached), and
223 aborted during the generation of the initial population. EvoCrash reproduced only
28 (out of 909) frames from Elasticsearch, for which, the majority of frames (455)
aborted during the generation of the initial population. However, EvoCrash was able
to start the search for 426 frames (48 ex. thrown, 93 line reached, and 285 line not
reached).

3.7.1.3.1 Variability of the reproductions. We also observed that XWiki and Elast-
icsearch have the highest variability in their outcomes. For XWiki (resp. Elasticsearch),
4 (resp. 3) frames that could be reproduced in a majority of time could however not
be reproduced 10 out of 10 times, compared to 2 frames for Commons-lang and
Commons-math. This could indicate a lack of guidance in the current fitness func-
tion of EvoCrash. For instance, for the Elasticsearch crash ES-26833, EvoCrash could
only reproduce the third frame 4 times out of 10 and was therefore not considered
as reproduced. After a manual inspection, we observed that EvoCrash gets stuck after
reaching the target line and throwing the expected exception. From the intermediate
test cases generated during the search, we see that the exception is not thrown by
the target line, but a few lines after. Since the fitness value improved, EvoCrash got
stuck into a local optima, hence the lower frequency of reproduction for that frame.11

Out future work includes improvement of the guidance in the fitness function and
a full investigation of the fitness landscape to decrease the variability of EvoCrash
outcomes.

3.7.1.3.2 Importance of large industrial applications. Compared to Defects4J
and XWiki applications, the crash reproduction rate drops from 36.9% for Defects4J,
to 7.5% for XWiki, and only 3% for Elasticsearch. Those results emphasize the im-
portance of large industrial applications for the assessment of search-based crash re-
production and enforce the need of context-driven software engineering research to
identify relevant challenges [72].

Additionally to the larger variability of reproduction rate, we observe that frequent
use of Java generics and static initialization, and most commonly, automatically gener-
ating suitable input data that resembles http requests are among the major reasons
for the encountered challenges for reproducing Elasticsearch crashes. In Section 3.8
we will describe 14 categories of challenges that we identified as the underlying
causes for the presented execution outcomes.

11A detailed analysis is available at https://github.com/STAMP-project/
EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/
Elasticsearch/ES-26833.md

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-26833.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-26833.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-26833.md

Chapter 3. Large-scale Evaluation of EvoCrash 95

3.7.1.4 Exceptions

The lines in Figure 3.6 presents the outcomes for the different exceptions. In particu-
lar, NPE, IAE, AIOOBE, and CCE are the most represented exceptions in JCrashPack.
For those exceptions, EvoCrash could reproduce, respectively, 32 (out of 499), 40
(out of 250), 6 (out of 99), and 10 (out of 72) frames. Looking at the reproduction
frequency, IAE is the most frequently reproduced exception (16%), followed by CCE
(13.8%), NPE (6.4%), and AIOOBE (6%).

This contrast with the number of frames for which EvoCrash aborted the search,
where NPE has the lowest frequency (181 frames, 36.2%), followed by IAE (101
frames, 40.4%), CCE (30 frames, 41.6%), and AIOOBE (48 frames, 48.4%). Interest-
ingly, those numbers show that EvoCrash is able to complete the guided initialization
for NPEs more often than for other exceptions.

Figure 3.6 also shows that the number of test cases that reach the line is low for
NPEs, meaning that whenever EvoCrash generates at test able to cover the line (line
reached), the evolution process will be able to progress and generate another test that
throws an exception (ex. thrown).

Summary (RQ1) To what extent can EvoCrash reproduce crashes from JCrashPack, and
how far it can proceed in the stack traces? Overall, EvoCrash reproduced 171 frames
(out of 1,859 - 9%), from 87 different crashes (out of 200 - 43.5%) in a majority out
of 10 executions. Those numbers climb to 201 frames (10.8%) from 96 crashes (48%)
if we consider at least one reproduction in one of the 10 executions. In most of the
reproduced crashes, EvoCrash can only reproduce the first two frames. It indicates
that since EvoCrash needs higher accuracy in setting the state of the software under
test for reproducing higher frames, increasing the length of the stack trace reduces
the chance of this tool for crash reproduction. When looking at larger industrial ap-
plications, the crash reproduction rates drop from 36.9% for Defects4J to 7.5% for
XWiki and 3% for Elasticsearch. The most frequently reproduced exceptions are Il-
legalArgumentExceptions. The exceptions for which EvoCrash is the most frequently
able to complete the guided initialization are NullPointerExceptions.

3.7.2 Impact of Exception Type and Project on Performance (RQ2)

To identify the distribution of fitness evaluations per exception type and project, we
filtered the reproduced frames out of the 10 rounds of execution. Tables 3.5 and 3.6
present the statistics for these executions, grouped by application and exception types,
respectively.

96 3.7. Application to EvoCrash: results

We filtered out the frames that were not reproduced to analyze the impact of pro-
ject and exception types on the average number of fitness evaluations and, following
recommendations by Arcuri and Briand [50], we replaced the test of statistical dif-
ference by a confidence interval. For both groups, we calculated confidence intervals
with a 95% confidence level for medians with bootstrapping with 100,000 runs.12

As Table 3.5 shows, for four projects (Commons-lang, Mockito, XWiki, and Elastic-
search) the median number of fitness evaluations is low. On the contrary, the cost
of crash reproductions for Commons-math, Joda-Time, and JFreechart are higher in
comparison to the rest of projects. By comparing those results with the projects sizes
reported in Table 3.3, where the largest projects are XWiki (with NCSS = 177.84k)
and Elasticsearch (with NCSS = 124.36k), we observe that the effort required to re-
produce a crash cannot be solely predicted by the project size. This is consistent with
the intuition that the difficulty of reproducing a crash only depends on the methods
involved in the stack trace.

Similarly, according to Figure ??, the average CCN for Mockito, XWiki, and Elastic-
search is lower compared to other projects. Table 3.5 shows that reproducing crashes
from these projects is less expensive, and that reproducing crashes from Commons-
math, Joda-Time, and JFreechart, which all have higher average CCN, is more ex-
pensive. We also observe that the average CCN for Commons-lang is high, however,
contradicting the intuition that crashes from projects higher CCN are more expens-
ive to reproduce, the cost for reproducing crashes in Commons-lang is low compared
to other projects. This can be explained by the levels of the frames reproduced by
EvoCrash: according to Figure 3.4, the average level of the reproduced frames in the
crashes from Commons-lang is low compared to the other projects and, as we dis-
cussed in the previous section, reproducing crashes with fewer frames is easier for
EvoCrash.

In general, we observe that the performance of EvoCrash depends on the complex-
ity of the project and the frame level in the stack trace. Future work includes further
investigations to determine which other factors (e.g., code quality) can influence Evo-
Crash performance.

From Table 3.6, we observe that for CCE, SIOOBE, and AIOOBE, the cost of generating
a crash-reproducing test case is high, while for NPE, IAE, and ISE, the cost is lower.
One possible explanation could be that generating input data which is in a suitable
state for causing cast conflicts, or an array which is in the right state to be accessed

12We used the boot function from the boot library in R to compute the basic intervals with boot-
strapping. See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/
tree/master/results to reproduce the statistical analysis.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results

Chapter 3. Large-scale Evaluation of EvoCrash 97

by an illegal index is often non-trivial.

In contrast, to trigger an NPE, it is often enough to return a null value not checked
by the crashing method. For example, Listing 3.1 shows the stack trace of CHART-
4b, a crash from the JFreeChart application. The crash happens at line 1490 of the
createScatterPlot method presented in Listing 3.2. Listing 3.3 shows the test
case generated by EvoCrash that reproduces the 6th frame (line 6 in Listing 3.1) of the
stack trace. First, the test initializes the mocks used as mandatory parameters values
(from line 2 to 4), before calling the createScatterPlot method (at line 5). The
ds XYDataset mock is used along the various calls (from line 6 to 1 in Listing 3.1),
up to the method getDataRange presented in Listing 3.4 that triggers the NPE at
line 4493. In our case, the null value is returned by the getRendererForDataset
call with the propagated ds mock at line 4491.

Listing 3.1: Stack trace for the crash CHART-4b

0 java.lang.NullPointerException
1 at org. jfree .chart. plot .XYPlot.getDataRange(XYPlot.java:4493)
2 at org. jfree .chart. axis .NumberAxis.autoAdjustRange(NumberAxis.java:434)
3 at org. jfree .chart. axis .NumberAxis.configure(NumberAxis.java:417)
4 at org. jfree .chart. axis .Axis. setPlot (Axis.java:1044)
5 at org. jfree .chart. plot .XYPlot.<init>(XYPlot.java:660)
6 at org. jfree .chart.ChartFactory.createScatterPlot (ChartFactory.java:1490)

Listing 3.2: Code excerpt from JFreeChart ChartFactory.java

1478 public static JFreeChart createScatterPlot(String title , String xAxisLabel,
1479 String yAxisLabel, XYDataset dataset, PlotOrientation orientation ,
1480 boolean legend, boolean tooltips , boolean urls) {
1481

1482 if (orientation == null) {
1483 throw new IllegalArgumentException("Null ’orientation’ argument.");
1484 }
1485 NumberAxis xAxis = new NumberAxis(xAxisLabel);
1486 xAxis.setAutoRangeIncludesZero(false);
1487 NumberAxis yAxis = new NumberAxis(yAxisLabel);
1488 yAxis.setAutoRangeIncludesZero(false);
1489

1490 XYPlot plot = new XYPlot(dataset, xAxis, yAxis, null);
1491

1492 [...]

98 3.7. Application to EvoCrash: results

1493 }

Listing 3.3: The test case generated by EvoCrash for reproducing the 6th frame of
CHART-4b

1 public void test () throws Throwable {
2 XYDataset ds = mock(XYDataset.class, new ViolatedAssumptionAnswer());
3 doReturn(0).when(ds).getSeriesCount();
4 PlotOrientation pl = mock(PlotOrientation.class, new

ViolatedAssumptionAnswer());
5 ChartFactory.createScatterPlot ((String) null , (String) null , (String) null , ds,

pl , true, true, true);
6 }

Listing 3.4: Code excerpt from JFreeChart XYPlot.java

4490 public Range getDataRange(ValueAxis axis) {
4491 XYItemRenderer r = getRendererForDataset(d); // d == ds and

getRendererForDataset(d) returns null
4492 [...]
4493 Collection c = r.getAnnotations(); // r is null and throws a NPE
4494 [...]
4495 }

Considering the presented results in Figure 3.6 and Table 3.5, crash replication for
various exceptions may be dependent on project type. Figure 3.7 presents the results
of crash reproduction grouped both by applications and exception types. As the figure
shows, the cost of reproducing NPE is lower for Elasticsearch, compared to XWiki
and JFreechart, and the cost of reproducing IAE is lower for Commons-lang than for
Elasticsearch. We also observe differences in terms of costs of reproducing AIOOBE
and SIOOBE for different projects.

Summary (RQ2.1) How does project type influence performance of EvoCrash for crash
reproduction?

We observed that the factors are (i) the complexity of the the project, and (ii) the
level of the reproduced frames (reproducing higher frame requires more effort). Fur-
thermore, we see no link between the size of the project and the effort required to
reproduce one of its crashes.

Chapter 3. Large-scale Evaluation of EvoCrash 99

Summary (RQ2.2) How does exception type influence performance of EvoCrash for
crash reproduction?

For the exceptions, we observe that for ClassCastException, ArrayIndexOutOfBou-
ndsException and StringIndexOutOfBoundsException, the cost of generating a crash-
reproducing test case is high, while for NullPointerException, IllegalArgumentExce-
ption, and IllegalStateException, the cost is lower. This result indicates that the cost
of reproducing types of exceptions for a non-trivial scenario (e.g., class conflicts or
accessing an illegal state of an array) needs a more complex input generation. Fur-
thermore, accessing the corresponding complex state is more time consuming for the
search process.

3.8 Challenges for crash reproduction (RQ3)

To identify open problems and future research directions, we manually analyzed the
execution logs of 1,653 frames that could not be reproduced in any of the 10 ex-
ecutions. This analysis includes a description of the reason why a frame could not
be reproduced.13 Based on those descriptions, we grouped the reason of the different
failures into 13 categories and identified future research directions. Table 3.7 provides
the number and frequency of frames classified in each category.14 The complete cat-
egorization table is available in our replication package.15

For each challenge, we discuss to what extent it is crash-reproduction-specific and
its relation to search-based software testing in general. In particular, for challenges
previously identified by the related literature in search-based test case generation, we
highlight the differences originating from the crash reproduction context.

3.8.1 Input data generation

Generating complex input objects is a challenge faced by many automated test gen-
eration approaches, including search-based software testing and symbolic execution

13Available at https://github.com/STAMP-project/EvoCrash-JCrashPack-application/
tree/master/results/manual-analysis.

14For each category, we provide illustrative examples from https://github.com/STAMP-project/
EvoCrash-JCrashPack-application/tree/master/results/examples.

15The full table is available at https://github.com/STAMP-project/
EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/
categorisation.csv.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results/manual-analysis
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results/manual-analysis
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results/examples
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results/examples
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/categorisation.csv
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/categorisation.csv
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/categorisation.csv

100 3.8. Challenges for crash reproduction (RQ3)

Listing 3.5: Excerpt of the stack trace for the crash XWIKI-13708

0 java.lang.NullPointerException: null
1 at com.xpn.xwiki.internal.template.TemplateListener.onEvent(TemplateListener.
2 java:79)
3 at org.xwiki.observation. internal .DefaultObservationManager.notify(Default
4 ObservationManager.java:307)
5 at org.xwiki.observation. internal .DefaultObservationManager.notify(Default
6 ObservationManager.java:269)
7 [...]

[70]. Usually, the input space of each input is large and generating proper data en-
abling the search process to cover its goals is difficult.

As we can see from Table 3.7, this challenge is substantial in search-based crash re-
production. Trying to replicate a crash for a target frame requires to set the input
arguments of the target method and all the other calls in the sequence properly such
that when calling the target method, the crash happens. Since the input space of a
method is usually large, this can be challenging. EvoCrash uses randomly generated
input arguments and mock objects as inputs for the target method. As we described
in Section 3.7, we observe that a widespread problem when reproducing a ClassCast-
Exception (CCE) is to identify which types to use as input parameters such that a CCE
is thrown. In the case of a CCE, this information can be obtained from the error mes-
sage of the exception. Our future work includes harvesting additional information,
like error messages, to help the search process.

We also noticed that some stack traces involving Java generic types make EvoCrash
abort the search after failing to inject the target method in every generated test dur-
ing the guided initialization phase. Generating generic type parameters is also a recog-
nized challenge for automated testing tools for Java [104]. To handle these paramet-
ers, EvoCrash, based on EvoSuite’s implementation [104], collects candidate types
from castclass and instanceof operators in Java bytecode, and randomly assign
them to the type parameter. Since the candidate types may themselves have generic
type parameters, a threshold is used to avoid large recursive calls to generic types.
One possible explanation for the crashes in these cases could be that the threshold is
not correctly tuned for the kind of classes involved in the recruited projects. Thus, the
tool fails to set up the target method to inject to the tests. Based on the results of our
evaluation, handling Java generics in EvoCrash needs further investigation to identify
the root cause(s) of the crashes and devise effective strategies to address them.

Chapter 3. Large-scale Evaluation of EvoCrash 101

Listing 3.6: Code excerpt from method onEvent in TemplateListener.java

72 public void onEvent(Event event, Object source, Object data) {
73 XWikiDocument document = (XWikiDocument) source;
74

75 if (document.getXObject(WikiSkinUtils.SKINCLASS_REFERENCE) != null) {
76 if (event instanceof AbstractAttachmentEvent) {
77 XWikiAttachment attachment =

document.getAttachment(((AbstractAttachmentEvent)
event).getName());

78 String id = this. referenceSerializer . serialize (attachment.getReference());
// target line

79 [...]
80 }
81 }
82 }

For instance, EvoCrash cannot reproduce the first frame of crash XWIKI-1370816,
presented in Listing 3.5. The target method onEvent (detailed in Listing 3.6) has
three parameters. EvoCrash could not reach the target line (line 78 in Listing 3.6) as
it failed to generate a fitted value for the second parameter (source). This (Object)
parameter should be castable to XWikiDocument and should return values for get-
XObject() or getAttachment() (using mocking for instance).

Chosen examples: XWIKI-13708, frame 1; ES-22922, frame 5; ES-20479, frame 10.17

3.8.2 Complex code

Generating tests for complex methods is hard for any search-based software testing
tool [119]. In this study, we indicate a method as complex if (i) it contains more
than 100 lines of code and high cyclomatic complexity; (ii) it holds nested predicates
[119, 158]; or (iii) it has the flag problem [158, 161], which include (at least one)
branch predicate with a binary (boolean) value, making the landscape of the fitness
function flat and turning the search into a random search [119].

16https://jira.xwiki.org/browse/XWIKI-13708
17See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/

master/results/examples/InputDataGeneration.md.

https://jira.xwiki.org/browse/XWIKI-13708
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/InputDataGeneration.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/InputDataGeneration.md

102 3.8. Challenges for crash reproduction (RQ3)

Listing 3.7: Stack trace for the crash XWIKI-12584
0 java.lang.ClassCastException: [Ljava.lang.Object; cannot be cast to java.lang.String
1 at [...].XWikiHibernateStore.searchDocumentReferencesInternal([...]:2457)
2 at [...].XWikiHibernateStore.searchDocumentsNamesInternal([...]:2440)
3 at [...].XWikiHibernateStore.searchDocumentsNames([...]:2246)
4 at [...].XWikiHibernateStore.searchDocumentsNames([...]:2230)
5 at [...].XWikiCacheStore.searchDocumentsNames([...]:373)
6 at [...].XWiki.searchDocuments([...]:576)

As presented in Section 4.2, the first component of the fitness function that is used in
EvoCrash encodes how close the algorithm is to reach the line where the exception
is thrown. Therefore, frames of a given stack trace pointing to methods with a high
code complexity18 are more costly to reproduce, since reaching the target line is more
difficult.

Handling complex methods in search-based crash reproduction is harder than in gen-
eral search-based testing. The search process in crash reproduction should cover (in
most cases) only one specific path in the software under test to achieve the repro-
duction. If there is a complex method on this path, the search process cannot achieve
reproduction without covering it. Unlike the more general coverage driven search-
based testing approach (with line coverage for instance), where the are usually mul-
tiple possible executions paths to cover a goal.

Chosen examples: XWIKI-13096, frame 3; ES-22373, frame 10.19

3.8.3 Environmental dependencies

As discussed by Arcuri et al. [54], generating unit tests for classes which interact with
the environment leads to (i) difficulty in covering certain branches which depend on
the state of the environment, and (ii) generating flaky tests [155], which may some-
times pass, and sometimes fail, depending on the state of the environment. Despite
the numerous advances made by the search-based testing community in handling en-
vironmental dependencies [54, 105], we noticed that having such dependencies in
the target class hampers the search process. Since EvoCrash builds on top of Evo-
Suite [103], which is a search-based unit test generation tool, we face the same prob-
lem in the crash reproduction problem as well.

18In some cases for Elasticsearch, the failing methods have nearly 300 lines of source code.
19See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/

master/results/examples/ComplexCode.md.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/ComplexCode.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/ComplexCode.md

Chapter 3. Large-scale Evaluation of EvoCrash 103

For instance, Listing 3.7 shows the stack trace of the crash XWIKI-12584.20 During
the evaluation, EvoCrash could not reproduce any of the frames of this stack trace.
During our manual analysis, we discovered that, for the four first frames, EvoCrash
was unable to instantiate an object of class XWikiHibernateStore,21 resulting
in an abortion of the search. Since the class XWikiHibernateStore relies on a
connection to an environmental dependency (here, a database), generating unit test
requires substantial mocking code22 that is hard to generate for EvoCrash. As for
input data generation, our future work includes harvesting and leveraging additional
information from existing tests to identify and use relevant mocking strategies.

Chosen examples: ES-21061, frame 4; XWIKI-12584, frame 4.23

3.8.4 Static initialization

In Java, static initializers are invoked only once when the class containing them is
loaded. As explained by Fraser and Arcuri [105], these blocks may depend on static
fields from other classes on the classpath that have not been initialized yet, and cause
exceptions such as NullPointerException to be thrown. In addition, they may in-
volve environmental dependencies that are restricted by the security manager, which
may also lead to unchecked exceptions being generated.

In our crash reproduction benchmark, we see that about 9% (see Table 3.7) of the
cases cannot be reproduced as they point to classes that have static initializers. When
such frames are used for crash reproduction with EvoCrash, the tool currently aborts
the search without generating any crash reproducing test.

As Fraser and Arcuri [105] discuss, automatically determining and solving all possible
kinds of dependencies in static initializers is a non-trivial task that warrants dedicated
research.

Chosen examples: ES-20045, frames 1 and 2.24

20Reported at https://jira.xwiki.org/browse/XWIKI-12584 and analyzed at https:
//github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/
results/manual-analysis/Xwiki/XWIKI-12584.md.

21See https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.
2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/main/java/com/
xpn/xwiki/store/XWikiHibernateStore.java

22See https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.
2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/test/java/com/
xpn/xwiki/store/XWikiHibernateStoreTest.java

23See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/examples/EnvironmentalDependencies.md.

24See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/

https://jira.xwiki.org/browse/XWIKI-12584
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/main/java/com/xpn/xwiki/store/XWikiHibernateStore.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/main/java/com/xpn/xwiki/store/XWikiHibernateStore.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/main/java/com/xpn/xwiki/store/XWikiHibernateStore.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/test/java/com/xpn/xwiki/store/XWikiHibernateStoreTest.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/test/java/com/xpn/xwiki/store/XWikiHibernateStoreTest.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/test/java/com/xpn/xwiki/store/XWikiHibernateStoreTest.java
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/EnvironmentalDependencies.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/EnvironmentalDependencies.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md

104 3.8. Challenges for crash reproduction (RQ3)

3.8.5 Abstract classes and methods

In Java, abstract classes cannot be instantiated. Although generating coverage driven
unit tests for abstract classes is possible (one would most likely generate unit tests for
concrete classes extending the abstract one or use a parametized test to check that
all implementations respect the contract defined by the abstract class), when a class
under test is abstract, EvoSuite (as the general test generation tool for java) looks
for classes on the classpath that extend the abstract class to create object instances of
that class. In order to cover (e.g., using line coverage) specific parts of the abstract
class, EvoSuite needs to instantiate the right concrete class allowing to execute the
different lines of the abstract class.

For crash reproduction, as we can see from Table 3.7, it is not uncommon to see ab-
stract classes and methods in a stack trace. In several cases from Elasticsearch, the
majority of the frames from a given stack trace point to an abstract class. Similarly to
coverage-driven unit test generation, EvoCrash needs to instantiate the right concrete
class: if EvoCrash picks the same class that has generated the stack trace in the first
place, then it can generate a test for that class that reproduces the stack trace. How-
ever, if EvoCrash picks a different class, it could still generate a test case that satisfies
the first two conditions of the fitness function (section 4.2). In this last case, the stack
trace generated by the test would match the frames of the original stack trace, as the
class names and line numbers would differ. The fitness function would yield a value
between 0 and 1, but it may never be equal to 0.

Chosen examples: ES-22119, frames 3 and 4; XRENDERING-422, frame 6.25

3.8.6 Anonymous classes

As discussed in the study by Fraser et al. [103], generating automated tests for cover-
ing anonymous classes is more laborious because they are not directly accessible. We
observed the same challenge during the manual analysis of crash reproduction results
generated by EvoCrash. When the target frame from a given crash stack trace points
to an anonymous object or a lambda expression, guided initialization in EvoCrash
fails, and EvoCrash aborts the search without generating any test.

Chosen examples: ES-21457, frame 8; XWIKI-12855, frames 30 and 31.26

master/results/examples/StaticInitialisation.md.
25See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/

master/results/examples/AbstractClass.md.
26See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/

master/results/examples/AnonymousClass.md.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/AbstractClass.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/AbstractClass.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/AnonymousClass.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/AnonymousClass.md

Chapter 3. Large-scale Evaluation of EvoCrash 105

3.8.7 Private inner classes

Since it is not possible to access a private inner class, and therefore, not possible to
directly instantiate it, it is difficult for any test generation tool in Java to create an
object of this class. As for anonymous classes, this challenge is also present for crash
reproduction approaches. In some crashes, the target frame points to a failing method
inside a private inner class. Therefore, it is not possible to directly inject the failing
method from this class during the guided initialization phase, and EvoCrash aborts
the search.

Chosen example: MATH-58b, frame 3.27

3.8.8 Interfaces

In 6 cases, the target frame points to an interface. In Java, similar to abstract classes,
interfaces may not be directly instantiated. In these cases also, EvoCrash randomly se-
lects the classes on the classpath that implement the interface and, depending on the
class picked by EvoCrash, the fitness function may not reach 0.0 during the search
if the class is different from the one used when the input stack trace has been gen-
erated. This category is a special case of Abstract classes and methods (described in
Section 3.8.5), however, since the definition of a default behavior for an interface
is a feature introduced by Java 8 [175] that has, to the best of our knowledge, not
been previously discussed for search-based testing, we choose to keep it as a separate
category.

Chosen example: ES-21457, frame 9.28

3.8.9 Nested private calls

In multiple cases, the target frame points to a private method. As we mentioned in
Section 3.6, those private methods are not directly accessible by EvoCrash. To reach
them, EvoCrash detects other public or protected methods which invoke the target
method directly or indirectly and randomly choose during the search. If the chain of
method calls, from the public caller to the target method, is too long, the likelihood
that EvoCrash may fail to pick the right method during the search increases.

27See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/examples/PrivateInnerClass.md.

28See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/examples/Interface.md.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/PrivateInnerClass.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/PrivateInnerClass.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/Interface.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/Interface.md

106 3.8. Challenges for crash reproduction (RQ3)

In general, calling private methods is challenging for any automated test generation
approach. For instance, Arcuri et al. [56] address this problem by using the Java reflec-
tion mechanism to access private methods and private attributes during the search.
As mentioned in Section 3.6.1, this can generate invalid objects (with respect to their
class invariants) and lead to generating test cases helplessly trying to reproduce a
given crash [81].

Chosen examples: XRENDERING-422, frames 7 to 9.29

3.8.10 Empty enum type

In the stack trace of the ES-25849 crash,30 the 4th frame points to an empty enu-
meration Java type.31 Since there are no values in the enumeration, EvoCrash was
not able to instantiate a value and aborted during the initialization of the population.
Frames pointing to code in an empty enumeration Java type should not be selected
as target frames and could be filtered out using a preliminary static analysis.

Chosen example: ES-25849, frame 4.

3.8.11 Frames with try/catch

Some frames have a line number that designates a call inside a try/catch block.
When the exception is caught, it is no longer thrown at the specific line given in the
trace, rather it is typically handled inside the associated catch blocks. From what
we observed, often catch blocks either (i) re-throw a checked exception, which yield
chained stack traces with information that is not exactly as the input stack trace but
can still be used for crash reproduction; or (ii) log the caught exception. Since Evo-
Crash only considers uncaught exceptions that are generated as the result of running
the generated test cases during the search, the logged stack traces is presently no use
for crash reproduction. Also, even if a stack trace is recorded to an error log, this stack
trace is not the manifestation of a crash per se. Indeed, once the exception logged, the
execution of the program continues normally.

29See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/examples/NestedPrivateCalls.md.

30The analysis is available at https://github.com/STAMP-project/
EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/
Elasticsearch/ES-25849.md.

31See https://github.com/jimczi/elasticsearch/blob/0a4b38b60c2752cdc6de819f5\
bf3414bd01f88c5/core/src/main/java/org/elasticsearch/index/fielddata/
ordinals/GlobalOrdinalsBuilder.java.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/NestedPrivateCalls.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/NestedPrivateCalls.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-25849.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-25849.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-25849.md
https://github.com/jimczi/elasticsearch/blob/0a4b38b60c2752cdc6de819f5\bf3414bd01f88c5/core/src/main/java/org/elasticsearch/index/fielddata/ordinals/GlobalOrdinalsBuilder.java
https://github.com/jimczi/elasticsearch/blob/0a4b38b60c2752cdc6de819f5\bf3414bd01f88c5/core/src/main/java/org/elasticsearch/index/fielddata/ordinals/GlobalOrdinalsBuilder.java
https://github.com/jimczi/elasticsearch/blob/0a4b38b60c2752cdc6de819f5\bf3414bd01f88c5/core/src/main/java/org/elasticsearch/index/fielddata/ordinals/GlobalOrdinalsBuilder.java

Chapter 3. Large-scale Evaluation of EvoCrash 107

For instance, for the crash ES-20298,32 EvoCrash cannot reproduce the fourth frame
of the crash. This frame points to the following method call in a try and catch:

try {
processResponse(response);

} catch (Throwable t) {
onFailure(t);

}

Even if an exception is thrown by the processResponse method, this exception is
caught and logged, and the execution of the program continues normally.

Generally, if an exception is caught in one frame, it cannot be reproduced (as it can-
not be observed) from higher level frames. For instance, for ES-20298, all frames
above level 4 cannot be reproduced since the exception is catch in frame 4 and not
propagated to the higher frames. This property of a crash stack trace implies that,
for now, depending on where in the trace such frames exist, only a fraction of the
input stack traces can actually be used for automated crash reproduction. Future de-
velopment of EvoCrash can alleviate this limitation by, additionally to the monitoring
of uncaught exceptions, read the error log to affecting the propagation of exceptions
during execution. However, unlike other branching instructions relying on boolean
values, for which classical coverage driven unit test generation can use the branch dis-
tance (see Section 3.2.2.1) to guide the search [160], there is little guidance offered
for try/catch instructions since the branching condition is implicit in one or more
instructions in the try.

Chosen example: ES-14457, frame 4.33

3.8.12 Missing line number

31 frames in JCrashPack have frames with a missing line number, as shown in List-
ing 3.8. This happens if the Java files have been compiled without any debug inform-
ation (by default, the Java compiler add information about the source files and line
numbers, for instance, when printing a stack trace) or if the frame points to a class

32Reported at https://github.com/elastic/elasticsearch/issues/20298 and analyzed
at https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/manual-analysis/Elasticsearch/ES-20298.md

33See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/examples/TryCatch.md.

https://github.com/elastic/elasticsearch/issues/20298
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-20298.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-20298.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/TryCatch.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/TryCatch.md

108 3.8. Challenges for crash reproduction (RQ3)

Listing 3.8: An excerpt of the stack trace from the crash XRENDERING-422 with miss-
ing line numbers

1 at org.apache.xerces.parsers.XMLParser.parse(Unknown Source)
2 at org.apache.xerces.parsers.AbstractSAXParser.parse(Unknown Source)
3 at org.xml.sax.helpers.XMLFilterImpl.parse(XMLFilterImpl.java:357)

part of the standard Java library and the program has been run in the Java Runtime
Environment (JRE) and not the JDK.

Since EvoCrash currently requires a line number to compute the fitness values during
the search, those frames have been ignored during our evaluation and do not appear
in the results. Yet, as frames with missing line number appear in JCrashPack (and
in other stack traces), we decided to mention this trial here as a search-based crash
reproduction challenge. A possible solution, as the future work, is to relax the fitness
function so that it can still approximate fitness if line numbers are missing.

Chosen example: XRENDERING-422.34

3.8.13 Incorrect line numbers

In 37 cases, the target frame points to the line in the source code where the target
class or method is defined. This happens when the previous frame points to an an-
onymous class or a lambda expression. Such frames practically cannot be used for
crash reproduction as the location they point to does not reveal where exactly the tar-
get exception occurs. One possible solution would be to consider the frame as having
a missing line number and use the relaxed fitness function to approximate the fitness.

Chosen examples: MATH-49b, frames 1 and 4.35

3.8.14 Unknown

We were unable to identify why EvoCrash failed to reproduce 16 frames (out of 1,653
frames manually analyzed). In these cases, neither the logs nor the source code could
help us understand how the exception was propagated.

34The stack trace is available at https://github.com/STAMP-project/
EvoCrash-JCrashPack-application/blob/master/evaluation/JarFiles/resources/
logs/XWIKI/XRENDERING-422/XRENDERING-422.log

35See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/examples/IrrelevantFrames.md.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/evaluation/JarFiles/resources/logs/XWIKI/XRENDERING-422/XRENDERING-422.log
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/evaluation/JarFiles/resources/logs/XWIKI/XRENDERING-422/XRENDERING-422.log
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/evaluation/JarFiles/resources/logs/XWIKI/XRENDERING-422/XRENDERING-422.log
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/IrrelevantFrames.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/IrrelevantFrames.md

Chapter 3. Large-scale Evaluation of EvoCrash 109

3.8.14.0.1 Summary (RQ3) What are the open problems that need to be solved
to enhance search-based crash reproduction? Based on the manual analysis of
the frames that could not be reproduced at least once out of 10 rounds of executions,
we identified 13 challenges for search-based crash reproduction. We confirmed chal-
lenges previously identified in other search-based software testing approaches and
specified how they affect search-based crash reproduction. And discovered new chal-
lenges, more specific to search-based crash reproduction and explained how the can
affect other search-based software testing approaches.

These challenges are related to the difficulty to generate test cases due to complex
input data, environmental dependencies, or complex code; abstraction (static ini-
tialization, interfaces, abstract, and anonymous classes); encapsulation mechanisms
(private inner classes and nested private calls in the given stack trace) of object-
oriented languages; or the selection of the target frame in crash reproduction (in
try/catch blocks, in empty enumerations, when the location in the source code is
unknown, or when the frame has an incorrect line number).

3.9 Discussion

3.9.1 Empirical evaluation for crash reproduction

Conducting empirical evaluation for crash reproduction is challenging. It requires to
collect various artifacts from different sources and to analyze the results to determine,
in the case of a negative outcome, the cause that prevents the crash reproduction.
Some are easy to fix, like missing dependencies that were added to the project linked
to the stack trace, and for which we rerun the evaluation on the stack traces. The
others are detailed in Section 3.8, and serve to identify future research directions.

One of the most surprising causes is due to a line mismatch in some stack traces.
During the manual analysis of our results, we found out that three frames in two
different stack traces, coming from Defects4J projects, target the wrong lines in the
source code: the line numbers in the stack traces point to lines in the source code that
cannot throw the targeted exception. Since the stack traces were collected directly
from the Defects4J data (which reports failing tests and their outputs), we tried to
regenerate them using the provided test suite and found a mismatch between the line
numbers of the stack traces indeed. We reported those two projects to the Defects4J
developers:36 a bug in JDK7 [130] causes this mismatch. Since EvoCrash relies on

36See the issue at https://github.com/rjust/defects4j/issues/142.

https://github.com/rjust/defects4j/issues/142

110 3.9. Discussion

line numbers to guide its search, it could not reproduce the crashes. We recompiled
the source code, updated the stack trace accordingly in JCrashPack, and rerun the
evaluation for those two stack traces.

Thanks to JCrashPack and ExRunner, we are now able to ease empirical evaluation for
crash reproduction. ExRunner can be extended to other crash reproduction tools37 for
comparison, or assess the development of new ideas in existing tools. Our future work
also includes the prioritization of crashes from JCrashPack to allow quick feedback on
new ideas in a fast and automated way [43].

3.9.2 Usefulness for debugging

In our evaluation, we focused on the crash-replication capabilities of EvoCrash and
identified problems affecting those capabilities. We considered the generated tests
only to classify the outcomes of the EvoCrash generation process but did not assess
their actual usefulness for debugging.

Chen et al. [81] introduced a usefulness criterion for the crash reproduction ap-
proaches. According to this criterion, a crash reproducing test is useful to the de-
velopers if it covers the buggy frame: i.e., if the target frame for which the reproduc-
tion is successful is higher than the frame that points to the buggy method.

In our previous work [204], we conducted a controlled experiment to assess the use-
fulness of EvoCrash for debugging and bug fixing of two crashes (one from Apache
Commons Collections and one from Apache Log4j) with 35 master students. Res-
ults show that using a crash-replicating test case generated by EvoCrash may help to
locate and fix the defects faster. Also, this study confirmed the usefulness criterion
defined by the Chen et al. [81] but also found evidence that test cases categorized as
not useful can still help developers to fix the bug.

Since JCrashPack also includes two open source industrial and actively maintained
applications, it represents an excellent opportunity to confirm the usefulness of Evo-
Crash in an industrial setting. The key idea is to centralize the information in the issue
tracker by providing a test case able to replicate the crash reported in an issue in the
same issue (as an attachment for instance). This can be automated using, for instance,
a GitHub, GitLab or JIRA plugin that executes EvoCrash when a new issue contains
a stack trace. To assess the usefulness of EvoCrash in an industrial setting, we plan
to setup a case study [213] with our industrial partners. Hereafter, we outline the
main steps of the evaluation protocol using XWiki as subject: (i) select four crashes

37See how to extend ExRunner at https://github.com/STAMP-project/ExRunner.

https://github.com/STAMP-project/ExRunner

Chapter 3. Large-scale Evaluation of EvoCrash 111

to fix (two from open issues and two from closed issues) for which EvoCrash could
generate a crash reproducing test for frame 3 or higher; (ii) clone the XWiki Git re-
pository in GitHub and open four issues, corresponding to the four crash; (iii) remove
the fix for the two fixed issues; (iv) for each issue, append the test case generated by
EvoCrash; (v) ask (non-XWiki) developers to fix the issues; and finally, (vi) repeat the
same steps without adding the test cases generated by EvoCrash (i.e., omit step iv).
We would measure the time required to fix the issues (by asking participants to log
that time). For the two previously fixed issues, we will compare the fixes provided by
the participants with the fixes provided by XWiki developers. And for the two open
issues, we will ask feedback from the XWiki developers through a pull request with
the different solutions.

3.9.3 Benchmark building

JCrashPack is the first benchmark dedicated to crash reproduction. We deliberately
made a biased selection when choosing Elasticsearch as the most popular, trending,
and frequently-forked project from GitHub. Elasticsearch was among several other
highly ranked projects, which addressed other application domains, and thus were
interesting to explore. In the future, further effort should extend JCrashPack, possibly
by: (i) using a random selection methodology for choosing projects; (ii) involving
industrial projects from other application domains; and (iii) automatically collecting
additional information about the crashes, the stack traces, and the frames to further
understand current strengths and limitations of crash reproduction.

Building JCrashPack required substantial manual effort, not just for finding the issues,
but also for collecting the right versions of the system itself and its dependencies
needed to reproduce the given crash. Since we want it to be representative of current
crashes, we need to automate this effort as much as possible: for instance, by mining
stack traces from issue tracking systems [170].

Despite the benefits that the evaluation infrastructure could get from the inclusion of
JCrashPack bugs in Defects4J, i.e., the isolation of the bugs to ease replicatbility of
the evaluations [135], we designed JCrashPack as a standalone instead of extending
Defects4J. The main reason is that not all bugs in Defects4J manifest as crashes (only
73 out of 395 where selected to be part of JCrashPack). We also believe that the in-
tegration of the two benchmarks is not a smooth and easy process. Defects4J requires
isolation of the buggy and fixed versions of the source code, as wel as a test case able
to expose the bug [135]. However, not all issues were fixed at the time we collected
the crashes in JCrashPack. Also, XWiki and Elasticsearch are much larger applications

112 3.10. Future research directions for search-based crash reproduction

(124,000 NCSS for Elasticsearch, 177,000 NCSS for XWiki distributed in a hierarchy
of several thousands of Maven projects) compared to the API libraries considered in
Defects4J (63,000 NCSS for JFreeChart). Only building them with their default test
suites already raised several issues. For those reasons, isolating the bug, the patch,
and the non-regression test cases for such kind of large projects is not a trivial task.

3.10 Future research directions for search-based crash
reproduction

From the evaluation and the challenges derived from our manual analysis, we devise
the following future research directions. While the same challenge can be addressed
in different ways, some requiring technical improvements of EvoCrash and other rais-
ing new research directions, we focus the discussion of this section on the latter.

3.10.1 Context matters

While search-based crash-reproduction with EvoCrash [202,204] outperformed other
approaches based on (i) backward symbolic execution [81], (ii) test case mutation
[?], and (iii) model-checking [173], our evaluation shows that the extent to which
crashes are reproduced varies. These results indicate the need for taking various
types of contexts and properties of software applications into account when devis-
ing an approach to a problem. Thus, we show that indeed, rather than seeking a
universal approach to search-based crash reproduction, it is important to find out
and address challenges specific to various types of application domains (e.g., RESTful
microservices vs. enterprise wiki applications) [49].

Furthermore, search-based crash replication boils down to seeking the execution path
that will reproduce a given stack trace. As with other search-based testing approaches,
it faces challenges about input data generation during the search when the input space
is large. Previous research on mocking and seeding [56,192] address this problem by
using functional mocking and extracting objects and constants from the bytecode.

We believe that taking context into account should go one step further for crash replica-
tion. With the development of DevOps [189] and continuous integration and delivery
pipelines, there is an increasing amount of available data on the execution of the soft-
ware. Those data can be used to guide the search more accurately. For instance, by
seeding the search using values observed in the execution logs and setting up values
for environmental dependencies (databases, external services, etc.).

Chapter 3. Large-scale Evaluation of EvoCrash 113

3.10.2 Stack trace preprocessing and target frame selection

Various factors may influence the selection of a target frame in a stack trace. As ob-
served in our evaluation, when not performed cautiously, this selection leads to un-
successful executions of EvoCrash. For instance, frames targeting code in a private
inner class, or irrelevant source code location (like, as we observed, class header or
annotation) should be discarded before performing the selection.

Frames targeting code in abstract classes or interfaces (only if the target method is
defined in the interface, which is possible from Java 8) may be of some use to find
the cause of the crash: for instance, to identify an incorrect subclass implementation
[154]. However, as abstract classes and interfaces cannot be directly instantiated,
the stack trace generated by EvoCrash can never be exactly the same as the given
stack trace. And, as for input arguments and generic type parameters, EvoCrash has
no indication on which subclass to pick, making the search difficult. In this case,
considering higher level frames (i.e., frames that are lower in the stack trace) may
help to pick the right subclass.

Those reasons motivate the need to develop stack trace analysis techniques in order to
help the selection of a target frame. This analysis will discard irrelevant and unknown
source location frames and provide a visualization to the developer to have a clear
view on what are his or her options, for instance by marking stack traces that point
to interfaces and abstract classes and recommend him to pick higher level frames.

For a given stack trace, this analysis will also identify frames pointing to a try/catch
block. Those stack traces are commonly reported by users to issue tracking systems
but cannot (for now) be completely reproduced by EvoCrash. Further investigation on
current error handling practices in Java code [75, 86] and how they are reported by
users [157] will help us to devise efficient approaches to replicate such stack traces.

3.10.3 Guided search

Besides usage of contextual information to enhance the generation of test cases dur-
ing the search process, we also consider to enhance the guidance itself. Search based
testing algorithms have several parameters (365 in EvoCrash), like population size,
search budget, probability of applying crossover and mutation, etc. As demonstrated
by Arcuri and Fraser [51], default parameters values work well on average, but may
be fare from optimal for specific frames and stack traces. A better characterization
of the stack traces in JCrashPack, trying different parameters, as well as improving
the fitness function itself are part of our future work. For instance the fitness func-

114 3.11. Threats to validity

tion could take other elements into account (e.g., compute a similarity for exception
messages). We will also consider multi-objectives search, where, for a given target
frame, reproducing each lower frame becomes an objective of the search. We plan
to reuse our evaluation infrastructure to compare those different approaches and in-
vestigate their different fitness landscapes to gain deeper understanding of the search
process for crash reproduction. And eventually devise guidelines on EvoCrash settings
to maximize crash reproduction for a given stack trace and its characteristics.

3.10.4 Improving testability

Finally, as we observed, code complexity was among the major challenges in crash
reproduction with EvoCrash. To improve testability, several testability transformation
techniques [?, 61, 118, 119, 152] have been proposed in the literature so far. Future
research may investigate testability transformation techniques and their impact on
search-based crash reproduction.

3.11 Threats to validity

Evaluations of crash reproduction approaches, such as the one we conducted for Evo-
Crash, come with threats to internal validity, external validity, and reliability. The
overarching goal of JCrashPack is to reduce such threats for all evaluations of any
crash reproduction tool, by offering a curated set of crashes to conduct such evalu-
ations.

Concerning external validity, we carefully designed JCrashPack so that it offers a mix
of small and large systems, as well as of different types of exceptions. Furthermore,
it includes open source systems directly developed by industry. Nevertheless, any set
is incomplete, which is why we keep JCrashPack open for extension, as discussed in
Section 4.6. For example, there still remain several other domains, such as gaming or
financial applications, for which there is no representative project in the benchmark.

With respect to internal validity, implementation faults can be a source of confounding
factors. These can occur in the tools themselves, such as EvoCrash or EvoSuite, but
also in the infrastructure used to actually conduct the experiment. To address the
latter, JCrashPack comes with ExRunner, which automates the process of scheduling,
executing, monitoring, and reporting crash reproduction attempts.

Concerning reliability, JCrashPack and ExRunner make it easy to repeat experiments,
thus making it possible for researchers to independently replicate each others crash

Chapter 3. Large-scale Evaluation of EvoCrash 115

reproduction findings.

Besides these threats partially mitigated by JCrashPack, our evaluation of EvoCrash
comes with additional threats to (internal and external) validity. This particularly
relates to the randomized nature of genetic algorithms, which we addressed by run-
ning the evaluations 10 times, and following the guidelines by Arcuri and Briand [50]
for analyzing the results. Furthermore, such threats concern the risk of bias during
the manual analysis, which we mitigated by using cross-checking: the result of each
manual analysis has been validated by at least one other person. In case of disagree-
ment, we asked for a third opinion. Finally, our evaluation includes only one tool:
EvoCrash. Previous work showed that EvoCrash performs better than other state-of-
the-art crash reproduction tools. Unfortunately, since to the best of our knowledge, no
other tool was publicly available, we were not able to confirm that conclusion on the
crashes in JCrashPack. We believe that JCrashPack enhances the current state-of-the-
practice in crash reproduction research by offering a publicly available benchmark for
which other tool providers can report their results.

3.12 Conclusion

Experimental evaluation of crash reproduction research is challenging, due to the
computational resources needed by reproduction tools, the difficulty of finding suit-
able real life crashes, and the intricacies of executing a complex system so that the
crash can be reproduced at all.

To remedy this problem, this paper sets out to create a benchmark of Java crashes,
that can be reused for experimental purposes. To that end we propose JCrashPack
and ExRunner, a curated benchmark of 200 real life crashes, and a tool to conduct
massive experiments on these crashes. This benchmark is publicly available and can
be used to compare existing and new tools against each other, as well as to analyze
how proposed improvements to existing reproduction techniques actually constitute
an improvement.

We applied the state of the art search-based Java crash reproduction tool, EvoCrash,
to JCrashPack. Our findings include that the state of the art can reproduce 87 crashes
out of 200 in a majority of time, that crash reproduction for industry-strength systems
is substantially harder, and that NullPointerExceptions are generally easiest to
reproduce. Furthermore, we identified 13 challenges that crash reproduction research
needs to address to strengthen uptake in practice, as well a future research directions
to address those challenges.

116 3.12. Conclusion

JCrashPack can be extended in various ways: by including more crashes from other
types of applications; by automating the collection of information about eh crashes
and stack traces to further understand current strengths and limitations of crash re-
production; as well as automating the collection of the crashes themselves. Further-
more, since executing crash reproduction tools on 200 crashes may be time taking,
JCrashPack could be extended to offer prioritization for benchmarks, based on the
known theoretical strengths and limitations if the tools. For instance, by ordering
crashes based on the cyclomatic complexity of the involved frames to evaluate search-
based or symbolic execution-based crash reproduction approaches.

Finally, our future work for EvoCrash itself include improving input data generation
by taking information from the execution context and the application (e.g., existing
source code and test cases) into account. We also want to deeper our understanding
of stack traces in order to be able to recommend target frames to the developers.
Finally, we will improve the search process itself by refining the fitness function to
improve the guidance trough the different frames of the stack trace.

Chapter 3. Large-scale Evaluation of EvoCrash 117

Table 3.4: Number of stack traces (st), total number of frames (fr), and average num-
ber of frames (ƒ r) and standard deviation (σ) per stack trace for the different excep-
tions: NullPointerException (NPE), IllegalArgumentException (IAE), ArrayIndexOut-
OfBoundsException (AIOOBE), ClassCastException (CCE), StringIndexOutOfBounds-
Exception (SIOOBE), IllegalStateException (ISE), and other exceptions types (Other).

Applications N
PE

IA
E

A
IO

O
B

E

C
C

E

SI
O

O
B

E

IS
E

O
th

er

Total
Commons-lang st 5.0 3.0 2.0 0.0 6.0 0.0 6.0 22.0

fr 8.0 3.0 12.0 0.0 10.0 0.0 12.0 45.0
ƒ r 1.6 1.0 6.0 1.7 2.0 2.0
σ 0.9 0.0 5.7 1.0 1.5 2.1

Commons-math st 3.0 3.0 4.0 2.0 1.0 0.0 14.0 27.0
fr 8.0 7.0 9.0 11.0 1.0 0.0 70.0 106.0
ƒ r 2.7 2.3 2.2 5.5 1.0 5.0 3.9
σ 0.6 1.5 2.5 6.4 NA 3.0 3.0

Mockito st 2.0 0.0 2.0 2.0 0.0 0.0 8.0 14.0
fr 3.0 0.0 12.0 2.0 0.0 0.0 48.0 65.0
ƒ r 1.5 6.0 1.0 6.0 4.6
σ 0.7 7.1 0.0 3.8 4.1

Joda-Time st 0.0 3.0 0.0 0.0 0.0 0.0 5.0 8.0
fr 0.0 5.0 0.0 0.0 0.0 0.0 26.0 31.0
ƒ r 1.7 5.2 3.9
σ 0.6 1.5 2.2

JFreechart st 1.0 1.0 0.0 0.0 0.0 0.0 0.0 2.0
fr 6.0 6.0 0.0 0.0 0.0 0.0 0.0 12.0
ƒ r 6.0 6.0 6.0
σ NA NA 0.0

XWiki st 20.0 4.0 0.0 6.0 1.0 0.0 20.0 51.0
fr 535.0 39.0 0.0 131.0 8.0 0.0 687.0 1400.0
ƒ r 26.8 9.8 21.8 8.0 34.4 27.5
σ 33.3 3.7 22.2 NA 47.0 37.0

Elasticsearch st 18.0 10.0 6.0 0.0 1.0 7.0 34.0 76.0
fr 222.0 152.0 102.0 0.0 15.0 135.0 717.0 1343.0
ƒ r 12.3 15.2 17.0 15.0 19.3 21.1 17.7
σ 9.8 9.2 18.0 NA 11.9 13.4 12.5

Total st 49.0 24.0 14.0 10.0 9.0 7.0 87.0 200.0
fr 782.0 212.0 135.0 144.0 34.0 135.0 1560.0 3002.0
ƒ r 16.0 8.8 9.6 14.4 3.8 19.3 17.9 15.0
σ 23.9 8.5 13.3 19.3 4.8 11.9 26.3 22.3

118 3.12. Conclusion

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

14

5

2

1

8

2

4

2

2

1

1

1

4

2

5

1

1

1

5

7

8

1

4

3

1

1

39

15

12

6

6

7

1

1

2

4

6

8

NPE
IA

E

AIO
OBE

CCE

SIO
OBE

IS
E

Oth
er (a

ll)

H
ig

he
st

 r
ep

ro
du

ce
d

fr
am

e
le

ve
l

(a) In each type of exception

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

12

4

1

8

2

6

1

1

2

1

1

1

1

2

1

1

2

1

8

4

3

3

1

3

8

4

1

2

1

1

39

15

12

6

6

7

1

1

2

4

6

8

Com
m

on
s−

lan
g

Com
m

on
s−

m
at

h

M
oc

kit
o

Jo
da

−T
im

e

JF
re

ec
ha

rt

XW
iki

Elas
tic

se
ar

ch (a
ll)

H
ig

he
st

 r
ep

ro
du

ce
d

fr
am

e
le

ve
l

(b) In each type of application

Figure 3.4: Highest reproduced frame levels

Chapter 3. Large-scale Evaluation of EvoCrash 119

171

219

245

486

738
25%

50%

75%

0%/100%

aborted line not reached line reached ex. thrown reproduced

Figure 3.5: An overview of the reproduction outcome

Table 3.5: Statistics for the average number of fitness evaluations for the reproduced
frames (fr) belonging to different stack traces (st), grouped by applications, out of
10 rounds of execution. The confidence Interval (CI) is calculated for the median
bootstrapping with 100,000 runs, at a 95% confidence level.

Applications st fr Min Lower Quart. Median CI Med. Upper Quart. Max
Com.-lang 19 213 1 2.0 [5.0 ,22.0] 15.0 237.0 52,240
Com.-math 24 471 1 13.0 [124.0 ,211.0] 178.0 1,046.5 58,731
Mockito 2 40 1 1.0 [1.0 ,1.0] 1.0 5.2 138
Joda-Time 6 138 1 15.5 [79.1 ,369.0] 253.5 1,290.2 40,189
JFreechart 1 41 1 10.0 [-292.0 ,350.0] 221.0 1,188.0 20,970
XWiki 25 531 1 2.5 [14.0 ,30.0] 23.0 209.0 34,089
Elasticsearch 19 287 1 4.0 [5.0 ,32.0] 23.0 125.0 17,461

Total 96 1721 1 4.0 [34.0 ,59.0] 48.0 534.0 58,731

120 3.12. Conclusion

Commons−lang Commons−math Mockito Joda−Time JFreechart XWiki Elasticsearch (all)

N
P

E
IA

E
A

IO
O

B
E

C
C

E
S

IO
O

B
E

IS
E

O
ther

(all)

ab
or

te
d

lin
e

no
t r

ea
ch

ed

lin
e

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e

no
t r

ea
ch

ed

lin
e

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e

no
t r

ea
ch

ed

lin
e

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e

no
t r

ea
ch

ed

lin
e

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e

no
t r

ea
ch

ed

lin
e

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e

no
t r

ea
ch

ed

lin
e

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e

no
t r

ea
ch

ed

lin
e

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e

no
t r

ea
ch

ed

lin
e

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

N
um

be
r

of
 fr

am
es

 (
lo

ga
rit

hm
ic

 s
ca

le
)

Figure 3.6: Detailed reproduction outcome for the different frames.

Chapter 3. Large-scale Evaluation of EvoCrash 121

Table 3.6: Statistics for the average number of fitness evaluations for the reproduced
frames (fr) belonging to different stack traces (st), grouped by exceptions, out of
10 rounds of execution. Confidence Interval (CI) is calculated for median with boot-
strapping with 100,000 runs, at 95% confidence level.

Applications st fr Min Lower Quart. Median CI Med. Upper Quart. Max
NPE 26 330 1 6.0 [9.0 ,63.0] 44.5 220.0 34,089
IAE 16 399 1 2.0 [7.0 ,12.0] 10.0 49.0 38,907
AIOOBE 5 58 1 15.5 [252.0 ,1,104.5] 675.0 1,671.2 53,644
CCE 6 103 1 6.5 [74.0 ,210.0] 120.0 560.0 10,197
SIOOBE 8 95 1 12.5 [122.0 ,945.0] 505.0 2,326.0 52,240
ISE 2 42 1 1.0 [1.0 ,3.0] 2.0 105.8 1,138
Other 33 694 1 7.0 [99.0 ,139.0] 125.5 825.0 58,731

Total 96 1721 1 4.0 [34.0 ,59.0] 48.0 534.0 58,731

Table 3.7: Challenges with the number and percentage of frames identified for this
challenge.

Category Frames Frequency
Input Data Generation 825 49.91%
Abstract Class 242 14.64%
Anonymous Class 142 8.59%
Static Initialization 141 8.53%
Complex Code 118 7.14%
Private Inner Class 56 3.39%
Environmental Dependencies 52 3.15%
Irrelevant Frame 37 2.24%
Unknown Sources 16 0.97%
Nested calls 10 0.60%
try/catch 7 0.42%
Interface 6 0.36%
Empty Enum Type 1 0.06%
Total 1653 100%

122 3.12. Conclusion

Commons−lang Commons−math Mockito Joda−Time JFreechart XWiki Elasticsearch (all)

N
P

E
IA

E
A

IO
O

B
E

C
C

E
S

IO
O

B
E

IS
E

O
ther

(all)

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

N
um

be
r

of
 fi

tn
es

s
ev

al
ua

tio
n

(lo
g.

 s
ca

le
)

Figure 3.7: Average number of fitness evaluations for the reproduced frames for each
applications and exception type.

