Universiteit

4 Leiden
The Netherlands

Exploring means to facilitate software debugging
SOLTANI, M.S.

Citation
SOLTANI, M. S. (2020, August 25). Exploring means to facilitate software debugging.
Retrieved from https://hdl.handle.net/1887/135948

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/135948

License:

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/135948

Cover Page

The handle http://hdl.handle.net/1887/135948 holds various files of this Leiden University
dissertation.

Author: Soltani, M.S.
Title: Exploring means to facilitate software debugging
Issue Date: 2020-08-25


https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/135948
https://openaccess.leidenuniv.nl/handle/1887/1�

Introduction

Today computer systems have profound impact on every aspect of our lives. Software
applications have transformed education systems, healthcare, military systems, the
way businesses operate, the way individuals gather information and communicate,
and so on. Thus, in numerous ways, we have been relying on computer systems to
the extent it is difficult to imagine daily life without them. Despite the advantages
of using computer systems, over the last decades, catastrophic cases of their failures
have been reported.

(a) Lifting off (b) Exploding

Figure 1.1: The lift-off and explosion of the Ariane 5 rocket in 1996.

As Figure 1.1 shows, the explosion of the Ariane 5 rocket in 1996 is among the older
and well-known failures which was caused due a single integer overflow. A more
recent case was reported in 2015 in which a robot killed a worker at one of the
production plants of Volkswagen in Germany [174]. In this case the robot took the



Figure 1.2: Grounding the entire American Airline fleet [39].

Facebook &
We're aware that some people are having trouble uploading or sending images,
videos and other files on our apps. We're sorry for the trouble and are working to

get things back to normal as quickly as possible.

Figure 1.3: The twit from Facebook confirming the outages of Facebook, Instagram,
and WhatsApp applications.

worker and crushed him against a metal plate. Even more recent cases from 2018 and
2019 are reported [39, 131] which range from the outages of Facebook, Instagram,
and WhatsApp (shown in Figure 1.3), separating Amazon users from their cloud stor-
age, grounding the entire American Airline fleet (shown in Figure 1.2), canceling over
100 flights by British Airways, pushing the investment firm Knight Capital into bank-
ruptcy, and so on. These failures disrupted lives on a large scale, caused deaths, and
cost billions of dollars.

In order to prevent such failures and their disastrous consequences, a large num-
ber of quality and functional requirements must be met. Such requirements, in ad-
dition to complexity of software products, and short software development cycles



Chapter 1. Introduction 9

place major importance on activities in the areas of software verification, testing, and
debugging [116]. In a typical commercial development organization, the cost of soft-
ware verification, testing and debugging activities can easily range from 50 to 75 per-
cent of the total development cost [116]. In addition, these activities are error-prone
and labor-intensive. Therefore, much research effort has been put into automating as
many activities in these areas as possible [105]. In what follows, we present a back-
ground about the automated techniques which are researched in the areas of test
generation, and software debugging. Thereafter, we present the contributions in this
thesis, and conclude the chapter with a list of peer-reviewed publications associated
with each of the following chapters in this thesis.

1.1 Automated Test Generation Techniques

Various automated techniques for unit test generation have been proposed in the
research literature. DART [112] is an older technique which combines directed testing
with random testing to automatically generate test cases. PEX [206] is also an older
white-box test generation tool which uses dynamic symbolic execution to generate
tests for .Net programs.

Recent test generation approaches include SAPIENZ [159], EvoSuite [103], and JTEx-
pert [196]. SAPIENZ [159] is an approach to Android testing that uses multi-objective
search to automatically optimize test sequences, by minimizing test lengths, while
simultaneously maximizing coverage and fault revelation. EvoSuite [103] generates
test suites for Java classes. To this end, Evosuite applies a hybrid approach that gen-
erates and optimizes whole test suites towards satisfying a coverage criterion. For the
produced test suites, EvoSuite suggests possible oracles by adding small and effective
sets of assertions that concisely summarize the current behavior. JTExpert [196], on
the other hand, uses a static analysis approach to extract the methods or constructors
which change the state of the class under test or that may reach a test target. Then
JTExpert [196] uses a generator to make instances of classes by using subclasses and
external factory methods. JTExpert also uses a seeding strategy and a diversification
strategy to increase the likelihood to reach a test target.

Moreover, research literature also contains the Monkey [18], Dynodroid [156], T3
[185], and RANDOOP [177] techniques which apply various random test genera-
tion approaches. Monkey is a command line tool that can be run on any instance of
Android emulator or device to stress-test applications. This tool generates pseudo-
random streams of user events such as clicks, touches, or gestures, as well as a num-
ber of system-level events [18]. Dynodroid [156] views an Android application as an



10 1.2. Automated Debugging Techniques

event-driven program that interacts with its environment by means of a sequence of
events through the Android framework. By instrumenting the framework once, Dyno-
droid monitors the reaction of an application upon each event to guide the generation
of the next events. Dynodroid also allows interleaving events from machines, which
are better at generating a large number of simple inputs, with events from humans,
who are better at providing intelligent inputs.

Pacheco et al. [177] propose RANDOOP, which incorporates feedback from execut-
ing test inputs as they are created. This technique builds inputs incrementally by
randomly selecting a method call to apply and finding arguments from previously
constructed inputs. As soon as an input is built, it is executed and checked against
a set of contracts and filters. The result of the execution determines whether the in-
put is redundant, illegal, contract-violating, or useful for generating more inputs. The
technique outputs a test suite consisting of unit tests for the classes under test.

Finally, T3 [185] is the next generation of the testing tool T2 [186]. T3 is implemented
in Java 8, and can be used to automatically generate random tests for Java classes. A
test sequence against a Class Under Test (CUT) starts with the creation of an object
which is an instance of the CUT, followed by calls to the methods of the object, or
updates to the fields. T3 randomly generates a large amount of such test sequences
to trigger faulty behavior, and thus finding a bug.

1.2 Automated Debugging Techniques

Andreas Zeller proposes the delta debugging algorithm [220] which systematically
narrows the state difference between a passing run and a failing run, to determine
whether a change in the program state makes a difference in the test outcome. Ap-
plying the delta debugging algorithm to multiple states of the program automatically
reveals the cause-effect chain of the failure, which are, the variables and values that
caused the failure [220]. Slicing programs is another automated technique described
by Andreas Zeller [221], in which, based on statement dependencies, one can focus
on specific subsets of the program, which are called slices. These subsets may have
influenced a specific statement or be influenced by a specific statement. Therefore, in
this approach, depending on the direction of computing the dependencies to or from
a statement, forward or backward slicing operations are performed.

Parsa et al. [182] propose an approach to defect localization using elastic net. The
proposed approach finds the smallest effective subset of program predicates known
as bug predictors. After selecting bug predictors, the main causes of faults are detec-



Chapter 1. Introduction 11

ted by using existing program slicing techniques. Eichinger et al. [96] propose an-
other approach to automated defect localization using dataflow-enabled call graphs
that incorporate abstractions of the dataflow. In this approach, defect localization is
essentially formulated as a data mining problem, making use of discretisation, fre-
quent subgraph mining and feature selection [96]. Moreover, another approach to
fault localization is proposed by Naish et al. [168]. This approach is based on ranking
program statements or blocks according to how likely they are to be buggy.

Chandra et al. [80] propose angelic debugging. This technique is based on locating
expressions that are likely to be bugs. After locating the likely-buggy expressions, an-
gelic debugging searches the space of all edits to the program for one that repairs the
failing test without breaking any passing test. Furthermore, Wei et al. [210] propose
the AutoFix-E approach which automatically generates and validates fixes for soft-
ware faults. AutoFix-E relies on contracts present in the software to ensure that the
proposed fixes are semantically sound. On the other hand, Le Goues et al. [148] pro-
pose GenProg, which uses an extended form of genetic programming to repair defects
in off-the-shelf, legacy programs without formal specifications, program annotations,
or special coding practices. GenProg evolves program variants which keep required
functionality but are not susceptible to given defects, using existing test suites.

Another approach to assist with software debugging is proposed by Zhang et al. [223]
to automatically identify breakpoints. This technique combines the nearest neighbor
queries method, dynamic program slicing, and memory graph comparison to detect
suspicious program statements and states. Based on this information, breakpoints are
generated and divided into two groups, where the primary group contains conditional
breakpoints and the secondary group contains unconditional ones.

Moreover, a body of research is done on automated crash reproduction. Earlier re-
search in this field [58,83,169,205] use record-replay techniques to reproduce crashes.
However, due to the execution overhead and privacy-related issues, recent research
work [81,137,150,151,171,194,215,217,219] take a post-failure approach by using
the crash data that is generated after the crash occurs. The crash data is often in the
form of crash stack traces which are recorded in software execution logs.

1.3 Contributions

In this section, first we present an overview of the overarching goal of the thesis and
an outline of the research questions we aimed to answer. Thereafter, we provide our
motivation for each of the contributions in this thesis, followed by their outcomes.



12

1.3. Contributions

Applying a
_v| Search-based
- Approach

Automating Crash | -
5 Reproduction ~

w| Using Benchmarks
for Evaluations

Strategies to

Improving Quality

Facilitate Software of Bug Reports

Debugging

‘1 Reducing Fault
Density

Figure 1.4: The overview of the strategies addressed in this thesis to facilitate

software debugging.

1.3.1 Overview

As Figure 1.4 shows, the overarching goal of this thesis is to investigate various means
to facilitate automated software debugging. We start with investigating a search-
based solution for automated crash reproduction to support developers by producing
information which help identify the faults faster. While investigating the effectiveness
of this solution for developers, we detect additional needs to address:

an extensible benchmark for comparing automated crash reproduction tech-
niques, and a systemic way to run evaluations using this benchmark,

investigating techniques to improve the fitness function in the proposed solution
for search-based automated crash reproduction,

investigating the information developers need from bug reports, which make
software debugging more efficient, and

investigating whether the Design by Contract (DBC) software development ap-
proach can reduce defect density in software, so that debugging effort is reduced
by trying to prevent faults in software products in the first place.

To address the above concerns, we define the following research questions:

RQ3: How can search-based algorithms be used to automate crash reproduc-



Chapter 1. Introduction 13

tion?

* RQ3: How to create a benchmark of representative crashes to use for evaluating
crash reproduction research prototypes?

* RQ3: What is the impact of multi-objectivization on evolutionary crash repro-
duction?

* RQgy: Do different elements of bug reports impact the time it takes to fix bugs?

* RQs5: Can program contracts be used to reduce the occurrence of bugs?

1.3.2 Motivation for the Contributions and their Outcomes

As mentioned in Section 1.2 previously, a body of research was done on automated
crash reproduction. Despite the previous research in this area, application of evolu-
tionary search-based algorithms remained underexplored. This is while search-based
algorithms have proven to be efficient techniques in other areas such as automated
test generation.

To evaluate the application of search-based algorithms for automated crash reproduc-
tion and answer RQ1, we devised a problem representation, a new fitness function,
and new genetic algorithm operators, in the first study we performed. We named this
approach EvoCrash. To implement EvoCrash, we extended the search based test gen-
erating tool, named EvoSuite [103]. In the first study we did, we compared EvoCrash
with the state-of-the-art crash reproduction approaches. Our evaluation indicated
EvoCrash outperformed the state-of-the-art techniques by reproducing more crashes
from real-world projects.

Despite the early evaluations we performed, we noticed the number of projects and
available crash stack traces are rather limited, which makes comparison of the re-
search prototypes challenging. Therefore, in the second study we answer RQz by
proposing JCrashPack, an extensible benchmark for Java crash reproduction. JCrash-
Pack contains 200 stack traces from various Java projects, including industrial open
source ones, on which we run an extensive evaluation of EvoCrash. EvoCrash suc-
cessfully reproduced 43% of the crashes. Furthermore, we observed that reproducing
NullPointerException, IllegalArgumentException, and IllegalStateException is relat-
ively easier than reproducing ClassCastException, ArrayIndexOutOfBoundsException
and StringIndexOutOfBoundsException.

To answer RQ3, in the third study, we continue with further evaluating the EvoCrash
approach. In this study, we investigate the alternatives to the original fitness func-



14 1.3. Contributions

tion we defined in EvoCrash. The original fitness function in EvoCrash uses single
weighted sum scalarization function to optimize test generation. Therefore, in the
third study, we assessed whether there is any difference if we use a simple sum
scalarized function without any weights. In addition, we assessed whether multi-
objectivization, which is the process of turning a single-objective optimization to
multi-objective optimization, impacts crash reproduction in any way. Our results in-
dicate that for complex crashes the weighted sum function reduces the test case gen-
eration time, compared to the simple sum function, while for simpler crashes the
effect is the opposite. Similarly, for complex crashes, multi-objectivization reduces
test generation time compared to optimizing with the weighted sum function.

When it comes to debugging, the quality of the information that is available to de-
velopers can vary. Too little information can influence the priority that is assigned to
bug reports. To answer RQg, the fourth study we performed focuses on the quality of
bug reports and the significance of bug report elements on bug resolution times. In
this study, we interviewed 35 developers and surveyed 305 developers to understand
developers’ perception on the significance of different bug report elements. Accord-
ing to the results, developers find it highly important that bug reports include crash
description, reproducing steps, and crash stack traces. In addition, to evaluate the
quality of currently available bug reports, we mined issue repositories of 250 most
popular projects on Github. Statistical analysis on the mined issues shows that crash
reproducing steps, stack traces, fix suggestions, and user contents, have statistically
significant impact on bug resolution times, for ~70%, ~76%, ~55%, and ~33% of
the projects. However, on average, over 70% of bug reports lack these elements.

When it comes to software testing, verification, and debugging with the intention
to meet the quality and functional requirements, one aspect to consider is identifying
means by which the need for software debugging is reduced. Yuan et al. [218] show in
their study that simple testing can prevent most critical failures. Similarly, the studies
by Kochhar and Lo [143] and Casalnuovo et al. [77] show there is a negative correl-
ation between the use of program contracts and the frequency of bug occurrence for
a given method in the program.

In the fifth study we perform, we extend the studies done by Kochhar and Lo [143]
and Casalnuovo et al. [77] to answer RQs. In this study, we report results of an
empirical evaluation on the use of contracts in 148 open source projects, written in
Java, C++, and Python. Our findings show that the average use of different types
of contracts differ depending on the program language. Furthermore, the results of
regression analysis shows there is a negative relation between the number of con-
tracts and frequency of defect occurrence in a method. These results are statistically
significant for all Java, C++, and Python projects.



Chapter 1. Introduction 15

1.4 Publications

The different chapters of this thesis are based on the following publications:

Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. "A guided genetic
algorithm for automated crash reproduction." In 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering (ICSE), pp. 209-220. IEEE, (2017).
(Chapter 2)

Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. "Search-based crash
reproduction and its impact on debugging." IEEE Transactions on Software En-
gineering (2018). (Chapter 2)

Mozhan Soltani, Pouria Derakhshanfar, Xavier Devroey, and Arie Van Deursen.
"A benchmark-based evaluation of search-based crash reproduction." Empirical
Software Engineering 25, no. 1, pp. 96-138. Springer, (2020). (The first two
authors agreed to share this paper in their PhD theses.) (Chapter 3)

Mozhan Soltani, Pouria Derakhshanfar, Annibale Panichella, Xavier Devroey,

Andy Zaidman, and Arie van Deursen. "Single-objective Versus Multi-objectivized
Optimization for Evolutionary Crash Reproduction." In International Symposium
on Search Based Software Engineering, pp. 325-340. Springer, Cham, (2018).

(Chapter 4)

Mozhan Soltani, Felienne Hermans, and Thomas Béck. "The significance of bug
report elements." Empirical Software Engineering. Springer, (2020). (This paper
is under revision at the time of writing the thesis.) (Chapter 5)






