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Evolutionary Crash Reproduction

Software systems fail. These failures are often reported to issue tracking systems,
where they are prioritized and assigned to responsible developers to be investigated.
When developers debug software, they need to reproduce the reported failure in order
to verify whether their fix actually prevents the failure from happening again. Since
manually reproducing each failure could be a complex task, several automated tech-
niques have been proposed to tackle this problem. Despite showing advancements
in this area, the proposed techniques showed various types of limitations. In this pa-
per, we present EvoCrash, a new approach to automated crash reproduction based
on a novel evolutionary algorithm, called Guided Genetic Algorithm (GGA). We re-
port on our empirical study on using EvoCrash to reproduce 54 real-world crashes,
as well as the results of a controlled experiment, involving human participants, to
assess the impact of EvoCrash tests in debugging. Based on our results, EvoCrash out-
performs state-of-the-art techniques in crash reproduction and uncovers failures that
are undetected by classical coverage-based unit test generation tools. In addition, we
observed that using EvoCrash helps developers provide fixes more often and take less
time when debugging, compared to developers debugging and fixing code without
using EvoCrash tests.

2.1 Introduction

Despite the significant effort spent by developers in software testing and verification,
software systems still fail. These failures are reported to issue tracking systems, where
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they are prioritized, and assigned to responsible developers for inspection. When de-
velopers debug software, they need to reproduce the reported failure, understand
its root cause, and provide a proper fix that prevents the failure. While crash stack
traces indicate the type of crash and the method calls executed at the time of the
crash, they may lack critical details that a developer could use to debug the software.
Therefore, depending on the complexity of the reported failures and amount of avail-
able information about them, manual crash reproduction can be a labor-intensive task
which negatively affects developers’ productivity.

To reduce debugging effort, researchers have proposed various automated techniques
to generate test cases reproducing the target crashes. Generated tests can help de-
velopers better understanding the cause of the crash by providing the input values
that actually induce the failure and enable the usage of a debugger in the IDE with
runtime data. To generate such tests, crash reproduction techniques leverage vari-
ous sources of information, such as stack traces, core dumps, failure descriptions.
As Chen and Kim [81] first identified, these techniques can be classified into two
categories: record-replay techniques, and post-failure techniques. Record-replay ap-
proaches [?,?, 58,169, 205] monitor software behavior via software/hardware in-
strumentation to collect the observed objects and method calls when failures occur.
Unfortunately, such techniques suffer from well-known practical limitations, such as
performance overhead [81], and privacy issues [171].

As opposed to these costly techniques, post-failure approaches [81,150,151,171,194,
215, 219] try to replicate crashes by exploiting data that is available after the fail-
ure, typically stored in log files or external bug tracking systems. Most of these tech-
niques require specific input data in addition to crash stack traces [81], such as core
dumps [150, 151, 194, 208] or software models like input grammars [136, 137] or
class invariants [69].

Since such additional information is usually not available to developers, recent ad-
vances in the field have focused on crash stack traces as the only source of information
for debugging [81,171,215]. For example, Chen and Kim developed STAR [81], an
approach based on backward symbolic execution that outperforms earlier crash rep-
lication techniques, such as Randoop [177] and BugRedux [134]. Xuan et al. [215]
presented MuCrash, a tool that mutates existing test cases using specific operators,
thus creating a new pool of tests to run against the software under analysis. Nayrolle
etal. [171] proposed JCHARMING, based on directed model checking combined with
program slicing [171,172].

Unfortunately, the state-of-the-art tools suffer from several limitations. For example,
STAR cannot handle cases with external environmental dependencies [81] (e.g., file
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or network inputs), non-trivial string constraints, or complex logic potentially lead-
ing to a path explosion. MuCrash is limited by the ability of existing tests in covering
method call sequences of interest, and it may lead to a large number of unneces-
sary mutated test cases [215]. JCHARMING [171,172] applies model checking which
can be computationally expensive. Moreover, similar to STAR, JCHARMING does not
handle crash cases with environmental dependencies.

This paper is an extension of our previous conference paper [203], where we presen-
ted EvoCrash, a search-based approach for the automated crash replication problem
and built on top of EvoSuite [103], which is a well-known coverage-based unit test
generator for Java code. Specifically, EvoCrash uses a novel evolutionary algorithm,
namely Guided Genetic Algorithm (GGA), which leverages the stack trace to guide
the search toward generating tests able to trigger the target crashes. GGA uses a gen-
erative routine to build an initial population of test cases, which exercise at least one
of the methods reported in the crash stack frames (target methods). GGA also uses
two novel genetic operators, i.e., namely guided crossover and guided mutation, to
ensure that the test cases keep exercising the target methods across the generations.
The search is further guided by a fitness function that combines coverage-based heur-
istics with a crash-based heuristic measuring the distance between the stack traces (if
any) generated by the candidate test cases and the original stack trace of the crash to
replicate.

We assess the performance of EvoCrash by conducting an empirical study on 54
crashes reported for real-world open-source Java projects. Our results show that Evo-
Crash can successfully replicate more crashes than STAR (+23%), MuCrash (+17%),
and JCHARMING (+25%), which are the state-of-the-art tools based on crash stack
traces. Furthermore, we observe that EvoCrash is not affected by the path explosion
problem, which is a key problem for symbolic execution [81], and can mock envir-
onmental interactions which, in some cases, helps to cope with the environmental
dependency problem.

Furthermore, we compare EvoCrash with EvoSuite to assess whether the crash rep-
licated by our tools could be simply detected by classical coverage-based test case
generators. The results of this comparison show that EvoCrash reproduced 85% of
the crashes, while EvoSuite reproduced only 33% of them. For crashes reproduced by
both EvoCrash and EvoSuite, on average, EvoCrash took 145 seconds while EvoSuite
took 391 seconds. Thus, on average, EvoCrash is 170% more efficient than EvoSuite
when they both reproduce crashes. These results show that coverage-based test gener-
ation lacks adequate guidance for crash reproduction. This in turn confirms the need
for specialized search when the goal is to trigger specific software behavior rather
than achieving high code coverage.
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We also assess the extent of practical usefulness of the tests generated by EvoCrash
during debugging and code fixing tasks. To this aim, we conducted a controlled ex-
periment with 35 master students in computer science. The achieved results reveal
that tests generated by EvoCrash increase participants’ ability to provide fixes (+21%
on average) while reducing the amount of time they spent to complete the assigned
tasks (-15.36% on average).

The novel contributions of this extension are summarized as follows:

* A comparison of EvoCrash with EvoSuite, which is a test generation tool for
coverage-based unit testing.

* A controlled experiment involving human participants; its results show that the
usage of the tests aids developers in fixing the reported bugs while taking less
time when debugging.

* We provide a publicly available replication package! that includes: (i) an ex-
ecutable jar of EvoCrash, (ii) all bug reports used in our study, (iii) the test
cases generated by our tool, and (iv) anonymized experimental data as well as
R scripts used to analyze the results from the controlled experiment.

The remainder of the chapter is structured as follows. Section 2.2 provides back-
ground on search-based software testing, in addition to describing the related work
on the approaches to automated crash replication, unit test generation tools, and
user studies in testing and debugging. Section 2.3 presents the EvoCrash approach.
Section 2.4 and 2.5 describe the empirical evaluation of EvoCrash as well as the
controlled experiment with human participants, respectively. Discussion follows in
Section 2.6. Section 2.7 concludes the paper.

2.2 Background and Related Work

In this section, we present related work on automated crash reproduction, back-
ground knowledge on search-based software testing,related work in software testing
and debugging which conducted experiments involving human participants.

2.2.1 Automated Approaches to Crash Replication

Previous approaches in the field of crash replication can be grouped into three main
categories: (i) record-replay approaches, (ii) post-failure approaches using various

1 DOI: 10.4121/uuid:001bb128-0a55-4a8d-b3f5-e39bfc5795ea
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data sources, and (iii) stack-trace based post-failure techniques. The first category in-
cludes the earliest work in this field, such as ReCrash [58], ADDA [?], Bugnet [169],
and jRapture [205]. In addition, [64] and [76] are recent record-replay techniques
which are based on monitoring non-deterministic and hard-to-resolve methods (when
using symbolic execution) respectively. The recent work on reproducing context-
sensitive crashes of Android applications, MoTiF [114], also falls in the first category
of record-replay techniques. The aforementioned techniques rely on program run-
time data for automated crash replication. Thus, they record the program execution
data in order to use it for identifying the program states and execution path that led to
the program failure. However, monitoring program execution may lead to (i) substan-
tial performance overhead due to software/hardware instrumentation [81,171,194],
and (ii) privacy violations since the collected execution data may contain sensitive in-
formation [81].

On the other hand, post-failure approaches [137, 150, 151, 194, 217, 219] analyze
software data (e.g., core dumps) only after crashes occur, thus not requiring any form
of instrumentation. Rossler et al. [194] developed an evolutionary search-based ap-
proach named RECORE that leverages core dumps (taken at the time of a failure)
to generate input data. RECORE combines the search-based input generation with
a coverage-based technique to generate method sequences. Weeratunge et al. [208]
used core dumps and directed search for replicating crashes related to concurrent
programs in multi-core platforms. Leitner et al. [150, 151] used a failure-state ex-
traction technique to create tests from core dumps (to derive input data) and stack
traces (to derive method calls). Kifetew et al. [136, 137] used genetic programming
requiring as input (i) a grammar describing the program input, and (ii) a (partial)
call sequence. Boyapati et al. [69] developed another technique requiring manually
written specifications containing method preconditions, postconditions, and class in-
variants. However, the above mentioned post-failure approaches need various types
of information that are often not available to developers, thus decreasing their feas-
ibility. To address lack of available execution data for replicating system-level concur-
rency crashes, Yu et al. [217] propose a new approach called, DESCRY. DESCRY only
assumes the existence of the source code of processes under debugging and default
logs generated by the failed execution. This approach [217] leverages a combination
of static and dynamic analysis techniques and symbolic execution to synthesize the
failure-inducing input data and interleaving schedule.

To increase the practical usefulness of automated approaches, researchers have fo-
cused on crash stack traces as the only source of information available for debugging.
For instance, ESD [219] uses forward symbolic execution that leverages commonly
reported elements in bug reports. BugRedux [134] also uses forward symbolic execu-
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tion but it can analyze different types of execution data, such as crash stack traces. As
highlighted by Chen and Kim [81], both ESD and BugRedux rely on forward symbolic
execution, thus inheriting its problems due to path explosion and object creation [214].
As shown by Braione et al. [70], existing symbolic execution tools do not adequately
address the synthesis of complex input data structures that require non-trivial method
sequences. To address the path explosion and object creation problems, Chen and
Kim [81] introduced STAR, a tool that applies backward symbolic execution to com-
pute crash preconditions and generates a test using a method sequence composition
approach. Despite these advances in STAR, Chen and Kim [81] reported that their ap-
proach is still affected by the path explosion problem when replicating some crashes.
Therefore, path-explosion still remains an open issue for symbolic execution.

Different from STAR, JCHARMING [171,172] uses a combination of crash traces and
model checking to automatically reproduce bugs that caused field failure. To address
the state explosion problem [60] in model checking, JCHARMING applies program
slicing to direct the model checking process by reduction of the search space. Instead,
MucCrash [215] uses mutation analysis as the underlying technique for crash replic-
ation. First, MuCrash selects the test cases that include the classes in the crash stack
trace. Next, it applies predefined mutation operators on the tests to produce mutant
tests that can reproduce the target crash.

STAR [81], JCHARMING [171,172], and MuCrash [215], have been empirically eval-
uated on a varying number of field crashes (52, 12, and 31, respectively) which were
reported for different open source projects, including: Apache Commons Collections,
Apache Ant, Apache Hadoop, Dnsjava, etc. The results of the evaluations are repor-
ted in the published papers, however, to the best of our knowledge, the tools are not
publicly available.

A recent approach based on using crash stacks for reproducing concurrency failures,
that violate thread safety of a class, is CONCRASH, proposed by Bianchi et al. [65].
As input, CONCRASH requires the class that violates thread safety and the generated
crash stack trace. CONCRASH iteratively applies pruning strategies to search for test
code and interleaving that trigger the target concurrency failure. Differently from our
approach, CONCRASH targets only concurrency failures violating the thread-safety of
a program [65], which represents the minority of failures reported in issue tracking
systems [218]. For example, Yuan et al. [218] reported that only 10% of the failures
in distributed data-intensive systems are due to multi-threaded inter-leavings. A later
study by Coelho et al. [85] further reported that a large majority of failures in android
apps are related to errors in programming logic and resource management, while
concurrency accounts only for 2.9% of all failures.
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In our earlier study [201], we investigated coverage-based unit testing tools like Evo-
Suite as a technology for replicating some crashes if relying on a proper fitness func-
tion specialized for crash replication. However, our preliminary results also indicated
that this simple solution could not replicate some cases for two main reasons: (i) lim-
itations of the developed fitness function, and (ii) the large search space in complex
real-world software. The EvoCrash approach presented in this paper resumes this line
of research because it uses evolutionary search to synthesize a crash reproducing test
case. However, it is novel because it utilizes a more effective fitness function and it
applies a Guided Genetic Algorithm (GGA) instead of coverage-oriented genetic al-
gorithms. Section 2.3 presents full details regarding the novel fitness function and
the GGA in EvoCrash.

2.2.2 Search-based Software Testing

Search-Based Software Testing (SBST) is a sub-field of a larger body of work on
Search-Based Software Engineering (SBSE). In SBSE, software engineering tasks are
reformulated as optimization problems, to which different meta-heuristic algorithms
are applied to automate them [122]. As McMinn describes [161], search optimiz-
ations have been used in a plethora of software testing problems, including struc-
tural testing [209], temporal testing [187], functional testing [73], and mutation
testing [132]. Among these, structural testing has received the most attention so far.

Applying an SBST technique on a testing problem requires [117,161]: (i) a represent-
ation for the candidate solutions in the search space, and (ii) a definition for a fitness
function. The representation of the solutions shall constitute elements which make it
possible to encode them using some data structures [122] (e.g., vectors, trees). This
is mainly because search optimization techniques rely on operators that manipulate
the encoded elements to derive new solutions. In addition, the representation shall
be accurate enough so that a small change in one individual solution represents a
neighbor solution in the search space [122].

A fitness function (also called objective or distance function) is used to measure the
distance of each individual in the search space from the global optimum. Therefore,
it is important that this definition is computationally inexpensive so that it could
be used to measure the distance of multiple individuals until the global optimum is
found [122].

Furthermore, as described before, path explosion and object creation are open prob-
lems when using symbolic execution [70] [81]. Different from symbolic execution,
search-based software testing uses distance functions to satisfy each condition of the
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program in “isolation” [59], i.e., independently from which alternative path is taken
to reach the condition to solve. Focusing on each condition at a time allows to ad-
dress the path explosion problem but, on the other hand, it may fail to capture de-
pendencies between multiple conditions in the programs as in the case of deceiving
conditions [160]. Search-based approaches can be implemented to handle complex
input data type by relying on the APIs of the SUT. Indeed, random sampling is used to
create randomized tests containing object references through the invocation of con-
structors and randomly generated method sequences. The “quality” of the generated
test input data is then assessed through test execution and measuring the distance
to satisfy a given branch. The complexity of the input is then evolved depending on
whether more complex data structures help or not satisfying the testing criterion.

Moreover, with regards to environmental interactions, Arcuri et al. [54] show that
such interactions may inhibit the success of automated test generation. This is mainly
due to two reasons: (i) the code that depends on the environment may not be fully
covered, and (ii) the generated tests may be unstable. Arcuri et al. [54] showed that
proper instrumentation in a search-based test generator can be used not only to syn-
thesize the test inputs during the search process but also to control the environmental
state. More specifically, mocking strategy can be used to isolate the execution of a class
from its environmental dependencies.

Finally, meta-heuristics that have been used in SBST include hill climbing, simulated
annealing, genetic algorithms, and memetic algorithms. The first two algorithms fall
in the category of local search techniques since they evaluate single points in the
search space at the time [122]. On the other hand, genetic algorithms are global
search techniques since they evaluate a population of candidate solutions from the
search space in various iterations [122]. Memetic algorithms hybridize the local and
global algorithms. Therefore, in these techniques, the individuals of populations in a
global search are also provided with the opportunity for local improvements [106].
Since genetic algorithms have been widely applied to software testing problems, in
what follows, we provide a brief description of a classic genetic algorithm.

2.2.2.1 Genetic Algorithms

Genetic Algorithms (GAs) imitate evolutionary processes observed in nature. A GA
starts by initializing a random population of individuals. When applied to test gener-
ation problems, individuals are typically test suites comprised of test cases [103], or
test cases consisting of a sequence of statements [178]. After the first population is
initialized, tests are executed against the program under test and the best ones are se-
lected to form new individuals. This process continues until either an individual that
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satisfies the search criterion is found, or the allocated resources to the search process
are consumed.

To produce the next generation, the best individuals from the previous generation
(parents) are selected (elitism) and used to generate new test cases (offspring). Off-
spring is produced by applying typical evolutionary operators, namely crossover and
mutation, to the selected “fittest” individuals. Depending on whether the parent or
the offspring scores better for the search criterion, one is selected to be inserted into
the next generation.

To illustrate the evolutionary operators, let us consider as examples two test cases
T1={s1, ...,Sm}and T> = {Si“ e, S;} selected from a given generation as
parents. To generate offspring O1 and O3, first a random number &, called the relative
cut-point, between 0.0 and 1.0 is selected. Then, the first offspring O; will contain
the first & x m statements from T1 followed by the last (1 — o) x n statements
from T>. Similarly, O, will contain the first a x n statements from T followed by
(1 — a) x m statements from T7. Thus, each offspring inherits its statements (e.g.,
objects instantiations, methods calls) from both the two parents.

Newly generated test cases are further changed by applying a mutation operator.
With mutation, either random new statements are inserted into the tests, or random
existing statements are removed, or random input parameters are modified [178].
Both crossover and mutation are performed such that the resulting test cases will be
compilable. For example, if a new object is inserted as a parameter, then before it is
inserted it is declared and instantiated.

2.2.3 Unit Test Generation Tools

A number of techniques and tools have been proposed in the literature to automatic-
ally generate tests maximizing specific code coverage criteria [18,103,112,156,159,
177,184,196, 206]. The main difference among them is represented by the core ap-
proach used for generating tests. For example, EvoSuite [103], JTExpert [196], and
SAPIENZ [159] use genetic algorithms to create test suites optimizing code coverage;
Randoop [177], T3 [184], Dynodroid [156], and Google Monkey [18] apply random
testing, while DART [112] and Pex [206] are based on dynamic symbolic execution.

As reported in the related literature, such tools can be used to discover bugs affect-
ing software code. Indeed, they can generate test triggering crashes when trying to
generate tests exercising the uncovered parts of the code. For example, Fraser and
Arcuri [101] successfully used EvoSuite to discover undeclared exceptions and bugs
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in open-source projects. Recently, Moran et al. [165] used coverage-based tools to dis-
cover android application crashes. However, as also pointed out by Chen and Kim [81]
coverage-based tools are not specifically defined for crash replication. In fact, these
tools are aimed at covering all methods (and their code elements) in the class under
test. Thus, already covered methods are not taken into account for search even if none
of the already generated tests synthesizes the target crash. Therefore, the probability
of generating tests satisfying desired crash triggering object states is particularly low
for coverage-based tools [81].

On the other hand, for crash replication, not all methods should be exploited for
generating a crash: we are interested in covering only a few lines in those meth-
ods involved in the failure, while other methods (or classes) might be useful only
for instantiating the necessary objects (e.g., input parameters). Moreover, among all
possible method sequences, we are interested only on those that can potentially lead
to the target crash stack trace. Therefore, in this paper, we design and evaluate a
tool-supported approach, named EvoCrash, which is specialized for stack trace based
crash replication.

2.2.4 User Studies in Testing and Debugging

In 2005, Sjgberg et al. [200] conducted a survey in which they studied how controlled
experiments are conducted in software engineering, in the decade from 1993 to 2002.
As they report, 1.9% of the 5453 scientific articles reported controlled experiments in
which human participants performed one or more software engineering tasks. Later
on, in 2011, Buse et al. [74] surveyed over 3000 papers, spanning over ten years, to
investigate trends, benefits, and barriers of involving human participants in software
engineering research. As Buse et al. [74] report, about 10% of the surveyed papers in-
volved humans to evaluate a research claim directly. As they observed, the number of
papers in software engineering which use human evaluations is increasing, however,
they highlighted that papers specifically related to software testing and debugging
rarely involved human studies.

In the area of software testing, Orso and Rothermel [176] conducted a survey among
50 software testing scholars, to provide an account of the most successful research in
software testing, since the year 2000. In addition, they aimed at identifying the most
significant challenges and opportunities in the area. Orso and Rothermel [176] ar-
gue that while prominent advances have been made in empirical studies on software
testing, more user studies, in particular within an industrial context, are needed in
which practical impact of research becomes apparent. Ang et al. [44] recently stud-



Chapter 2. Evolutionary Crash Reproduction 27

ied the progress that is made in the research community since 2011 to address the
suggestions given by Orso and Rothermel [176]. As their study indicates, involving
human evaluations in studies on automated debugging techniques remains mostly
unexplored.

Recently, some research work in software testing and debugging started involving
user evaluations include the following: [181], [188], [79], [108], [191], [109], and
[180]. Parnin and Orso [181] performed a preliminary study with 34 developers to
investigate whether and to what extent using an automated debugging approach may
aid developers in their debugging tasks. In their results, Parnin and Orso [181] show
that several assumptions made by automated debugging techniques (e.g., examining
isolated statements is enough to understand the bug and fix it) do not hold in practice.
Moreover, Parnin and Orso [181] also encourage the researchers to involve developers
in their studies to understand how richer information such as test cases and slices may
make debugging aids more usable in practice.

Ramler et al. [188] compared tool-supported random test generation and manual
testing, involving 48 master students. Their findings are twofold: (i) the number of
detected defects by randomly generated test cases is in the range of manual testing,
and (ii) randomly generated test cases detect different defects than manually-written
unit tests.

Ceccato et al. [79] performed two controlled experiments with human participants to
investigate the impact of using automatically generated test cases in debugging. They
show that using automatically generated test cases has a positive impact on the ac-
curacy and efficiency of developers working on fault localization and bug fixing tasks.
Furthermore, Fraser et al. [108], and [109] conducted controlled experiments with
human participants to investigate whether automatically generated unit test cases
aid testers in code coverage and finding faults. In their experiments, they provided
JavaDocs to the participants and asked them to both produce implementations and
test suites. Their results confirmed that while automatically generated test cases, de-
signed for high coverage, do not help testers find bugs, they do aid in achieving high
coverage when compared to the ones produced by human participants.

In addition, Rojas et al. [191] combined a controlled experiment with 41 students
with five think-aloud observations to assess the impact of using the automated test
generation tool, EvoSuite, in software development. Their results confirmed that using
the tool leads to an average branch coverage increase of 13%, and 36% less time spent
on testing, compared to when developers write tests manually. The results from their
think-aloud observations with professional programmers confirmed the necessity to
(i) increase the usability of the tool, (ii) integrate it better during development, and
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(iii) educate developers on how to best use the tool during development.

To improve the comprehensibility of test cases which in turn could improve the num-
ber of faults found by developers, Panichella et al. [180] proposed TestDescriber which
automatically generates summaries of the portions of the code that is exercised by in-
dividual test cases. To assess the impact of their approach, Panichella et al. [180]
performed a controlled experiment with 33 human participants comprising of profes-
sional developers, senior researchers, and students. The results of their study show
that using TestDescriber, (i) developers find twice as many bugs, and (ii) test case
summaries improve the comprehensibility of test cases which were considered useful
by developers.

To investigate and understand the practical usefulness of automatically generated
crash-reproducing tests, we acknowledge the need for involving human practitioners
in our line of research. Therefore, as the first step in this direction, we conducted a
controlled experiment (described in Section 2.5) with master students in computer
science to assess the impact of using the crash-reproducing unit tests generated by
EvoCrash when performing debugging tasks.

2.3 The EvoCrash Approach

In the following, we present the Guided Genetic Algorithm (GGA) and the fitness
function we designed in our search-based approach to automated crash reproduction.

Figure 2.1 shows the main steps of EvoCrash. EvoCrash begins by pre-processing a
crash stack trace log in order to formulate the target crash to be reproduced. Next,
EvoCrash applies a Guided Genetic Algorithm (GGA) in order to search for a test case
that triggers the same crash. The search is over either when the test is found or when
the search budget is over. If a crash reproducing test case is found, it goes through
post-processing, a phase where the generated test is minimized and transformed into
an executable JUnit test. In what follows, we elaborate on each of the above phases
in more detail.

2.3.1 Crash Stack Trace Processing

An optimal test case for crash reproduction has to crash at the same location as the
original crash and produce a stack trace as similar to the original one as possible.
Therefore, in EvoCrash we first parse the log file given as input in order to extract the
crash stack frames of interest. A standard Java stack trace contains (i) the type of the
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Figure 2.1: Overview of The Guided Genetic Algorithm in EvoCrash

exception thrown, and (ii) the list of stack frames generated at the time of the crash.
Each stack frame corresponds to one method involved in the failure and contains: (i)
the method name; (ii) the class name, and (iii) line numbers where the exception was
generated. The last frame is where the exception has been thrown, whereas the root
cause could be in any of the frames, or even outside the stack trace.

From a practical point of view, any class or method in the stack trace can be selected
as code unit to use as input for existing test case generation tools, such as EvoSuite.
However, since our goal is to synthesize a test case generating a stack trace as similar
to the original trace as possible, we always target the class where the exception is
thrown (last stack frame in the crash stack trace) as the main class under test (CUT).

2.3.2 Fitness Function

In search-based software testing, the fitness function is typically a distance function
d(.), which is equal to zero if and only if the a test case satisfying a given criterion
is found. As described in our previous study [201], we have to consider three main
conditions in the definition of our distance for crash replication: 1. the line (state-
ment) where the exception is thrown has to be covered, 2. the target exception has
to be thrown, and 3. the generated stack trace must be as similar to the original one
as possible.
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Therefore, we first define three different distance functions for the three conditions
above, one for each condition. Then, we combine these three distances into our final
fitness function using the sum-scalarization approach. The three distance functions as
well as the final one are described in details in the following subsections.

Line distance. A test case t that successfully replicates a target crash has to cover the
line of the production code where the exception was originally thrown. To guide the
search toward covering the target line, we need to define a distance function ds(t)
for line coverage. To this aim, we use two heuristics that have been successfully used
in white-box testing for branch and statement coverage [160,201]: the approach level
and the normalized branch distance. The approach level measures the distance in the
control flow graph (i.e., the minimum number of control dependencies) between the
path of the production code executed by t and the target line. The branch distance uses
a set of well-established rules [160] to score how close t is to satisfy the conditional
expression where the execution diverges from the paths to the target line.

Exception distance. The exception distance is used to check whether the test case t
triggers the correct exception. Hence, we define the exception distance dexcept as a
boolean function that takes a zero value if and only if the target exception is thrown;
otherwise, dexcept is set to one.

Trace distance. Several stack trace similarity metrics have been defined in the related
literature [90], although for different software engineering problems. These metrics
could be in theory used to define our trace distance. Dang et al. [57,90] proposed
a stack trace similarity to clusterize duplicated bug reports. Their similarity metric
uses dynamic programming to find the longest common subsequence (i.e., sequence
of stack frames) among a pool of stack traces. The clusters are then obtained by
applying a supervised hierarchical clustering algorithm [90]. However, this similarity
metric requires a pool of stack traces plus a training algorithm to decide whether two
stack traces are related to the same crash. Artzi et al. [57] proposed some similarity
metrics to improve fault localization by leveraging concolic testing. Their intuition is
that fault localization becomes more effective when generating passing test cases that
are similar to the test cases inducing a failure [57]. However, the similarity metrics
proposed by Artzi et al. cannot be used in our context for two main reasons: (i) the
test inputs inducing the target failure are not available (generating tests that replicate
a crash is the actual goal of EvoCrash and not its input) and (ii) the similarity metrics
are defined for input and path-constraints (i.e., not for stack traces).

To calculate the trace distance, d¢rqce(t), in our preliminary study [201] we used the

distance function defined as follows. Let S* = {e;‘, ., er*,‘} be the target stack
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trace to replicate, where ei* = (C%*, m’l'< , l’l" ) is the i-the element in the trace com-
posed by class name C [.* , method name m[.* , and line number l[.* LetS={e1,..., ek}
be the stack trace (if any) generated when executing the test t. The distance between

the expected trace S* and the actual trace S is defined as:

min{k,n}
dirace() = > o(diff(e}, e))+|n—k| @.1)
i=1

where diff(el.*, e;) measures the distance between the two trace elements el.* and
e; in the traces S* and S respectively; finally, ¢(x) € [0, 1] is the widely used
normalizing function ¢@(x) = x/(x + 1) [160]. However, such a distance definition
has one critical limitation: it strictly requires that the expected trace S* and the actual
trace S share the same prefix, i.e., the first min{k, n} trace elements. For example,
assume that the triggered stack trace S and target trace S* have one stack trace
element €spgreqd in common (i.e., one element with the same class name, method
name, and source code line number) but that is located at two different positions,
e.g., e l* is the second element in S (€shared = €2 in S) while it is the third one in S*
(Eshared = e; in S*). In this scenario, Equation 2.1 will compare the element e;‘ in
S* with the element in S at the same position { (i.e., with e3) instead of considering
the closest element €spqreq = €2 for the comparison.

To overcome this critical limitation, in this paper we use the following new definition
of stack trace distance:

Definition 1. Let S* be the expected trace, and let S be the actual stack trace triggered
by a given test t. The stack trace distance between S* and S is defined as:

n
dtrace(t) = > min{diff(e’, &) : &j € S} (2.2)
i=1
where diff(e [* , €j) measures the distance between the two trace elements € [* in S* and
its closest element €j in S.

We say that two trace elements are equal if and only if they share the same trace
components. Therefore, we define diff(e l* , €j) as follows:

3 if CF # Ci
diff(e(.*, e)=+{ 2 C! =Ciand m #m; (2.3)
(p(l li* — [ |) €[0;1] Otherwise

The score diff(e l* e;) is equal to zero if and only if the two trace elements ei* and
e; share the same class name, method name and line number. Similarly, d¢rqce(t) in
Equation 2.2 is zero if and only if the two traces S* and S are equal, i.e., they share
the same trace elements.
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Table 2.1: Example of three different test cases with their corresponding distances
and fitness function scores.

Test ds  dexcept dtrace Fitness Function

t1 0.14 1.00 2 0.12 * w1+ 1.00 * wo + 0.67 * ws
to  0.00 1.00 4 0.00 * w1+ 1.00 * wo +4.00 * ws
t3 0.00 0.00 5 0.00 * w1+ 0.00 * wo + 0.86 *x ws

Final fitness function. To combine the three distances defined above, we use the
weighted-sum scalarization [92].
Definition 2. The fitness function value of a given test t is:

f(t) = w1 * ¢ (ds(t)) + W2 * dexcept(t) + w3 * @ (dtrace(t)) 2.9

where ds(t), dexcept(t), and dtrace(t) are the three individual distance functions de-
scribed above; @(.) is a normalizing function [160]; w1, W1, and W3 are the linear
combination coefficients.

Notice that in the equation above, the first and the last terms are first normalized
before being summed up. This is because they have different orders of magnitude:
the maximum value for dtrqce(t) corresponds to the total number of frames in the
stack traces; dexcept(t) takes values in {0, 1}; while the maximum value of ds(t) is
proportional to the cyclomatic complexity of the class under test.

In principle, the linear combination coefficients can be chosen such as to give higher
priority to the different composing distances. In our context, meeting the three condi-
tions for an optimal crash replication should happen in a certain order. In particular,
executing the target line takes precedence over throwing the exception, and in turn,
throwing the target exception takes priority over the degree to which the generated
stack trace is similar to the reported one.

For example, let us consider the three test cases t1, t7, and t3 reported in Table 2.1.
In the example, t; does not cover the target line (i.e., ds(t1) > 0) and it throws
an exception but not the target one; t covers the target line but throws the wrong
exception (i.e., ds(t2) = 0 and dexcept = 1.0); finally, t3 covers the target line (i.e.,
ds(t2) = 0), it throws the right exception (i.e., dexcept = 0) but its trace similarity
is larger than the one for t1 (i.e., dtrace(t3) > dtrace(t1)). The distance values and
the corresponding fitness function for the three tests are also reported in Table 2.1.

Now, let us suppose we decide to give larger priority to d¢rqce compared to the other
distances, e.g., w1 = 0.05, wp = 0.05, and ws = 1. By applying Equation 2, we
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would obtain the following fitness scores:

F(t1)=0.05 % 0.12 + 0.05 * 1.00 + 0.67 ~ 0.7228
f(t2) = 0.05 * 0.00 + 0.05 * 1.00 + 0.80 ~ 0.8500
f(t3) = 0.05 * 0.00 + 0.05 * 0.00 + 0.86 ~ 0.8571

In other words, with these weights, t3 has the largest (worst) fitness score although it
is the closest one to replicate the target crash (it covers the target line and triggers the
correct exception). Instead, t1 and t; do not even cover the target line even though
they have a better fitness than t3. With the weights above, the corresponding fitness
function f(.) would misguide the search by introducing local optima. Therefore, our
weights should satisfy the constraints w1 = w3 and w3z = Wi, i.e., dtrqce should
not have larger a weight compared to the other distances.

Let us consider other three coefficients that satisfy the constraints above: w1 = 0.01,
wy =1, w3 = 0.01. The corresponding fitness values for the three tests in Table 2.1
are as follows:

f(t1)=0.01 ¥ 0.12+1.00+ 0.01 * 0.67 ~ 1.0079
f(t2)=0.01 * 0.00+ 1.00+ 0.01 * 0.80~ 1.0080
f(t3) =0.01 * 0.00+ 0.00+ 0.01 * 0.86 ~ 0.0086

With these new weights, t3 has the lowest (better) fitness value since both the two
constraints w1 = w3 and W» = w3 are satisfied. However, t; has a better fitness
than t, although the latter covers the target line while the former does not. To avoid
this scenario, our weights should satisfy another constraint: wi = w2 + Ws.

In summary, choosing the weights for the function in Definition 2 consists in solving
the following linear system of inequality:

Wi = W2 + W3
w1 = W3 (2.5)
w2 = W3

In this paper, we chose as weights the smallest integer numbers that satisfy the two
inequalities in the system above, i.e., W1 = 3, Wz = 2, w3 = 1. With these weights,
the fitness values for the test cases in the example of Table 2.1 become: f(t1) = 3.04,
f(t2) = 2.80, and f(t3) = 0.86. While choosing the smallest integers makes the
interpretation of the fitness values simpler, we also used different integers in our
preliminary trials. We did not observe any impact on the outcomes.

In general, with these weights, fitness function f(t) assumes values within the interval
[0, 6]; a value 3 < f(t) < 6 indicates that a test t does not cover the target line; a
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value 1 < f(t) < 3 means that the test t covers the target line but does not throw the
target exception; a zero value is reached if and only if the evaluated test t replicates
the target crash.

2.3.3 Guided Genetic Algorithm

In EvoCrash, we use a novel genetic algorithm, named GGA (Guided Genetic Al-
gorithm), suitably defined for the crash replication problem. While traditional search
algorithms in coverage-based unit test tools target all methods in the CUT, GGA gives
higher priority to those methods involved in the target failure. To accomplish this,
GGA uses three novel genetic operators that create and evolve test cases that always
exercise at least one method contained in the crash stack trace, increasing the overall
probability of triggering the target crash. As shown in Algorithm 2.1 (please see the
end of the chapter), GGA contains all main steps of a standard genetic algorithm: (i)
it starts with creation of an initial population of random tests (line 5); (ii) it evolves
such tests over subsequent generations using crossover and mutation (lines 12-20);
and (iii) at each generation it selects the fittest tests according to the fitness function
(lines 22-24). The main difference is represented by the fact that it uses (i) a novel
routine for generating the initial population (line 5); (ii) a new crossover operator
(line 15); (iii) a new mutation operator (lines 19-20). Finally, the fittest test obtained
at the end of the search is post-processed (e.g., minimized) in line 26.

Initial Population. The routine used to generate the initial population plays a
paramount role [179] since it performs sampling of the search space. In traditional
coverage-based tools (e.g., EvoSuite [103] or JTExpert [196]) such a routine is de-
signed to generate a well-distributed population (set of tests) that maximize the num-
ber of methods in the class under test C that are invoked/covered [103]. Instead, the
main goal for crash replication is invoking the subset of methods M¢rqsp in C that
appear in the crash stack traces since they may trigger the target crash. Instead, the
remaining methods can be still invoked with some random probability to instantiate
objects (test inputs) or if they help to optimize the fitness function (i.e., decreasing
the approach level and branch distance for the target line to cover).

For this reason, in this paper we use the novel routine highlighted in Algorithm 2.2
(please see the end of the chapter) for generating the initial sample for random tests. In
particular, our routine gives higher importance to methods contained in crash stack
frames. Subsequently, if a target call, selected by the developer, is public or protected,
Algorithm 2.2 guarantees that this call is inserted in each test at least once. Otherwise,
if the target call is private, the algorithm guarantees that each test contains at least
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one call to a public caller method which invokes the target private call. Algorithm 2.2
generates random tests using the loop in lines 3-18, and requires as input (i) the
set of public target method(s) M¢rqsh, (ii) the population size N, and (iii) the class
under test C. In each iteration, we create an empty test t (line 4) to fill with a random
number of statements (lines 5-18). Then, statements are randomly inserted in t using
the iterative routine in lines 8-18: at each iteration, we insert a call to one public
method either taken from Mcrqsh, or member classes of C. In the first iteration, crash
methods in M¢rqsp (methods of interest) are inserted in t with a low probability
p = 1/size (line 7), where size is the total number of statements to add in t. In the
subsequent iterations, such a probability is automatically increased when no methods
from Mcrqgsh is inserted in t (line 15-17). Therefore, Algorithm 2.2 ensures that at
least one method of the crash is inserted in each initial test2.

The process of inserting a specific method call in a test t requires several additional
operations [103]. For example, before inserting a method call m in t it is necessary
to instantiate an object of the class containing m (e.g., calling one of the public con-
structors). Creating a proper method call also requires the generation of proper input
parameters, such as other objects or primitive variables. For all these additional op-
erations, Algorithm 2.2 uses the routine INSERT-METHOD-CALL (line 18). For each
method call in t, such a routine sets each input parameter as follows:

Case 1 It re-uses an object or variables already defined in t with a probability p=1/3;

Case 2 If the input parameter is an object, it sets the parameter to null with a
probability p=1/3;

Case 3 It randomly generates an objects or primitive value with a probability p=1/3;

Guided Crossover. Even if all tests in the initial population exercise one or more
methods contained in the crash stack trace, during the evolution process—i.e., across
different generations— tests can lose the inserted target calls. One possible cause for
this scenario is the traditional single-point crossover, which generates two offsprings
by randomly exchanging statements between two parent tests p1 and pz. Given a
random cut-point U, the first offspring 07 inherits the first u statements from parent
p1, followed by | p2 | —u statements from parent p;. Vice versa, the second offspring
02 will contain u statements from parent p2 and | p1 | —u statements from the parent
p1. Even if both parents exercise one or more failing methods from the crash stack
trace, after crossover is performed, the calls may be moved into one offspring only.
Therefore, the traditional single-point crossover can hamper the overall algorithm.

2In the worst case, a failing method will be inserted at position Size in t since the probability
insert _probability will be 1/(size —size+ 1) =1
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To avoid this scenario, GGA leverages a novel guided single-point crossover operator,
whose main steps are highlighted in Algorithm 2.3 (please see the end of the chapter).
The first steps in this crossover are identical to the standard single-point crossover:
(i) it selects a random cut point U (line 5), (ii) it recombines statements from the
two parents around the cut-point (lines 7-8 and 12-13 of Algorithm 2.3). After this
recombination, if 01 (or 02) loses the target method calls (a call to one of the methods
reported in the crash stack trace), we reverse the changes and re-define 01 (or 03)
as pure copy of its parent p1 (p3 for offspring 02) (if conditions in lines 10-11 and
16-17). In this case, the mutation operator will be in charge of applying changes to
01 (or 07).

Moving method calls from one test to another may result in non-well-formed tests. For
example, an offspring may not contain proper class constructors before calling some
methods; or some input parameters (either primitive variables or objects) are not
inherited from the original parent. For this reason, Algorithm 2.3 applies a correction
procedure (lines 9 and 15) that inserts all required objects and primitive variables
into non-well-formed offspring.

Guided Mutation. After crossover, new tests are usually mutated (with a low prob-
ability) by adding, changing and removing some statements. While adding state-
ments will not affect the type of method calls contained in a test, the statement de-
letion/change procedures may remove relevant calls to methods in the crash stack
frame. Therefore, GGA also uses a new guided-mutation operator, described in Al-
gorithm 2.4 (please see the end of the chapter).

Let t = (s1,...,5n) be a test case to mutate, the guided-mutation iterates over the
test t and mutates each statement with probability 1/n (main loop in lines 4-15). In-
serting statements consists of adding a new method call at a random point { € [ 1; n]
in the current test t (lines 12-13 in Algorithm 2.4). This procedure also requires to
instantiate objects or declare/initialize primitive variables (e.g., integers) that will be
used as input parameters.

When changing a statement at position { (in lines 10-11), the mutation operator has
to handle two different cases:

Case 1 if the statement S; is the declaration of a primitive variable (e.g., an integer),
then its primitive value is changed with another random value (e.g., another
random integer);

Case 2 if s; contains a method or a constructor call m, then the mutation is applied
by replacing m with another public method/constructor having the same return
type; the input parameters (objects or primitive values) are either (i) taken from
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the previous { — 1 statements in t, (ii) set to null (for objects only), (iii) or
randomly generated. These three mutations are applied with the probability
p=1/3. Therefore, they are equally probable and mutually exclusive for each
input parameter.

Finally, removing a method call (lines 8-9 in Algorithm 2.4) also requires to delete
the corresponding variables and objects used as input parameters (if such variables
and objects are not used by any other method call in t). If the test t loses the target
method calls (i.e., methods in M,sn) because of the mutation, then the loop in lines
4-15 is repeated until one or more target method calls are re-inserted in t; otherwise
the mutation process terminates.

Post processing. At the end of the search process, GGA returns the fittest test case
according to our fitness function. The resulting test tpest can be directly used by a
developer as a starting point for crash replication and debugging.

Since method calls are randomly inserted/changed during the search process, the fi-
nal test tpest can contain statements not needed to replicate the crash. For this reason,
GGA post-processes tpest to make it more concise and understandable. For this post-
processing, we reused the test optimization routines available in EvoSuite [103],
namely: test minimization, and values minimization. Test minimization applies a simple
greedy algorithm: it iteratively removes all statements that do not affect the final fit-
ness value. Finally, randomly generated input values can be hard to interpret for
developers [41]. Therefore, the values minimization from EvoSuite shortens the iden-
tified numbers and simplifies the randomly generated strings [102].

2.3.4 Mocking Strategies

Since EvoCrash is built on top of EvoSuite, by default, EvoCrash inherits the mocking
strategies implemented in EvoSuite [53-55]. Therefore, if reproducing a target crash
requires environmental interactions involving system calls (e.g., System.currentTime-
Millis), network connections (e.g., calls to java.net APIs) and file system (e.g., calls
to java.io.File), EvoCrash benefits from the available mocking operators to reproduce
the crash.

However, it is possible that reproducing a crash requires specific content as the result
of the interaction with the environment. For example, it could be that specific content
of an XML file is needed to reproduce a crash. In these cases, EvoCrash lacks support
for finding the specific content needed to optimize the fitness function. This is an
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open problem in automated test generation that calls for future work and is beyond
the scope of this study.

2.4 Study I: Effectiveness

This section describes the empirical study we conducted to benchmark the effective-
ness of the EvoCrash approach.

2.4.1 Research Questions

To evaluate the effectiveness of EvoCrash we formulate the following research ques-
tions:

* RQ1: How does EvoCrash perform compared to coverage-based test generation?
EvoCrash is built on top of Evosuite, which is a coverage-based test generation
tool for unit testing. Therefore, with this research question, we aim at investig-
ating to what extent EvoCrash actually provides the expected benefits in terms
of the number of reproduced crashes and test generation time compared to a
classical coverage-based test generation approach.

* RQ3: In which cases can EvoCrash successfully reproduce the targeted crashes, and
under what circumstances does it fail to do so? With this research question, we
aim at evaluating the capability of our tool to generate test cases (i) that can
replicate the target crashes, and (ii) that are useful for debugging.

* RQ3: How does EvoCrash perform compared to state-of-the-art reproduction ap-
proaches based on stack traces? In this research question, we investigate the ad-
vantages and disadvantages of EvoCrash as compared to the most recent stack
trace based approaches to crash reproduction previously proposed in the liter-
ature.

For RQ1, we selected EvoSuite [103] as a representative tool for state-of-the-art
approaches for coverage-based unit testing. Our choice is guided by the fact that
EvoSuite won the latest two editions of the SBST tool competition [115] [107] and
achieved very competitive scores (i.e., code coverage and fault detection rate) com-
pared to hand-written tests. Moreover, EvoCrash and EvoSuite share the same in-
strumentation engine, the test execution environment and the encoding schema for
test cases. By default, EvoSuite uses the Archive-based Whole Test Suite generation ap-
proach (WSA) [193], which evolves test suites and optimizes multiple testing criteria.
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The default coverage criteria are line coverage, branch coverage, direct branch coverage,
weak mutation, exception coverage, no-exception top-level method coverage, and output
coverage, which are described in detail by Rojas et al. [190]. Exception coverage is
particularly important in our context: using WSA, when this criterion is enabled, Evo-
Suite stores in an archive all test cases (which compose candidate test suites) that
trigger an exception when trying to maximize the other coverage criteria. Therefore,
the final test suite produced from EvoSuite not only achieves higher code coverage
but also contains all tests triggering some exceptions which were found during the
generation process.

For the sake of our analysis, we conducted the experiments with EvoSuite using the
default coverage criteria and targeting the same class tested by EvoCrash. First, we
compare EvoSuite and EvoCrash in terms of crash replication frequency, i.e., the num-
ber of times each of the two techniques successfully reproduced a crash over 15 inde-
pendent runs. A crash is covered, according to the Crash Coverage criterion by Chen
and Kim [81], when the test generated by one tool triggers the same type of exception
at the same crash line as reported in the crash stack trace. Therefore, for this criterion,
we classified as covered only those crashes for which EvoCrash reached a zero-fitness
value, i.e., when the generated crash stack trace is identical to the target one.

While EvoCrash produces only one test for each crash, EvoSuite generates entire test
suites. Thus, for the latter tool, we consider a crash as replicated if at least one test
case within the test suite generated by EvoSuite is able to replicate the target crash.
To further guarantee the reliability of our results, we re-executed the tests generated
by EvoCrash and EvoSuite against the CUT to ensure that the crash stack frame was
correctly replicated.

We also compared EvoSuite and EvoCrash in terms of search time required to replicate
each crash. To this aim, during each tool run, we stored the duration of the time
interval between the start of the search and the point in time where each test case
(or test suite for EvoSuite) was generated. Then, the time to replicate each crash (if
replicated) corresponds to the search time interval of the test case (or test suite) that
successfully replicates it.

To address RQ3, we apply the two criteria proposed by Chen and Kim [81] for eval-
uating the effectiveness of crash replication tools: Crash Coverage and Test Case Use-
fulness. Crash Coverage is the same criterion used to answer RQj. For the Test Case
Usefulness, a test case generated by EvoCrash is considered useful if and only if it re-
veals the actual bug that causes the original crash. According to the guidelines in [81],
a test case reveals a bug if the generated crash trace includes the buggy frame (i.e.,
the stack element which the buggy method lies in [81]) or the frame the execution
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of which covers the buggy statement. The guidelines in [81] further clarify that in
addition to generating the buggy frame, useful tests have to reveal the origin of the
corrupted input values (e.g., null values) passed to the buggy methods that trigger
the crash [81]. This implies that if the buggy frame receives input arguments, then a
useful test case must also generate at least one frame at a higher level than the buggy
frame, through which we can observe how the input arguments to the buggy method
are generated. Of course, if a) the stack trace has only one frame, or 2) the buggy
method does not receive any arguments, then a useful test must only generate the
buggy frame to be considered as useful.

To assess usefulness of the tests, we carefully inspected the original developers’ fixes
to identify the bug fixing locations. We manually examined each crash classified as
covered (using the coverage criterion) to investigate if it reveals the actual bug fol-
lowing the guidelines in [81]. This manual validation has been performed by the first
two authors independently, and cases of disagreement were discussed and resolved.

For RQ3, we selected three state-of-the-art techniques, namely: STAR [81], MuCrash
[215], and JCHARMING [171,172]. These three techniques are modern approaches
to crash replication for Java programs, and they are based on three different cat-
egories of algorithms: symbolic execution [81], mutation analysis [215], and model
checking [171].

At the time of writing this paper, STAR, MuCrash, and JCHARMING were not available
(either as executable jars or source code). Therefore, to compare our approach, we
rely on their published data. Thus, we compared EvoCrash with MuCrash for the 12
bugs selected that have also been used by Xuan et al. [215] to evaluate MuCrash.
We compared EvoCrash with JCHARMING for the 13 bug reports that have been also
used by Nayrolles et al. [171]. Finally, we compare EvoCrash with STAR for the 51
bugs in our sample that are in common with the study by Chen and Kim [81].

2.4.2 Definition and Context

As Table 2.2 presents, the context of this study consists of 54 bugs from seven real-
world open source projects: Apache Commons Collections® (ACC), Apache
Ant# (ANT), Apache Log4j® (LOG), ActiveMQ®, DnsJava’, and JFreeChart®.

Shttps://commons.apache.org/proper/commons-collections/
4http://ant.apache.org
Shttp://logging.apache.org/log4j/2.x/
Shttp://activemq.apache.org/

“http://www.dnsjava.org/

8http://jfree.org/jfreechart//
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ACC is a popular Java library with 25,000 lines of code (LOC), which provides utilities
to extend the Java Collection Framework. For this library, we selected 12 bug reports
publicly available on Jira? submitted between October 2003 and June 2012 and
involving five different ACC versions.

ANT is a large Java build tool with more than 100,000 LOC, which supports different
built-in tasks, including compiling, running and executing tests for Java applications.
For ANT we selected 21 bug reports submitted on Bugzilla'® between April 2004
and August 2012 and that concern 10 different versions and sub-modules.

LOG is a widely-used Java library with 20,000 LOC that implements logging utilities
for Java applications. For this library we selected 18 bug reports reported within the
time window between June 2001 and October 2009 and that are related to three
different LOG versions.

ActiveMQ is a messaging and Integration Patterns server that is actively maintained
by the Apache Software Foundation. ActiveMQ has 205000 LOC, and supports many
cross-language clients written in Java, C, C++, C#, and PHP. We selected one case
from ActiveMQ that was also used for evaluating JCHARMING.

DnsJava is an implementation of DNS in Java, which has more than 3000 LOC. It
supports all defined record types (including the DNSSEC types), and unknown types.
It can be used for queries, zone transfers, and dynamic updates. It includes a cache
which can be used by clients, and a minimal implementation of a server. In addition,
since it is written in pure Java, DnsJava is fully threadable. We selected one case from
DnsJava, which was also used in the evaluation of JCHARMING [171,172].

JFreeChart is a free Java chart library, with 310000 LOC, that could be used to display
high-quality charts in both server-side and client-side applications. JFreeChart has a
well-documented API and it has been maintained over a long period of time, since
2005. We also selected a case from JFreeChart to use for comparison with JCHARM-
ING.

We selected this set of bugs as they have been used in the previous studies on auto-
matic crash reproduction when evaluating symbolic execution [81], mutation ana-
lysis [215], and directed model checking [171] and other tools [82,129]. The char-
acteristics of the selected bugs, including type of exception and priority, are sum-
marized in Table 2.2. These bugs cover crashes that involve the most common Java
Exceptions [84], suchas NullPointerException (74%), ArrayIndexQutOf-

Shttps://issues.apache.org/jira/secure/Dashboard.jspa
Ohttps://bz.apache.org/bugzilla/
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Table 2.2: The 54 real-world bugs used in our study.

Project  Bug IDs Versions Exceptions Priority Ref.
4,28, 35 2.0-4.0 NullPointer (5) Major (10) [81]
48, 53, 68 UnsupportedOperation (1) Minor (2) [215]

70, 77, 104 IndexOutOfBounds (1)
ACC 331, 277, 411 IllegalArgument (1)
ArrayIndexOutOfBounds (2)
ConcurrentModification (1)
IllegalState (1)
28820, 33446, 34722 1.6.1 - 1.8.2 ArrayIndexOutOfBounds (3) Critical (2) [81]
34734, 36733, 38458 NullPointer (17) Major (5) [172]
38622, 41422, 42179 StringIndexOutOfBounds (1) Medium (14)
ANT 43292, 44689, 44790
46747, 47306, 48715
49137, 49755, 49803
50894, 51035, 53626
29, 43, 509, 10528 1.0.2 - 1.2 NullPointer (17) Critical (1) [81]
10706, 11570, 31003 InInitializerError (1) Major (4) [172]
LOG 40212, 41186, 44032 Medium (11)
44899, 45335, 46144 Enhanc. (1)

46271, 46404, 47547

Blocker (1)

47912, 47957

ActiveMQ 5035 5.9 ClassCastExecption (1) Major (1) [172]
DnsJava 38 2.1 ClassCastException (1) N/A (1) [172]
JFreeChart 434 1.0 NullPointerException (1) N/A (1) [172]

BoundsException (9%), IllegalStateExcep-tionand IllegalArgumentE-
xception (3%). Furthermore, the severity of these real-world bugs varies between
medium (46%), major (37%) and critical (5%) as judged by the original developers.

50 of these cases come from the primary study we performed in [203]. In this exten-
sion to [203], we aimed at extending the comparison with JCHARMING via the cases
reported in [172]. However, ultimately, we chose to discard several cases reported
in [172], and extend the comparison with JCHARMING via only 4 new cases, for four
main reasons:

1. In six cases, the exact buggy version of the target software was either unknown
or not found. Consequently, the reported line numbers in stack traces did not
match the source code. Since the fitness function (Section 2.3.2) is primarily
designed based on the exact line numbers where the exceptions are thrown, we
discarded such cases.

2. AsNayrolles et al. report [172], to make a trade-off between reproducibility and
relevance of the test cases, after a number of incremental attempts, they arrived
at the threshold of 80% for reproducing stack traces. Thus, in some cases they
report partial coverage, which means that at least 80% of a stack trace could be
reproduced in those cases. While this partial measure is relative to the size of
the stack traces, in our case we need to have exact measure of the reproduced
traces to compare the usefulness of the tests, as described in Section 2.4.1.
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3. In two cases, ActiveMQ-1054 and ArgoUML-311, the reported stack traces
lack line numbers. Thus, considering how the fitness function works (Section
2.3.2), we could not apply EvoCrash on such cases.

4. Finally, one of the reported cases in [172], Mahout - 1594, actually refers to an
external problem in the configuration file. Thus, this case was not a valid crash
case to be considered in this study.

2.4.3 Experimental Procedure

We run EvoCrash and EvoSuite on each target crash to try to generate a test case
and test suite able to reproduce the corresponding stack trace. Given the random-
ized nature of genetic algorithms, we executed the tools multiple times to verify that
the target crashes are replicated in most of the runs. For RQ1, we ran EvoSuite and
EvoCrash 15 times for each crash. For RQ> the search for each target bug/crash was
repeated 50 times.

In our experiment, we configured both tools by using standard parameter values
widely used in evolutionary testing [52,103,178]:

* Population size: we use a population size of 50 individuals as suggested in [103,
178]. In the context of EvoCrash, individuals are test cases whereas in the con-
ext of EvoSuite, individuals are test suites, containing one or more test cases.

* Crossover: For EvoCrash, we use the novel guided single-point crossover; in
EvoSuite, the crossover operator is the classic single-point crossover [103]. In
both cases, the crossover probability is set to p-0.75 [103].

* Mutation: EvoCrash uses our guided uniform mutation, which mutates test cases
by randomly adding, deleting, or changing statements. EvoSuite uses the stand-
ard uniform mutation, which randomly adds, deletes, or changes test cases in
a test suite. For both cases, we set the mutation probability equal to pm1/n,
where n is the length of the test case/suite taken as input [103].

* Search Timeout: The choice of 10 minutes as the search budget is a common
practice in studies on search-based test generation [52,103, 178]:. In our pre-
liminary experiments, we noticed that the number of reproduced crashes does
not change after 10 minutes. Therefore, in both cases, the search stops when
a zero-fitness function value is detected or when the timeout of 10 minutes is
reached.
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2.4.4 Comparison with Coverage-Based Test Generation

As Table 2.3 shows, EvoCrash reproduced 46 crashes (85%) out of 54, compared to 18
crashes (33%) that were reproduced by EvoSuite. In particular, 28 (52%) crashes out
of 54 were reproduced only by EvoCrash. Other 18 crashes (33%) were reproduced by
both EvoCrash and EvoSuite. Finally, for the remaining 8 cases (14%) both EvoCrash
and EvoSuite failed to generate a crash reproducing test.

However, in those 18 cases where both EvoSuite and EvoCrash generate tests, the
former always achieved a lower or equal reproduction rate compared to the latter,
i.e., every crash was rarely reproduced out of 15 runs (e.g., ACC-53 in Table 2.3).
Furthermore, EvoSuite took longer compared to EvoCrash to reproduce the same
crashes. Indeed, EvoCrash took 145 seconds on average to reproduce the crashes,
while EvoSuite required 391 seconds (+170%) to reproduce the same crashes on
average.

Table 2.3: Crash reproduction results for comparing Archive-based Whole Test Suite
generation (WSA) in EvoSuite and Guided Genetic Algorithm (GGA) in EvoCrash.
The bold cases are the ones for which only EvoCrash could generate a test at least 8
times out of 15 runs.

EvoCrash EvoSuite
Project BugID avg.time reproduction % avg.time reproduction %
4 2 100% 314 100%
28 1 100% 10 100%
35 1 100% 50 100%
48 40 100% 350 33%
53 5 100% 377 66%
ACC 68 600 0% 600 0%
70 2 100% 407 33%
77 98 100% 233 100%
104 455 73% 600 0%
331 100 73% 315 20%
377 100 100% 335 13%
411 153 80% 600 0%
28820 600 0% 600 0%
33446 10 100% 540 40%
34722 59 100% 459 26%
34734 45 100% 600 0%

36733 32 86% 600 0%
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38458 43 86% 510 20%
38622 33 100% 81 100%
41422 220 66% 590 13%
42179 56 93% 77 60%
43292 600 0% 600 0%
44689 32 100% 358 40%
44790 15 100% 540 40%
46747 600 0% 600 0%
47306 600 0% 600 0%
48715 600 0% 600 0%
49137 90 100% 320 100%
49755 30 100% 449 53%
49803 10 100% 600 0%
50894 42 100% 600 0%
51035 600 0% 600 0%
53626 105 100% 600 0%
29 28 93% 301 6%
43 600 0% 600 0%
509 136 100% 600 0%
10528 1 100% 3 100%
10706 1 100% 35 100%
11570 1 100% 129 100%
31003 1 100% 9 93%
40212 18 100% 472 26%
41186 1 100% 27 100%
LOG 44032 3 100% 487 33%
44899 42 100% 69 93%
45335 10 100% 462 46%
46144 20 93% 533 13%
46271 3 100% 74 100%
46404 59 100% 600 0%
47547 3 100% 10 100%
47912 38 93% 388 40%
47957 5 100% 28 100%
ActiveMQ 5035 377 60% 600 0%
DnsJava 38 115 85% 481 13%

JFreeChart 434 389 53% 500 13%
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The results above show that indeed the GGA in EvoCrash outperforms WSA in Evo-
Suite for crash reproduction in both the number of reproduced crashes and test gener-
ation times. The underlying explanation for such observations is that EvoSuite, using
WSA, evolves test suites with the goal of maximizing code coverage. Assuming that
line [ is where the target exception € happens, if there is a test suite that includes
a test case t; that covers [, EvoSuite archives t; and [, and proceeds by evolving test
suites targeting only the remaining uncovered lines. The archived test case t; that cov-
ers the target line [, by chance may or may not trigger € as well. Furthermore, since
criterion Exception was included in the optimization criteria, if there exists a test suite
that contains test case te which triggers an exception, EvoSuite would archive te. By
chance, te may or may not trigger € on the target line [.

On the other hand, EvoCrash uses GGA, which customizes test generation for crash
coverage. Therefore, the search is aimed for a test case that both covers the target
line [, and triggers the target exception €. This means that even if a test t; covers [,
EvoCrash keeps t; in the search process in order to evolve it until it can also trigger e.

Thus, this comparison highlights that while coverage-based test generation by Evo-
Suite may by chance detect crashes, using GGA is a more effective and efficient ap-
proach for crash reproduction.

2.4.5 Crash Reproduction Effectiveness

This section presents the results of the empirical study we conducted to evaluate the
effectiveness of EvoCrash in terms of crash coverage and test case usefulness.

Table 2.4: Detailed crash reproduction results, where Y(Yes), indicates the capability
to generate a useful test case, N(No) indicates lack of ability to reproduce a crash,
NU(Not Useful) shows that a test case could be generated, but it was not useful,
and ’-’ indicates that data regarding the capability of the approach in reproducing the
identified crash is missing. The bold cases are the ones for which only EvoCrash could
generated a test and the underlined ones are those where EvoCrash failed to produce
a test at least 25 times out of 50 runs.

Project BugID EvoCrash STAR [81] MucCrash [215] JCHARMING [171]

4 Y Y Y -
28 Y Y Y -
35 Y Y Y -
48 Y Y Y -
53 Y Y N -

ACC
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Figure 2.2: Fitness progress over time for both succeeding and failing runs of Evo-
Crash for ACC-104.

45335 Y NU - N
46144 Y N - -
46271 NU Y - Y
46404 Y N - -
47547 Y Y - -
47912 Y NU - Y
47957 NU Y - N
ActiveMQ5035 Y - - N
DnsJava 38 Y - - Y
JFreeChar434 Y - - Y

EvoCrash Results (RQ2) As Table 2.4 illustrates, EvoCrash can successfully replicate
the majority of the crashes in our dataset. 39 cases could be replicated 50 times out
of 50 runs of EvoCrash. Of the replicated cases, LOG-509 had the lowest rate of
replications - 39 out of 50. EvoCrash reproduces 11 crashes out of 12 (91%) for ACC,
15 out of 21 (71%) for ANT, and 17 out of 18 (94%) for LOG. Overall, EvoCrash can
replicate 46 (85%) out of the 54 crashes.

To assess the usefulness of the generated test cases, as explained in Sub-section 2.4.1,
we used the same criterion that was used for STAR [81]. Based on this, 38 (84%) of
the replications were useful, as they included the buggy frame. The remaining 16%
non-useful replications were mainly due to having dependency on data from external
files which were not available during replication.
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For ACC, ACC-68 was not reproducible by EvoCrash. In this case, the class under test
includes three nested classes, and the inner-most one was where the crash occurs.
We could not replicate this crash as EvoCrash relies on the instrumentation engine
of EvoSuite, which does not currently support the instrumentation of multiple inner
classes.

In addition, for ACC-104 !, EvoCrash could replicate the case 42 times out of 50.
The average time EvoCrash took for reproducing this case is 300 seconds. In this case,
the defect lies on line 20 in Figure 2.1, where the shift operation does not correctly
increment or decrement array indexes. In order to replicate this case, a test case shall
meet the following criteria: 1) Make an object of the BoundedFifoBuffer class. 2)
Add an arbitrary number of objects to the buffer. 3) Remove the last item from the
buffer, and add arbitrary number of new items. 4) Remove an item that is not the last
item in the buffer.

To understand why EvoCrash takes relatively longer to reproduce ACC-104, Figure
2.2 demonstrates the search progress during the failing and successful executions. As
the Figure shows, during the failing executions, the fitness value quickly progresses
to 3.0 and it remains unchanged until the search budget (10 minutes) is over. In
these executions, a fitness value of 3.0 means that the target line, line 20 in Fig-
ure 2.1 is covered by the execution of the test cases. However, the target exception
ArrayIndexOutOfBounds is not thrown at this line, which is why the fitness does
not improve and remains 3.0 until the search time is consumed. On the other hand,
during the successful runs, not only line 20 is covered, on average in five seconds,
but also after 5 minutes, the target exception is thrown and generates the reported
crash stack trace. As our results indicate, setting an object of BoundedFifoBuffer
to the right state such that an arbitrary number of elements are added and removed
in a certain order (as indicated previously) to throw the ArrayIndexOutOfBounds
exception is a challenging task.

For ANT, six of the 20 crashes (30%) are currently not supported by EvoCrash. For
these cases, the major hindering factor was the dependency on a missing external
build.xml file, which is used by ANT for setting up the project configurations. How-
ever, build.xml was not supplied for many of the crash reports. In addition, the use
of Java reflection made it more challenging to reproduce these ANT cases, since the
specific values for class and method names are not known from the crash stack trace.
For LOG, one of the 18 cases (5%) is not supported by EvoCrash. In this case, the
target call is made to a static class initializer, which is not supported by EvoCrash yet.

https://issues.apache.org/jira/browse/COLLECTIONS-104



50 2.4. Study I: Effectiveness

1 java.lang.ArrayIndexQutOfBoundsException:
2 at org.apache.commons.collections.buffer.BoundedFifoBuffer.remove(
BoundedFifoBuffer.java:347)

Listing 2.2: Crash Stack Trace for ACC-104.

public void remove() {
if (lastReturnedIndex == -1) {
throw new IllegalStateException();

}

// First element can be removed quickly
if (lastReturnedIndex == start) {
BoundedFifoBuffer.this.remove();
lastReturnedIndex = -1;
return;

}

// Other elements require us to shift the
subsequent elements
int i = lastReturnedIndex + 1;
while (i !'= end) {
if (i >= maxElements) {
elements[i - 1] = elements[0];
i=0;
} else {
elements[i - 1] = elements[i];
i++;

}

lastReturnedIndex = -1;
end = decrement(end);
elements[end] = null;
full = false;

index = decrement(index);

Listing 2.1: Buggy method for ACC-104.

2.4.6 Comparison to State of the Art

This section discusses the results of the comparison between EvoCrash and the state-
of-the-art approaches based on crash stack traces, namely STAR [81], MuCrash [215],
and JCHARMING [171]. In Table 2.4, bold entries represent bugs which can be
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triggered by EvoCrash, but not by at least one of the other techniques; Underlined
entries represent bugs that EvoCrash cannot reproduce, while there is another tech-
nique that can. As can be seen, there are 23 (bold) cases in which EvoCrash outper-
forms the state of the art, and there are two (underlined) cases that EvoCrash cannot
handle. Below we discuss these cases in more detail.

EvoCrash vs. STAR. As Table 2.4 presents, for ACC, EvoCrash covers all the cases that
STAR covers. In addition, EvoCrash covers three cases (25%) which were not covered
by STAR due to the path explosion problem. For instance, in ACC-331, the defect
exists in a private method, least, inside a for loop, inside the third if condition,
which could not be handled by STAR.

For ANT, EvoCrash supports seven cases (35%) which are not covered by STAR. Out
of the seven, there are three cases, for which only EvoCrash can generate a useful test
case. Listing 2.3 shows the crash stack trace for one of these cases (ANT-49137). As re-
ported in the issue tracking system of the project!?, in this case, the defect exists in the
4th stack frame. Thus, a useful test case should (i) make a call to the method delete,
(ii) trigger a java.lang.NullPointerException, and (iii) yield a crash trace
which includes the first stack frame, which is where the exception was thrown.

java.lang.NullPointerException:

at org.apache.tools.ant.util.SymbolicLinkUtils.isSymbolicLink(
SymbolicLinkUtils.java:107)

at org.apache.tools.ant.util.SymbolicLinkUtils.isSymbolicLink(
SymbolicLinkUtils.java:73)

at org.apache.tools.ant.util.SymbolicLinkUtils.deleteSymbolicLink(
SymbolicLinkUtils.java:223)

at org.apache.tools.ant.taskdefs.optional.unix.Symlink.delete(Symlink.java
:187)

Listing 2.3: Crash Stack Trace for ANT-49137.

As Listing 2.4 depicts, the test case by EvoCrash creates an instance of Symlink,
symlink0, adapts the state in symlink0, and ultimately makes a call to delete,
which will result in generating the target crash stack trace with fitness equal to 0.0.
On the other hand, as Listing 2.5 shows, the test case by STAR, makes an instance of
SymbolicLinkUtils, which comes before the defective frame in the crash stack,
and makes a call to the root method, isSymbolicLink. Consequently, only part of
the target crash stack is generated by this test, which is shown in Listing 2.6. Since
the defective frame is not revealed in the resulting crash trace, even though the root
frame is covered, the test by STAR does not evaluate to useful according to the criteria

2https://bz.apache.org/bugzilla/show_bug.cgi?id=49137
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set by STAR [81].

public void test0() throws Throwable {
Symlink symlink® = new Symlink();
symlink@.setLink("");
symlink0.delete();

}

Listing 2.4: Generated test by EvoCrash for ANT-49137.

public void testO() throws Throwable {
java.io.File vl = (java.io.File) null;
org.apache.tools.ant.util.SymbolicLinkUtils v2 =
org.apache.tools.ant.util.SymbolicLinkUtils.getSymbolicLinkUtils();
v2.isSymbolicLink((java.io.File) v1, (java.lang.String) null);

Listing 2.5: Generated test by STAR for ANT-49137.

java.lang.NullPointerException
at org.apache.tools.ant.util.SymbolicLinkUtils.isSymbolicLink(
SymbolicLinkUtils.java:107)

Listing 2.6: Generated Crash Stack Trace by STAR for ANT-49137.

Other than ACC-104, ANT-43292 is the other case that is only reproducible by STAR.
The main reason for this lies in an inheritance-related problem and how the current
fitness function compares stack frames. In this case, the target method, mapFile
Name, is defined in FilterMapper, which extends FileNameMapper. However,
the search can find better fitness values, using other subclasses of FileNameMapper,
such as FlatFileNameMapper, because the implementation of mapFileName in
these subclasses has lower complexity.

For LOG, EvoCrash covers all the cases that were covered by STAR. Six of the LOG
cases (33%) are only covered by EvoCrash. As an example, for LOG-509 there is a
need to interact with the file system in order to open a file, and in order to do so,
EvoCrash benefits from the mocking mechanisms implemented in EvoSuite.

LOG-47912 (shown in Listing 2.7) is another example for which only EvoCrash suc-
cessfully generated a useful test case. The buggy frame in this case is at level four,
and the generated test by EvoCrash is at level five, which is shown in Listing 2.8.
As the listing shows, in order to generate a test at this level, several complex ob-
jects need to be generated and set up first, until finally the call to jULBridgeHand-
ler0.publish(logRecord0); is made. This example shows the capability of EvoCrash to
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generate complex objects which may be needed to execute a particular execution path
that leads to the target line where the target exception is thrown.

java.lang.NullPointerException:
at org.apache.log4j.CategoryKey. (CategoryKey.java:32)
at org.apache.log4j.Hierarchy.getLogger(Hierarchy.java:266)
at org.apache.log4j.Hierarchy.getLogger(Hierarchy.java:247)
at org.apache.logging.julbridge.JULLog4jEventConverter.convert(
JULLog4jEventConverter.java:121)
at org.apache.logging.julbridge.JULBridgeHandler.publish(
JULBridgeHandler.java:49)

Listing 2.7: Stack Trace for LOG-47912.

public void test0() throws Throwable {

Logger logger® = Logger.getlLogger("I}h}$.Xa|yA,YSXf");

Hierarchy hierarchy@ = (Hierarchy)logger0.getLoggerRepository();

JULLog4jEventConverter jULLog4jEventConverter® = new
JULLog4jEventConverter((LoggerRepository) hierarchy®@,
(JULLevelConverter) null);

JULBridgeHandler jULBridgeHandler® = new
JULBridgeHandler((LoggerRepository) hierarchy®@,
jULLog4jEventConverter0);

Level level® = Level.SEVERE;

LogRecord logRecordd® = new LogRecord(level®, "");

jULBridgeHandler0.publish(logRecord0);

Listing 2.8: Generated test by EvoCrash for LOG-47912.

EvoCrash vs. MuCrash. As Table 2.4 shows, evaluation data for MuCrash is only
available for ACC.'® Except for ACC-104, EvoCrash covers all the ACC-cases that are
covered by MuCrash. In addition, three cases (25%) are only covered by EvoCrash,
though one of them is not marked as useful.

An example of a covered case is ACC-53, depicted in Listing 2.9. It requires that
an object is added to an instance of UnboundedFifoBuffer, the tail index is
set to a number larger than the buffer size, and then that the method remove is
invoked. In addition, the order in which the methods are invoked matters. So, if
the tail index would be set after remove is called, the target crash would not be
replicated. As shown in Listing 2.10, EvoCrash synthetized the right method sequence
and reproduced ACC-53.

13Since MuCrash is not publicly available we could not reproduce the data or add additional cases by
ourselves.
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1 java.lang.ArrayIndexOutOfBoundsException:
> at org.apache.commons.collections.buffer.UnboundedFifoBuffer$l.remove(
UnboundedFifoBuffer.java:312)

Listing 2.9: Crash Stack Trace for ACC-53

Object objectO® = new Object();

UnboundedFifoBuffer unboundedFifoBuffer® = new UnboundedFifoBuffer();
unboundedFifoBuffer0.add(object0);

unboundedFifoBuffer0.tail = 82;

unboundedFifoBuffer0.remove((Object) null);

Listing 2.10: EvoCrash test for ACC-53

EvoCrash vs. JCHARMING. As Table 2.4 shows, we have 12 cases to derive compar-
isons between EvoCrash and JCHARMING. While 75% of the cases are covered both
by EvoCrash and JCHARMING, there is substantial difference in the efficiency of the
two approaches. On average, EvoCrash takes less than 2 minutes to cover the target
crashes, whereas (based on the published results) JCHARMING may take from 10 to
38 minutes to generate tests for the same cases.

Among the LOG cases, two out of seven (29%) are only supported by EvoCrash. As
an example, Listing 2.11 shows the crash stack trace for LOG-45335, which is one of
the two cases covered only by EvoCrash. To generate a useful test for LOG-45335, as
depicted in Listing 2.12, EvoCrash sets the ht state in NDC to null, and then makes
a call to the static method remove, which is the buggy frame method.

Among the other cases, two of them are only supported by EvoCrash, ANT-41422,
and ActiveMQ-5035. The former is a NullPointerException, and the latter is
a ClassCastException.

java.lang.NullPointerException:
at org.apache.log4jb.NDC.remove(NDC.java:377)

Listing 2.11: Crash Stack Trace for LOG-45335.

public void test0() throws Throwable {
NDC.ht = null;
NDC. remove();

Listing 2.12: The EvoCrash Test for LOG-45335.
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2.4.7 Threats to Validity

In this section, we outline various possible threats to the validity of the empirical
evaluation we conducted.

External Validity. The main threats arise from the focus on Java and open source
projects. The use of Java is needed for our experiments due to the dependency on
EvoSuite, yet we expect our approach to behave similarly on other languages such as
Ruby or C#.

To maximize reproducibility and to enable comparison with the state-of-the-art we
rely on open source Java systems. We see no reason why closed-source stack traces
would be substantially different. As part of our future work, we will engage with one
of our industrial partners, mining their log files for frequent stack traces. This will
help them create test cases that they can add to their test suite to reproduce and fix
errors their software suffers from.

To facilitate comparison with earlier approaches, we selected bugs and system ver-
sions that have been used in earlier studies, and hence are several years old. We
anticipate that our approach works equally-well on more recent bugs or versions as
well, but have not conducted a systematic experiments yet.

A finding of our experiments is that a key limiting factor for any stack-trace based ap-
proach is the unavailability of external data that may be needed for the reproduction.
Further research is needed to (1) mitigate this limitation; and (2) identify a different
data set of crashes focusing on such missing data, in order to further narrow down
this problem.

Internal Validity. A key threat to the internal validity is in the evaluation of the crash
coverage and usefulness of the generated test cases. In case EvoCrash generated a test
with fitness = 0.0, we rerun the generated test against the SUT to double checked
that the generated crash stack trace correctly replicated the target crash stack. Des-
pite having taken the above procedures, it is still possible that we made errors in
the inspections and evaluations. To mitigate the chances of introducing errors, we
peer-reviewed tests and crashes. In addition, we make the EvoCrash tool, and the
generated test cases publicly available for further evaluations.
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2.5 Study II: Usefulness for Debugging

To assess the degree to which generated crash-reproducing tests are useful during
debugging, we conduct a controlled experiment. The experiment aims to address the
following:

* RQg4: Do participants who use EvoCrash tests more often locate defects compared
to participants who do not use EvoCrash tests? With this research question, we
aim to understand whether using the generated tests by EvoCrash helps locate
defects.

* RQs: Do participants who use EvoCrash tests more often provide fixes compared
to participants who do not use EvoCrash tests? With this research question, we
aim to investigate whether using the generated test by EvoCrash helps fixing
defects.

* RQg: Do participants who use EvoCrash tests spend less time than participants
who do not use EvoCrash tests? With this research question, we aim to analyze
the impact of using the generated tests by EvoCrash in the amount of time the
participants took to deliver fixes.

2.5.1 Task Selection

To select the crash cases to be used in the debugging tasks, we considered the fol-
lowing selection criteria: (i) From the 54 crashes we used in the empirical evaluation
(Section 4.4), we selected those crashes which signal the two common types of excep-
tions in Java programs [84], namely: NullPointerException, and I1legalArg-
umentException; (ii) We filtered out stack traces which have less than four stack
frames, since locating and fixing the related bug would be very simple; (iii) To avoid
cases that would be overly complicated to fix, we selected cases for which the ori-
ginal fixes (delivered by the original developers) are provided for the classes that
were included in the stack traces. (iv) We ensured that the JavaDoc documentation
is available for all classes appearing in the stack traces and could serve as specifica-
tion for the participants. Finally, (v) considering the usefulness criterion (described in
Section 2.4.1), we opted for including both a useful and not useful crash-reproducing
unit test case.

As the result, we selected ACC-48 (with a useful test), and LOG-47957 (with a not
useful test) to be the target cases. Listing 2.13 and 2.14 show the stack traces for the
two cases.
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java.lang.IllegalArgumentException: Initial capacity must be greater than 0

at org.apache.commons.collections.map.AbstractHashedMap.
(AbstractHashedMap.java:142)

at org.apache.commons.collections.map.
AbstractHashedMap. (AbstractHashedMap.java:127)

at org.apache.commons.collections.map.AbstractLinkedMap.

(AbstractLinkedMap.java:95)

at org.apache.commons.collections.map.LinkedMap.
(LinkedMap.java:78)

at org.apache.commons.collections.map.TransformedMap.
transformMap(TransformedMap.java:153)

at org.apache.commons.collections.map.TransformedMap.putAll
(TransformedMap. java:190)

Listing 2.13: Crash Stack Trace for ACC-48; Fixed at frame 5 (line 153) and tested at
frame 6 (line 190).

java.lang.NullPointerException:
at org.apache.log4jb.net.SyslogAppender.append(SyslogAppender.java:251)
at org.apache.log4jb.AppenderSkeleton.doAppend(AppenderSkeleton.java:230)
at org.apache.log4jb.helpers.AppenderAttachableImpl.appendLoopOnAppenders

(AppenderAttachableImpl. java:66)

at org.apache.log4jb.Category.callAppenders(Category.java:203)
at org.apache.log4jb.Category.forcedLog(Category.java:388)
at org.apache.log4jb.Category.info(Category.java:663)

Listing 2.14: Crash Stack Trace for LOG-47957; Fixed and tested at frame 1 (line
251).

The original fixes for ACC-48 and LOG-47957 were provided for the frame levels
five and one, respectively. In addition, the tests from EvoCrash for these cases were
targeted for the frame levels six and one, respectively.

2.5.2 Experiment Participants

We invited 35 master students in computer science from the Delft University of Tech-
nology to participate in the study. Table 2.5 presents the level of formal education the
participants have in Java programming. Table 2.6 presents the degree to which the
participants have industrial experience in software engineering. Moreover, Table 2.7
summarizes the degree to which the participants were familiar with the JUnit testing
framework.



58 2.5. Study II: Usefulness for Debugging

Table 2.5: Participants’ Education in Java Programming

Formal Education
Basic Intermediate = Advanced
5.71% 28.57% 45.71% 20%

Self-educated

Table 2.6: Participants’ Industrial Experience

No exp. < 2years 3-5years 5-10 years
42.85% 34.28% 20% 2.85%

2.5.3 Experiment Procedure

Before conducting the experiment, the participants received an introduction to the
tasks to perform. The students had two weeks within which, at some point they were
to start performing the experiment and deliver the results. Notice that to avoid any
bias, we made sure participants were neither aware of the research questions of our
study nor which crashes (name and id) were used as subjects of the experiment.

The participants were asked to debug and fix the classes involved in the two bugs
ACC-48, and LOG-47957 starting from the corresponding crash stack traces. Each par-
ticipant had to perform one bug fixing task using the crash-reproducing test from Evo-
Crash (e.g., ACC-48), while for the other one (e.g., LOG-47957) we did not provide
the test from EvoCrash. To address potential bias due to learning effects, we assigned
the tasks to have a balanced number of participants that performed the first task with
and without the EvoCrash test. Therefore, we randomly grouped students in four
different groups, whose configurations are shown in Table 2.8.

Once participants started performing the experiment at some point within the two
weeks, they were asked to complete three stages in the context of the experiment:
(i) filling a pre-test questionnaire that we used to collect data about participants’
background, (ii) performing the first debugging task and filling the corresponding
post-test questionnaire, and (iii) performing the second debugging task and filling
a second post-test questionnaire. While the time to complete the first stage was un-
bounded, for the remaning two stages we restricted the amount of time participants
could spend on each task following the guidelines by [212]. In particular, participants
had 45 minutes for each task, which includes: (i) reading the instructions, (ii) cloning
a Maven project from GitHub, and (iii) performing the corresponding debugging task.
Each debugging task consists of (i) locating the defect that trigger the target crash,
(ii) providing the code fix, (iii) running the existing test suite and adding new tests
if needed. The participants could finish the tasks in less than 45 minutes if they were
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Table 2.7: Participants’ Familiarity with the JUnit Framework

Unfamiliar Basic Average Advanced
37.14% 25.71%  28.57% 8.57%

Table 2.8: Configuration of the Participant Groups

Task 1 Task 2
Group
Bug EvoCrash Bug EvoCrash
I ACC-48 Yes LOG-47957 No
I ACC-48 No LOG-47957 Yes
111 LOG-47957 Yes ACC-48 No
v LOG-47957 No ACC-48 Yes

sure that (i) the identified bug location is correct, and (ii) the provided fixes prevent
the crashes to incur again and do not break the existing test suite. Controlling the
time allowed to prevent that too little or too long time would be spent by participants
on each task.

To prepare the projects on GitHub, we selected the versions of Apache Commons
Collections, and Apache Log4j that were specified in the bug reports for ACC-
48 and LOG-47957. Both projects were already Maven projects, so we imported them
into Eclipse, and made sure the tests were run with no particular difficulties. For
those tasks where the test from EvoCrash was provided, we included the tests in
the projects, and added their path (packages) in the instructions provided to the
participants.

As the first task reached the time out, or the participants completed the task within
45 minutes, they would proceed to the follow-up post-test questionnaire. To make
sure the participants do not take time at this point to keep working on the task, we
allowed 10 minutes to be spent on answering the questions. The second task followed
the same procedure as the first one, after which the assignment would be completed.
At the end, the participants had to send the artifacts they produced (including any
test cases, or fixes) via e-mail to the first author. Furthermore, we used the online
platform: https://www.qualtrics.com to collect the results of the questionnaires.

Before conducting the experiment, the last two authors performed the tasks to assess
their feasibility and correctness in advance. We also conducted three pilot studies
with external researchers within the software engineering research group at Delft
University of Technology. The feedback we received from the pilot studies were used
to improve both the questionnaires and the instructions for the tasks. Data points
from dry-runs and pilot studies are not included in our analysis of the results.
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2.5.4 Data Analysis

The original location of the defects and the patches provided by the developers for
both cases represent our golden answers (oracle) as for the defect locations and fixes.

To answer RQ3, we compared the bug locations which were pointed to by the par-
ticipants with the locations in our golden set. For example, for ACC-48, the defect
could be fixed at two different frame levels in the stack trace, namely: (a) in the
transformMap method at the 5th frame level in the stack trace reported in List-
ing2.13, and (b) in the putAll method at the 6th level. However, it is import-
ant to target the transformMap routine as the location for the underlying de-
fect, and not the putAll routine. This is because putAll is an API call whereas
transformMap is a private routine to which other routines make calls as well. There-
fore, transformMap is the root location where the defect must be fixed otherwise
the crash could recur. In cases where the participants targeted putAll as the buggy
location, we marked their answers as incorrect.

For what concerns RQ4, we ran the fixes given by the participants to assess whether
they prevented the crashes from recurring. If so, then we manually analyzed the con-
tent of the fixes. For example, in case of the fixes given for LOG-47957, we accepted
every fix which pointed to checking for null references at the right location in the
source code.

For what regards RQs, we utilized the data that was provided by the online platform
for collecting the data related to the time participants took to deliver the fixes. The
data measured the point in time when the participant started a task (by reading the
instructions), and the point in time when the participant completed the task before
proceeding to answering the subsequent questions.

2.5.5 Statistical Analysis

To assess the effect of using the EvoCrash tests on the ability of participants to locate
and fix the defects, we used the odds ratio measure [50] since the data is binary
distributed, i.e., the defect is correctly located (or fixed) or not. For this test, we use
a 95% confidence interval and we computed it for each debugging task (ACC-48, and
LOG-47957) separately. In addition, to determine the significance of the findings,
we used the Fisher’s exact test, which is can be used for small sample sizes [50].
We considered a = 0.05 for the Type I error. Significant p-values (i.e., lower than
0.05) indicate that participants with EvoCrash tests were able to correctly locate and
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fix defects more frequently compared the participants who performed the same task
(e.g., ACC-48) without the EvoCrash tests.

To measure the effect of using EvoCrash tests on the amount of time the groups took
to complete each task, we used the Vargha-Delaney A statistic [207]. We selected this
effect size measure since it is well-suited for numerical data distributions [207], such
as the time in seconds. Values of A<0.50 indicate that participants with the EvoCrash
tests spend less time than the participants without the EvoCrash tests to complete
the same task; values of A>0.50 indicates the opposite scenario, i.e., participants
with the EvoCrash tests spent more time to complete the assigned tasks; A=0.50
when there is no difference between the participants who performed the tasks with
and without EvoCrash. The effect size can be classified as one of the four different
levels [207]: negligible (A>0.44), small (0.36<A<0.44), medium(0.29<A<0.36), or
large (A<0.29). For a given task, we also test whether the difference (if any) between
the groups with and without EvoCrash were statistically significant by using the non-
parametric Wilcoxon Rank Sum test with o = 0.05 for the Type I error. Significant p-
values imply that there is significant difference in the amount of time the participants
take when performing the debugging tasks with and without EvoCrash.

2.5.6 Analysis of the Results

In this section, we present the results of the controlled experiment with student par-
ticipants. Table 2.9 summarizes the results regarding assessing the impact of using
the tests from EvoCrash on the ability of the participants in locating the defects and
providing fixes for them. As Table 2.9 indicates, one of 35 students, corresponding to
one of the groups II or III in Table 2.8, did not deliver the debugging tasks. Thus, the
number of participants in these groups is 34. On the other hand, all participants cor-
responding to groups I and IV in Table 2.8 delivered the debugging tasks. Therefore,
the total number of participants in Table 2.9 is 35. In what follows, we discuss the
results and thereby answer RQ4, RQs, and RQg, respectively.

Table 2.9: Results of RQ4 and RQs grouped by tasks (“With” = with EvoCrash tests,
“Without” = without EvoCrash tests).

Metrics ACC-48 LOG-47957
With  Without With  Without
No. of correct bug locations 13 13 12 9
No. of incorrect bug locations 5 3 4 8
No. of undelivered tasks 0 1 1 0
No. of correct bug fixes 10 3 8 6
No. of incorrect bug fixes 8 13 8 11
No. of undelivered tasks 0 1 1 0
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2.5.6.1 RQg: Impact of EvoCrash Tests on Locating Defects

As Table 2.9 shows, in the case of ACC-48, the number of participants who located
the defect correctly, using the test from EvoCrash, is the same as the number of par-
ticipants who did not use the test from EvoCrash. The number of participants who
failed to locate the defect, with and without using the EvoCrash test, are five and
three, respectively. In the case of LOG-47957, 12 participants, using the test from
EvoCrash, and nine participants without using the test correctly located the defect.
The number of participants who failed to locate the defect, with and without the
EvoCrash test, are four and eight, respectively.

To assess the impact of using EvoCrash on locating the underlying defects for each
of the debugging task, we used the odds ratio and Fisher’s exact test as explained
in Section 2.5.5. For ACC-48, the odds ratio is 0.63, thus, indicating that the test
case from EvoCrash did not help the participants in locating the underlying defect.
Moreover, the Fisher test further confirms that there is no statistically significant dif-
ference between the two groups (p-value = 0.86). For LOG-47957, the odds ratio is
2.66, suggesting that the test from EvoCrash helped the participants in locating the
underlying defect more often than the participants who did not use the test. However,
these results are not statistically significant in this case either (p-value=0.14).

RQ4: EvoCrash helps participants in locating the defect for LOG-47957,
while in the case of ACC-48 we did not observe such an impact. In
either case, the differences are not statistically significant.

2.5.6.2 RQs: Impact of EvoCrash Tests on Fixing Defects

As Table 2.9 shows, in the case of ACC-48, the number of participants who provided
acceptable fixes are 10 when using the test from EvoCrash and three without the test.
In addition, eight and 13 participants, with and without the test from EvoCrash re-
spectively, failed to provide an acceptable fix for ACC-48. In the case of LOG-47957,
eight participants, using the test from EvoCrash, and six participants without using
the generated test provided acceptable fixes. The number of participants who failed to
provide acceptable fixes, with and without using the test is eight and 11, respectively.

To assess the impact of using EvoCrash on the ability of participants in providing fixes,
we computed the odds ratio for each debugging task, separately. In addition, we used
the Fisher’s exact test for significance.



Chapter 2. Evolutionary Crash Reproduction 63

For ACC-48, the odds ratio is 5.41. This indicates that the test case generated by
EvoCrash increased the participants’ ability to provide fixes when performing such a
debugging task. According to the Fisher test, the differences are statistically signific-
ant (p-value=0.03). We further note, based on the usefulness criterion described in
Section 2.4.1 we labeled the test generate by EvoCrash as useful for debugging.

For LOG-47957, the odds ratio is 1.83. Based on these measures, we observed that
using the test from EvoCrash increased the participants’ ability to provide correct
fixes. However, such an improvement is not statistically significant as suggested by
the Fisher test (p-value=0.30). These results are in line with the results of Study
I, where we labeled the test generated by EvoCrash as not useful according to the
usefulness criterion described in Section 2.4.1).

RQs5: Using a test from EvoCrash, that is useful according the useful-
ness criterion in Section 2.4.1, increases developers’ ability in fixing
defects when debugging. In addition, our results suggest that using
a test from EvoCrash, that is not useful according to the usefulness
criterion in Section 2.4.1, also increases developers’ ability in fixing
defects when debugging. However, in the latter case, the difference is
not statistically significant.

2.5.6.3 RQg: Impact of EvoCrash Tests on Debugging Time

The box-plots in Figure 2.3 show the distribution of time participants took to perform
each task. In the case of ACC-48, the median for the group which did not use the
EvoCrash test is 1565 seconds, while the median for the other group, using the Evo-
Crash test, is 1064 seconds (-32%). In the case of LOG-47957, the median for the
group which did not use the EvoCrash test is 2700 seconds, while the median for the
other group, using the EvoCrash test, is 2037 seconds (-25%). Thus, in both cases, the
medians for the group which used the tests from EvoCrash are lower than the median
for the group which did not use the EvoCrash tests.

To verify whether such differences are statistically significant or not, we used the
non-parametric Wilcoxon test for each debugging task (ACC-48, and L0G-47957)
as described in Section 2.5.5. As effect size measure, we used the Vargha-Delaney A
statistics.

For ACC-48 and L0G-47957, the obtained A scores are 0.28 (medium) and 0.30
(medium), respectively. The differences between the groups with and without the
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Figure 2.3: Amount of time participants took to perform each task, with and without
the tests from EvoCrash.

EvoCrash test are also statistically significant according to the Wilcoxon test, which
returns p-values of 0.03 and 0.04 for ACC-48 and LOG-47957, respectively. Based
on the results above, we conclude:

RQg¢: Developers using the tests from EvoCrash take significanlty less
time when debugging, compared to those not using the EvoCrash
tests.

2.5.7 Threats to Validity

In this section, we outline various possible threats to the validity of the controlled
experiment we conducted.

Internal Validity. To reduce factors that could affect the causal relations under scru-
tiny, we randomly assigned the tasks to the participants. Regarding the ability of the
participants in locating the defects and fixing them, it could be that not being familiar
with the source code negatively affects the degree to which the participants were able
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to locate and fix the defects. To mitigate this impact: i) We made sure Java-Doc docu-
mentation is available for the target projects to be debugged, and ii) We checked with
the pilot studies whether the given time for each task was reasonable, and whether
the available documentation was sufficient to perform them.

Moreover, we conducted the experiment remotely from the participants, which im-
plies that they would do the experiment at their own discretion. Using the online
platform, we made sure the participants are mandated to perform the tasks in the
specified order, and within the specified time limit. In addition, the participants could
only answer each follow up questionnaire after they had completed each task.

External Validity. One factor that could affect the generalizability of the study could
be the student participants of the experiment. Different studies [124,166] show that
if students are familiar with performing the tasks of the experiment, then they would
perform similar to participants from industry. Over 50% of the participants declared
to have at least 2 years of industrial experience, and basic familiarity with the JUnit
framework. In addition, by giving an introductory lecture we further tried to famili-
arize the students and thereby, mitigate possible threats to the generalizability of the
experiment results.

Furthermore, we analyzed only two types of exceptions in the experiment. As de-
scribed in Section 2.5.1, to select these types we considered a number of criteria,
including how often they occur, the stack trace sizes, and whether they are overly
complex or overly simple cases to debug. We deliberately opted for only two excep-
tions in order to i) maintain statistical power in the analysis, and ii) avoid introducing
fatigue and learning effects to the participants.

Construct Validity. Threats to this type of validity concern the degree to which the
conducted experiment measures what is intended to be measured. We used the online
platform to measure the amount of time each participant took to complete the debug-
ging tasks. Since the experiment was done remotely, we did not fully observe how
the participants spent the debugging time they took. While by limiting the debugging
time and providing the questions after each task was completed we tried to control
the experiment flow, it is possible that the participants did not spend the entire time
on the debugging tasks.

Conclusion Validity. We conducted the experiment with 35 master students. In the
experiment, each task was performed by at least 16 students. While 16 is not a large
number as for the size of each group, it still yields sufficient statistical power to assess
the impact of using EvoCrash tests on the number of fixed bugs (when the test is
useful for debugging), as well as the amount of time it takes to finish the debugging
tasks. Regarding assessing the impact of EvoCrash tests on the ability of developers
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in locating defects, our experiment shows preliminary results, and therefore indicates
the need for further future investigation.

We support our findings by using appropriate statistical tests (namely: The Fisher’s
exact test, odds ratio measure, Wilcoxon Rank Sum test, and the Vargha-Delaney A
statistic) to assess the impact of using EvoCrash tests in debugging.

2.6 Discussion and Lessons Learnt

Interactive Search. It should be noted that since GGA strives for finding the fittest
test case, thus discarding the ones with fitness > 0.0, the crash coverage and useful-
ness evaluation was performed on a set of EvoCrash tests with fitness equal to 0.0.
However, considering the crash exploitability and usefulness criteria adopted from
STAR [81], it could be possible that EvoCrash discarded tests with fitness between
0.0 and 1.0, which would actually conform to the aforementioned criteria. Consid-
ering the fitness function range, fitness values could be from 0.0 to 6.0, where 6.0
means a test case that does not reach the target line, therefore does not invoke the
target method, and in turn, does not trigger the target exception. In contrast, fitness
0.0 means that the test covers the target line and method, and triggers the target
exception. According to the definition of the fitness function (presented in Section
4.2.2), when the fitness value is between 0.0 and 1.0, the target line and exception
are covered, however, the stack trace similarity is not ideal yet. In this case, even
though the target stack similarity is not achieved, crash coverage and test usefulness
criteria could be covered. Future work can provide interactive mechanisms through
which the precision of the fitness function could be adjusted, so tests with fitness
between 0.0 and 1.0 could also be accepted.

In addition, dependency on external files was a major factor that prevented EvoCrash
from covering more cases. Therefore, if external files were to be provided by the
bug reporters, then enabling developers to specify the external files could be another
possible direction for the future work.

Extending Comparisons. Towards extending the empirical evaluation, we aimed at
adopting the crash cases reported in [172] in order to make a larger comparison with
JCHARMING. However, due to various reasons, ultimately we managed to adopt four
cases to this end. While the new cases provide a bigger picture, we are still interested
to expand the comparisons among the recent tools for automated crash reproduction.
This aim would be facilitated if the tools become publicly available.
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In addition, we acknowledge the need for extending the empirical evaluation of Evo-
Crash to crashes from recent industrial projects. In such projects scale, complexity,
and type of the generated crashes may vary, which may indicate new research dimen-
sions to consider for improving our search-based crash reproduction approach.

Controlled Experiment. To analyze the impact of EvoCrash tests in debugging, we
selected two common exceptions in Java programs, NullPointerException, and
IllegalArgumentException. This is while various types of exceptions may im-
pose different levels of complexity in debugging, and thus, the impact of crash re-
producing tests may vary in each case. Therefore, future studies could adopt more
common exceptions in Java programs, and assess the impact of EvoCrash tests per
exception type.

In addition, our experiment results showed that using useful EvoCrash tests helps de-
velopers fix bugs and take less time in debugging. While using such tests helped the
participants locate the given defect, the observed impact was not statistically signific-
ant. To be able to locate the root cause of a given failure, having upfront understand-
ing and knowledge about the defective source code may be another important factor
that can impact the ability of a developer in localizing a given defect. Therefore, fu-
ture studies may assess the impact of having up-front knowledge of source code and
its correlation with using crash reproducing tests in debugging.

2.7 Conclusions

Several approaches to automated crash replication have been proposed to aid de-
velopers when debugging. However, these approaches report several challenges such
as path explosion and handling environmental dependencies in practice. We propose
a new approach, EvoCrash, to automated crash reproduction, via a Guided Genetic
Algorithm (GGA). Our empirical evaluation on 54 real-world crashes shows that GGA
addresses the path explosion problem. Furthermore, thanks to the mocking mech-
anisms in EvoSuite, some crashes involving environmental interactions were repro-
duced. However, handling environmental dependencies (such as content of a required
file) remain to be a challenge for EvoCrash. We acknowledge the need for further em-
pirical evaluations on more recent and industrial cases. The result of such evaluations
may help identify the areas where we can improve our search-based crash reproduc-
tion technique.

In addition, we compare effectiveness and efficiency of EvoCrash with EvoSuite as a
whole test suite generation approach to coverage-based test generation. Our results
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confirm that the provided guidance in GGA is necessary for effectively and efficiently
reproducing the crashes.

Moreover, we report from a controlled experiment with 35 master students in com-
puter science, in which we assessed the impact of using EvoCrash tests in practice.
Based on the results of the controlled experiment, we observed that: i) Our data re-
garding the impact of EvoCrash tests on the ability of developers in locating defects is
preliminary. Therefore, our results show need for further future investigation in this
regard. ii) Using a useful test from EvoCrash when debugging, developers can provide
fixes more often, compared to when debugging without using such tests. Finally, iii)
using EvoCrash tests reduces the amount of time developers take when debugging.
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Algorithm 2.1 Guided Genetic Algorithm

Input: Class under test C
Target call from the crash stack trace TC
Population size N

Search time-out max_time

Result: Test case t

begin
// initialization Mgy «— identify public methods based on TC

k—0

Py «—— MAKE-INITIAL-POPULATION(C, Mcrash, N)
EVALUATE(Px)

// main loop

while (best fitness value > 0) AND (time spent < max_time) do
k «— k+ 1 // generate offsprings

00—

while | O |[< N do
p1, p2 «— select two parents for reproduction

if crossover probability then
L 01, 0 «— GUIDED-CROSSOVER(p1, p2)
else
01 «—pl
0y «— p2

O «— O|J GUIDED-MUTATION(01)
O «— O| J GUIDED-MUTATION(03)

// fitness evaluation
EVALUATE(O)
P — Pr1JO

Py «—— select the N fittest individuals in Pg

tpest «— fittest individual in Py

tpest «— POST-PROCESSING (tpest)
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Algorithm 2.2 MAKE-INITIAL-POPULATION

Input: Class under test C

Set of failing methods Mrash

Population size N

Result: An initial population Pg

begin

P 0 — Q

while | Py |[< N do

t «— empty test case Size «— random integer € [ 1;MAX SIZE]
// probability of inserting a method involved in the failure
insert_probability «— 1/size

while (number of statements in t) < size do

if random_number < insert_probability then
method_call «— pick one element from Mcrash

// reset the probability of inserting a failing method

insert_probability «— 1/size

else
method_call «— pick one public method in C

length «— number of statements in t // increase the probability of inserting a failing method

insert_probability «— 1/(size — length + 1)

INSERT-METHOD-CALL(method_call, t)

Po 4—P0Ut
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Algorithm 2.3 GUIDED-CROSSOVER

Input: Parent tests p; and p;

Set of failing methods Mash

Result: Two offsprings 01, 02

begin
sizey «—|p1|

sizey «—| p2 |
// select a cut point
M «— random number € [0; 1]
// first offspring
01 «— first U x size; statements from pi
01 «— append (1 — u) x size, statements from p;
CORRECT(071)
if 01 does not contain methods from M., then
L 01 «— clone of p1
// second offspring
0, «— first u x size; statements from py
0 «— append (1 — ) x size; statements from p;
CORRECT(02)

if 02 does not contain methods from Mgqs, then
L 0, «— clone of p;

Algorithm 2.4 GUIDED-MUTATION

Input: Test t = (S1, ..., Sp) to mutate

Set of failing methods Mrash

Result: Mutated test t

begin

ne—|t]

apply_mutation «— true

while apply_mutation == true do

fori =1tondo

¢ «— random number € [0; 1]

if ¢ < 1/n then

if delete probability then
delete statement S;

if change probability then
L change statement s;

if insert probability then
insert a new method call at line {

if t contains method from Mcrqsp then
L apply_mutation «— false







