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1
Introduction

Today computer systems have profound impact on every aspect of our lives. Software
applications have transformed education systems, healthcare, military systems, the
way businesses operate, the way individuals gather information and communicate,
and so on. Thus, in numerous ways, we have been relying on computer systems to
the extent it is difficult to imagine daily life without them. Despite the advantages
of using computer systems, over the last decades, catastrophic cases of their failures
have been reported.

(a) Lifting off (b) Exploding

Figure 1.1: The lift-off and explosion of the Ariane 5 rocket in 1996.

As Figure 1.1 shows, the explosion of the Ariane 5 rocket in 1996 is among the older
and well-known failures which was caused due a single integer overflow. A more
recent case was reported in 2015 in which a robot killed a worker at one of the
production plants of Volkswagen in Germany [174]. In this case the robot took the
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Figure 1.2: Grounding the entire American Airline fleet [39].

Figure 1.3: The twit from Facebook confirming the outages of Facebook, Instagram,
and WhatsApp applications.

worker and crushed him against a metal plate. Even more recent cases from 2018 and
2019 are reported [39, 131] which range from the outages of Facebook, Instagram,
and WhatsApp (shown in Figure 1.3), separating Amazon users from their cloud stor-
age, grounding the entire American Airline fleet (shown in Figure 1.2), canceling over
100 flights by British Airways, pushing the investment firm Knight Capital into bank-
ruptcy, and so on. These failures disrupted lives on a large scale, caused deaths, and
cost billions of dollars.

In order to prevent such failures and their disastrous consequences, a large num-
ber of quality and functional requirements must be met. Such requirements, in ad-
dition to complexity of software products, and short software development cycles
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place major importance on activities in the areas of software verification, testing, and
debugging [116]. In a typical commercial development organization, the cost of soft-
ware verification, testing and debugging activities can easily range from 50 to 75 per-
cent of the total development cost [116]. In addition, these activities are error-prone
and labor-intensive. Therefore, much research effort has been put into automating as
many activities in these areas as possible [105]. In what follows, we present a back-
ground about the automated techniques which are researched in the areas of test
generation, and software debugging. Thereafter, we present the contributions in this
thesis, and conclude the chapter with a list of peer-reviewed publications associated
with each of the following chapters in this thesis.

1.1 Automated Test Generation Techniques

Various automated techniques for unit test generation have been proposed in the
research literature. DART [112] is an older technique which combines directed testing
with random testing to automatically generate test cases. PEX [206] is also an older
white-box test generation tool which uses dynamic symbolic execution to generate
tests for .Net programs.

Recent test generation approaches include SAPIENZ [159], EvoSuite [103], and JTEx-
pert [196]. SAPIENZ [159] is an approach to Android testing that uses multi-objective
search to automatically optimize test sequences, by minimizing test lengths, while
simultaneously maximizing coverage and fault revelation. EvoSuite [103] generates
test suites for Java classes. To this end, Evosuite applies a hybrid approach that gen-
erates and optimizes whole test suites towards satisfying a coverage criterion. For the
produced test suites, EvoSuite suggests possible oracles by adding small and effective
sets of assertions that concisely summarize the current behavior. JTExpert [196], on
the other hand, uses a static analysis approach to extract the methods or constructors
which change the state of the class under test or that may reach a test target. Then
JTExpert [196] uses a generator to make instances of classes by using subclasses and
external factory methods. JTExpert also uses a seeding strategy and a diversification
strategy to increase the likelihood to reach a test target.

Moreover, research literature also contains the Monkey [18], Dynodroid [156], T3
[185], and RANDOOP [177] techniques which apply various random test genera-
tion approaches. Monkey is a command line tool that can be run on any instance of
Android emulator or device to stress-test applications. This tool generates pseudo-
random streams of user events such as clicks, touches, or gestures, as well as a num-
ber of system-level events [18]. Dynodroid [156] views an Android application as an
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event-driven program that interacts with its environment by means of a sequence of
events through the Android framework. By instrumenting the framework once, Dyno-
droid monitors the reaction of an application upon each event to guide the generation
of the next events. Dynodroid also allows interleaving events from machines, which
are better at generating a large number of simple inputs, with events from humans,
who are better at providing intelligent inputs.

Pacheco et al. [177] propose RANDOOP, which incorporates feedback from execut-
ing test inputs as they are created. This technique builds inputs incrementally by
randomly selecting a method call to apply and finding arguments from previously
constructed inputs. As soon as an input is built, it is executed and checked against
a set of contracts and filters. The result of the execution determines whether the in-
put is redundant, illegal, contract-violating, or useful for generating more inputs. The
technique outputs a test suite consisting of unit tests for the classes under test.

Finally, T3 [185] is the next generation of the testing tool T2 [186]. T3 is implemented
in Java 8, and can be used to automatically generate random tests for Java classes. A
test sequence against a Class Under Test (CUT) starts with the creation of an object
which is an instance of the CUT, followed by calls to the methods of the object, or
updates to the fields. T3 randomly generates a large amount of such test sequences
to trigger faulty behavior, and thus finding a bug.

1.2 Automated Debugging Techniques

Andreas Zeller proposes the delta debugging algorithm [220] which systematically
narrows the state difference between a passing run and a failing run, to determine
whether a change in the program state makes a difference in the test outcome. Ap-
plying the delta debugging algorithm to multiple states of the program automatically
reveals the cause-effect chain of the failure, which are, the variables and values that
caused the failure [220]. Slicing programs is another automated technique described
by Andreas Zeller [221], in which, based on statement dependencies, one can focus
on specific subsets of the program, which are called slices. These subsets may have
influenced a specific statement or be influenced by a specific statement. Therefore, in
this approach, depending on the direction of computing the dependencies to or from
a statement, forward or backward slicing operations are performed.

Parsa et al. [182] propose an approach to defect localization using elastic net. The
proposed approach finds the smallest effective subset of program predicates known
as bug predictors. After selecting bug predictors, the main causes of faults are detec-
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ted by using existing program slicing techniques. Eichinger et al. [96] propose an-
other approach to automated defect localization using dataflow-enabled call graphs
that incorporate abstractions of the dataflow. In this approach, defect localization is
essentially formulated as a data mining problem, making use of discretisation, fre-
quent subgraph mining and feature selection [96]. Moreover, another approach to
fault localization is proposed by Naish et al. [168]. This approach is based on ranking
program statements or blocks according to how likely they are to be buggy.

Chandra et al. [80] propose angelic debugging. This technique is based on locating
expressions that are likely to be bugs. After locating the likely-buggy expressions, an-
gelic debugging searches the space of all edits to the program for one that repairs the
failing test without breaking any passing test. Furthermore, Wei et al. [210] propose
the AutoFix-E approach which automatically generates and validates fixes for soft-
ware faults. AutoFix-E relies on contracts present in the software to ensure that the
proposed fixes are semantically sound. On the other hand, Le Goues et al. [148] pro-
pose GenProg, which uses an extended form of genetic programming to repair defects
in off-the-shelf, legacy programs without formal specifications, program annotations,
or special coding practices. GenProg evolves program variants which keep required
functionality but are not susceptible to given defects, using existing test suites.

Another approach to assist with software debugging is proposed by Zhang et al. [223]
to automatically identify breakpoints. This technique combines the nearest neighbor
queries method, dynamic program slicing, and memory graph comparison to detect
suspicious program statements and states. Based on this information, breakpoints are
generated and divided into two groups, where the primary group contains conditional
breakpoints and the secondary group contains unconditional ones.

Moreover, a body of research is done on automated crash reproduction. Earlier re-
search in this field [58,83,169,205] use record-replay techniques to reproduce crashes.
However, due to the execution overhead and privacy-related issues, recent research
work [81,137,150,151,171,194,215,217,219] take a post-failure approach by using
the crash data that is generated after the crash occurs. The crash data is often in the
form of crash stack traces which are recorded in software execution logs.

1.3 Contributions

In this section, first we present an overview of the overarching goal of the thesis and
an outline of the research questions we aimed to answer. Thereafter, we provide our
motivation for each of the contributions in this thesis, followed by their outcomes.
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Figure 1.4: The overview of the strategies addressed in this thesis to facilitate
software debugging.

1.3.1 Overview

As Figure 1.4 shows, the overarching goal of this thesis is to investigate various means
to facilitate automated software debugging. We start with investigating a search-
based solution for automated crash reproduction to support developers by producing
information which help identify the faults faster. While investigating the effectiveness
of this solution for developers, we detect additional needs to address:

• an extensible benchmark for comparing automated crash reproduction tech-
niques, and a systemic way to run evaluations using this benchmark,

• investigating techniques to improve the fitness function in the proposed solution
for search-based automated crash reproduction,

• investigating the information developers need from bug reports, which make
software debugging more efficient, and

• investigating whether the Design by Contract (DBC) software development ap-
proach can reduce defect density in software, so that debugging effort is reduced
by trying to prevent faults in software products in the first place.

To address the above concerns, we define the following research questions:

• RQ1: How can search-based algorithms be used to automate crash reproduc-
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tion?

• RQ2: How to create a benchmark of representative crashes to use for evaluating
crash reproduction research prototypes?

• RQ3: What is the impact of multi-objectivization on evolutionary crash repro-
duction?

• RQ4: Do different elements of bug reports impact the time it takes to fix bugs?

• RQ5: Can program contracts be used to reduce the occurrence of bugs?

1.3.2 Motivation for the Contributions and their Outcomes

As mentioned in Section 1.2 previously, a body of research was done on automated
crash reproduction. Despite the previous research in this area, application of evolu-
tionary search-based algorithms remained underexplored. This is while search-based
algorithms have proven to be efficient techniques in other areas such as automated
test generation.

To evaluate the application of search-based algorithms for automated crash reproduc-
tion and answer RQ1, we devised a problem representation, a new fitness function,
and new genetic algorithm operators, in the first study we performed. We named this
approach EvoCrash. To implement EvoCrash, we extended the search based test gen-
erating tool, named EvoSuite [103]. In the first study we did, we compared EvoCrash
with the state-of-the-art crash reproduction approaches. Our evaluation indicated
EvoCrash outperformed the state-of-the-art techniques by reproducing more crashes
from real-world projects.

Despite the early evaluations we performed, we noticed the number of projects and
available crash stack traces are rather limited, which makes comparison of the re-
search prototypes challenging. Therefore, in the second study we answer RQ2 by
proposing JCrashPack, an extensible benchmark for Java crash reproduction. JCrash-
Pack contains 200 stack traces from various Java projects, including industrial open
source ones, on which we run an extensive evaluation of EvoCrash. EvoCrash suc-
cessfully reproduced 43% of the crashes. Furthermore, we observed that reproducing
NullPointerException, IllegalArgumentException, and IllegalStateException is relat-
ively easier than reproducing ClassCastException, ArrayIndexOutOfBoundsException
and StringIndexOutOfBoundsException.

To answer RQ3, in the third study, we continue with further evaluating the EvoCrash
approach. In this study, we investigate the alternatives to the original fitness func-
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tion we defined in EvoCrash. The original fitness function in EvoCrash uses single
weighted sum scalarization function to optimize test generation. Therefore, in the
third study, we assessed whether there is any difference if we use a simple sum
scalarized function without any weights. In addition, we assessed whether multi-
objectivization, which is the process of turning a single-objective optimization to
multi-objective optimization, impacts crash reproduction in any way. Our results in-
dicate that for complex crashes the weighted sum function reduces the test case gen-
eration time, compared to the simple sum function, while for simpler crashes the
effect is the opposite. Similarly, for complex crashes, multi-objectivization reduces
test generation time compared to optimizing with the weighted sum function.

When it comes to debugging, the quality of the information that is available to de-
velopers can vary. Too little information can influence the priority that is assigned to
bug reports. To answer RQ4, the fourth study we performed focuses on the quality of
bug reports and the significance of bug report elements on bug resolution times. In
this study, we interviewed 35 developers and surveyed 305 developers to understand
developers’ perception on the significance of different bug report elements. Accord-
ing to the results, developers find it highly important that bug reports include crash
description, reproducing steps, and crash stack traces. In addition, to evaluate the
quality of currently available bug reports, we mined issue repositories of 250 most
popular projects on Github. Statistical analysis on the mined issues shows that crash
reproducing steps, stack traces, fix suggestions, and user contents, have statistically
significant impact on bug resolution times, for ~70%, ~76%, ~55%, and ~33% of
the projects. However, on average, over 70% of bug reports lack these elements.

When it comes to software testing, verification, and debugging with the intention
to meet the quality and functional requirements, one aspect to consider is identifying
means by which the need for software debugging is reduced. Yuan et al. [218] show in
their study that simple testing can prevent most critical failures. Similarly, the studies
by Kochhar and Lo [143] and Casalnuovo et al. [77] show there is a negative correl-
ation between the use of program contracts and the frequency of bug occurrence for
a given method in the program.

In the fifth study we perform, we extend the studies done by Kochhar and Lo [143]
and Casalnuovo et al. [77] to answer RQ5. In this study, we report results of an
empirical evaluation on the use of contracts in 148 open source projects, written in
Java, C++, and Python. Our findings show that the average use of different types
of contracts differ depending on the program language. Furthermore, the results of
regression analysis shows there is a negative relation between the number of con-
tracts and frequency of defect occurrence in a method. These results are statistically
significant for all Java, C++, and Python projects.
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2
Evolutionary Crash Reproduction

Software systems fail. These failures are often reported to issue tracking systems,
where they are prioritized and assigned to responsible developers to be investigated.
When developers debug software, they need to reproduce the reported failure in order
to verify whether their fix actually prevents the failure from happening again. Since
manually reproducing each failure could be a complex task, several automated tech-
niques have been proposed to tackle this problem. Despite showing advancements
in this area, the proposed techniques showed various types of limitations. In this pa-
per, we present EvoCrash, a new approach to automated crash reproduction based
on a novel evolutionary algorithm, called Guided Genetic Algorithm (GGA). We re-
port on our empirical study on using EvoCrash to reproduce 54 real-world crashes,
as well as the results of a controlled experiment, involving human participants, to
assess the impact of EvoCrash tests in debugging. Based on our results, EvoCrash out-
performs state-of-the-art techniques in crash reproduction and uncovers failures that
are undetected by classical coverage-based unit test generation tools. In addition, we
observed that using EvoCrash helps developers provide fixes more often and take less
time when debugging, compared to developers debugging and fixing code without
using EvoCrash tests.

2.1 Introduction

Despite the significant effort spent by developers in software testing and verification,
software systems still fail. These failures are reported to issue tracking systems, where
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they are prioritized, and assigned to responsible developers for inspection. When de-
velopers debug software, they need to reproduce the reported failure, understand
its root cause, and provide a proper fix that prevents the failure. While crash stack
traces indicate the type of crash and the method calls executed at the time of the
crash, they may lack critical details that a developer could use to debug the software.
Therefore, depending on the complexity of the reported failures and amount of avail-
able information about them, manual crash reproduction can be a labor-intensive task
which negatively affects developers’ productivity.

To reduce debugging effort, researchers have proposed various automated techniques
to generate test cases reproducing the target crashes. Generated tests can help de-
velopers better understanding the cause of the crash by providing the input values
that actually induce the failure and enable the usage of a debugger in the IDE with
runtime data. To generate such tests, crash reproduction techniques leverage vari-
ous sources of information, such as stack traces, core dumps, failure descriptions.
As Chen and Kim [81] first identified, these techniques can be classified into two
categories: record-replay techniques, and post-failure techniques. Record-replay ap-
proaches [?, ?, 58, 169, 205] monitor software behavior via software/hardware in-
strumentation to collect the observed objects and method calls when failures occur.
Unfortunately, such techniques suffer from well-known practical limitations, such as
performance overhead [81], and privacy issues [171].

As opposed to these costly techniques, post-failure approaches [81,150,151,171,194,
215, 219] try to replicate crashes by exploiting data that is available after the fail-
ure, typically stored in log files or external bug tracking systems. Most of these tech-
niques require specific input data in addition to crash stack traces [81], such as core
dumps [150, 151, 194, 208] or software models like input grammars [136, 137] or
class invariants [69].

Since such additional information is usually not available to developers, recent ad-
vances in the field have focused on crash stack traces as the only source of information
for debugging [81, 171, 215]. For example, Chen and Kim developed STAR [81], an
approach based on backward symbolic execution that outperforms earlier crash rep-
lication techniques, such as Randoop [177] and BugRedux [134]. Xuan et al. [215]
presented MuCrash, a tool that mutates existing test cases using specific operators,
thus creating a new pool of tests to run against the software under analysis. Nayrolle
et al. [171] proposed JCHARMING, based on directed model checking combined with
program slicing [171,172].

Unfortunately, the state-of-the-art tools suffer from several limitations. For example,
STAR cannot handle cases with external environmental dependencies [81] (e.g., file



Chapter 2. Evolutionary Crash Reproduction 19

or network inputs), non-trivial string constraints, or complex logic potentially lead-
ing to a path explosion. MuCrash is limited by the ability of existing tests in covering
method call sequences of interest, and it may lead to a large number of unneces-
sary mutated test cases [215]. JCHARMING [171,172] applies model checking which
can be computationally expensive. Moreover, similar to STAR, JCHARMING does not
handle crash cases with environmental dependencies.

This paper is an extension of our previous conference paper [203], where we presen-
ted EvoCrash, a search-based approach for the automated crash replication problem
and built on top of EvoSuite [103], which is a well-known coverage-based unit test
generator for Java code. Specifically, EvoCrash uses a novel evolutionary algorithm,
namely Guided Genetic Algorithm (GGA), which leverages the stack trace to guide
the search toward generating tests able to trigger the target crashes. GGA uses a gen-
erative routine to build an initial population of test cases, which exercise at least one
of the methods reported in the crash stack frames (target methods). GGA also uses
two novel genetic operators, i.e., namely guided crossover and guided mutation, to
ensure that the test cases keep exercising the target methods across the generations.
The search is further guided by a fitness function that combines coverage-based heur-
istics with a crash-based heuristic measuring the distance between the stack traces (if
any) generated by the candidate test cases and the original stack trace of the crash to
replicate.

We assess the performance of EvoCrash by conducting an empirical study on 54
crashes reported for real-world open-source Java projects. Our results show that Evo-
Crash can successfully replicate more crashes than STAR (+23%), MuCrash (+17%),
and JCHARMING (+25%), which are the state-of-the-art tools based on crash stack
traces. Furthermore, we observe that EvoCrash is not affected by the path explosion
problem, which is a key problem for symbolic execution [81], and can mock envir-
onmental interactions which, in some cases, helps to cope with the environmental
dependency problem.

Furthermore, we compare EvoCrash with EvoSuite to assess whether the crash rep-
licated by our tools could be simply detected by classical coverage-based test case
generators. The results of this comparison show that EvoCrash reproduced 85% of
the crashes, while EvoSuite reproduced only 33% of them. For crashes reproduced by
both EvoCrash and EvoSuite, on average, EvoCrash took 145 seconds while EvoSuite
took 391 seconds. Thus, on average, EvoCrash is 170% more efficient than EvoSuite
when they both reproduce crashes. These results show that coverage-based test gener-
ation lacks adequate guidance for crash reproduction. This in turn confirms the need
for specialized search when the goal is to trigger specific software behavior rather
than achieving high code coverage.
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We also assess the extent of practical usefulness of the tests generated by EvoCrash
during debugging and code fixing tasks. To this aim, we conducted a controlled ex-
periment with 35 master students in computer science. The achieved results reveal
that tests generated by EvoCrash increase participants’ ability to provide fixes (+21%
on average) while reducing the amount of time they spent to complete the assigned
tasks (-15.36% on average).

The novel contributions of this extension are summarized as follows:

• A comparison of EvoCrash with EvoSuite, which is a test generation tool for
coverage-based unit testing.

• A controlled experiment involving human participants; its results show that the
usage of the tests aids developers in fixing the reported bugs while taking less
time when debugging.

• We provide a publicly available replication package1 that includes: (i) an ex-
ecutable jar of EvoCrash, (ii) all bug reports used in our study, (iii) the test
cases generated by our tool, and (iv) anonymized experimental data as well as
R scripts used to analyze the results from the controlled experiment.

The remainder of the chapter is structured as follows. Section 2.2 provides back-
ground on search-based software testing, in addition to describing the related work
on the approaches to automated crash replication, unit test generation tools, and
user studies in testing and debugging. Section 2.3 presents the EvoCrash approach.
Section 2.4 and 2.5 describe the empirical evaluation of EvoCrash as well as the
controlled experiment with human participants, respectively. Discussion follows in
Section 2.6. Section 2.7 concludes the paper.

2.2 Background and Related Work

In this section, we present related work on automated crash reproduction, back-
ground knowledge on search-based software testing,related work in software testing
and debugging which conducted experiments involving human participants.

2.2.1 Automated Approaches to Crash Replication

Previous approaches in the field of crash replication can be grouped into three main
categories: (i) record-replay approaches, (ii) post-failure approaches using various

1 DOI: 10.4121/uuid:001bb128-0a55-4a8d-b3f5-e39bfc5795ea
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data sources, and (iii) stack-trace based post-failure techniques. The first category in-
cludes the earliest work in this field, such as ReCrash [58], ADDA [?], Bugnet [169],
and jRapture [205]. In addition, [64] and [76] are recent record-replay techniques
which are based on monitoring non-deterministic and hard-to-resolve methods (when
using symbolic execution) respectively. The recent work on reproducing context-
sensitive crashes of Android applications, MoTiF [114], also falls in the first category
of record-replay techniques. The aforementioned techniques rely on program run-
time data for automated crash replication. Thus, they record the program execution
data in order to use it for identifying the program states and execution path that led to
the program failure. However, monitoring program execution may lead to (i) substan-
tial performance overhead due to software/hardware instrumentation [81,171,194],
and (ii) privacy violations since the collected execution data may contain sensitive in-
formation [81].

On the other hand, post-failure approaches [137, 150, 151, 194, 217, 219] analyze
software data (e.g., core dumps) only after crashes occur, thus not requiring any form
of instrumentation. Rossler et al. [194] developed an evolutionary search-based ap-
proach named RECORE that leverages core dumps (taken at the time of a failure)
to generate input data. RECORE combines the search-based input generation with
a coverage-based technique to generate method sequences. Weeratunge et al. [208]
used core dumps and directed search for replicating crashes related to concurrent
programs in multi-core platforms. Leitner et al. [150, 151] used a failure-state ex-
traction technique to create tests from core dumps (to derive input data) and stack
traces (to derive method calls). Kifetew et al. [136, 137] used genetic programming
requiring as input (i) a grammar describing the program input, and (ii) a (partial)
call sequence. Boyapati et al. [69] developed another technique requiring manually
written specifications containing method preconditions, postconditions, and class in-
variants. However, the above mentioned post-failure approaches need various types
of information that are often not available to developers, thus decreasing their feas-
ibility. To address lack of available execution data for replicating system-level concur-
rency crashes, Yu et al. [217] propose a new approach called, DESCRY. DESCRY only
assumes the existence of the source code of processes under debugging and default
logs generated by the failed execution. This approach [217] leverages a combination
of static and dynamic analysis techniques and symbolic execution to synthesize the
failure-inducing input data and interleaving schedule.

To increase the practical usefulness of automated approaches, researchers have fo-
cused on crash stack traces as the only source of information available for debugging.
For instance, ESD [219] uses forward symbolic execution that leverages commonly
reported elements in bug reports. BugRedux [134] also uses forward symbolic execu-
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tion but it can analyze different types of execution data, such as crash stack traces. As
highlighted by Chen and Kim [81], both ESD and BugRedux rely on forward symbolic
execution, thus inheriting its problems due to path explosion and object creation [214].
As shown by Braione et al. [70], existing symbolic execution tools do not adequately
address the synthesis of complex input data structures that require non-trivial method
sequences. To address the path explosion and object creation problems, Chen and
Kim [81] introduced STAR, a tool that applies backward symbolic execution to com-
pute crash preconditions and generates a test using a method sequence composition
approach. Despite these advances in STAR, Chen and Kim [81] reported that their ap-
proach is still affected by the path explosion problem when replicating some crashes.
Therefore, path-explosion still remains an open issue for symbolic execution.

Different from STAR, JCHARMING [171,172] uses a combination of crash traces and
model checking to automatically reproduce bugs that caused field failure. To address
the state explosion problem [60] in model checking, JCHARMING applies program
slicing to direct the model checking process by reduction of the search space. Instead,
MuCrash [215] uses mutation analysis as the underlying technique for crash replic-
ation. First, MuCrash selects the test cases that include the classes in the crash stack
trace. Next, it applies predefined mutation operators on the tests to produce mutant
tests that can reproduce the target crash.

STAR [81], JCHARMING [171,172], and MuCrash [215], have been empirically eval-
uated on a varying number of field crashes (52, 12, and 31, respectively) which were
reported for different open source projects, including: Apache Commons Collections,
Apache Ant, Apache Hadoop, Dnsjava, etc. The results of the evaluations are repor-
ted in the published papers, however, to the best of our knowledge, the tools are not
publicly available.

A recent approach based on using crash stacks for reproducing concurrency failures,
that violate thread safety of a class, is CONCRASH, proposed by Bianchi et al. [65].
As input, CONCRASH requires the class that violates thread safety and the generated
crash stack trace. CONCRASH iteratively applies pruning strategies to search for test
code and interleaving that trigger the target concurrency failure. Differently from our
approach, CONCRASH targets only concurrency failures violating the thread-safety of
a program [65], which represents the minority of failures reported in issue tracking
systems [218]. For example, Yuan et al. [218] reported that only 10% of the failures
in distributed data-intensive systems are due to multi-threaded inter-leavings. A later
study by Coelho et al. [85] further reported that a large majority of failures in android
apps are related to errors in programming logic and resource management, while
concurrency accounts only for 2.9% of all failures.
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In our earlier study [201], we investigated coverage-based unit testing tools like Evo-
Suite as a technology for replicating some crashes if relying on a proper fitness func-
tion specialized for crash replication. However, our preliminary results also indicated
that this simple solution could not replicate some cases for two main reasons: (i) lim-
itations of the developed fitness function, and (ii) the large search space in complex
real-world software. The EvoCrash approach presented in this paper resumes this line
of research because it uses evolutionary search to synthesize a crash reproducing test
case. However, it is novel because it utilizes a more effective fitness function and it
applies a Guided Genetic Algorithm (GGA) instead of coverage-oriented genetic al-
gorithms. Section 2.3 presents full details regarding the novel fitness function and
the GGA in EvoCrash.

2.2.2 Search-based Software Testing

Search-Based Software Testing (SBST) is a sub-field of a larger body of work on
Search-Based Software Engineering (SBSE). In SBSE, software engineering tasks are
reformulated as optimization problems, to which different meta-heuristic algorithms
are applied to automate them [122]. As McMinn describes [161], search optimiz-
ations have been used in a plethora of software testing problems, including struc-
tural testing [209], temporal testing [187], functional testing [73], and mutation
testing [132]. Among these, structural testing has received the most attention so far.

Applying an SBST technique on a testing problem requires [117,161]: (i) a represent-
ation for the candidate solutions in the search space, and (ii) a definition for a fitness
function. The representation of the solutions shall constitute elements which make it
possible to encode them using some data structures [122] (e.g., vectors, trees). This
is mainly because search optimization techniques rely on operators that manipulate
the encoded elements to derive new solutions. In addition, the representation shall
be accurate enough so that a small change in one individual solution represents a
neighbor solution in the search space [122].

A fitness function (also called objective or distance function) is used to measure the
distance of each individual in the search space from the global optimum. Therefore,
it is important that this definition is computationally inexpensive so that it could
be used to measure the distance of multiple individuals until the global optimum is
found [122].

Furthermore, as described before, path explosion and object creation are open prob-
lems when using symbolic execution [70] [81]. Different from symbolic execution,
search-based software testing uses distance functions to satisfy each condition of the
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program in “isolation” [59], i.e., independently from which alternative path is taken
to reach the condition to solve. Focusing on each condition at a time allows to ad-
dress the path explosion problem but, on the other hand, it may fail to capture de-
pendencies between multiple conditions in the programs as in the case of deceiving
conditions [160]. Search-based approaches can be implemented to handle complex
input data type by relying on the APIs of the SUT. Indeed, random sampling is used to
create randomized tests containing object references through the invocation of con-
structors and randomly generated method sequences. The “quality” of the generated
test input data is then assessed through test execution and measuring the distance
to satisfy a given branch. The complexity of the input is then evolved depending on
whether more complex data structures help or not satisfying the testing criterion.

Moreover, with regards to environmental interactions, Arcuri et al. [54] show that
such interactions may inhibit the success of automated test generation. This is mainly
due to two reasons: (i) the code that depends on the environment may not be fully
covered, and (ii) the generated tests may be unstable. Arcuri et al. [54] showed that
proper instrumentation in a search-based test generator can be used not only to syn-
thesize the test inputs during the search process but also to control the environmental
state. More specifically, mocking strategy can be used to isolate the execution of a class
from its environmental dependencies.

Finally, meta-heuristics that have been used in SBST include hill climbing, simulated
annealing, genetic algorithms, and memetic algorithms. The first two algorithms fall
in the category of local search techniques since they evaluate single points in the
search space at the time [122]. On the other hand, genetic algorithms are global
search techniques since they evaluate a population of candidate solutions from the
search space in various iterations [122]. Memetic algorithms hybridize the local and
global algorithms. Therefore, in these techniques, the individuals of populations in a
global search are also provided with the opportunity for local improvements [106].
Since genetic algorithms have been widely applied to software testing problems, in
what follows, we provide a brief description of a classic genetic algorithm.

2.2.2.1 Genetic Algorithms

Genetic Algorithms (GAs) imitate evolutionary processes observed in nature. A GA
starts by initializing a random population of individuals. When applied to test gener-
ation problems, individuals are typically test suites comprised of test cases [103], or
test cases consisting of a sequence of statements [178]. After the first population is
initialized, tests are executed against the program under test and the best ones are se-
lected to form new individuals. This process continues until either an individual that
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satisfies the search criterion is found, or the allocated resources to the search process
are consumed.

To produce the next generation, the best individuals from the previous generation
(parents) are selected (elitism) and used to generate new test cases (offspring). Off-
spring is produced by applying typical evolutionary operators, namely crossover and
mutation, to the selected “fittest” individuals. Depending on whether the parent or
the offspring scores better for the search criterion, one is selected to be inserted into
the next generation.

To illustrate the evolutionary operators, let us consider as examples two test cases
T1 = {s1, . . . , sm} and T2 =

¦

s∗1 , . . . , s∗n
©

selected from a given generation as
parents. To generate offspring O1 and O2, first a random number α, called the relative
cut-point, between 0.0 and 1.0 is selected. Then, the first offspring O1 will contain
the first α × m statements from T1 followed by the last (1 − α) × n statements
from T2. Similarly, O2 will contain the first α × n statements from T2 followed by
(1 − α) × m statements from T1. Thus, each offspring inherits its statements (e.g.,
objects instantiations, methods calls) from both the two parents.

Newly generated test cases are further changed by applying a mutation operator.
With mutation, either random new statements are inserted into the tests, or random
existing statements are removed, or random input parameters are modified [178].
Both crossover and mutation are performed such that the resulting test cases will be
compilable. For example, if a new object is inserted as a parameter, then before it is
inserted it is declared and instantiated.

2.2.3 Unit Test Generation Tools

A number of techniques and tools have been proposed in the literature to automatic-
ally generate tests maximizing specific code coverage criteria [18,103,112,156,159,
177, 184, 196, 206]. The main difference among them is represented by the core ap-
proach used for generating tests. For example, EvoSuite [103], JTExpert [196], and
SAPIENZ [159] use genetic algorithms to create test suites optimizing code coverage;
Randoop [177], T3 [184], Dynodroid [156], and Google Monkey [18] apply random
testing, while DART [112] and Pex [206] are based on dynamic symbolic execution.

As reported in the related literature, such tools can be used to discover bugs affect-
ing software code. Indeed, they can generate test triggering crashes when trying to
generate tests exercising the uncovered parts of the code. For example, Fraser and
Arcuri [101] successfully used EvoSuite to discover undeclared exceptions and bugs
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in open-source projects. Recently, Moran et al. [165] used coverage-based tools to dis-
cover android application crashes. However, as also pointed out by Chen and Kim [81]
coverage-based tools are not specifically defined for crash replication. In fact, these
tools are aimed at covering all methods (and their code elements) in the class under
test. Thus, already covered methods are not taken into account for search even if none
of the already generated tests synthesizes the target crash. Therefore, the probability
of generating tests satisfying desired crash triggering object states is particularly low
for coverage-based tools [81].

On the other hand, for crash replication, not all methods should be exploited for
generating a crash: we are interested in covering only a few lines in those meth-
ods involved in the failure, while other methods (or classes) might be useful only
for instantiating the necessary objects (e.g., input parameters). Moreover, among all
possible method sequences, we are interested only on those that can potentially lead
to the target crash stack trace. Therefore, in this paper, we design and evaluate a
tool-supported approach, named EvoCrash, which is specialized for stack trace based
crash replication.

2.2.4 User Studies in Testing and Debugging

In 2005, Sjøberg et al. [200] conducted a survey in which they studied how controlled
experiments are conducted in software engineering, in the decade from 1993 to 2002.
As they report, 1.9% of the 5453 scientific articles reported controlled experiments in
which human participants performed one or more software engineering tasks. Later
on, in 2011, Buse et al. [74] surveyed over 3000 papers, spanning over ten years, to
investigate trends, benefits, and barriers of involving human participants in software
engineering research. As Buse et al. [74] report, about 10% of the surveyed papers in-
volved humans to evaluate a research claim directly. As they observed, the number of
papers in software engineering which use human evaluations is increasing, however,
they highlighted that papers specifically related to software testing and debugging
rarely involved human studies.

In the area of software testing, Orso and Rothermel [176] conducted a survey among
50 software testing scholars, to provide an account of the most successful research in
software testing, since the year 2000. In addition, they aimed at identifying the most
significant challenges and opportunities in the area. Orso and Rothermel [176] ar-
gue that while prominent advances have been made in empirical studies on software
testing, more user studies, in particular within an industrial context, are needed in
which practical impact of research becomes apparent. Ang et al. [44] recently stud-
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ied the progress that is made in the research community since 2011 to address the
suggestions given by Orso and Rothermel [176]. As their study indicates, involving
human evaluations in studies on automated debugging techniques remains mostly
unexplored.

Recently, some research work in software testing and debugging started involving
user evaluations include the following: [181], [188], [79], [108], [191], [109], and
[180]. Parnin and Orso [181] performed a preliminary study with 34 developers to
investigate whether and to what extent using an automated debugging approach may
aid developers in their debugging tasks. In their results, Parnin and Orso [181] show
that several assumptions made by automated debugging techniques (e.g., examining
isolated statements is enough to understand the bug and fix it) do not hold in practice.
Moreover, Parnin and Orso [181] also encourage the researchers to involve developers
in their studies to understand how richer information such as test cases and slices may
make debugging aids more usable in practice.

Ramler et al. [188] compared tool-supported random test generation and manual
testing, involving 48 master students. Their findings are twofold: (i) the number of
detected defects by randomly generated test cases is in the range of manual testing,
and (ii) randomly generated test cases detect different defects than manually-written
unit tests.

Ceccato et al. [79] performed two controlled experiments with human participants to
investigate the impact of using automatically generated test cases in debugging. They
show that using automatically generated test cases has a positive impact on the ac-
curacy and efficiency of developers working on fault localization and bug fixing tasks.
Furthermore, Fraser et al. [108], and [109] conducted controlled experiments with
human participants to investigate whether automatically generated unit test cases
aid testers in code coverage and finding faults. In their experiments, they provided
JavaDocs to the participants and asked them to both produce implementations and
test suites. Their results confirmed that while automatically generated test cases, de-
signed for high coverage, do not help testers find bugs, they do aid in achieving high
coverage when compared to the ones produced by human participants.

In addition, Rojas et al. [191] combined a controlled experiment with 41 students
with five think-aloud observations to assess the impact of using the automated test
generation tool, EvoSuite, in software development. Their results confirmed that using
the tool leads to an average branch coverage increase of 13%, and 36% less time spent
on testing, compared to when developers write tests manually. The results from their
think-aloud observations with professional programmers confirmed the necessity to
(i) increase the usability of the tool, (ii) integrate it better during development, and
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(iii) educate developers on how to best use the tool during development.

To improve the comprehensibility of test cases which in turn could improve the num-
ber of faults found by developers, Panichella et al. [180] proposed TestDescriber which
automatically generates summaries of the portions of the code that is exercised by in-
dividual test cases. To assess the impact of their approach, Panichella et al. [180]
performed a controlled experiment with 33 human participants comprising of profes-
sional developers, senior researchers, and students. The results of their study show
that using TestDescriber, (i) developers find twice as many bugs, and (ii) test case
summaries improve the comprehensibility of test cases which were considered useful
by developers.

To investigate and understand the practical usefulness of automatically generated
crash-reproducing tests, we acknowledge the need for involving human practitioners
in our line of research. Therefore, as the first step in this direction, we conducted a
controlled experiment (described in Section 2.5) with master students in computer
science to assess the impact of using the crash-reproducing unit tests generated by
EvoCrash when performing debugging tasks.

2.3 The EvoCrash Approach

In the following, we present the Guided Genetic Algorithm (GGA) and the fitness
function we designed in our search-based approach to automated crash reproduction.

Figure 2.1 shows the main steps of EvoCrash. EvoCrash begins by pre-processing a
crash stack trace log in order to formulate the target crash to be reproduced. Next,
EvoCrash applies a Guided Genetic Algorithm (GGA) in order to search for a test case
that triggers the same crash. The search is over either when the test is found or when
the search budget is over. If a crash reproducing test case is found, it goes through
post-processing, a phase where the generated test is minimized and transformed into
an executable JUnit test. In what follows, we elaborate on each of the above phases
in more detail.

2.3.1 Crash Stack Trace Processing

An optimal test case for crash reproduction has to crash at the same location as the
original crash and produce a stack trace as similar to the original one as possible.
Therefore, in EvoCrash we first parse the log file given as input in order to extract the
crash stack frames of interest. A standard Java stack trace contains (i) the type of the
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Figure 2.1: Overview of The Guided Genetic Algorithm in EvoCrash

exception thrown, and (ii) the list of stack frames generated at the time of the crash.
Each stack frame corresponds to one method involved in the failure and contains: (i)
the method name; (ii) the class name, and (iii) line numbers where the exception was
generated. The last frame is where the exception has been thrown, whereas the root
cause could be in any of the frames, or even outside the stack trace.

From a practical point of view, any class or method in the stack trace can be selected
as code unit to use as input for existing test case generation tools, such as EvoSuite.
However, since our goal is to synthesize a test case generating a stack trace as similar
to the original trace as possible, we always target the class where the exception is
thrown (last stack frame in the crash stack trace) as the main class under test (CUT).

2.3.2 Fitness Function

In search-based software testing, the fitness function is typically a distance function
d(.), which is equal to zero if and only if the a test case satisfying a given criterion
is found. As described in our previous study [201], we have to consider three main
conditions in the definition of our distance for crash replication: 1. the line (state-
ment) where the exception is thrown has to be covered, 2. the target exception has
to be thrown, and 3. the generated stack trace must be as similar to the original one
as possible.
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Therefore, we first define three different distance functions for the three conditions
above, one for each condition. Then, we combine these three distances into our final
fitness function using the sum-scalarization approach. The three distance functions as
well as the final one are described in details in the following subsections.

Line distance. A test case t that successfully replicates a target crash has to cover the
line of the production code where the exception was originally thrown. To guide the
search toward covering the target line, we need to define a distance function ds(t)
for line coverage. To this aim, we use two heuristics that have been successfully used
in white-box testing for branch and statement coverage [160,201]: the approach level
and the normalized branch distance. The approach level measures the distance in the
control flow graph (i.e., the minimum number of control dependencies) between the
path of the production code executed by t and the target line. The branch distance uses
a set of well-established rules [160] to score how close t is to satisfy the conditional
expression where the execution diverges from the paths to the target line.

Exception distance. The exception distance is used to check whether the test case t
triggers the correct exception. Hence, we define the exception distance decept as a
boolean function that takes a zero value if and only if the target exception is thrown;
otherwise, decept is set to one.

Trace distance. Several stack trace similarity metrics have been defined in the related
literature [90], although for different software engineering problems. These metrics
could be in theory used to define our trace distance. Dang et al. [57, 90] proposed
a stack trace similarity to clusterize duplicated bug reports. Their similarity metric
uses dynamic programming to find the longest common subsequence (i.e., sequence
of stack frames) among a pool of stack traces. The clusters are then obtained by
applying a supervised hierarchical clustering algorithm [90]. However, this similarity
metric requires a pool of stack traces plus a training algorithm to decide whether two
stack traces are related to the same crash. Artzi et al. [57] proposed some similarity
metrics to improve fault localization by leveraging concolic testing. Their intuition is
that fault localization becomes more effective when generating passing test cases that
are similar to the test cases inducing a failure [57]. However, the similarity metrics
proposed by Artzi et al. cannot be used in our context for two main reasons: (i) the
test inputs inducing the target failure are not available (generating tests that replicate
a crash is the actual goal of EvoCrash and not its input) and (ii) the similarity metrics
are defined for input and path-constraints (i.e., not for stack traces).

To calculate the trace distance, dtrce(t), in our preliminary study [201] we used the
distance function defined as follows. Let S∗ =

¦

e∗1 , . . . , e∗n
©

be the target stack
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trace to replicate, where e∗ = (C
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be the stack trace (if any) generated when executing the test t. The distance between
the expected trace S∗ and the actual trace S is defined as:

dtrce(t) =
min{k,n}
∑

=1

φ
�

diff(e∗ , e)
�

+ | n − k | (2.1)

where diff(e∗ , e) measures the distance between the two trace elements e∗ and
e in the traces S∗ and S respectively; finally, φ() ∈ [0,1] is the widely used
normalizing function φ() = /( + 1) [160]. However, such a distance definition
has one critical limitation: it strictly requires that the expected trace S∗ and the actual
trace S share the same prefix, i.e., the first min{k, n} trace elements. For example,
assume that the triggered stack trace S and target trace S∗ have one stack trace
element eshred in common (i.e., one element with the same class name, method
name, and source code line number) but that is located at two different positions,
e.g., e∗ is the second element in S (eshred = e2 in S) while it is the third one in S∗

(eshred = e∗3 in S∗). In this scenario, Equation 2.1 will compare the element e∗3 in
S∗ with the element in S at the same position  (i.e., with e3) instead of considering
the closest element eshred = e2 for the comparison.

To overcome this critical limitation, in this paper we use the following new definition
of stack trace distance:
Definition 1. Let S∗ be the expected trace, and let S be the actual stack trace triggered
by a given test t. The stack trace distance between S∗ and S is defined as:

dtrce(t) =
n
∑

=1

min
¦

diff(e∗ , ej) : ej ∈ S
©

(2.2)

where diff(e∗ , ej) measures the distance between the two trace elements e∗ in S∗ and
its closest element ej in S.

We say that two trace elements are equal if and only if they share the same trace
components. Therefore, we define diff(e∗ , ej) as follows:

diff(e∗ , e) =







3 if C∗ 6= C
2 C∗ = C and m∗

 6=m

φ
�

| ∗ −  |
�

∈ [0; 1] Otherwise
(2.3)

The score diff(e∗ , e) is equal to zero if and only if the two trace elements e∗ and
e share the same class name, method name and line number. Similarly, dtrce(t) in
Equation 2.2 is zero if and only if the two traces S∗ and S are equal, i.e., they share
the same trace elements.
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Table 2.1: Example of three different test cases with their corresponding distances
and fitness function scores.

Test ds decept dtrce Fitness Function
t1 0.14 1.00 2 0.12∗1 + 1.00∗2 + 0.67∗3

t2 0.00 1.00 4 0.00∗1 + 1.00∗2 + 4.00∗3

t3 0.00 0.00 5 0.00∗1 + 0.00∗2 + 0.86∗3

Final fitness function. To combine the three distances defined above, we use the
weighted-sum scalarization [92].
Definition 2. The fitness function value of a given test t is:

ƒ (t) =1 ∗ φ (ds(t)) + 2 ∗ decept(t) + 3 ∗ φ (dtrce(t)) (2.4)

where ds(t), decept(t), and dtrce(t) are the three individual distance functions de-
scribed above; φ(.) is a normalizing function [160]; 1, 1, and 3 are the linear
combination coefficients.

Notice that in the equation above, the first and the last terms are first normalized
before being summed up. This is because they have different orders of magnitude:
the maximum value for dtrce(t) corresponds to the total number of frames in the
stack traces; decept(t) takes values in {0,1}; while the maximum value of ds(t) is
proportional to the cyclomatic complexity of the class under test.

In principle, the linear combination coefficients can be chosen such as to give higher
priority to the different composing distances. In our context, meeting the three condi-
tions for an optimal crash replication should happen in a certain order. In particular,
executing the target line takes precedence over throwing the exception, and in turn,
throwing the target exception takes priority over the degree to which the generated
stack trace is similar to the reported one.

For example, let us consider the three test cases t1, t2, and t3 reported in Table 2.1.
In the example, t1 does not cover the target line (i.e., ds(t1) > 0) and it throws
an exception but not the target one; t2 covers the target line but throws the wrong
exception (i.e., ds(t2) = 0 and decept = 1.0); finally, t3 covers the target line (i.e.,
ds(t2) = 0), it throws the right exception (i.e., decept = 0) but its trace similarity
is larger than the one for t1 (i.e., dtrce(t3) > dtrce(t1)). The distance values and
the corresponding fitness function for the three tests are also reported in Table 2.1.

Now, let us suppose we decide to give larger priority to dtrce compared to the other
distances, e.g., 1 = 0.05, 2 = 0.05, and 3 = 1. By applying Equation 2, we
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would obtain the following fitness scores:

ƒ (t1) = 0.05∗ 0.12 + 0.05∗ 1.00 + 0.67 ≈ 0.7228
ƒ (t2) = 0.05∗ 0.00 + 0.05∗ 1.00 + 0.80 ≈ 0.8500
ƒ (t3) = 0.05∗ 0.00 + 0.05∗ 0.00 + 0.86 ≈ 0.8571

In other words, with these weights, t3 has the largest (worst) fitness score although it
is the closest one to replicate the target crash (it covers the target line and triggers the
correct exception). Instead, t1 and t2 do not even cover the target line even though
they have a better fitness than t3. With the weights above, the corresponding fitness
function ƒ (.) would misguide the search by introducing local optima. Therefore, our
weights should satisfy the constraints 1 ≥ 3 and 3 ≥ 1, i.e., dtrce should
not have larger a weight compared to the other distances.

Let us consider other three coefficients that satisfy the constraints above: 1 = 0.01,
2 = 1, 3 = 0.01. The corresponding fitness values for the three tests in Table 2.1
are as follows:

ƒ (t1) = 0.01∗ 0.12 + 1.00 + 0.01∗ 0.67 ≈ 1.0079
ƒ (t2) = 0.01∗ 0.00 + 1.00 + 0.01∗ 0.80 ≈ 1.0080
ƒ (t3) = 0.01∗ 0.00 + 0.00 + 0.01∗ 0.86 ≈ 0.0086

With these new weights, t3 has the lowest (better) fitness value since both the two
constraints 1 ≥ 3 and 2 ≥ 3 are satisfied. However, t1 has a better fitness
than t2 although the latter covers the target line while the former does not. To avoid
this scenario, our weights should satisfy another constraint: 1 ≥2 + 3.

In summary, choosing the weights for the function in Definition 2 consists in solving
the following linear system of inequality:







1 ≥2 + 3

1 ≥3

2 ≥3

(2.5)

In this paper, we chose as weights the smallest integer numbers that satisfy the two
inequalities in the system above, i.e., 1 = 3, 2 = 2, 3 = 1. With these weights,
the fitness values for the test cases in the example of Table 2.1 become: ƒ (t1) = 3.04,
ƒ (t2) = 2.80, and ƒ (t3) = 0.86. While choosing the smallest integers makes the
interpretation of the fitness values simpler, we also used different integers in our
preliminary trials. We did not observe any impact on the outcomes.

In general, with these weights, fitness function ƒ (t) assumes values within the interval
[0,6]; a value 3 ≤ ƒ (t) ≤ 6 indicates that a test t does not cover the target line; a
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value 1 ≤ ƒ (t) < 3 means that the test t covers the target line but does not throw the
target exception; a zero value is reached if and only if the evaluated test t replicates
the target crash.

2.3.3 Guided Genetic Algorithm

In EvoCrash, we use a novel genetic algorithm, named GGA (Guided Genetic Al-
gorithm), suitably defined for the crash replication problem. While traditional search
algorithms in coverage-based unit test tools target all methods in the CUT, GGA gives
higher priority to those methods involved in the target failure. To accomplish this,
GGA uses three novel genetic operators that create and evolve test cases that always
exercise at least one method contained in the crash stack trace, increasing the overall
probability of triggering the target crash. As shown in Algorithm 2.1 (please see the
end of the chapter), GGA contains all main steps of a standard genetic algorithm: (i)
it starts with creation of an initial population of random tests (line 5); (ii) it evolves
such tests over subsequent generations using crossover and mutation (lines 12-20);
and (iii) at each generation it selects the fittest tests according to the fitness function
(lines 22-24). The main difference is represented by the fact that it uses (i) a novel
routine for generating the initial population (line 5); (ii) a new crossover operator
(line 15); (iii) a new mutation operator (lines 19-20). Finally, the fittest test obtained
at the end of the search is post-processed (e.g., minimized) in line 26.

Initial Population. The routine used to generate the initial population plays a
paramount role [179] since it performs sampling of the search space. In traditional
coverage-based tools (e.g., EvoSuite [103] or JTExpert [196]) such a routine is de-
signed to generate a well-distributed population (set of tests) that maximize the num-
ber of methods in the class under test C that are invoked/covered [103]. Instead, the
main goal for crash replication is invoking the subset of methods Mcrsh in C that
appear in the crash stack traces since they may trigger the target crash. Instead, the
remaining methods can be still invoked with some random probability to instantiate
objects (test inputs) or if they help to optimize the fitness function (i.e., decreasing
the approach level and branch distance for the target line to cover).

For this reason, in this paper we use the novel routine highlighted in Algorithm 2.2
(please see the end of the chapter) for generating the initial sample for random tests. In
particular, our routine gives higher importance to methods contained in crash stack
frames. Subsequently, if a target call, selected by the developer, is public or protected,
Algorithm 2.2 guarantees that this call is inserted in each test at least once. Otherwise,
if the target call is private, the algorithm guarantees that each test contains at least
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one call to a public caller method which invokes the target private call. Algorithm 2.2
generates random tests using the loop in lines 3-18, and requires as input (i) the
set of public target method(s) Mcrsh, (ii) the population size N, and (iii) the class
under test C. In each iteration, we create an empty test t (line 4) to fill with a random
number of statements (lines 5-18). Then, statements are randomly inserted in t using
the iterative routine in lines 8-18: at each iteration, we insert a call to one public
method either taken from Mcrsh, or member classes of C. In the first iteration, crash
methods in Mcrsh (methods of interest) are inserted in t with a low probability
p = 1/sze (line 7), where sze is the total number of statements to add in t. In the
subsequent iterations, such a probability is automatically increased when no methods
from Mcrsh is inserted in t (line 15-17). Therefore, Algorithm 2.2 ensures that at
least one method of the crash is inserted in each initial test2.

The process of inserting a specific method call in a test t requires several additional
operations [103]. For example, before inserting a method call m in t it is necessary
to instantiate an object of the class containing m (e.g., calling one of the public con-
structors). Creating a proper method call also requires the generation of proper input
parameters, such as other objects or primitive variables. For all these additional op-
erations, Algorithm 2.2 uses the routine INSERT-METHOD-CALL (line 18). For each
method call in t, such a routine sets each input parameter as follows:

Case 1 It re-uses an object or variables already defined in t with a probability p=1/3;

Case 2 If the input parameter is an object, it sets the parameter to null with a
probability p=1/3;

Case 3 It randomly generates an objects or primitive value with a probability p=1/3;

Guided Crossover. Even if all tests in the initial population exercise one or more
methods contained in the crash stack trace, during the evolution process—i.e., across
different generations— tests can lose the inserted target calls. One possible cause for
this scenario is the traditional single-point crossover, which generates two offsprings
by randomly exchanging statements between two parent tests p1 and p2. Given a
random cut-point μ, the first offspring o1 inherits the first μ statements from parent
p1, followed by | p2 | −μ statements from parent p2. Vice versa, the second offspring
o2 will contain μ statements from parent p2 and | p1 | −μ statements from the parent
p1. Even if both parents exercise one or more failing methods from the crash stack
trace, after crossover is performed, the calls may be moved into one offspring only.
Therefore, the traditional single-point crossover can hamper the overall algorithm.

2In the worst case, a failing method will be inserted at position sze in t since the probability
nsert_probbty will be 1/(sze − sze + 1) = 1
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To avoid this scenario, GGA leverages a novel guided single-point crossover operator,
whose main steps are highlighted in Algorithm 2.3 (please see the end of the chapter).
The first steps in this crossover are identical to the standard single-point crossover:
(i) it selects a random cut point μ (line 5), (ii) it recombines statements from the
two parents around the cut-point (lines 7-8 and 12-13 of Algorithm 2.3). After this
recombination, if o1 (or o2) loses the target method calls (a call to one of the methods
reported in the crash stack trace), we reverse the changes and re-define o1 (or o2)
as pure copy of its parent p1 (p2 for offspring o2) (if conditions in lines 10-11 and
16-17). In this case, the mutation operator will be in charge of applying changes to
o1 (or o2).

Moving method calls from one test to another may result in non-well-formed tests. For
example, an offspring may not contain proper class constructors before calling some
methods; or some input parameters (either primitive variables or objects) are not
inherited from the original parent. For this reason, Algorithm 2.3 applies a correction
procedure (lines 9 and 15) that inserts all required objects and primitive variables
into non-well-formed offspring.

Guided Mutation. After crossover, new tests are usually mutated (with a low prob-
ability) by adding, changing and removing some statements. While adding state-
ments will not affect the type of method calls contained in a test, the statement de-
letion/change procedures may remove relevant calls to methods in the crash stack
frame. Therefore, GGA also uses a new guided-mutation operator, described in Al-
gorithm 2.4 (please see the end of the chapter).

Let t = 〈s1, . . . , sn〉 be a test case to mutate, the guided-mutation iterates over the
test t and mutates each statement with probability 1/n (main loop in lines 4-15). In-
serting statements consists of adding a new method call at a random point  ∈ [1;n]
in the current test t (lines 12-13 in Algorithm 2.4). This procedure also requires to
instantiate objects or declare/initialize primitive variables (e.g., integers) that will be
used as input parameters.

When changing a statement at position  (in lines 10-11), the mutation operator has
to handle two different cases:

Case 1 if the statement s is the declaration of a primitive variable (e.g., an integer),
then its primitive value is changed with another random value (e.g., another
random integer);

Case 2 if s contains a method or a constructor call m, then the mutation is applied
by replacing m with another public method/constructor having the same return
type; the input parameters (objects or primitive values) are either (i) taken from
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the previous  − 1 statements in t, (ii) set to null (for objects only), (iii) or
randomly generated. These three mutations are applied with the probability
p=1/3. Therefore, they are equally probable and mutually exclusive for each
input parameter.

Finally, removing a method call (lines 8-9 in Algorithm 2.4) also requires to delete
the corresponding variables and objects used as input parameters (if such variables
and objects are not used by any other method call in t). If the test t loses the target
method calls (i.e., methods in Mcrash) because of the mutation, then the loop in lines
4-15 is repeated until one or more target method calls are re-inserted in t; otherwise
the mutation process terminates.

Post processing. At the end of the search process, GGA returns the fittest test case
according to our fitness function. The resulting test tbest can be directly used by a
developer as a starting point for crash replication and debugging.

Since method calls are randomly inserted/changed during the search process, the fi-
nal test tbest can contain statements not needed to replicate the crash. For this reason,
GGA post-processes tbest to make it more concise and understandable. For this post-
processing, we reused the test optimization routines available in EvoSuite [103],
namely: test minimization, and values minimization. Test minimization applies a simple
greedy algorithm: it iteratively removes all statements that do not affect the final fit-
ness value. Finally, randomly generated input values can be hard to interpret for
developers [41]. Therefore, the values minimization from EvoSuite shortens the iden-
tified numbers and simplifies the randomly generated strings [102].

2.3.4 Mocking Strategies

Since EvoCrash is built on top of EvoSuite, by default, EvoCrash inherits the mocking
strategies implemented in EvoSuite [53–55]. Therefore, if reproducing a target crash
requires environmental interactions involving system calls (e.g., System.currentTime-
Millis), network connections (e.g., calls to java.net APIs) and file system (e.g., calls
to java.io.File), EvoCrash benefits from the available mocking operators to reproduce
the crash.

However, it is possible that reproducing a crash requires specific content as the result
of the interaction with the environment. For example, it could be that specific content
of an XML file is needed to reproduce a crash. In these cases, EvoCrash lacks support
for finding the specific content needed to optimize the fitness function. This is an
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open problem in automated test generation that calls for future work and is beyond
the scope of this study.

2.4 Study I: Effectiveness

This section describes the empirical study we conducted to benchmark the effective-
ness of the EvoCrash approach.

2.4.1 Research Questions

To evaluate the effectiveness of EvoCrash we formulate the following research ques-
tions:

• RQ1: How does EvoCrash perform compared to coverage-based test generation?
EvoCrash is built on top of Evosuite, which is a coverage-based test generation
tool for unit testing. Therefore, with this research question, we aim at investig-
ating to what extent EvoCrash actually provides the expected benefits in terms
of the number of reproduced crashes and test generation time compared to a
classical coverage-based test generation approach.

• RQ2: In which cases can EvoCrash successfully reproduce the targeted crashes, and
under what circumstances does it fail to do so? With this research question, we
aim at evaluating the capability of our tool to generate test cases (i) that can
replicate the target crashes, and (ii) that are useful for debugging.

• RQ3: How does EvoCrash perform compared to state-of-the-art reproduction ap-
proaches based on stack traces? In this research question, we investigate the ad-
vantages and disadvantages of EvoCrash as compared to the most recent stack
trace based approaches to crash reproduction previously proposed in the liter-
ature.

For RQ1, we selected EvoSuite [103] as a representative tool for state-of-the-art
approaches for coverage-based unit testing. Our choice is guided by the fact that
EvoSuite won the latest two editions of the SBST tool competition [115] [107] and
achieved very competitive scores (i.e., code coverage and fault detection rate) com-
pared to hand-written tests. Moreover, EvoCrash and EvoSuite share the same in-
strumentation engine, the test execution environment and the encoding schema for
test cases. By default, EvoSuite uses the Archive-based Whole Test Suite generation ap-
proach (WSA) [193], which evolves test suites and optimizes multiple testing criteria.
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The default coverage criteria are line coverage, branch coverage, direct branch coverage,
weak mutation, exception coverage, no-exception top-level method coverage, and output
coverage, which are described in detail by Rojas et al. [190]. Exception coverage is
particularly important in our context: using WSA, when this criterion is enabled, Evo-
Suite stores in an archive all test cases (which compose candidate test suites) that
trigger an exception when trying to maximize the other coverage criteria. Therefore,
the final test suite produced from EvoSuite not only achieves higher code coverage
but also contains all tests triggering some exceptions which were found during the
generation process.

For the sake of our analysis, we conducted the experiments with EvoSuite using the
default coverage criteria and targeting the same class tested by EvoCrash. First, we
compare EvoSuite and EvoCrash in terms of crash replication frequency, i.e., the num-
ber of times each of the two techniques successfully reproduced a crash over 15 inde-
pendent runs. A crash is covered, according to the Crash Coverage criterion by Chen
and Kim [81], when the test generated by one tool triggers the same type of exception
at the same crash line as reported in the crash stack trace. Therefore, for this criterion,
we classified as covered only those crashes for which EvoCrash reached a zero-fitness
value, i.e., when the generated crash stack trace is identical to the target one.

While EvoCrash produces only one test for each crash, EvoSuite generates entire test
suites. Thus, for the latter tool, we consider a crash as replicated if at least one test
case within the test suite generated by EvoSuite is able to replicate the target crash.
To further guarantee the reliability of our results, we re-executed the tests generated
by EvoCrash and EvoSuite against the CUT to ensure that the crash stack frame was
correctly replicated.

We also compared EvoSuite and EvoCrash in terms of search time required to replicate
each crash. To this aim, during each tool run, we stored the duration of the time
interval between the start of the search and the point in time where each test case
(or test suite for EvoSuite) was generated. Then, the time to replicate each crash (if
replicated) corresponds to the search time interval of the test case (or test suite) that
successfully replicates it.

To address RQ2, we apply the two criteria proposed by Chen and Kim [81] for eval-
uating the effectiveness of crash replication tools: Crash Coverage and Test Case Use-
fulness. Crash Coverage is the same criterion used to answer RQ1. For the Test Case
Usefulness, a test case generated by EvoCrash is considered useful if and only if it re-
veals the actual bug that causes the original crash. According to the guidelines in [81],
a test case reveals a bug if the generated crash trace includes the buggy frame (i.e.,
the stack element which the buggy method lies in [81]) or the frame the execution
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of which covers the buggy statement. The guidelines in [81] further clarify that in
addition to generating the buggy frame, useful tests have to reveal the origin of the
corrupted input values (e.g., null values) passed to the buggy methods that trigger
the crash [81]. This implies that if the buggy frame receives input arguments, then a
useful test case must also generate at least one frame at a higher level than the buggy
frame, through which we can observe how the input arguments to the buggy method
are generated. Of course, if a) the stack trace has only one frame, or 2) the buggy
method does not receive any arguments, then a useful test must only generate the
buggy frame to be considered as useful.

To assess usefulness of the tests, we carefully inspected the original developers’ fixes
to identify the bug fixing locations. We manually examined each crash classified as
covered (using the coverage criterion) to investigate if it reveals the actual bug fol-
lowing the guidelines in [81]. This manual validation has been performed by the first
two authors independently, and cases of disagreement were discussed and resolved.

For RQ3, we selected three state-of-the-art techniques, namely: STAR [81], MuCrash
[215], and JCHARMING [171, 172]. These three techniques are modern approaches
to crash replication for Java programs, and they are based on three different cat-
egories of algorithms: symbolic execution [81], mutation analysis [215], and model
checking [171].

At the time of writing this paper, STAR, MuCrash, and JCHARMING were not available
(either as executable jars or source code). Therefore, to compare our approach, we
rely on their published data. Thus, we compared EvoCrash with MuCrash for the 12
bugs selected that have also been used by Xuan et al. [215] to evaluate MuCrash.
We compared EvoCrash with JCHARMING for the 13 bug reports that have been also
used by Nayrolles et al. [171]. Finally, we compare EvoCrash with STAR for the 51
bugs in our sample that are in common with the study by Chen and Kim [81].

2.4.2 Definition and Context

As Table 2.2 presents, the context of this study consists of 54 bugs from seven real-
world open source projects: Apache Commons Collections3 (ACC), Apache
Ant4 (ANT), Apache Log4j5 (LOG), ActiveMQ6, DnsJava7, and JFreeChart8.

3https://commons.apache.org/proper/commons-collections/
4http://ant.apache.org
5http://logging.apache.org/log4j/2.x/
6http://activemq.apache.org/
7http://www.dnsjava.org/
8http://jfree.org/jfreechart//

https://commons.apache.org/proper/commons-collections/
http://ant.apache.org
http://logging.apache.org/log4j/2.x/
http://activemq.apache.org/
http://www.dnsjava.org/
http://jfree.org/jfreechart//
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ACC is a popular Java library with 25,000 lines of code (LOC), which provides utilities
to extend the Java Collection Framework. For this library, we selected 12 bug reports
publicly available on Jira9 submitted between October 2003 and June 2012 and
involving five different ACC versions.

ANT is a large Java build tool with more than 100,000 LOC, which supports different
built-in tasks, including compiling, running and executing tests for Java applications.
For ANT we selected 21 bug reports submitted on Bugzilla10 between April 2004
and August 2012 and that concern 10 different versions and sub-modules.

LOG is a widely-used Java library with 20,000 LOC that implements logging utilities
for Java applications. For this library we selected 18 bug reports reported within the
time window between June 2001 and October 2009 and that are related to three
different LOG versions.

ActiveMQ is a messaging and Integration Patterns server that is actively maintained
by the Apache Software Foundation. ActiveMQ has 205000 LOC, and supports many
cross-language clients written in Java, C, C++, C#, and PHP. We selected one case
from ActiveMQ that was also used for evaluating JCHARMING.

DnsJava is an implementation of DNS in Java, which has more than 3000 LOC. It
supports all defined record types (including the DNSSEC types), and unknown types.
It can be used for queries, zone transfers, and dynamic updates. It includes a cache
which can be used by clients, and a minimal implementation of a server. In addition,
since it is written in pure Java, DnsJava is fully threadable. We selected one case from
DnsJava, which was also used in the evaluation of JCHARMING [171,172].

JFreeChart is a free Java chart library, with 310000 LOC, that could be used to display
high-quality charts in both server-side and client-side applications. JFreeChart has a
well-documented API and it has been maintained over a long period of time, since
2005. We also selected a case from JFreeChart to use for comparison with JCHARM-
ING.

We selected this set of bugs as they have been used in the previous studies on auto-
matic crash reproduction when evaluating symbolic execution [81], mutation ana-
lysis [215], and directed model checking [171] and other tools [82, 129]. The char-
acteristics of the selected bugs, including type of exception and priority, are sum-
marized in Table 2.2. These bugs cover crashes that involve the most common Java
Exceptions [84], such as NullPointerException (74%), ArrayIndexOutOf-

9https://issues.apache.org/jira/secure/Dashboard.jspa
10https://bz.apache.org/bugzilla/

https://issues.apache.org/jira/secure/Dashboard.jspa
https://bz.apache.org/bugzilla/
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Table 2.2: The 54 real-world bugs used in our study.

Project Bug IDs Versions Exceptions Priority Ref.

ACC

4, 28, 35 2.0 - 4.0 NullPointer (5) Major (10) [81]
48, 53, 68 UnsupportedOperation (1) Minor (2) [215]
70, 77, 104 IndexOutOfBounds (1)
331, 277, 411 IllegalArgument (1)

ArrayIndexOutOfBounds (2)
ConcurrentModification (1)
IllegalState (1)

ANT

28820, 33446, 34722 1.6.1 - 1.8.2 ArrayIndexOutOfBounds (3) Critical (2) [81]
34734, 36733, 38458 NullPointer (17) Major (5) [172]
38622, 41422, 42179 StringIndexOutOfBounds (1) Medium (14)
43292, 44689, 44790
46747, 47306, 48715
49137, 49755, 49803
50894, 51035, 53626

LOG

29, 43, 509, 10528 1.0.2 - 1.2 NullPointer (17) Critical (1) [81]
10706, 11570, 31003 InInitializerError (1) Major (4) [172]
40212, 41186, 44032 Medium (11)
44899, 45335, 46144 Enhanc. (1)
46271, 46404, 47547 Blocker (1)
47912, 47957

ActiveMQ 5035 5.9 ClassCastExecption (1) Major (1) [172]
DnsJava 38 2.1 ClassCastException (1) N/A (1) [172]
JFreeChart 434 1.0 NullPointerException (1) N/A (1) [172]

BoundsException (9%), IllegalStateExcep-tion and IllegalArgumentE-
xception (3%). Furthermore, the severity of these real-world bugs varies between
medium (46%), major (37%) and critical (5%) as judged by the original developers.

50 of these cases come from the primary study we performed in [203]. In this exten-
sion to [203], we aimed at extending the comparison with JCHARMING via the cases
reported in [172]. However, ultimately, we chose to discard several cases reported
in [172], and extend the comparison with JCHARMING via only 4 new cases, for four
main reasons:

1. In six cases, the exact buggy version of the target software was either unknown
or not found. Consequently, the reported line numbers in stack traces did not
match the source code. Since the fitness function (Section 2.3.2) is primarily
designed based on the exact line numbers where the exceptions are thrown, we
discarded such cases.

2. As Nayrolles et al. report [172], to make a trade-off between reproducibility and
relevance of the test cases, after a number of incremental attempts, they arrived
at the threshold of 80% for reproducing stack traces. Thus, in some cases they
report partial coverage, which means that at least 80% of a stack trace could be
reproduced in those cases. While this partial measure is relative to the size of
the stack traces, in our case we need to have exact measure of the reproduced
traces to compare the usefulness of the tests, as described in Section 2.4.1.
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3. In two cases, ActiveMQ-1054 and ArgoUML-311, the reported stack traces
lack line numbers. Thus, considering how the fitness function works (Section
2.3.2), we could not apply EvoCrash on such cases.

4. Finally, one of the reported cases in [172], Mahout-1594, actually refers to an
external problem in the configuration file. Thus, this case was not a valid crash
case to be considered in this study.

2.4.3 Experimental Procedure

We run EvoCrash and EvoSuite on each target crash to try to generate a test case
and test suite able to reproduce the corresponding stack trace. Given the random-
ized nature of genetic algorithms, we executed the tools multiple times to verify that
the target crashes are replicated in most of the runs. For RQ1, we ran EvoSuite and
EvoCrash 15 times for each crash. For RQ2 the search for each target bug/crash was
repeated 50 times.

In our experiment, we configured both tools by using standard parameter values
widely used in evolutionary testing [52,103,178]:

• Population size: we use a population size of 50 individuals as suggested in [103,
178]. In the context of EvoCrash, individuals are test cases whereas in the con-
ext of EvoSuite, individuals are test suites, containing one or more test cases.

• Crossover: For EvoCrash, we use the novel guided single-point crossover; in
EvoSuite, the crossover operator is the classic single-point crossover [103]. In
both cases, the crossover probability is set to pc0.75 [103].

• Mutation: EvoCrash uses our guided uniform mutation, which mutates test cases
by randomly adding, deleting, or changing statements. EvoSuite uses the stand-
ard uniform mutation, which randomly adds, deletes, or changes test cases in
a test suite. For both cases, we set the mutation probability equal to pm1/n,
where n is the length of the test case/suite taken as input [103].

• Search Timeout: The choice of 10 minutes as the search budget is a common
practice in studies on search-based test generation [52, 103, 178]:. In our pre-
liminary experiments, we noticed that the number of reproduced crashes does
not change after 10 minutes. Therefore, in both cases, the search stops when
a zero-fitness function value is detected or when the timeout of 10 minutes is
reached.
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2.4.4 Comparison with Coverage-Based Test Generation

As Table 2.3 shows, EvoCrash reproduced 46 crashes (85%) out of 54, compared to 18
crashes (33%) that were reproduced by EvoSuite. In particular, 28 (52%) crashes out
of 54 were reproduced only by EvoCrash. Other 18 crashes (33%) were reproduced by
both EvoCrash and EvoSuite. Finally, for the remaining 8 cases (14%) both EvoCrash
and EvoSuite failed to generate a crash reproducing test.

However, in those 18 cases where both EvoSuite and EvoCrash generate tests, the
former always achieved a lower or equal reproduction rate compared to the latter,
i.e., every crash was rarely reproduced out of 15 runs (e.g., ACC-53 in Table 2.3).
Furthermore, EvoSuite took longer compared to EvoCrash to reproduce the same
crashes. Indeed, EvoCrash took 145 seconds on average to reproduce the crashes,
while EvoSuite required 391 seconds (+170%) to reproduce the same crashes on
average.

Table 2.3: Crash reproduction results for comparing Archive-based Whole Test Suite
generation (WSA) in EvoSuite and Guided Genetic Algorithm (GGA) in EvoCrash.
The bold cases are the ones for which only EvoCrash could generate a test at least 8
times out of 15 runs.

EvoCrash EvoSuite
Project Bug ID avg. time reproduction % avg. time reproduction %

ACC

4 2 100% 314 100%
28 1 100% 10 100%
35 1 100% 50 100%
48 40 100% 350 33%
53 5 100% 377 66%
68 600 0% 600 0%
70 2 100% 407 33%
77 98 100% 233 100%
104 455 73% 600 0%
331 100 73% 315 20%
377 100 100% 335 13%
411 153 80% 600 0%

ANT

28820 600 0% 600 0%
33446 10 100% 540 40%
34722 59 100% 459 26%
34734 45 100% 600 0%
36733 32 86% 600 0%
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38458 43 86% 510 20%
38622 33 100% 81 100%
41422 220 66% 590 13%
42179 56 93% 77 60%
43292 600 0% 600 0%
44689 32 100% 358 40%
44790 15 100% 540 40%
46747 600 0% 600 0%
47306 600 0% 600 0%
48715 600 0% 600 0%
49137 90 100% 320 100%
49755 30 100% 449 53%
49803 10 100% 600 0%
50894 42 100% 600 0%
51035 600 0% 600 0%
53626 105 100% 600 0%

LOG

29 28 93% 301 6%
43 600 0% 600 0%
509 136 100% 600 0%
10528 1 100% 3 100%
10706 1 100% 35 100%
11570 1 100% 129 100%
31003 1 100% 9 93%
40212 18 100% 472 26%
41186 1 100% 27 100%
44032 3 100% 487 33%
44899 42 100% 69 93%
45335 10 100% 462 46%
46144 20 93% 533 13%
46271 3 100% 74 100%
46404 59 100% 600 0%
47547 3 100% 10 100%
47912 38 93% 388 40%
47957 5 100% 28 100%

ActiveMQ 5035 377 60% 600 0%
DnsJava 38 115 85% 481 13%
JFreeChart 434 389 53% 500 13%
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The results above show that indeed the GGA in EvoCrash outperforms WSA in Evo-
Suite for crash reproduction in both the number of reproduced crashes and test gener-
ation times. The underlying explanation for such observations is that EvoSuite, using
WSA, evolves test suites with the goal of maximizing code coverage. Assuming that
line  is where the target exception e happens, if there is a test suite that includes
a test case t that covers , EvoSuite archives t and , and proceeds by evolving test
suites targeting only the remaining uncovered lines. The archived test case t that cov-
ers the target line , by chance may or may not trigger e as well. Furthermore, since
criterion Exception was included in the optimization criteria, if there exists a test suite
that contains test case te which triggers an exception, EvoSuite would archive te. By
chance, te may or may not trigger e on the target line .

On the other hand, EvoCrash uses GGA, which customizes test generation for crash
coverage. Therefore, the search is aimed for a test case that both covers the target
line , and triggers the target exception e. This means that even if a test t covers ,
EvoCrash keeps t in the search process in order to evolve it until it can also trigger e.

Thus, this comparison highlights that while coverage-based test generation by Evo-
Suite may by chance detect crashes, using GGA is a more effective and efficient ap-
proach for crash reproduction.

2.4.5 Crash Reproduction Effectiveness

This section presents the results of the empirical study we conducted to evaluate the
effectiveness of EvoCrash in terms of crash coverage and test case usefulness.

Table 2.4: Detailed crash reproduction results, where Y(Yes), indicates the capability
to generate a useful test case, N(No) indicates lack of ability to reproduce a crash,
NU(Not Useful) shows that a test case could be generated, but it was not useful,
and ’-’ indicates that data regarding the capability of the approach in reproducing the
identified crash is missing. The bold cases are the ones for which only EvoCrash could
generated a test and the underlined ones are those where EvoCrash failed to produce
a test at least 25 times out of 50 runs.

Project Bug ID EvoCrash STAR [81] MuCrash [215] JCHARMING [171]

ACC

4 Y Y Y -
28 Y Y Y -
35 Y Y Y -
48 Y Y Y -
53 Y Y N -
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68 N N N -
70 Y N N -
77 NU NU N -
104 N Y Y -
331 Y N Y -
377 Y N Y -
411 Y Y Y -

ANT

28820 N N - -
33446 NU NU - -
34722 Y N - -
34734 NU N - -
36733 NU NU - -
38458 Y Y - -
38622 Y Y - Y
41422 NU Y - N
42179 Y N - -
43292 N Y - -
44689 Y NU - -
44790 Y Y - -
46747 N N - -
47306 N N - -
48715 N N - -
49137 Y NU - -
49755 Y Y - -
49803 Y Y - -
50894 Y NU - -
51035 N N - -
53626 Y N - -

LOG

29 Y Y - -
43 N N - -
509 Y N - -
10528 Y N - -
10706 Y N - -
11570 Y Y - Y
31003 Y Y - -
40212 Y NU - Y
41186 Y Y - Partial
44032 Y N - -
44899 Y N - -
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Figure 2.2: Fitness progress over time for both succeeding and failing runs of Evo-
Crash for ACC-104.

45335 Y NU - N
46144 Y N - -
46271 NU Y - Y
46404 Y N - -
47547 Y Y - -
47912 Y NU - Y
47957 NU Y - N

ActiveMQ5035 Y - - N
DnsJava 38 Y - - Y
JFreeChart434 Y - - Y

EvoCrash Results (RQ2) As Table 2.4 illustrates, EvoCrash can successfully replicate
the majority of the crashes in our dataset. 39 cases could be replicated 50 times out
of 50 runs of EvoCrash. Of the replicated cases, LOG-509 had the lowest rate of
replications - 39 out of 50. EvoCrash reproduces 11 crashes out of 12 (91%) for ACC,
15 out of 21 (71%) for ANT, and 17 out of 18 (94%) for LOG. Overall, EvoCrash can
replicate 46 (85%) out of the 54 crashes.

To assess the usefulness of the generated test cases, as explained in Sub-section 2.4.1,
we used the same criterion that was used for STAR [81]. Based on this, 38 (84%) of
the replications were useful, as they included the buggy frame. The remaining 16%
non-useful replications were mainly due to having dependency on data from external
files which were not available during replication.
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For ACC, ACC-68 was not reproducible by EvoCrash. In this case, the class under test
includes three nested classes, and the inner-most one was where the crash occurs.
We could not replicate this crash as EvoCrash relies on the instrumentation engine
of EvoSuite, which does not currently support the instrumentation of multiple inner
classes.

In addition, for ACC-104 11, EvoCrash could replicate the case 42 times out of 50.
The average time EvoCrash took for reproducing this case is 300 seconds. In this case,
the defect lies on line 20 in Figure 2.1, where the shift operation does not correctly
increment or decrement array indexes. In order to replicate this case, a test case shall
meet the following criteria: 1) Make an object of the BoundedFifoBuffer class. 2)
Add an arbitrary number of objects to the buffer. 3) Remove the last item from the
buffer, and add arbitrary number of new items. 4) Remove an item that is not the last
item in the buffer.

To understand why EvoCrash takes relatively longer to reproduce ACC-104, Figure
2.2 demonstrates the search progress during the failing and successful executions. As
the Figure shows, during the failing executions, the fitness value quickly progresses
to 3.0 and it remains unchanged until the search budget (10 minutes) is over. In
these executions, a fitness value of 3.0 means that the target line, line 20 in Fig-
ure 2.1 is covered by the execution of the test cases. However, the target exception
ArrayIndexOutOfBounds is not thrown at this line, which is why the fitness does
not improve and remains 3.0 until the search time is consumed. On the other hand,
during the successful runs, not only line 20 is covered, on average in five seconds,
but also after 5 minutes, the target exception is thrown and generates the reported
crash stack trace. As our results indicate, setting an object of BoundedFifoBuffer
to the right state such that an arbitrary number of elements are added and removed
in a certain order (as indicated previously) to throw the ArrayIndexOutOfBounds
exception is a challenging task.

For ANT, six of the 20 crashes (30%) are currently not supported by EvoCrash. For
these cases, the major hindering factor was the dependency on a missing external
build.xml file, which is used by ANT for setting up the project configurations. How-
ever, build.xml was not supplied for many of the crash reports. In addition, the use
of Java reflection made it more challenging to reproduce these ANT cases, since the
specific values for class and method names are not known from the crash stack trace.
For LOG, one of the 18 cases (5%) is not supported by EvoCrash. In this case, the
target call is made to a static class initializer, which is not supported by EvoCrash yet.

11https://issues.apache.org/jira/browse/COLLECTIONS-104
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1 java.lang.ArrayIndexOutOfBoundsException:
2 at org.apache.commons.collections.buffer.BoundedFifoBuffer.remove(

BoundedFifoBuffer.java:347)

Listing 2.2: Crash Stack Trace for ACC-104.

1 public void remove() {
2 if (lastReturnedIndex == -1) {
3 throw new IllegalStateException();
4 }
5

6 // First element can be removed quickly
7 if (lastReturnedIndex == start) {
8 BoundedFifoBuffer.this.remove();
9 lastReturnedIndex = -1;

10 return;
11 }
12

13 // Other elements require us to shift the
subsequent elements

14 int i = lastReturnedIndex + 1;
15 while (i != end) {
16 if (i >= maxElements) {
17 elements[i - 1] = elements[0];
18 i = 0;
19 } else {
20 elements[i - 1] = elements[i];
21 i++;
22 }
23 }
24

25 lastReturnedIndex = -1;
26 end = decrement(end);
27 elements[end] = null;
28 full = false;
29 index = decrement(index);
30 }

Listing 2.1: Buggy method for ACC-104.

2.4.6 Comparison to State of the Art

This section discusses the results of the comparison between EvoCrash and the state-
of-the-art approaches based on crash stack traces, namely STAR [81], MuCrash [215],
and JCHARMING [171]. In Table 2.4, bold entries represent bugs which can be
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triggered by EvoCrash, but not by at least one of the other techniques; Underlined
entries represent bugs that EvoCrash cannot reproduce, while there is another tech-
nique that can. As can be seen, there are 23 (bold) cases in which EvoCrash outper-
forms the state of the art, and there are two (underlined) cases that EvoCrash cannot
handle. Below we discuss these cases in more detail.

EvoCrash vs. STAR. As Table 2.4 presents, for ACC, EvoCrash covers all the cases that
STAR covers. In addition, EvoCrash covers three cases (25%) which were not covered
by STAR due to the path explosion problem. For instance, in ACC-331, the defect
exists in a private method, least, inside a for loop, inside the third if condition,
which could not be handled by STAR.

For ANT, EvoCrash supports seven cases (35%) which are not covered by STAR. Out
of the seven, there are three cases, for which only EvoCrash can generate a useful test
case. Listing 2.3 shows the crash stack trace for one of these cases (ANT-49137). As re-
ported in the issue tracking system of the project12, in this case, the defect exists in the
4th stack frame. Thus, a useful test case should (i) make a call to the method delete,
(ii) trigger a java.lang.NullPointerException, and (iii) yield a crash trace
which includes the first stack frame, which is where the exception was thrown.

1 java.lang.NullPointerException:
2 at org.apache.tools.ant.util.SymbolicLinkUtils.isSymbolicLink(

SymbolicLinkUtils.java:107)
3 at org.apache.tools.ant.util.SymbolicLinkUtils.isSymbolicLink(

SymbolicLinkUtils.java:73)
4 at org.apache.tools.ant.util.SymbolicLinkUtils.deleteSymbolicLink(

SymbolicLinkUtils.java:223)
5 at org.apache.tools.ant.taskdefs.optional.unix.Symlink.delete(Symlink.java

:187)

Listing 2.3: Crash Stack Trace for ANT-49137.

As Listing 2.4 depicts, the test case by EvoCrash creates an instance of Symlink,
symlink0, adapts the state in symlink0, and ultimately makes a call to delete,
which will result in generating the target crash stack trace with fitness equal to 0.0.
On the other hand, as Listing 2.5 shows, the test case by STAR, makes an instance of
SymbolicLinkUtils, which comes before the defective frame in the crash stack,
and makes a call to the root method, isSymbolicLink. Consequently, only part of
the target crash stack is generated by this test, which is shown in Listing 2.6. Since
the defective frame is not revealed in the resulting crash trace, even though the root
frame is covered, the test by STAR does not evaluate to useful according to the criteria

12https://bz.apache.org/bugzilla/show_bug.cgi?id=49137

https://bz.apache.org/bugzilla/show_bug.cgi?id=49137
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set by STAR [81].

public void test0() throws Throwable {
Symlink symlink0 = new Symlink();
symlink0.setLink("");
symlink0.delete();

}

Listing 2.4: Generated test by EvoCrash for ANT-49137.

public void test0() throws Throwable {
java.io.File v1 = (java.io.File) null;
org.apache.tools.ant.util.SymbolicLinkUtils v2 =

org.apache.tools.ant.util.SymbolicLinkUtils.getSymbolicLinkUtils();
v2.isSymbolicLink((java.io.File) v1, (java.lang.String) null);

}

Listing 2.5: Generated test by STAR for ANT-49137.

1 java.lang.NullPointerException
2 at org.apache.tools.ant.util.SymbolicLinkUtils.isSymbolicLink(

SymbolicLinkUtils.java:107)

Listing 2.6: Generated Crash Stack Trace by STAR for ANT-49137.

Other than ACC-104, ANT-43292 is the other case that is only reproducible by STAR.
The main reason for this lies in an inheritance-related problem and how the current
fitness function compares stack frames. In this case, the target method, mapFile
Name, is defined in FilterMapper, which extends FileNameMapper. However,
the search can find better fitness values, using other subclasses of FileNameMapper,
such as FlatFileNameMapper, because the implementation of mapFileName in
these subclasses has lower complexity.

For LOG, EvoCrash covers all the cases that were covered by STAR. Six of the LOG
cases (33%) are only covered by EvoCrash. As an example, for LOG-509 there is a
need to interact with the file system in order to open a file, and in order to do so,
EvoCrash benefits from the mocking mechanisms implemented in EvoSuite.

LOG-47912 (shown in Listing 2.7) is another example for which only EvoCrash suc-
cessfully generated a useful test case. The buggy frame in this case is at level four,
and the generated test by EvoCrash is at level five, which is shown in Listing 2.8.
As the listing shows, in order to generate a test at this level, several complex ob-
jects need to be generated and set up first, until finally the call to jULBridgeHand-
ler0.publish(logRecord0); is made. This example shows the capability of EvoCrash to
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generate complex objects which may be needed to execute a particular execution path
that leads to the target line where the target exception is thrown.

1 java.lang.NullPointerException:
2 at org.apache.log4j.CategoryKey.(CategoryKey.java:32)
3 at org.apache.log4j.Hierarchy.getLogger(Hierarchy.java:266)
4 at org.apache.log4j.Hierarchy.getLogger(Hierarchy.java:247)
5 at org.apache.logging.julbridge.JULLog4jEventConverter.convert(

JULLog4jEventConverter.java:121)
6 at org.apache.logging.julbridge.JULBridgeHandler.publish(

JULBridgeHandler.java:49)

Listing 2.7: Stack Trace for LOG-47912.

public void test0() throws Throwable {
Logger logger0 = Logger.getLogger("I}h}$.Xa|yA,YSXf");
Hierarchy hierarchy0 = (Hierarchy)logger0.getLoggerRepository();
JULLog4jEventConverter jULLog4jEventConverter0 = new

JULLog4jEventConverter((LoggerRepository) hierarchy0,
(JULLevelConverter) null);

JULBridgeHandler jULBridgeHandler0 = new
JULBridgeHandler((LoggerRepository) hierarchy0,
jULLog4jEventConverter0);

Level level0 = Level.SEVERE;
LogRecord logRecord0 = new LogRecord(level0, "");
jULBridgeHandler0.publish(logRecord0);

}

Listing 2.8: Generated test by EvoCrash for LOG-47912.

EvoCrash vs. MuCrash. As Table 2.4 shows, evaluation data for MuCrash is only
available for ACC.13 Except for ACC-104, EvoCrash covers all the ACC-cases that are
covered by MuCrash. In addition, three cases (25%) are only covered by EvoCrash,
though one of them is not marked as useful.

An example of a covered case is ACC-53, depicted in Listing 2.9. It requires that
an object is added to an instance of UnboundedFifoBuffer, the tail index is
set to a number larger than the buffer size, and then that the method remove is
invoked. In addition, the order in which the methods are invoked matters. So, if
the tail index would be set after remove is called, the target crash would not be
replicated. As shown in Listing 2.10, EvoCrash synthetized the right method sequence
and reproduced ACC-53.

13Since MuCrash is not publicly available we could not reproduce the data or add additional cases by
ourselves.
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1 java.lang.ArrayIndexOutOfBoundsException:
2 at org.apache.commons.collections.buffer.UnboundedFifoBuffer$1.remove(

UnboundedFifoBuffer.java:312)

Listing 2.9: Crash Stack Trace for ACC-53

Object object0 = new Object();
UnboundedFifoBuffer unboundedFifoBuffer0 = new UnboundedFifoBuffer();
unboundedFifoBuffer0.add(object0);
unboundedFifoBuffer0.tail = 82;
unboundedFifoBuffer0.remove((Object) null);

Listing 2.10: EvoCrash test for ACC-53

EvoCrash vs. JCHARMING. As Table 2.4 shows, we have 12 cases to derive compar-
isons between EvoCrash and JCHARMING. While 75% of the cases are covered both
by EvoCrash and JCHARMING, there is substantial difference in the efficiency of the
two approaches. On average, EvoCrash takes less than 2 minutes to cover the target
crashes, whereas (based on the published results) JCHARMING may take from 10 to
38 minutes to generate tests for the same cases.

Among the LOG cases, two out of seven (29%) are only supported by EvoCrash. As
an example, Listing 2.11 shows the crash stack trace for LOG-45335, which is one of
the two cases covered only by EvoCrash. To generate a useful test for LOG-45335, as
depicted in Listing 2.12, EvoCrash sets the ht state in NDC to null, and then makes
a call to the static method remove, which is the buggy frame method.

Among the other cases, two of them are only supported by EvoCrash, ANT-41422,
and ActiveMQ-5035. The former is a NullPointerException, and the latter is
a ClassCastException.

java.lang.NullPointerException:
at org.apache.log4jb.NDC.remove(NDC.java:377)

Listing 2.11: Crash Stack Trace for LOG-45335.

public void test0() throws Throwable {
NDC.ht = null;
NDC.remove();

}

Listing 2.12: The EvoCrash Test for LOG-45335.



Chapter 2. Evolutionary Crash Reproduction 55

2.4.7 Threats to Validity

In this section, we outline various possible threats to the validity of the empirical
evaluation we conducted.

External Validity. The main threats arise from the focus on Java and open source
projects. The use of Java is needed for our experiments due to the dependency on
EvoSuite, yet we expect our approach to behave similarly on other languages such as
Ruby or C#.

To maximize reproducibility and to enable comparison with the state-of-the-art we
rely on open source Java systems. We see no reason why closed-source stack traces
would be substantially different. As part of our future work, we will engage with one
of our industrial partners, mining their log files for frequent stack traces. This will
help them create test cases that they can add to their test suite to reproduce and fix
errors their software suffers from.

To facilitate comparison with earlier approaches, we selected bugs and system ver-
sions that have been used in earlier studies, and hence are several years old. We
anticipate that our approach works equally-well on more recent bugs or versions as
well, but have not conducted a systematic experiments yet.

A finding of our experiments is that a key limiting factor for any stack-trace based ap-
proach is the unavailability of external data that may be needed for the reproduction.
Further research is needed to (1) mitigate this limitation; and (2) identify a different
data set of crashes focusing on such missing data, in order to further narrow down
this problem.

Internal Validity. A key threat to the internal validity is in the evaluation of the crash
coverage and usefulness of the generated test cases. In case EvoCrash generated a test
with fitness = 0.0, we rerun the generated test against the SUT to double checked
that the generated crash stack trace correctly replicated the target crash stack. Des-
pite having taken the above procedures, it is still possible that we made errors in
the inspections and evaluations. To mitigate the chances of introducing errors, we
peer-reviewed tests and crashes. In addition, we make the EvoCrash tool, and the
generated test cases publicly available for further evaluations.
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2.5 Study II: Usefulness for Debugging

To assess the degree to which generated crash-reproducing tests are useful during
debugging, we conduct a controlled experiment. The experiment aims to address the
following:

• RQ4: Do participants who use EvoCrash tests more often locate defects compared
to participants who do not use EvoCrash tests? With this research question, we
aim to understand whether using the generated tests by EvoCrash helps locate
defects.

• RQ5: Do participants who use EvoCrash tests more often provide fixes compared
to participants who do not use EvoCrash tests? With this research question, we
aim to investigate whether using the generated test by EvoCrash helps fixing
defects.

• RQ6: Do participants who use EvoCrash tests spend less time than participants
who do not use EvoCrash tests? With this research question, we aim to analyze
the impact of using the generated tests by EvoCrash in the amount of time the
participants took to deliver fixes.

2.5.1 Task Selection

To select the crash cases to be used in the debugging tasks, we considered the fol-
lowing selection criteria: (i) From the 54 crashes we used in the empirical evaluation
(Section 4.4), we selected those crashes which signal the two common types of excep-
tions in Java programs [84], namely: NullPointerException, and IllegalArg-
umentException; (ii) We filtered out stack traces which have less than four stack
frames, since locating and fixing the related bug would be very simple; (iii) To avoid
cases that would be overly complicated to fix, we selected cases for which the ori-
ginal fixes (delivered by the original developers) are provided for the classes that
were included in the stack traces. (iv) We ensured that the JavaDoc documentation
is available for all classes appearing in the stack traces and could serve as specifica-
tion for the participants. Finally, (v) considering the usefulness criterion (described in
Section 2.4.1), we opted for including both a useful and not useful crash-reproducing
unit test case.

As the result, we selected ACC-48 (with a useful test), and LOG-47957 (with a not
useful test) to be the target cases. Listing 2.13 and 2.14 show the stack traces for the
two cases.
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java.lang.IllegalArgumentException: Initial capacity must be greater than 0
at org.apache.commons.collections.map.AbstractHashedMap.
(AbstractHashedMap.java:142)

at org.apache.commons.collections.map.
AbstractHashedMap.(AbstractHashedMap.java:127)

at org.apache.commons.collections.map.AbstractLinkedMap.
(AbstractLinkedMap.java:95)
at org.apache.commons.collections.map.LinkedMap.
(LinkedMap.java:78)

at org.apache.commons.collections.map.TransformedMap.
transformMap(TransformedMap.java:153)

at org.apache.commons.collections.map.TransformedMap.putAll
(TransformedMap.java:190)

Listing 2.13: Crash Stack Trace for ACC-48; Fixed at frame 5 (line 153) and tested at
frame 6 (line 190).

java.lang.NullPointerException:
at org.apache.log4jb.net.SyslogAppender.append(SyslogAppender.java:251)
at org.apache.log4jb.AppenderSkeleton.doAppend(AppenderSkeleton.java:230)
at org.apache.log4jb.helpers.AppenderAttachableImpl.appendLoopOnAppenders
(AppenderAttachableImpl.java:66)

at org.apache.log4jb.Category.callAppenders(Category.java:203)
at org.apache.log4jb.Category.forcedLog(Category.java:388)
at org.apache.log4jb.Category.info(Category.java:663)

Listing 2.14: Crash Stack Trace for LOG-47957; Fixed and tested at frame 1 (line
251).

The original fixes for ACC-48 and LOG-47957 were provided for the frame levels
five and one, respectively. In addition, the tests from EvoCrash for these cases were
targeted for the frame levels six and one, respectively.

2.5.2 Experiment Participants

We invited 35 master students in computer science from the Delft University of Tech-
nology to participate in the study. Table 2.5 presents the level of formal education the
participants have in Java programming. Table 2.6 presents the degree to which the
participants have industrial experience in software engineering. Moreover, Table 2.7
summarizes the degree to which the participants were familiar with the JUnit testing
framework.
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Table 2.5: Participants’ Education in Java Programming

Self-educated
Formal Education

Basic Intermediate Advanced
5.71% 28.57% 45.71% 20%

Table 2.6: Participants’ Industrial Experience

No exp. ≤ 2 years 3-5 years 5-10 years
42.85% 34.28% 20% 2.85%

2.5.3 Experiment Procedure

Before conducting the experiment, the participants received an introduction to the
tasks to perform. The students had two weeks within which, at some point they were
to start performing the experiment and deliver the results. Notice that to avoid any
bias, we made sure participants were neither aware of the research questions of our
study nor which crashes (name and id) were used as subjects of the experiment.

The participants were asked to debug and fix the classes involved in the two bugs
ACC-48, and LOG-47957 starting from the corresponding crash stack traces. Each par-
ticipant had to perform one bug fixing task using the crash-reproducing test from Evo-
Crash (e.g., ACC-48), while for the other one (e.g., LOG-47957) we did not provide
the test from EvoCrash. To address potential bias due to learning effects, we assigned
the tasks to have a balanced number of participants that performed the first task with
and without the EvoCrash test. Therefore, we randomly grouped students in four
different groups, whose configurations are shown in Table 2.8.

Once participants started performing the experiment at some point within the two
weeks, they were asked to complete three stages in the context of the experiment:
(i) filling a pre-test questionnaire that we used to collect data about participants’
background, (ii) performing the first debugging task and filling the corresponding
post-test questionnaire, and (iii) performing the second debugging task and filling
a second post-test questionnaire. While the time to complete the first stage was un-
bounded, for the remaning two stages we restricted the amount of time participants
could spend on each task following the guidelines by [212]. In particular, participants
had 45 minutes for each task, which includes: (i) reading the instructions, (ii) cloning
a Maven project from GitHub, and (iii) performing the corresponding debugging task.
Each debugging task consists of (i) locating the defect that trigger the target crash,
(ii) providing the code fix, (iii) running the existing test suite and adding new tests
if needed. The participants could finish the tasks in less than 45 minutes if they were
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Table 2.7: Participants’ Familiarity with the JUnit Framework

Unfamiliar Basic Average Advanced
37.14% 25.71% 28.57% 8.57%

Table 2.8: Configuration of the Participant Groups

Group
Task 1 Task 2

Bug EvoCrash Bug EvoCrash
I ACC-48 Yes LOG-47957 No
II ACC-48 No LOG-47957 Yes
III LOG-47957 Yes ACC-48 No
IV LOG-47957 No ACC-48 Yes

sure that (i) the identified bug location is correct, and (ii) the provided fixes prevent
the crashes to incur again and do not break the existing test suite. Controlling the
time allowed to prevent that too little or too long time would be spent by participants
on each task.

To prepare the projects on GitHub, we selected the versions of Apache Commons
Collections, and Apache Log4j that were specified in the bug reports for ACC-
48 and LOG-47957. Both projects were already Maven projects, so we imported them
into Eclipse, and made sure the tests were run with no particular difficulties. For
those tasks where the test from EvoCrash was provided, we included the tests in
the projects, and added their path (packages) in the instructions provided to the
participants.

As the first task reached the time out, or the participants completed the task within
45 minutes, they would proceed to the follow-up post-test questionnaire. To make
sure the participants do not take time at this point to keep working on the task, we
allowed 10 minutes to be spent on answering the questions. The second task followed
the same procedure as the first one, after which the assignment would be completed.
At the end, the participants had to send the artifacts they produced (including any
test cases, or fixes) via e-mail to the first author. Furthermore, we used the online
platform: https://www.qualtrics.com to collect the results of the questionnaires.

Before conducting the experiment, the last two authors performed the tasks to assess
their feasibility and correctness in advance. We also conducted three pilot studies
with external researchers within the software engineering research group at Delft
University of Technology. The feedback we received from the pilot studies were used
to improve both the questionnaires and the instructions for the tasks. Data points
from dry-runs and pilot studies are not included in our analysis of the results.
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2.5.4 Data Analysis

The original location of the defects and the patches provided by the developers for
both cases represent our golden answers (oracle) as for the defect locations and fixes.

To answer RQ3, we compared the bug locations which were pointed to by the par-
ticipants with the locations in our golden set. For example, for ACC-48, the defect
could be fixed at two different frame levels in the stack trace, namely: (a) in the
transformMap method at the 5th frame level in the stack trace reported in List-
ing2.13, and (b) in the putAll method at the 6th level. However, it is import-
ant to target the transformMap routine as the location for the underlying de-
fect, and not the putAll routine. This is because putAll is an API call whereas
transformMap is a private routine to which other routines make calls as well. There-
fore, transformMap is the root location where the defect must be fixed otherwise
the crash could recur. In cases where the participants targeted putAll as the buggy
location, we marked their answers as incorrect.

For what concerns RQ4, we ran the fixes given by the participants to assess whether
they prevented the crashes from recurring. If so, then we manually analyzed the con-
tent of the fixes. For example, in case of the fixes given for LOG-47957, we accepted
every fix which pointed to checking for null references at the right location in the
source code.

For what regards RQ5, we utilized the data that was provided by the online platform
for collecting the data related to the time participants took to deliver the fixes. The
data measured the point in time when the participant started a task (by reading the
instructions), and the point in time when the participant completed the task before
proceeding to answering the subsequent questions.

2.5.5 Statistical Analysis

To assess the effect of using the EvoCrash tests on the ability of participants to locate
and fix the defects, we used the odds ratio measure [50] since the data is binary
distributed, i.e., the defect is correctly located (or fixed) or not. For this test, we use
a 95% confidence interval and we computed it for each debugging task (ACC-48, and
LOG-47957) separately. In addition, to determine the significance of the findings,
we used the Fisher’s exact test, which is can be used for small sample sizes [50].
We considered α = 0.05 for the Type I error. Significant p-values (i.e., lower than
0.05) indicate that participants with EvoCrash tests were able to correctly locate and
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fix defects more frequently compared the participants who performed the same task
(e.g., ACC-48) without the EvoCrash tests.

To measure the effect of using EvoCrash tests on the amount of time the groups took
to complete each task, we used the Vargha-Delaney Â statistic [207]. We selected this
effect size measure since it is well-suited for numerical data distributions [207], such
as the time in seconds. Values of Â<0.50 indicate that participants with the EvoCrash
tests spend less time than the participants without the EvoCrash tests to complete
the same task; values of Â>0.50 indicates the opposite scenario, i.e., participants
with the EvoCrash tests spent more time to complete the assigned tasks; Â=0.50
when there is no difference between the participants who performed the tasks with
and without EvoCrash. The effect size can be classified as one of the four different
levels [207]: negligible (Â≥0.44), small (0.36≤Â<0.44), medium(0.29≤Â<0.36), or
large (Â≤0.29). For a given task, we also test whether the difference (if any) between
the groups with and without EvoCrash were statistically significant by using the non-
parametric Wilcoxon Rank Sum test with α = 0.05 for the Type I error. Significant p-
values imply that there is significant difference in the amount of time the participants
take when performing the debugging tasks with and without EvoCrash.

2.5.6 Analysis of the Results

In this section, we present the results of the controlled experiment with student par-
ticipants. Table 2.9 summarizes the results regarding assessing the impact of using
the tests from EvoCrash on the ability of the participants in locating the defects and
providing fixes for them. As Table 2.9 indicates, one of 35 students, corresponding to
one of the groups II or III in Table 2.8, did not deliver the debugging tasks. Thus, the
number of participants in these groups is 34. On the other hand, all participants cor-
responding to groups I and IV in Table 2.8 delivered the debugging tasks. Therefore,
the total number of participants in Table 2.9 is 35. In what follows, we discuss the
results and thereby answer RQ4, RQ5, and RQ6, respectively.

Table 2.9: Results of RQ4 and RQ5 grouped by tasks (“With” = with EvoCrash tests,
“Without” = without EvoCrash tests).

Metrics
ACC-48 LOG-47957

With Without With Without
No. of correct bug locations 13 13 12 9
No. of incorrect bug locations 5 3 4 8
No. of undelivered tasks 0 1 1 0
No. of correct bug fixes 10 3 8 6
No. of incorrect bug fixes 8 13 8 11
No. of undelivered tasks 0 1 1 0
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2.5.6.1 RQ4: Impact of EvoCrash Tests on Locating Defects

As Table 2.9 shows, in the case of ACC-48, the number of participants who located
the defect correctly, using the test from EvoCrash, is the same as the number of par-
ticipants who did not use the test from EvoCrash. The number of participants who
failed to locate the defect, with and without using the EvoCrash test, are five and
three, respectively. In the case of LOG-47957, 12 participants, using the test from
EvoCrash, and nine participants without using the test correctly located the defect.
The number of participants who failed to locate the defect, with and without the
EvoCrash test, are four and eight, respectively.

To assess the impact of using EvoCrash on locating the underlying defects for each
of the debugging task, we used the odds ratio and Fisher’s exact test as explained
in Section 2.5.5. For ACC-48, the odds ratio is 0.63, thus, indicating that the test
case from EvoCrash did not help the participants in locating the underlying defect.
Moreover, the Fisher test further confirms that there is no statistically significant dif-
ference between the two groups (p-value = 0.86). For LOG-47957, the odds ratio is
2.66, suggesting that the test from EvoCrash helped the participants in locating the
underlying defect more often than the participants who did not use the test. However,
these results are not statistically significant in this case either (p-value=0.14).

RQ4: EvoCrash helps participants in locating the defect for LOG-47957,
while in the case of ACC-48 we did not observe such an impact. In
either case, the differences are not statistically significant.

2.5.6.2 RQ5: Impact of EvoCrash Tests on Fixing Defects

As Table 2.9 shows, in the case of ACC-48, the number of participants who provided
acceptable fixes are 10 when using the test from EvoCrash and three without the test.
In addition, eight and 13 participants, with and without the test from EvoCrash re-
spectively, failed to provide an acceptable fix for ACC-48. In the case of LOG-47957,
eight participants, using the test from EvoCrash, and six participants without using
the generated test provided acceptable fixes. The number of participants who failed to
provide acceptable fixes, with and without using the test is eight and 11, respectively.

To assess the impact of using EvoCrash on the ability of participants in providing fixes,
we computed the odds ratio for each debugging task, separately. In addition, we used
the Fisher’s exact test for significance.
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For ACC-48, the odds ratio is 5.41. This indicates that the test case generated by
EvoCrash increased the participants’ ability to provide fixes when performing such a
debugging task. According to the Fisher test, the differences are statistically signific-
ant (p-value=0.03). We further note, based on the usefulness criterion described in
Section 2.4.1 we labeled the test generate by EvoCrash as useful for debugging.

For LOG-47957, the odds ratio is 1.83. Based on these measures, we observed that
using the test from EvoCrash increased the participants’ ability to provide correct
fixes. However, such an improvement is not statistically significant as suggested by
the Fisher test (p-value=0.30). These results are in line with the results of Study
I, where we labeled the test generated by EvoCrash as not useful according to the
usefulness criterion described in Section 2.4.1).

RQ5: Using a test from EvoCrash, that is useful according the useful-
ness criterion in Section 2.4.1, increases developers’ ability in fixing
defects when debugging. In addition, our results suggest that using
a test from EvoCrash, that is not useful according to the usefulness
criterion in Section 2.4.1, also increases developers’ ability in fixing
defects when debugging. However, in the latter case, the difference is
not statistically significant.

2.5.6.3 RQ6: Impact of EvoCrash Tests on Debugging Time

The box-plots in Figure 2.3 show the distribution of time participants took to perform
each task. In the case of ACC-48, the median for the group which did not use the
EvoCrash test is 1565 seconds, while the median for the other group, using the Evo-
Crash test, is 1064 seconds (-32%). In the case of LOG-47957, the median for the
group which did not use the EvoCrash test is 2700 seconds, while the median for the
other group, using the EvoCrash test, is 2037 seconds (-25%). Thus, in both cases, the
medians for the group which used the tests from EvoCrash are lower than the median
for the group which did not use the EvoCrash tests.

To verify whether such differences are statistically significant or not, we used the
non-parametric Wilcoxon test for each debugging task (ACC-48, and LOG-47957)
as described in Section 2.5.5. As effect size measure, we used the Vargha-Delaney Â
statistics.

For ACC-48 and LOG-47957, the obtained Â scores are 0.28 (medium) and 0.30
(medium), respectively. The differences between the groups with and without the
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Figure 2.3: Amount of time participants took to perform each task, with and without
the tests from EvoCrash.

EvoCrash test are also statistically significant according to the Wilcoxon test, which
returns p-values of 0.03 and 0.04 for ACC-48 and LOG-47957, respectively. Based
on the results above, we conclude:

RQ6: Developers using the tests from EvoCrash take significanlty less
time when debugging, compared to those not using the EvoCrash
tests.

2.5.7 Threats to Validity

In this section, we outline various possible threats to the validity of the controlled
experiment we conducted.

Internal Validity. To reduce factors that could affect the causal relations under scru-
tiny, we randomly assigned the tasks to the participants. Regarding the ability of the
participants in locating the defects and fixing them, it could be that not being familiar
with the source code negatively affects the degree to which the participants were able
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to locate and fix the defects. To mitigate this impact: i) We made sure Java-Doc docu-
mentation is available for the target projects to be debugged, and ii) We checked with
the pilot studies whether the given time for each task was reasonable, and whether
the available documentation was sufficient to perform them.

Moreover, we conducted the experiment remotely from the participants, which im-
plies that they would do the experiment at their own discretion. Using the online
platform, we made sure the participants are mandated to perform the tasks in the
specified order, and within the specified time limit. In addition, the participants could
only answer each follow up questionnaire after they had completed each task.

External Validity. One factor that could affect the generalizability of the study could
be the student participants of the experiment. Different studies [124,166] show that
if students are familiar with performing the tasks of the experiment, then they would
perform similar to participants from industry. Over 50% of the participants declared
to have at least 2 years of industrial experience, and basic familiarity with the JUnit
framework. In addition, by giving an introductory lecture we further tried to famili-
arize the students and thereby, mitigate possible threats to the generalizability of the
experiment results.

Furthermore, we analyzed only two types of exceptions in the experiment. As de-
scribed in Section 2.5.1, to select these types we considered a number of criteria,
including how often they occur, the stack trace sizes, and whether they are overly
complex or overly simple cases to debug. We deliberately opted for only two excep-
tions in order to i) maintain statistical power in the analysis, and ii) avoid introducing
fatigue and learning effects to the participants.

Construct Validity. Threats to this type of validity concern the degree to which the
conducted experiment measures what is intended to be measured. We used the online
platform to measure the amount of time each participant took to complete the debug-
ging tasks. Since the experiment was done remotely, we did not fully observe how
the participants spent the debugging time they took. While by limiting the debugging
time and providing the questions after each task was completed we tried to control
the experiment flow, it is possible that the participants did not spend the entire time
on the debugging tasks.

Conclusion Validity. We conducted the experiment with 35 master students. In the
experiment, each task was performed by at least 16 students. While 16 is not a large
number as for the size of each group, it still yields sufficient statistical power to assess
the impact of using EvoCrash tests on the number of fixed bugs (when the test is
useful for debugging), as well as the amount of time it takes to finish the debugging
tasks. Regarding assessing the impact of EvoCrash tests on the ability of developers
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in locating defects, our experiment shows preliminary results, and therefore indicates
the need for further future investigation.

We support our findings by using appropriate statistical tests (namely: The Fisher’s
exact test, odds ratio measure, Wilcoxon Rank Sum test, and the Vargha-Delaney Â
statistic) to assess the impact of using EvoCrash tests in debugging.

2.6 Discussion and Lessons Learnt

Interactive Search. It should be noted that since GGA strives for finding the fittest
test case, thus discarding the ones with fitness > 0.0, the crash coverage and useful-
ness evaluation was performed on a set of EvoCrash tests with fitness equal to 0.0.
However, considering the crash exploitability and usefulness criteria adopted from
STAR [81], it could be possible that EvoCrash discarded tests with fitness between
0.0 and 1.0, which would actually conform to the aforementioned criteria. Consid-
ering the fitness function range, fitness values could be from 0.0 to 6.0, where 6.0
means a test case that does not reach the target line, therefore does not invoke the
target method, and in turn, does not trigger the target exception. In contrast, fitness
0.0 means that the test covers the target line and method, and triggers the target
exception. According to the definition of the fitness function (presented in Section
4.2.2), when the fitness value is between 0.0 and 1.0, the target line and exception
are covered, however, the stack trace similarity is not ideal yet. In this case, even
though the target stack similarity is not achieved, crash coverage and test usefulness
criteria could be covered. Future work can provide interactive mechanisms through
which the precision of the fitness function could be adjusted, so tests with fitness
between 0.0 and 1.0 could also be accepted.

In addition, dependency on external files was a major factor that prevented EvoCrash
from covering more cases. Therefore, if external files were to be provided by the
bug reporters, then enabling developers to specify the external files could be another
possible direction for the future work.

Extending Comparisons. Towards extending the empirical evaluation, we aimed at
adopting the crash cases reported in [172] in order to make a larger comparison with
JCHARMING. However, due to various reasons, ultimately we managed to adopt four
cases to this end. While the new cases provide a bigger picture, we are still interested
to expand the comparisons among the recent tools for automated crash reproduction.
This aim would be facilitated if the tools become publicly available.
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In addition, we acknowledge the need for extending the empirical evaluation of Evo-
Crash to crashes from recent industrial projects. In such projects scale, complexity,
and type of the generated crashes may vary, which may indicate new research dimen-
sions to consider for improving our search-based crash reproduction approach.

Controlled Experiment. To analyze the impact of EvoCrash tests in debugging, we
selected two common exceptions in Java programs, NullPointerException, and
IllegalArgumentException. This is while various types of exceptions may im-
pose different levels of complexity in debugging, and thus, the impact of crash re-
producing tests may vary in each case. Therefore, future studies could adopt more
common exceptions in Java programs, and assess the impact of EvoCrash tests per
exception type.

In addition, our experiment results showed that using useful EvoCrash tests helps de-
velopers fix bugs and take less time in debugging. While using such tests helped the
participants locate the given defect, the observed impact was not statistically signific-
ant. To be able to locate the root cause of a given failure, having upfront understand-
ing and knowledge about the defective source code may be another important factor
that can impact the ability of a developer in localizing a given defect. Therefore, fu-
ture studies may assess the impact of having up-front knowledge of source code and
its correlation with using crash reproducing tests in debugging.

2.7 Conclusions

Several approaches to automated crash replication have been proposed to aid de-
velopers when debugging. However, these approaches report several challenges such
as path explosion and handling environmental dependencies in practice. We propose
a new approach, EvoCrash, to automated crash reproduction, via a Guided Genetic
Algorithm (GGA). Our empirical evaluation on 54 real-world crashes shows that GGA
addresses the path explosion problem. Furthermore, thanks to the mocking mech-
anisms in EvoSuite, some crashes involving environmental interactions were repro-
duced. However, handling environmental dependencies (such as content of a required
file) remain to be a challenge for EvoCrash. We acknowledge the need for further em-
pirical evaluations on more recent and industrial cases. The result of such evaluations
may help identify the areas where we can improve our search-based crash reproduc-
tion technique.

In addition, we compare effectiveness and efficiency of EvoCrash with EvoSuite as a
whole test suite generation approach to coverage-based test generation. Our results
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confirm that the provided guidance in GGA is necessary for effectively and efficiently
reproducing the crashes.

Moreover, we report from a controlled experiment with 35 master students in com-
puter science, in which we assessed the impact of using EvoCrash tests in practice.
Based on the results of the controlled experiment, we observed that: i) Our data re-
garding the impact of EvoCrash tests on the ability of developers in locating defects is
preliminary. Therefore, our results show need for further future investigation in this
regard. ii) Using a useful test from EvoCrash when debugging, developers can provide
fixes more often, compared to when debugging without using such tests. Finally, iii)
using EvoCrash tests reduces the amount of time developers take when debugging.
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Algorithm 2.1 Guided Genetic Algorithm
Input: Class under test C

Target call from the crash stack trace TC

Population size N

Search time-out m_tme

Result: Test case t

1 begin
2 // initialization Mcrash ←− identify public methods based on TC

3 k←− 0

4 Pk ←− MAKE-INITIAL-POPULATION(C, Mcrash, N)

5 EVALUATE(Pk)

6 // main loop

7 while (best fitness value > 0) AND (time spent <m_tme) do
8 k←− k + 1 // generate offsprings

9 O←− ∅

10 while | O |< N do
11 p1, p2 ←− select two parents for reproduction

12 if crossover probability then
13 o1, o2 ←− GUIDED-CROSSOVER(p1, p2)

14 else
15 o1 ←− p1

16 o2 ←− p2

17 O←− O
⋃

GUIDED-MUTATION(o1)

18 O←− O
⋃

GUIDED-MUTATION(o2)

19 // fitness evaluation

20 EVALUATE(O)

21 Pk ←− Pk−1
⋃

O

22 Pk ←− select the N fittest individuals in Pk

23 tbest ←− fittest individual in Pk

24 tbest ←− POST-PROCESSING(tbest)
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Algorithm 2.2 MAKE-INITIAL-POPULATION
Input: Class under test C

Set of failing methods Mcrash

Population size N

Result: An initial population P0

25 begin
26 P0 ←− ∅

27 while | P0 |< N do
28 t←− empty test case sze←− random integer ∈ [1;MAX_SIZE]

29 // probability of inserting a method involved in the failure

30 insert_probability←− 1/sze

31 while (number of statements in t) < sze do
32 if random_number ¶ insert_probability then
33 method_call←− pick one element from Mcrash

34 // reset the probability of inserting a failing method

35 insert_probability←− 1/sze

36 else
37 method_call←− pick one public method in C

38 length←− number of statements in t // increase the probability of inserting a failing method

39 insert_probability←− 1/(sze − ength + 1)

40 INSERT-METHOD-CALL(method_call, t)

41 P0 ←− P0
⋃

t
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Algorithm 2.3 GUIDED-CROSSOVER
Input: Parent tests p1 and p2

Set of failing methods Mcrash

Result: Two offsprings o1, o2

42 begin
43 sze1 ←−| p1 |

44 sze2 ←−| p2 |

45 // select a cut point

46 μ←− random number ∈ [0; 1]

47 // first offspring

48 o1 ←− first μ × sze1 statements from p1

49 o1 ←− append (1 − μ) × sze2 statements from p2

50 CORRECT(o1)

51 if o1 does not contain methods from Mcrash then
52 o1 ←− clone of p1

53 // second offspring

54 o2 ←− first μ × sze2 statements from p2

55 o2 ←− append (1 − μ) × sze1 statements from p1

56 CORRECT(o2)

57 if o2 does not contain methods from Mcrash then
58 o2 ←− clone of p2

Algorithm 2.4 GUIDED-MUTATION
Input: Test t = 〈s1, . . . , sn〉 to mutate

Set of failing methods Mcrash

Result: Mutated test t

59 begin
60 n←−| t |

61 ppy_mtton←− tre

62 while ppy_mtton == tre do
63 for i =1 to n do
64 ϕ←− random number ∈ [0; 1]

65 if ϕ ¶ 1/n then
66 if delete probability then
67 delete statement s

68 if change probability then
69 change statement s

70 if insert probability then
71 insert a new method call at line 

72 if t contains method from Mcrsh then
73 ppy_mtton←− ƒse





3
Large-scale Evaluation of EvoCrash

Crash reproduction approaches help developers during debugging by generating a
test case that reproduces a given crash. Several solutions have been proposed to
automate this task. However, the proposed solutions have been evaluated on a lim-
ited number of projects, making comparison difficult. In this paper, we enhance this
line of research by proposing JCrashPack, an extensible benchmark for Java crash
reproduction, together with ExRunner, a tool to simply and systematically run eval-
uations. JCrashPack contains 200 stack traces from various Java projects, including
industrial open source ones, on which we run an extensive evaluation of EvoCrash,
the state-of-the-art tool for search-based crash reproduction. EvoCrash successfully
reproduced 43% of the crashes. Furthermore, we observed that reproducing Null-
PointerException, IllegalArgumentException, and IllegalStateException is relatively
easier than reproducing ClassCastException, ArrayIndexOutOfBoundsException and
StringIndexOutOfBoundsException. Our results include a detailed manual analysis of
EvoCrash outputs, from which we derive 14 current challenges for crash reproduc-
tion, among which the generation of input data and the handling of abstract and
anonymous classes are the most frequents. Finally, based on those challenges, we
discuss future research directions for search-based crash reproduction for Java.

3.1 Introduction

Software crashes commonly occur in operating environments and are reported to de-
velopers for inspection. When debugging, reproducing a reported crash is among the
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tasks a developer needs to do in order to identify the conditions under which the
reported crash is triggered [221]. To help developers in this process, various auto-
mated techniques have been suggested. These techniques typically either use program
runtime data [?, 58, 64, 76, 114, 169, 194, 205] or crash stack traces [65, 81, 173, 202,
215] to generate a test case that triggers the reported crash.

When available, runtime data offer more information to accurately reproduce a crash.
However, it also raises various concerns (for instance, privacy violation) and may in-
duce a significant overhead during data collection [81,173,194]. Instead, we focus on
crash reproduction based on a crash stack trace generated by a failing system. Practic-
ally, those stack traces are collected from the logs produced by the operating environ-
ment or reported by users in an issue tracking system. Various auromated crash stack
trace-based reproduction approaches have been implemented and evaluated on dif-
ferent benchmarks [81,173,202,215]. However, those benchmarks contains a limited
number of crashes and associated stack traces.

In a recent study, we presented a search-based approach called EvoCrash, which ap-
plies a guided genetic algorithm to search for a crash reproducing test case [202], and
demonstrated its relevance for debugging [204]. We conducted an empirical evalu-
ation on 54 crashes from commonly used utility libraries to compare EvoCrash with
state-of-the-art techniques for crash reproduction [202]. This was enough to show
that the search-based crash reproduction outperformed other approaches based on
backward symbolic execution [81], test case mutation [215], and model-checking
[173], evaluated on smaller benchmarks.

However, all those crashes benchmarks were not selected to reflect challenges that
are likely to occur in real life stack traces, raising threats to external validity. Thus the
questions whether the selected applications and crashes were sufficiently represent-
ative, if EvoCrash will work in other contexts, and what limitations are still there to
address, remained unanswered.

The goal of this paper is to facilitate sound empirical evaluation on automated crash
reproduction approaches. To that end, we devise a new benchmark of real-world
crashes, called JCrashPack. It contains 200 crashes from seven actively maintained
open-source and industrial projects. These projects vary in their domain application
and include an enterprise wiki application, a distributed RESTful search engine, sev-
eral popular APIs, and a mocking framework for unit testing Java programs. JCrash-
Pack is extensible, and can be used for large-scale evaluation and comparison of auto-
mated crash reproduction techniques for Java programs.

To illustrate the use of JCrashPack, we adopt it to extend the reported evaluation on
EvoCrash [202] and identify the areas where the approach can be improved. In this
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experience report, we provide an account of the cases that were successfully repro-
duced by EvoCrash (87 crashes out of 200). We also analyze all failed reproductions
and distill 14 categories of research and engineering limitations that negatively af-
fected reproducing crashes in our study. Some of those limitations are in line with
challenges commonly reported for search-based structural software testing in the
community [105, 161, 214] and others are specific to search-based crash reproduc-
tion.

Our categorization of challenges indicates that environmental dependencies, code
complexity, and limitations of automated input data generation often hinder success-
ful crash reproduction. In addition, stack frames (i.e., lines in a stack trace), pointing
to varying types of program elements, such as interfaces, abstract classes, and an-
onymous objects, influence the extent to which a stack trace-based approach to crash
reproduction is effective.

Finally, we observe that the percentage of successfully reproduced crashes drops from
85% (46 crashes out of 54 reported by Soltani et al. [204]) to 43% (87 out of 200)
when evaluating crashes that are from industrial projects. In our observations, gen-
erating input data for microservices, and unit testing for classes with environmental
dependencies, which may frequently exist in enterprise applications, are among the
major reasons for the observed drop in the reproduction rate. These results are con-
sistent with the paradigm shift to context-based software engineering research that
has been proposed by Briand et al. [72].

The key contributions of our paper are:

• JCrashPack,1 a carefully composed benchmark of 200 crashes, as well as their
correct system version and its libraries, from seven real-world Java projects,
together with an account of our manual analysis on the characteristics of the
selected crashes and their constituting frames, including size of the stack traces,
complexity measures, and identification of buggy and fixed versions.

• ExRunner,2 a Python library for automatically running experiments with crash
reproduction tools in Java.

• Empirical evidence,3 demonstrating the effectiveness of search-based crash re-
production on real world crashes taken from JCrashPack.

1Available at https://github.com/STAMP-project/JCrashPack.
2Available at https://github.com/STAMP-project/ExRunner
3A replication package for EvoCrash results, their automated analysis, and the res-

ults of our manual analysis is available at https://github.com/STAMP-project/
EvoCrash-JCrashPack-application.

https://github.com/STAMP-project/JCrashPack
https://github.com/STAMP-project/ExRunner
https://github.com/STAMP-project/EvoCrash-JCrashPack-application
https://github.com/STAMP-project/EvoCrash-JCrashPack-application
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• The identification of 14 categories of research and engineering challenges for
search-based crash reproduction that need to be addressed in order to facilitate
uptake in practice of crash reproduction research.

The remainder of the chapter is structured as follows: Section 3.2 presents back-
ground on crash reproduction. Sections 3.3 to 3.5 describe the design protocol for
the benchmark, the resulting benchmark JCrashPack, as well as the ExRunner tool to
run experiments on JCrashPack. Sections 3.6 to 3.8 cover the experimental setup for
the EvoCrash evaluation, the results from our evaluation, and the results challenges
that we identified through our evaluation. Sections 3.9 to 3.12 provide a discussion
of our results and future research directions, an analysis of the threats to validity, and
a summary of our overall conclusions.

3.2 Background and related work

3.2.1 Crash reproduction

Crash reproduction approaches can be divided into three categories, based on the kind
of data used for crash reproduction: record-replay approaches record data from the
running program; post-failure approaches collect data from the crash, like a memory
dump; and stack-trace based post-failure use only the stack trace produced by the
crash. We briefly describe each category hereafter.

Record-replay approaches.

These approaches record the program runtime data and use them during crash re-
production. The main limitation is the availability of the required data. Monitoring
software execution may violate privacy by collecting sensitive data, the monitoring
process can be an expensive task for the large scale software and may induce a sig-
nificant overhead [81, 173, 194]. Tools like ReCrash [58], ADDA [?], Bugnet [169],
jRapture [205], MoTiF [114], Chronicler [64], and SymCrash [76] fall in this cat-
egory.

Post-failure approaches.

Tools from this category use the software data collected directly after the occurrence
of a failure. For instance, RECORE [194] applies a search-based approach to repro-
duce a crash. RECORE requires both a stack trace and a core dump, produced by the
system when the crash happened, to guide the search. Although these tools limit the
quantity of monitored and recorded data, the availability of such data still repres-



Chapter 3. Large-scale Evaluation of EvoCrash 77

Table 3.1: The crash stack trace for Apache Ant-49755.

java.lang.NullPointerException:
Level Frame

1 at org.apache.tools.ant.util.FileUtils.createTempFile(FileUtils.java:888)
2 at org.apache.tools.ant.taskdefs.TempFile.execute(TempFile.java:158)
3 at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java

:291)

ents a challenge. For instance, if the crash is reported trough an issue tracking system
or if the core dump contains sensitive data. Other post-failure approaches inlcude:
DESCRY [217], and other tools by Weeratunge et al. [208], Leitner et al. [150, 151],
or Kifetew et al. [136,137].

Stack-trace based post-failure.

Recent studies in crash reproduction [65, 81, 173, 202, 215] focuses on utilizing data
only from a given crash stack trace to enhance the practical application of the tools.
For instance, in contrast to the previously introduced approaches, EvoCrash only con-
siders the stack trace (usually provided when a bug is reported in an issue tracker)
and a distance, similar to the one described by Rossler et al. [194], to guide the search.
Table 3.1 illustrates an example of a crash stack trace from Apache Ant4 [46] which
is comprised of a crash type (java.lang.NullPointerException) and a stack
of frames pointing to all method calls that were involved in the execution when the
crash happened. From a crash stack frame, we can retrieve information about: the
crashing method, the line number in the method where the crash happened, and the
fully qualifying name of the class where the crashing method is declared.

The state of the research in crash reproduction [65,81,134,173,202,215,219] aims
at generating test code that, once executed, produces a stack trace that is as sim-
ilar to the original one as possible. They, however, differ in their means to achieve
this task: for instance, ESD [219] and BugRedux [134] use forward symbolic execu-
tion; STAR [81] applies optimized backward symbolic execution and a novel tech-
nique for method sequence composition; JCHARMING [173] applies model check-
ing; MuCrash [215] is based on exploiting existing test cases that are written by
developers, and mutating them until they trigger the target crash; and Concrash [65]
focuses on reproducing concurrency failures that violate thread-safety of a class by
using search pruning strategies.

4ANT-49755: https://bz.apache.org/bugzilla/show_bug.cgi?id=49755

https://bz.apache.org/bugzilla/show_bug.cgi?id=49755
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3.2.2 Search-based crash reproduction with EvoCrash

Search-based algorithms have been increasingly used for software engineering prob-
lems since they are shown to suite complex, non-linear problems, with multiple op-
timization objectives which may be in conflict or competing [120]. Recently, Soltani
et al. [202, 204] introduced a search-based approach to crash reproduction, called
EvoCrash. EvoCrash applies a guided genetic algorithm to search for a unit test that
reproduces the target crash. To generate the unit tests, EvoCrash relies on a search-
based test generator called EvoSuite [103].

EvoCrash takes as input a stack trace with one of its frames set as the target frame.
The target frame is composed of a target class, the class to which the exception has
been propagated, a target method, the method in that class, and a target line, the
line in that method where the exception has been propagated. Then, it seeks to gen-
erate a unit test which replicates the given stack trace from the target frame (at
level n) to the deepest frame (at level 1). For instance, if we pass the stack trace in
Table 3.1 as the given trace and indicate the second frame as the target frame (level
2), the output of EvoCrash will be a unit test for the class TempFile which replic-
ates first two frames of the given stack trace with the same type of the exception
(NullPointerException).

3.2.2.1 Guided genetic algorithm

The search process in EvoCrash begins by randomly generating unit tests for the target
frame. In this phase, called guided initialization, the target method corresponding to
the selected frame (i.e., the failing method to which the exception is propagated)
is injected in every randomly generated unit test. During subsequent phases of the
search, guided crossover and guided mutation, standard evolutionary operations are
applied to the unit tests. However, applying these operations involves the risk of losing
the injected failing method. Therefore, the algorithm ensures that only unit tests with
the injected failing method call remain in the evolution loop. If the generated test by
crossover does not contain the failing method, the algorithm replaces it with one of
its parents. Also, if after a mutation, the resulting test does not contain the failing
method, the algorithm redoes the mutation until the the failing method is added to
the test again. The search process continues until either the search budget is over or
a crash reproducing test case is found.

To evaluate the generated tests, EvoCrash applies the following weighted sum fitness



Chapter 3. Large-scale Evaluation of EvoCrash 79

function [204] to a generated test t:

ƒ (t) =







3 × ds(t) + 2 ×m(decept) +m(dtrce) if the line is not reached
3 ×mn(ds) + 2 × decept(t) +m(dtrce) if the line is reached
3 ×mn(ds) + 2 ×mn(decept) + dtrce(t) if the exception is thrown

(3.1)
Where:

• ds ∈ [0,1] indicates the distance between the execution of t and the target
statement s located at the target line. This distance is computed using the ap-
proach level, measuring the minimum number of control dependencies between
the path of the code executed by t and s, and normalized branch distance, scor-
ing how close t is to satisfying the branch condition for the branch on whichs is
directly control dependent [160]. If the target line is reached by the test case,
d(t) equals to 0.0;

• decept(t) ∈ {0,1} indicates if the target exception is thrown (de = 0) or not
(de = 1);

• dtrce(t) ∈ [0,1] indicates the similarity of the input stack trace and the one
generated by t by looking at class names, methods names and line numbers;

• m(·) denotes the maximum possible value for the function.

Since the stack trace similarity is relevant only if the expected exception is thrown
by t, and the check whether the expected exception is thrown or not is relevant only
if the target line where the exception propagates is reached, decept and dtrce are
computed only upon the satisfaction of two constraints: the target exception has to be
thrown in the target line s and the stack trace similarity should be computed only if
the target exception is actually thrown.

Unlike other stack trace similarity measures (e.g., [194]), Soltani et al. [204] do not
require two stack traces to share the same common prefix to avoid rejecting stack
traces where the difference is only in one intermediate frame. Instead, for each frame,
dtrce(t) looks at the closest frame and compute a distance value. Formally, for an
original stack trace S∗ and a test case t producing a stack trace S, dtrce(t) is defined
as follows:

dtrce(t) = φ

 

∑

ƒ∗∈S∗
mn{dƒ ƒ (ƒ∗, ƒ ) : ƒ ∈ S}

!

(3.2)

Where φ() = /(+1) is a normalization function [160] and dƒ ƒ (ƒ∗, ƒ )measures
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the difference between two frames as follows:

dƒ ƒ (ƒ∗, ƒ ) =







3 if the classes are different
2 if the classes are equal but the methods are different
φ (|∗ −|) otherwise

(3.3)
Where  (resp. ∗) is the line number of the frame ƒ (resp. ƒ∗).

Each of the three components if the fitness function defined in Equation 3.1 ranges
from 0.0 to 1.0, the overall fitness value for a given test case ranges from 0.0 (crash
is fully reproduced) to 6.0 (no test was generated), depending on the conditions it
satisfies.

3.2.2.2 Comparison with the state-of-the-art

Crash reproduction tools. Table 3.2 presents the number of crashes used in the
benchmarks used to evaluated stack-trace based post-failure crash reproduction tools
as well as their crash reproduction rates. EvoCrash has been evaluated on various
crashes reported in other studies and has the highest reproduction rate.

EvoSuite. Table 3.2 also reports the comparison of EvoCrash with EvoSuite, using
exception coverage as the primary objective, applied by Soltani et al. [204]. All the
crashes reproduced by EvoSuite could also be reproduced by EvoCrash on average
170% faster and with a higher reproduction rate.

3.3 Benchmark design

Benchmarking is a common practice to assess a new technique and compare it to the
state of the art [199]. For instance, SF110 [105] is a sample of 100 Java projects from
SourceForge, and 10 popular Java projects from GitHub, that may be used to assess
(search based) test case selection techniques. In the same way, Defects4J [135] is a
collection of bugs coming from popular open-source projects: for each bug, a buggy
and a fixed version of the projects, as well as bug revealing test case, are provided.
Defects4J is aimed to assess various testing techniques like test case selection or fault
localization.

In their previous work, Soltani et al. [202], Xuan et al. [215], and Chen and Kim [81]
used Apache Commons Collections [47], Apache Ant [46], and Apache Log4j [48]
libraries. In addition to Apache Ant and Apache Log4j, Nayrolles et al. [173] used
bug reports from 8 other open-source software.
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Table 3.2: The number of crashes used in each crash reproduction tool experiment,
the gained reproduction by them, and the involved projects.

Tool Reproduced/Total Rate Projects

EvoCrash [202,204] 46/54 85%

Apache Commons Collections
Apache Ant

Apache Log4j
ActiveMQ
DnsJava

JFreeChart

EvoSuite [204] 18/54 33%

Apache Commons Collections
Apache Ant

Apache Log4j
ActiveMQ
DnsJava

JFreeChart

STAR [81] 30/51 59%
Apache Commons Collections

Apache Ant
Apache Log4j

MuCrash [215] 8/12 66% Apache Commons Collections

JCharming [173] 8/12 66%

Apache Ant
Apache Log4j

ActiveMQ
DnsJava

JFreeChart

In this paper we enhance previous efforts to build a benchmark dedicated to crash re-
production by collecting cases coming from both state of the art literature and actively
maintained industrial open-source projects with well documented bug trackers.

3.3.1 Projects selection protocol

As Table 3.2 clearly shows, current crash reproduction tools are not evaluated using a
common benchmark. This hampers progress in the field as it makes it hard to compare
approaches. To be able to perform analysis of the results of a crash reproduction
attempt, we define the following benchmark requirements for our benchmark:

BR1, to be part of the benchmark, the projects should have openly accessible binar-
ies, source code, and crash stack traces (in an issue tracker for instance);
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BR2, they should be under active maintenance to be representative of current soft-
ware engineering practices and ease communication with developers;

BR3, each stack trace should indicate the version of the project that generated the
stack trace; and

BR4, the benchmark should include projects of varying size.

To best of our knowledge, there is no benchmark fulfilling those requirements. The
closest benchmark is Defects4j. However, only 25% of the defects manifest trough a
crash stack trace (BR1) and the projects are relatively small (BR4). To address those
limitations, we built a new benchmark dedicated to the crash reproduction tools.

To build our benchmark, we took the following approach. First, we investigated pro-
jects collected in SF110 [105] and Defects4J [135] as state of the art benchmarks.
However, as most projects in SF110 have not been updated since 2010 or earlier,
we discarded them from our analysis (BR2). From Defects4J, we collected 73 cases
where bugs correspond to actual crashes: i.e., the execution of the test case highlight-
ing the bug in a given buggy version of a project generates a stack trace that is not a
test case assertion failure.

As also discussed by Fraser and Arcuri [105], to increase the representativeness of
a benchmark, it is important to include projects that are popular and attractive to
end-users. Additionally to Defects4J, we selected two industrial open-source projects:
XWiki [216] and Elasticsearch [97]. XWiki is a popular enterprise wiki management
system. Elasticsearch, a distributed RESTful search and analytic engine, is one of the
ten most popular projects on GitHub5. To identify the top ten popular projects from
Github, we took the following approach: (i) we queried the top ten projects that had
the highest number of forks; (ii) we queried the top ten projects that had the highest
number of stars; (iii) we queried the top ten trending projects; and (iv) took the
intersection of the three.

Four projects were shared among the above top-ten projects, namely: Java-design-
patterns [128], Dubbo [95], RxJava [195], and Elasticsearch. To narrow down the
scope of the study, we selected Elasticsearch, which ranked the highest among the
four shared projects.

5This selection was performed on 26/10/2017.
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3.3.2 Stack trace collection and preprocessing

For each project, we collected stack traces to be reproduced as well as the project
binaries, with specific versions on which the exceptions happened.

3.3.2.0.1 Defects4J. From the 395 buggy versions of the Defects4J projects, we
kept only the bugs relevant to our crash reproduction context (73 cases), i.e., the
bugs that manifest as crashes. We manually inspected the stack traces generated by
the failing tests and collected those which are not JUnit assertion failures (i.e., those
which are due to an exception thrown by the code under test and not by the JUnit
framework). For instance, for one stack trace from the Joda-Time project:

0 java.lang.IllegalArgumentException:
1 at org.joda.time.Partial.<init>(Partial.java:224)
2 at org.joda.time.Partial.with(Partial.java:466)
3 at org.joda.time.TestPartial_Basics.testWith_baseAndArgHaveNoRange(...)

We only consider the first and second frames (lines 1 and 2). The third and following
lines concern testing classes of the project, which are irrelevant for crash reproduc-
tion. They are removed from the benchmark, resulting in the following stack trace
with two frames:

0 java.lang.IllegalArgumentException:
1 at org.joda.time.Partial.<init>(Partial.java:224)
2 at org.joda.time.Partial.with(Partial.java:466)

We proceeded in the same way for each Defects4J project and collected a total of
73 stack traces coming from five (out of the six) projects: JFreeChart, Commons-
lang, Commons-math, Mockito, and Joda-Time. All the stack traces generated by the
Closure compiler test cases are JUnit assertion failures.

3.3.2.0.2 Elasticsearch. Crashes for Elasticsearch are publicly reported to the is-
sue tracker of the project on GitHub6. Therefore, we queried the reported crashes,
which were labelled as bugs, using the following string "exception is:issue
label:bug". From the resulting issues (600 approx.), we manually collected the
most recent ones (reported since 2016), which addressed the following: (i) the ver-
sion which crashed was reported, (ii) the issue was discussed by the developers and
approved as a valid crash to be fixed. The above manual process resulted in 76 crash
stack traces.

6https://github.com/elastic/elasticsearch/issues

https://github.com/elastic/elasticsearch/issues
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3.3.2.0.3 XWiki. XWiki is an open source project which has a public issue tracker7.
We investigated first 1000 issues which are reported for XWIK-7.2 (released in Septem-
ber 2015) to XWIK-9.6 (released in July 2017). We selected the issues where: (i) the
stack trace of the crash was included in the reported issue, and (ii) the reported issue
was approved by developers as a valid crash to be fixed. Eventually, we selected a
total of 51 crashes for XWIKI.

3.4 The JCrashPack benchmark

The result of our selection protocol is a benchmark with 200 stack traces called
JCrashPack. For each stack trace, based on the information from the issue tracker and
the Defects4J data, we collected: the Java project in which the crash happened, the
version of the project where the crash happened and (when available) the fixed version
or the fixing commit reference of the project; the buggy frame (i.e., the frame in the
stack trace targeting the method where the bug lays); and the Cyclomatic Complexity
Number (CCN) and the Non-Commenting Sources Statements (NCSS) of the project,
presented in Figure 3.1. Due to the manual effort involved in filtering, verifying and
cleaning up stack traces, issues, the collection of stack traces and binaries (including
the project’s dependencies binaries) took about 4.5 person-months in total.

Figure 3.1 presents the average Cyclomatic Complexity Number (CCN) per method
for each project and the Non-Commenting Sources Statements (NCSS) per project,
ordered by version number, to give an idea of the complexity of a project. Also, Table
3.3 gives the number of versions and the average number of non-commenting source
statement for each project in JCrashPack. As illustrated in the table and figure, JCrash-
Pack contains projects of diverse complexities (the CCN for the least complex project
is 1.77, and for the most complex is 3.38) and sizes (the largest project has 177,840
statements, and the smallest one holds 6,060 statements on average), distributed
among different versions.

Table 3.4 shows the distribution of stack traces per exception type for the six most
common ones, the Other category denoting remaining exception types. According
to this table, the included stack traces in JCrashPack covers different types of the
exceptions. Also, they are varied in the size (number of frames): the smallest stack
traces have one frame and the largest, a user-defined exception in Other, has 175
frames.

7https://jira.xwiki.org/browse/XWIKI/

https://jira.xwiki.org/browse/XWIKI/
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Figure 3.1: Complexity and size of the different projects

JCrashPack is extensible and publicly available on GitHub.8 We provide guidelines
to add new crashes to the benchmark and make a pull request to include them in
JCrashPack master branch. The detailed numbers for each stack trace and its project
are available on the JCrashPack website.

3.5 Running experiments with ExRunner

We combine JCrashPack with ExRunner, a tool that can be used for running experi-
ments with a given stack trace-based crash reproduction tool. This tool (i) facilitates
the automatic parallel execution of the crash reproduction instances, (ii) ensures ro-
bustness in the presence of failures during the crash reproduction failure, and (iii) al-
lows to plug different crash reproduction tools to allow a comparison of their capab-
ilities.

Figure 3.2 gives an overview of ExRunner architecture. The job generator takes as
input the stack traces to reproduce, the path to the Jar files associated to each stack
trace, and the configurations to use for the stack trace reproduction tool under study.
For each stack trace, the job generator analyzes the stack frames and discards those

8At https://github.com/STAMP-project/JCrashPack

https://github.com/STAMP-project/JCrashPack
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Table 3.3: The number of versions and average number of statements (NCSS) for
each project.

Applications Number of versions NCSS
Commons-lang 22 13.38k
Commons-math 27 29.98k
Mockito 14 6.06k
Joda-Time 8 19.41k
JFreechart 2 63.01k
XWiki 32 177.84k
Elasticsearch 46 124.36k
Total 151 62.01k

Stack traces

Jo
b 

ge
ne

ra
to

r

Observer

Thread 1

Thread n

.

.

Job 1
Logs

Results

Tool configuration Job n

Test case

Jar files
.
.

Logs

Results
Test case

Figure 3.2: ExRunner overview

with a target method that does not belong to the target system, based on the package
name. For instance, frames with a target method belonging to the Java SDK or other
external dependencies are discarded from the evaluation. For each configuration and
stack trace, the job generator creates a new job description (i.e., a JSON object with
all the information needed to run the tool under study) and adds it to a queue.

To speed-up the evaluation, ExRunner multithreads the execution of the jobs. The
number of threads is provided by the user in the configuration of ExRunner and de-
pends on the resources available on the machine and required by one job execution.
Each thread picks a job from the waiting queue and executes it. ExRunner users may
activate an observer that monitors the jobs and takes care of killing (and reporting)
those that do not show any sign of activity (by monitoring the job outputs) for a user-
defined amount of time. The outputs of every job are written to separate files, with
the generated test case (if any) and the results of the job execution (output results
from the tool under study).

For instance, when used with EvoCrash, the log files contain data about the target
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method, progress of the fitness function value during the execution, and branches
covered by the execution of the current test case (in order to see if the line where the
exception is thrown is reached). In addition, the results contain information about
the progress of search (best fitness function, best line coverage, and if the target
exception is thrown), and number of fitness evaluations performed by EvoCrash in
an output CSV file. If EvoCrash succeeds to replicate the crash, the generated test is
stored separately.

As mentioned by Fraser et al. [102], any research tool developed to generate test cases
may face specific challenges. One of these is long (or infinite) execution time of the
test during the generation process. To manage this problem, EvoSuite uses a timeout
for each test execution, but sometimes it fails to kill sub-processes spawned during
the search [102]. We also experienced EvoCrash freezing during our evaluation. In
order to handle this problem, ExRunner creates an observer to check the status of each
thread executing an EvoCrash instance. If one EvoCrash execution does not respond
for 10 minutes (66% of the expected execution time), the Python script kills the
EvoCrash process and all of its spawned threads.

Another challenge relates to garbage collection: we noticed that, at some point of the
execution, one job (i.e., one JVM instance) allocated all the CPU cores for the execu-
tion of the garbage collector, preventing other jobs to run normally. Moreover, since
EvoCrash allocates a large amount of heap space to each sub-process responsible to
generate a new test case (since the execution of the target application may require
a large amount of memory) [102], the garbage collection process could not retrieve
enough memory and got stuck, stopping all jobs on the machine. To prevent this beha-
viour, we set -XX:ParallelGCThreads JVM parameter to 1, enabling only one thread for
garbage collection, and limited the number of parallel threads per machine, depend-
ing on the maximal amount of allocated memory space. We set the number of active
threads to 5 for running on virtual machines, and 25 for running on two powerful ma-
chines. Using the logging mechanism in EvoCrash, we are able to see when individual
executions ran out of memory.

ExRunner is available together with JCrashPack.9 It presently has only been used to
perform EvoCrash benchmarking, yet it has been designed to be extensible to other
available stack trace reproduction tools using a plugin mechanism. Integrating an-
other crash reproduction tool requires the definition of two handlers, called by Ex-
Runner: one to run the tool with the inputs provided by ExRunner (i.e. the stack
trace, the target frame, and the classpath of the software under test); and one to
parse the output produced by the tool to pick up relevant data (e.g., the final status

9See https://github.com/STAMP-project/ExRunner.

https://github.com/STAMP-project/ExRunner
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of the crash reproduction, progress of the tool during the execution, etc.). Relevant
data are stored in a CSV file, readily available for analysis.10

3.6 Application to EvoCrash: setup

Having JCrashPack available allowed us to perform an extensive evaluation of Evo-
Crash, a state-of-the-art tool in search-based crash replication [204]. Naturally, our
first research question deals with the capability of EvoCrash to reproduce crashes
from JCrashPack:

RQ1.1 To what extent can EvoCrash reproduce crashes from JCrashPack?

Since the primary goal of our evaluation is to identify current limitations, we refine
the previous research question to examine which frames of the different crashes Evo-
Crash is able to reproduce:

RQ1.2 To what extent can EvoCrash reproduce the different frames of the crashes from
JCrashPack?

The diversity of crashes in JCrashPack also allows us to investigate how certain types
of crashes affect reproducibility. Thus, we investigate whether the exception type and
the project nature have an influence on the reproduction rate:

RQ2.1 How does project type influence performance of EvoCrash for crash reproduction?

In addition, different types of projects might have impact on how costly it is to repro-
duce the reported crashes for them. The second research question studies the influ-
ence of the exception and project type on the performance of EvoCrash:

RQ2.2 How does exception type influence performance of EvoCrash for crash reproduc-
tion?

Finally, we seek to understand why crashes could not be reproduced:

RQ3 What are the main challenges that impede successful search-based crash reproduc-
tion?

10 The ExRunner documentation includes a detailed tutorial describing how to proceed, avail-
able at https://github.com/STAMP-project/EvoCrash-JCrashPack-application#
run-other-crash-replication-tools-with-exrunner.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application#run-other-crash-replication-tools-with-exrunner
https://github.com/STAMP-project/EvoCrash-JCrashPack-application#run-other-crash-replication-tools-with-exrunner
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3.6.1 Evaluation setup

Number of executions. Due to the randomness of Guided Genetic Algorithm in Evo-
Crash, we executed the tool multiple times on each frame. The number of executions
has to strike a balance between the threats to external validity (i.e., the number of
stack traces considered) and the statistical power (i.e., number of runs) [50, 105].
In our case, we do not compare EvoCrash to other tools (see for instance Soltani et
al. [202, 204]), but rather seek to identify challenges for crash reproduction. Hence
we favor external validity by considering a larger amount of crashes compared to pre-
vious studies [204] and ran EvoCrash 10 times on each frame. In total, we executed
18,590 EvoCrash runs.

Search parameters. We used the default parameter values [51, 105] with the fol-
lowing additional configuration options: we chose to keep the reflection mechanisms,
used to call private methods, deactivated. The rationale behind this decision is that
using reflection can lead to generating invalid objects that break the class invari-
ant [154] during the search, which results in test cases helplessly trying to reproduce
a given crash [81].

After a few trials, we also decided to activate the implementation of functional mock-
ing available from EvoSuite [56] in order to minimize possible risks of environmental
interactions on crash reproduction. Functional mocking works as follows: when, in a
test case, a statement that requires new specific objects to be created (as parameters
of a method call for instance) is inserted, either a plain object is instantiated by invok-
ing its constructor, or (with a defined probability, left to its default value in our case)
a mock object is created. This mock object is then refined using when-thenReturn
statements, based on the methods called during the execution of the generated test
case. Functional mocking is particularly useful in the cases where the required object
cannot be successfully initialized (for instance, if it relies on environmental interac-
tions or if the constructor is accessible only trough a factory).

Investigating the impact of those parameters and other parameters (e.g., crossover
rate, mutation rate, etc. to overcome the challenges as identified in RQ3) is part of
our future work.

Search budget. Since our evaluation is executed in parallel on different machines, we
choose to express the budget time in terms of number of fitness evaluations: i.e., the
number of times the fitness function is called to evaluate a generated test case during
the execution of the guided generic algorithm. We set this number to 62,328, which
corresponds to the average number of fitness evaluations performed by EvoCrash
when running it during 15 minutes on each frame of a subset of 4 randomly selected
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stack traces on one out of our two machines. Both of the machines have the same
configuration: A cluster running Linux Ubuntu 14.04.4 LTS with 20 CPU-cores, 384
GB memory, and a 482 GB hard drive.

We partitioned the evaluation into two, one per available machine: all the stack traces
with the same kind of exception have been run on one machine for 10 rounds. For
each run, we measure the number of fitness evaluations needed to achieve reproduc-
tion (or the exhaustion of the budget if EvoCrash fails to reproduce the crash) and
the best fitness value achieved by EvoCrash (0 if the crash is reproduced and higher
otherwise). The whole process is managed using ExRunner. The evaluation itself was
executed during 10 days on our 2 machines.

3.7 Application to EvoCrash: results

In this section, we answer the first two research questions on the extent to which
the selected crashes and their frames were reproduced and the impact of the project
and the exception type on the performance of EvoCrash. We detail the results by
analyzing the outcome of EvoCrash in a majority of 10 executions for each frame of
each stack trace. We classify the outcome of each execution in one of the five following
categories:

reproduced: when EvoCrash generated a test that successfully reproduced the stack
trace at the given frame level;

ex. thrown: when EvoCrash generated a test that cannot fully reproduce the stack
trace, but covers the target line and throws the desired exception. The frames
of the exception thrown, however, do not contain all the original frames;

line reached: when EvoCrash generated a test that covers the target line, but does
not throw the desired exception;

line not reached: when none of the tests produced by EvoCrash could cover the tar-
get line within the available time budget; and

aborted: when EvoCrash could not generate an initial population to start the search
process.

Each outcome denotes a particular state of the search process. For the reproduced fra-
mes, EvoCrash could generate a crash-reproducing test within the given time budget
(here, 62,328 fitness evaluations). For the frames that could not be reproduced, either
EvoCrash exhausted the time budget (for ex. thrown, line reached, and line not reached
outcomes) or could not perform the guided initialization (i.e., generate at least one
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Figure 3.3: Reproduction outcome for the different crashes

test case with the target method) and did not start the search process (aborted out-
comes). For instance, if the class in the target frame is abstract, EvoCrash may fail to
find an adequate implementation of the abstract class to instantiate an object of this
class during the guided initialization.

3.7.1 Crash Reproduction Outcomes (RQ1)

For RQ1, we first look at the reproduced and non-reproduced crashes to answer
RQ1.1. If EvoCrash was successful in reproducing any frame of a stack trace in a
majority of 10 executions, we count the crash as a reproduced crash. Otherwise, we
count the crash as not reproduced. To answer RQ1.2, we detail the results by ana-
lyzing the outcome of EvoCrash in a majority of 10 executions for each frame of each
stack trace.

Figure 3.3 shows the number of reproduced and not reproduced crashes for each pro-
ject (and all the projects) and type of exception. EvoCrash is successful in reproducing
the majority of crashes (more than 75%) from Commons-lang, Commons-math, and
Joda-Time. For the other projects, EvoCrash reproduced 50% or less of the crashes,
with only 2 out of 12 crashes reproduced for Mockito. Crashes with an IllegalArgu-
mentException are the most frequently reproduced crashed: 16 out of 29 (55%).
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Before detailing the results of each frame of each crash, we first look at the frame
levels that could be reproduced. Figure 3.4 presents for the 87 stack traces that could
be reproduced, the distribution of the highest frame level that could be reproduced for
the different crashes for each type of exception (in Figure 3.4a) and each application
(in Figure 3.4b). As we can see, EvoCrash replicates lower frame levels more often
than higher levels. For instance, for 39 out of the 87 reproduced stack traces, EvoCrash
could not reproduce frames beyond level 1 and could reproduce frames up to level 5
for only 9 crashes.

Figure 3.4a indicates that EvoCrash can replicate only the first frame in 14 out of 22
NPE crashes, while there is only one NPE crash for which EvoCrash could reproduce
a frame above level 3. In contrast, it is more frequent for EvoCrash to reproduce
higher frame levels of IAE stack traces: the highest reproduced frames in 6 out of 16
IAE crashes are higher than 3. Those results suggest that, when trying to reproduce
a crash, propagating an illegal argument value trough a chain of method calls (i.e.,
the frames of the stack trace) is easier than propagating a null value. According to
Figure 3.4b, EvoCrash can reproduce frames higher than 6 only for Commons-math
crashes. The highest reproduced frames in most of the reproduced crashes in this
project are higher than level 2 (12 out of 22). In contrast, for Elasticsearch the highest
reproduced frame is 1 in most of the crashes.

Both the number of crashes reproduced and the highest level at which crashes could
be reproduced confirm the relevance of our choice to consider crashes from XWiki
and Elasticsearch, for which the average number of frames (resp. 27.5 and 17.7) is
higher than for Defects4J projects (at most 6.0 for JFreeChart), as they represent an
opportunity to evaluate and understand current limitations.

3.7.1.1 Frames Reproduction Outcomes

To answer RQ1.2, we analyze the results for each frame individually. Figure 3.5
presents a summary of the results with the number of frames for the different out-
comes. Figure 3.6 details the same results by application and exception.

Overall, we see in Figure 3.5 that EvoCrash reproduced 171 frames (out of 1,859),
from 87 different crashes (out of 200) in the majority of the ten rounds. If we consider
the frames for which EvoCrash generated a crash-reproducing test at least once in the
ten rounds, the number of reproduced frames increases to 201 (from 96 different
crashes). In total, EvoCrash exhausted the time budget for 950 frames: 219 with a
test case able to throw the target exception, 245 with a test case able to reach the
target line, and 486 without a test case able to reach the line. EvoCrash aborted
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the search for 738 frames, 455 of which were from Elasticsearch, the application for
which EvoCrash had the most difficulties to reproduce a stack trace.

Figure 3.6 details the results by applications (columns) and exceptions (lines). The
last line (resp. column), denoted (all), provides the global results for the applications
(resp. exceptions). In the remainder of this section, we discuss the results for the
different applications and exceptions.

3.7.1.2 Defects4J applications

For the Defects4J applications, presented in the first five columns in Figure 3.6, in
total, 90 (out of 244) of the frames from 48 (out of 71) different crashes were re-
produced. For 94 frames, EvoCrash exhausted the time budget (46 ex. thrown, 25
line reached, and 23 line not reached) and aborted for 60 frames from the Defects4J
projects.

In particular, only 4 frames out of 61 frames for Mockito were successfully repro-
duced. For instance, EvoCrash could not reproduce MOCKITO-4b, which has only one
frame. From our evaluation, we observe that one very common problem when trying
to reproduce a ClassCastException is to find which class should be used to trigger the
exception.

public void noMoreInteractionsWantedInOrder(Invocation undesired){
throw new VerificationInOrderFailure(join( ...,

" ... " + undesired.getMock() + "’:", ...) );
}

The exception happens when the undesired.getMock() call returns an object that
cannot be cast to String. During the search, EvoCrash mocks the undesired object
and assigns some random value to return when the getMock method is called. Evo-
Crash generates a test able to cover the target line, but failing to trigger an exception.
Since the signature of this method is Object getMock(), EvoCrash assigns only
random Object values to return, where, from the original stack trace, a Boolean
value is required to trigger the exception.

3.7.1.3 XWiki and Elasticsearch

XWiki is one of the industrial open source cases in the evaluation, for which 53 (out
of 706) frames were successfully reproduced, 430 could not be reproduced with the
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given time budget (125 ex. thrown, 127 line reached, and 178 line not reached), and
223 aborted during the generation of the initial population. EvoCrash reproduced only
28 (out of 909) frames from Elasticsearch, for which, the majority of frames (455)
aborted during the generation of the initial population. However, EvoCrash was able
to start the search for 426 frames (48 ex. thrown, 93 line reached, and 285 line not
reached).

3.7.1.3.1 Variability of the reproductions. We also observed that XWiki and Elast-
icsearch have the highest variability in their outcomes. For XWiki (resp. Elasticsearch),
4 (resp. 3) frames that could be reproduced in a majority of time could however not
be reproduced 10 out of 10 times, compared to 2 frames for Commons-lang and
Commons-math. This could indicate a lack of guidance in the current fitness func-
tion of EvoCrash. For instance, for the Elasticsearch crash ES-26833, EvoCrash could
only reproduce the third frame 4 times out of 10 and was therefore not considered
as reproduced. After a manual inspection, we observed that EvoCrash gets stuck after
reaching the target line and throwing the expected exception. From the intermediate
test cases generated during the search, we see that the exception is not thrown by
the target line, but a few lines after. Since the fitness value improved, EvoCrash got
stuck into a local optima, hence the lower frequency of reproduction for that frame.11

Out future work includes improvement of the guidance in the fitness function and
a full investigation of the fitness landscape to decrease the variability of EvoCrash
outcomes.

3.7.1.3.2 Importance of large industrial applications. Compared to Defects4J
and XWiki applications, the crash reproduction rate drops from 36.9% for Defects4J,
to 7.5% for XWiki, and only 3% for Elasticsearch. Those results emphasize the im-
portance of large industrial applications for the assessment of search-based crash re-
production and enforce the need of context-driven software engineering research to
identify relevant challenges [72].

Additionally to the larger variability of reproduction rate, we observe that frequent
use of Java generics and static initialization, and most commonly, automatically gener-
ating suitable input data that resembles http requests are among the major reasons
for the encountered challenges for reproducing Elasticsearch crashes. In Section 3.8
we will describe 14 categories of challenges that we identified as the underlying
causes for the presented execution outcomes.

11A detailed analysis is available at https://github.com/STAMP-project/
EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/
Elasticsearch/ES-26833.md

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-26833.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-26833.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-26833.md
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3.7.1.4 Exceptions

The lines in Figure 3.6 presents the outcomes for the different exceptions. In particu-
lar, NPE, IAE, AIOOBE, and CCE are the most represented exceptions in JCrashPack.
For those exceptions, EvoCrash could reproduce, respectively, 32 (out of 499), 40
(out of 250), 6 (out of 99), and 10 (out of 72) frames. Looking at the reproduction
frequency, IAE is the most frequently reproduced exception (16%), followed by CCE
(13.8%), NPE (6.4%), and AIOOBE (6%).

This contrast with the number of frames for which EvoCrash aborted the search,
where NPE has the lowest frequency (181 frames, 36.2%), followed by IAE (101
frames, 40.4%), CCE (30 frames, 41.6%), and AIOOBE (48 frames, 48.4%). Interest-
ingly, those numbers show that EvoCrash is able to complete the guided initialization
for NPEs more often than for other exceptions.

Figure 3.6 also shows that the number of test cases that reach the line is low for
NPEs, meaning that whenever EvoCrash generates at test able to cover the line (line
reached), the evolution process will be able to progress and generate another test that
throws an exception (ex. thrown).

Summary (RQ1) To what extent can EvoCrash reproduce crashes from JCrashPack, and
how far it can proceed in the stack traces? Overall, EvoCrash reproduced 171 frames
(out of 1,859 - 9%), from 87 different crashes (out of 200 - 43.5%) in a majority out
of 10 executions. Those numbers climb to 201 frames (10.8%) from 96 crashes (48%)
if we consider at least one reproduction in one of the 10 executions. In most of the
reproduced crashes, EvoCrash can only reproduce the first two frames. It indicates
that since EvoCrash needs higher accuracy in setting the state of the software under
test for reproducing higher frames, increasing the length of the stack trace reduces
the chance of this tool for crash reproduction. When looking at larger industrial ap-
plications, the crash reproduction rates drop from 36.9% for Defects4J to 7.5% for
XWiki and 3% for Elasticsearch. The most frequently reproduced exceptions are Il-
legalArgumentExceptions. The exceptions for which EvoCrash is the most frequently
able to complete the guided initialization are NullPointerExceptions.

3.7.2 Impact of Exception Type and Project on Performance (RQ2)

To identify the distribution of fitness evaluations per exception type and project, we
filtered the reproduced frames out of the 10 rounds of execution. Tables 3.5 and 3.6
present the statistics for these executions, grouped by application and exception types,
respectively.
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We filtered out the frames that were not reproduced to analyze the impact of pro-
ject and exception types on the average number of fitness evaluations and, following
recommendations by Arcuri and Briand [50], we replaced the test of statistical dif-
ference by a confidence interval. For both groups, we calculated confidence intervals
with a 95% confidence level for medians with bootstrapping with 100,000 runs.12

As Table 3.5 shows, for four projects (Commons-lang, Mockito, XWiki, and Elastic-
search) the median number of fitness evaluations is low. On the contrary, the cost
of crash reproductions for Commons-math, Joda-Time, and JFreechart are higher in
comparison to the rest of projects. By comparing those results with the projects sizes
reported in Table 3.3, where the largest projects are XWiki (with NCSS = 177.84k)
and Elasticsearch (with NCSS = 124.36k), we observe that the effort required to re-
produce a crash cannot be solely predicted by the project size. This is consistent with
the intuition that the difficulty of reproducing a crash only depends on the methods
involved in the stack trace.

Similarly, according to Figure ??, the average CCN for Mockito, XWiki, and Elastic-
search is lower compared to other projects. Table 3.5 shows that reproducing crashes
from these projects is less expensive, and that reproducing crashes from Commons-
math, Joda-Time, and JFreechart, which all have higher average CCN, is more ex-
pensive. We also observe that the average CCN for Commons-lang is high, however,
contradicting the intuition that crashes from projects higher CCN are more expens-
ive to reproduce, the cost for reproducing crashes in Commons-lang is low compared
to other projects. This can be explained by the levels of the frames reproduced by
EvoCrash: according to Figure 3.4, the average level of the reproduced frames in the
crashes from Commons-lang is low compared to the other projects and, as we dis-
cussed in the previous section, reproducing crashes with fewer frames is easier for
EvoCrash.

In general, we observe that the performance of EvoCrash depends on the complex-
ity of the project and the frame level in the stack trace. Future work includes further
investigations to determine which other factors (e.g., code quality) can influence Evo-
Crash performance.

From Table 3.6, we observe that for CCE, SIOOBE, and AIOOBE, the cost of generating
a crash-reproducing test case is high, while for NPE, IAE, and ISE, the cost is lower.
One possible explanation could be that generating input data which is in a suitable
state for causing cast conflicts, or an array which is in the right state to be accessed

12We used the boot function from the boot library in R to compute the basic intervals with boot-
strapping. See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/
tree/master/results to reproduce the statistical analysis.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results
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by an illegal index is often non-trivial.

In contrast, to trigger an NPE, it is often enough to return a null value not checked
by the crashing method. For example, Listing 3.1 shows the stack trace of CHART-
4b, a crash from the JFreeChart application. The crash happens at line 1490 of the
createScatterPlot method presented in Listing 3.2. Listing 3.3 shows the test
case generated by EvoCrash that reproduces the 6th frame (line 6 in Listing 3.1) of the
stack trace. First, the test initializes the mocks used as mandatory parameters values
(from line 2 to 4), before calling the createScatterPlot method (at line 5). The
ds XYDataset mock is used along the various calls (from line 6 to 1 in Listing 3.1),
up to the method getDataRange presented in Listing 3.4 that triggers the NPE at
line 4493. In our case, the null value is returned by the getRendererForDataset
call with the propagated ds mock at line 4491.

Listing 3.1: Stack trace for the crash CHART-4b

0 java.lang.NullPointerException
1 at org. jfree .chart. plot .XYPlot.getDataRange(XYPlot.java:4493)
2 at org. jfree .chart. axis .NumberAxis.autoAdjustRange(NumberAxis.java:434)
3 at org. jfree .chart. axis .NumberAxis.configure(NumberAxis.java:417)
4 at org. jfree .chart. axis .Axis. setPlot (Axis.java:1044)
5 at org. jfree .chart. plot .XYPlot.<init>(XYPlot.java:660)
6 at org. jfree .chart.ChartFactory.createScatterPlot (ChartFactory.java:1490)

Listing 3.2: Code excerpt from JFreeChart ChartFactory.java

1478 public static JFreeChart createScatterPlot(String title , String xAxisLabel,
1479 String yAxisLabel, XYDataset dataset, PlotOrientation orientation ,
1480 boolean legend, boolean tooltips , boolean urls) {
1481

1482 if (orientation == null) {
1483 throw new IllegalArgumentException("Null ’orientation’ argument.");
1484 }
1485 NumberAxis xAxis = new NumberAxis(xAxisLabel);
1486 xAxis.setAutoRangeIncludesZero(false);
1487 NumberAxis yAxis = new NumberAxis(yAxisLabel);
1488 yAxis.setAutoRangeIncludesZero(false);
1489

1490 XYPlot plot = new XYPlot(dataset, xAxis, yAxis, null);
1491

1492 [...]
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1493 }

Listing 3.3: The test case generated by EvoCrash for reproducing the 6th frame of
CHART-4b

1 public void test () throws Throwable {
2 XYDataset ds = mock(XYDataset.class, new ViolatedAssumptionAnswer());
3 doReturn(0).when(ds).getSeriesCount();
4 PlotOrientation pl = mock(PlotOrientation.class, new

ViolatedAssumptionAnswer());
5 ChartFactory.createScatterPlot ((String) null , (String) null , (String) null , ds,

pl , true, true, true);
6 }

Listing 3.4: Code excerpt from JFreeChart XYPlot.java

4490 public Range getDataRange(ValueAxis axis) {
4491 XYItemRenderer r = getRendererForDataset(d); // d == ds and

getRendererForDataset(d) returns null
4492 [...]
4493 Collection c = r.getAnnotations(); // r is null and throws a NPE
4494 [...]
4495 }

Considering the presented results in Figure 3.6 and Table 3.5, crash replication for
various exceptions may be dependent on project type. Figure 3.7 presents the results
of crash reproduction grouped both by applications and exception types. As the figure
shows, the cost of reproducing NPE is lower for Elasticsearch, compared to XWiki
and JFreechart, and the cost of reproducing IAE is lower for Commons-lang than for
Elasticsearch. We also observe differences in terms of costs of reproducing AIOOBE
and SIOOBE for different projects.

Summary (RQ2.1) How does project type influence performance of EvoCrash for crash
reproduction?

We observed that the factors are (i) the complexity of the the project, and (ii) the
level of the reproduced frames (reproducing higher frame requires more effort). Fur-
thermore, we see no link between the size of the project and the effort required to
reproduce one of its crashes.
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Summary (RQ2.2) How does exception type influence performance of EvoCrash for
crash reproduction?

For the exceptions, we observe that for ClassCastException, ArrayIndexOutOfBou-
ndsException and StringIndexOutOfBoundsException, the cost of generating a crash-
reproducing test case is high, while for NullPointerException, IllegalArgumentExce-
ption, and IllegalStateException, the cost is lower. This result indicates that the cost
of reproducing types of exceptions for a non-trivial scenario (e.g., class conflicts or
accessing an illegal state of an array) needs a more complex input generation. Fur-
thermore, accessing the corresponding complex state is more time consuming for the
search process.

3.8 Challenges for crash reproduction (RQ3)

To identify open problems and future research directions, we manually analyzed the
execution logs of 1,653 frames that could not be reproduced in any of the 10 ex-
ecutions. This analysis includes a description of the reason why a frame could not
be reproduced.13 Based on those descriptions, we grouped the reason of the different
failures into 13 categories and identified future research directions. Table 3.7 provides
the number and frequency of frames classified in each category.14 The complete cat-
egorization table is available in our replication package.15

For each challenge, we discuss to what extent it is crash-reproduction-specific and
its relation to search-based software testing in general. In particular, for challenges
previously identified by the related literature in search-based test case generation, we
highlight the differences originating from the crash reproduction context.

3.8.1 Input data generation

Generating complex input objects is a challenge faced by many automated test gen-
eration approaches, including search-based software testing and symbolic execution

13Available at https://github.com/STAMP-project/EvoCrash-JCrashPack-application/
tree/master/results/manual-analysis.

14For each category, we provide illustrative examples from https://github.com/STAMP-project/
EvoCrash-JCrashPack-application/tree/master/results/examples.

15The full table is available at https://github.com/STAMP-project/
EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/
categorisation.csv.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results/manual-analysis
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results/manual-analysis
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results/examples
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results/examples
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/categorisation.csv
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/categorisation.csv
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/categorisation.csv


100 3.8. Challenges for crash reproduction (RQ3)

Listing 3.5: Excerpt of the stack trace for the crash XWIKI-13708

0 java.lang.NullPointerException: null
1 at com.xpn.xwiki.internal.template.TemplateListener.onEvent(TemplateListener.
2 java:79)
3 at org.xwiki.observation. internal .DefaultObservationManager.notify(Default
4 ObservationManager.java:307)
5 at org.xwiki.observation. internal .DefaultObservationManager.notify(Default
6 ObservationManager.java:269)
7 [...]

[70]. Usually, the input space of each input is large and generating proper data en-
abling the search process to cover its goals is difficult.

As we can see from Table 3.7, this challenge is substantial in search-based crash re-
production. Trying to replicate a crash for a target frame requires to set the input
arguments of the target method and all the other calls in the sequence properly such
that when calling the target method, the crash happens. Since the input space of a
method is usually large, this can be challenging. EvoCrash uses randomly generated
input arguments and mock objects as inputs for the target method. As we described
in Section 3.7, we observe that a widespread problem when reproducing a ClassCast-
Exception (CCE) is to identify which types to use as input parameters such that a CCE
is thrown. In the case of a CCE, this information can be obtained from the error mes-
sage of the exception. Our future work includes harvesting additional information,
like error messages, to help the search process.

We also noticed that some stack traces involving Java generic types make EvoCrash
abort the search after failing to inject the target method in every generated test dur-
ing the guided initialization phase. Generating generic type parameters is also a recog-
nized challenge for automated testing tools for Java [104]. To handle these paramet-
ers, EvoCrash, based on EvoSuite’s implementation [104], collects candidate types
from castclass and instanceof operators in Java bytecode, and randomly assign
them to the type parameter. Since the candidate types may themselves have generic
type parameters, a threshold is used to avoid large recursive calls to generic types.
One possible explanation for the crashes in these cases could be that the threshold is
not correctly tuned for the kind of classes involved in the recruited projects. Thus, the
tool fails to set up the target method to inject to the tests. Based on the results of our
evaluation, handling Java generics in EvoCrash needs further investigation to identify
the root cause(s) of the crashes and devise effective strategies to address them.
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Listing 3.6: Code excerpt from method onEvent in TemplateListener.java

72 public void onEvent(Event event, Object source, Object data) {
73 XWikiDocument document = (XWikiDocument) source;
74

75 if (document.getXObject(WikiSkinUtils.SKINCLASS_REFERENCE) != null) {
76 if (event instanceof AbstractAttachmentEvent) {
77 XWikiAttachment attachment =

document.getAttachment(((AbstractAttachmentEvent)
event).getName());

78 String id = this. referenceSerializer . serialize (attachment.getReference());
// target line

79 [...]
80 }
81 }
82 }

For instance, EvoCrash cannot reproduce the first frame of crash XWIKI-1370816,
presented in Listing 3.5. The target method onEvent (detailed in Listing 3.6) has
three parameters. EvoCrash could not reach the target line (line 78 in Listing 3.6) as
it failed to generate a fitted value for the second parameter (source). This (Object)
parameter should be castable to XWikiDocument and should return values for get-
XObject() or getAttachment() (using mocking for instance).

Chosen examples: XWIKI-13708, frame 1; ES-22922, frame 5; ES-20479, frame 10.17

3.8.2 Complex code

Generating tests for complex methods is hard for any search-based software testing
tool [119]. In this study, we indicate a method as complex if (i) it contains more
than 100 lines of code and high cyclomatic complexity; (ii) it holds nested predicates
[119, 158]; or (iii) it has the flag problem [158, 161], which include (at least one)
branch predicate with a binary (boolean) value, making the landscape of the fitness
function flat and turning the search into a random search [119].

16https://jira.xwiki.org/browse/XWIKI-13708
17See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/

master/results/examples/InputDataGeneration.md.

https://jira.xwiki.org/browse/XWIKI-13708
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/InputDataGeneration.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/InputDataGeneration.md
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Listing 3.7: Stack trace for the crash XWIKI-12584
0 java.lang.ClassCastException: [Ljava.lang.Object; cannot be cast to java.lang.String
1 at [...].XWikiHibernateStore.searchDocumentReferencesInternal([...]:2457)
2 at [...].XWikiHibernateStore.searchDocumentsNamesInternal([...]:2440)
3 at [...].XWikiHibernateStore.searchDocumentsNames([...]:2246)
4 at [...].XWikiHibernateStore.searchDocumentsNames([...]:2230)
5 at [...].XWikiCacheStore.searchDocumentsNames([...]:373)
6 at [...].XWiki.searchDocuments([...]:576)

As presented in Section 4.2, the first component of the fitness function that is used in
EvoCrash encodes how close the algorithm is to reach the line where the exception
is thrown. Therefore, frames of a given stack trace pointing to methods with a high
code complexity18 are more costly to reproduce, since reaching the target line is more
difficult.

Handling complex methods in search-based crash reproduction is harder than in gen-
eral search-based testing. The search process in crash reproduction should cover (in
most cases) only one specific path in the software under test to achieve the repro-
duction. If there is a complex method on this path, the search process cannot achieve
reproduction without covering it. Unlike the more general coverage driven search-
based testing approach (with line coverage for instance), where the are usually mul-
tiple possible executions paths to cover a goal.

Chosen examples: XWIKI-13096, frame 3; ES-22373, frame 10.19

3.8.3 Environmental dependencies

As discussed by Arcuri et al. [54], generating unit tests for classes which interact with
the environment leads to (i) difficulty in covering certain branches which depend on
the state of the environment, and (ii) generating flaky tests [155], which may some-
times pass, and sometimes fail, depending on the state of the environment. Despite
the numerous advances made by the search-based testing community in handling en-
vironmental dependencies [54, 105], we noticed that having such dependencies in
the target class hampers the search process. Since EvoCrash builds on top of Evo-
Suite [103], which is a search-based unit test generation tool, we face the same prob-
lem in the crash reproduction problem as well.

18In some cases for Elasticsearch, the failing methods have nearly 300 lines of source code.
19See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/

master/results/examples/ComplexCode.md.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/ComplexCode.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/ComplexCode.md
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For instance, Listing 3.7 shows the stack trace of the crash XWIKI-12584.20 During
the evaluation, EvoCrash could not reproduce any of the frames of this stack trace.
During our manual analysis, we discovered that, for the four first frames, EvoCrash
was unable to instantiate an object of class XWikiHibernateStore,21 resulting
in an abortion of the search. Since the class XWikiHibernateStore relies on a
connection to an environmental dependency (here, a database), generating unit test
requires substantial mocking code22 that is hard to generate for EvoCrash. As for
input data generation, our future work includes harvesting and leveraging additional
information from existing tests to identify and use relevant mocking strategies.

Chosen examples: ES-21061, frame 4; XWIKI-12584, frame 4.23

3.8.4 Static initialization

In Java, static initializers are invoked only once when the class containing them is
loaded. As explained by Fraser and Arcuri [105], these blocks may depend on static
fields from other classes on the classpath that have not been initialized yet, and cause
exceptions such as NullPointerException to be thrown. In addition, they may in-
volve environmental dependencies that are restricted by the security manager, which
may also lead to unchecked exceptions being generated.

In our crash reproduction benchmark, we see that about 9% (see Table 3.7) of the
cases cannot be reproduced as they point to classes that have static initializers. When
such frames are used for crash reproduction with EvoCrash, the tool currently aborts
the search without generating any crash reproducing test.

As Fraser and Arcuri [105] discuss, automatically determining and solving all possible
kinds of dependencies in static initializers is a non-trivial task that warrants dedicated
research.

Chosen examples: ES-20045, frames 1 and 2.24

20Reported at https://jira.xwiki.org/browse/XWIKI-12584 and analyzed at https:
//github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/
results/manual-analysis/Xwiki/XWIKI-12584.md.

21See https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.
2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/main/java/com/
xpn/xwiki/store/XWikiHibernateStore.java

22See https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.
2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/test/java/com/
xpn/xwiki/store/XWikiHibernateStoreTest.java

23See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/examples/EnvironmentalDependencies.md.

24See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/

https://jira.xwiki.org/browse/XWIKI-12584
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/main/java/com/xpn/xwiki/store/XWikiHibernateStore.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/main/java/com/xpn/xwiki/store/XWikiHibernateStore.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/main/java/com/xpn/xwiki/store/XWikiHibernateStore.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/test/java/com/xpn/xwiki/store/XWikiHibernateStoreTest.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/test/java/com/xpn/xwiki/store/XWikiHibernateStoreTest.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/test/java/com/xpn/xwiki/store/XWikiHibernateStoreTest.java
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/EnvironmentalDependencies.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/EnvironmentalDependencies.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
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3.8.5 Abstract classes and methods

In Java, abstract classes cannot be instantiated. Although generating coverage driven
unit tests for abstract classes is possible (one would most likely generate unit tests for
concrete classes extending the abstract one or use a parametized test to check that
all implementations respect the contract defined by the abstract class), when a class
under test is abstract, EvoSuite (as the general test generation tool for java) looks
for classes on the classpath that extend the abstract class to create object instances of
that class. In order to cover (e.g., using line coverage) specific parts of the abstract
class, EvoSuite needs to instantiate the right concrete class allowing to execute the
different lines of the abstract class.

For crash reproduction, as we can see from Table 3.7, it is not uncommon to see ab-
stract classes and methods in a stack trace. In several cases from Elasticsearch, the
majority of the frames from a given stack trace point to an abstract class. Similarly to
coverage-driven unit test generation, EvoCrash needs to instantiate the right concrete
class: if EvoCrash picks the same class that has generated the stack trace in the first
place, then it can generate a test for that class that reproduces the stack trace. How-
ever, if EvoCrash picks a different class, it could still generate a test case that satisfies
the first two conditions of the fitness function (section 4.2). In this last case, the stack
trace generated by the test would match the frames of the original stack trace, as the
class names and line numbers would differ. The fitness function would yield a value
between 0 and 1, but it may never be equal to 0.

Chosen examples: ES-22119, frames 3 and 4; XRENDERING-422, frame 6.25

3.8.6 Anonymous classes

As discussed in the study by Fraser et al. [103], generating automated tests for cover-
ing anonymous classes is more laborious because they are not directly accessible. We
observed the same challenge during the manual analysis of crash reproduction results
generated by EvoCrash. When the target frame from a given crash stack trace points
to an anonymous object or a lambda expression, guided initialization in EvoCrash
fails, and EvoCrash aborts the search without generating any test.

Chosen examples: ES-21457, frame 8; XWIKI-12855, frames 30 and 31.26

master/results/examples/StaticInitialisation.md.
25See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/

master/results/examples/AbstractClass.md.
26See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/

master/results/examples/AnonymousClass.md.
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3.8.7 Private inner classes

Since it is not possible to access a private inner class, and therefore, not possible to
directly instantiate it, it is difficult for any test generation tool in Java to create an
object of this class. As for anonymous classes, this challenge is also present for crash
reproduction approaches. In some crashes, the target frame points to a failing method
inside a private inner class. Therefore, it is not possible to directly inject the failing
method from this class during the guided initialization phase, and EvoCrash aborts
the search.

Chosen example: MATH-58b, frame 3.27

3.8.8 Interfaces

In 6 cases, the target frame points to an interface. In Java, similar to abstract classes,
interfaces may not be directly instantiated. In these cases also, EvoCrash randomly se-
lects the classes on the classpath that implement the interface and, depending on the
class picked by EvoCrash, the fitness function may not reach 0.0 during the search
if the class is different from the one used when the input stack trace has been gen-
erated. This category is a special case of Abstract classes and methods (described in
Section 3.8.5), however, since the definition of a default behavior for an interface
is a feature introduced by Java 8 [175] that has, to the best of our knowledge, not
been previously discussed for search-based testing, we choose to keep it as a separate
category.

Chosen example: ES-21457, frame 9.28

3.8.9 Nested private calls

In multiple cases, the target frame points to a private method. As we mentioned in
Section 3.6, those private methods are not directly accessible by EvoCrash. To reach
them, EvoCrash detects other public or protected methods which invoke the target
method directly or indirectly and randomly choose during the search. If the chain of
method calls, from the public caller to the target method, is too long, the likelihood
that EvoCrash may fail to pick the right method during the search increases.

27See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/examples/PrivateInnerClass.md.

28See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/examples/Interface.md.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/PrivateInnerClass.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/PrivateInnerClass.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/Interface.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/Interface.md
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In general, calling private methods is challenging for any automated test generation
approach. For instance, Arcuri et al. [56] address this problem by using the Java reflec-
tion mechanism to access private methods and private attributes during the search.
As mentioned in Section 3.6.1, this can generate invalid objects (with respect to their
class invariants) and lead to generating test cases helplessly trying to reproduce a
given crash [81].

Chosen examples: XRENDERING-422, frames 7 to 9.29

3.8.10 Empty enum type

In the stack trace of the ES-25849 crash,30 the 4th frame points to an empty enu-
meration Java type.31 Since there are no values in the enumeration, EvoCrash was
not able to instantiate a value and aborted during the initialization of the population.
Frames pointing to code in an empty enumeration Java type should not be selected
as target frames and could be filtered out using a preliminary static analysis.

Chosen example: ES-25849, frame 4.

3.8.11 Frames with try/catch

Some frames have a line number that designates a call inside a try/catch block.
When the exception is caught, it is no longer thrown at the specific line given in the
trace, rather it is typically handled inside the associated catch blocks. From what
we observed, often catch blocks either (i) re-throw a checked exception, which yield
chained stack traces with information that is not exactly as the input stack trace but
can still be used for crash reproduction; or (ii) log the caught exception. Since Evo-
Crash only considers uncaught exceptions that are generated as the result of running
the generated test cases during the search, the logged stack traces is presently no use
for crash reproduction. Also, even if a stack trace is recorded to an error log, this stack
trace is not the manifestation of a crash per se. Indeed, once the exception logged, the
execution of the program continues normally.

29See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/examples/NestedPrivateCalls.md.

30The analysis is available at https://github.com/STAMP-project/
EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/
Elasticsearch/ES-25849.md.

31See https://github.com/jimczi/elasticsearch/blob/0a4b38b60c2752cdc6de819f5\
bf3414bd01f88c5/core/src/main/java/org/elasticsearch/index/fielddata/
ordinals/GlobalOrdinalsBuilder.java.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/NestedPrivateCalls.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/NestedPrivateCalls.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-25849.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-25849.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-25849.md
https://github.com/jimczi/elasticsearch/blob/0a4b38b60c2752cdc6de819f5\bf3414bd01f88c5/core/src/main/java/org/elasticsearch/index/fielddata/ordinals/GlobalOrdinalsBuilder.java
https://github.com/jimczi/elasticsearch/blob/0a4b38b60c2752cdc6de819f5\bf3414bd01f88c5/core/src/main/java/org/elasticsearch/index/fielddata/ordinals/GlobalOrdinalsBuilder.java
https://github.com/jimczi/elasticsearch/blob/0a4b38b60c2752cdc6de819f5\bf3414bd01f88c5/core/src/main/java/org/elasticsearch/index/fielddata/ordinals/GlobalOrdinalsBuilder.java
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For instance, for the crash ES-20298,32 EvoCrash cannot reproduce the fourth frame
of the crash. This frame points to the following method call in a try and catch:

try {
processResponse(response);

} catch (Throwable t) {
onFailure(t);

}

Even if an exception is thrown by the processResponse method, this exception is
caught and logged, and the execution of the program continues normally.

Generally, if an exception is caught in one frame, it cannot be reproduced (as it can-
not be observed) from higher level frames. For instance, for ES-20298, all frames
above level 4 cannot be reproduced since the exception is catch in frame 4 and not
propagated to the higher frames. This property of a crash stack trace implies that,
for now, depending on where in the trace such frames exist, only a fraction of the
input stack traces can actually be used for automated crash reproduction. Future de-
velopment of EvoCrash can alleviate this limitation by, additionally to the monitoring
of uncaught exceptions, read the error log to affecting the propagation of exceptions
during execution. However, unlike other branching instructions relying on boolean
values, for which classical coverage driven unit test generation can use the branch dis-
tance (see Section 3.2.2.1) to guide the search [160], there is little guidance offered
for try/catch instructions since the branching condition is implicit in one or more
instructions in the try.

Chosen example: ES-14457, frame 4.33

3.8.12 Missing line number

31 frames in JCrashPack have frames with a missing line number, as shown in List-
ing 3.8. This happens if the Java files have been compiled without any debug inform-
ation (by default, the Java compiler add information about the source files and line
numbers, for instance, when printing a stack trace) or if the frame points to a class

32Reported at https://github.com/elastic/elasticsearch/issues/20298 and analyzed
at https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/manual-analysis/Elasticsearch/ES-20298.md

33See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/examples/TryCatch.md.

https://github.com/elastic/elasticsearch/issues/20298
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-20298.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-20298.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/TryCatch.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/TryCatch.md
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Listing 3.8: An excerpt of the stack trace from the crash XRENDERING-422 with miss-
ing line numbers

1 at org.apache.xerces.parsers.XMLParser.parse(Unknown Source)
2 at org.apache.xerces.parsers.AbstractSAXParser.parse(Unknown Source)
3 at org.xml.sax.helpers.XMLFilterImpl.parse(XMLFilterImpl.java:357)

part of the standard Java library and the program has been run in the Java Runtime
Environment (JRE) and not the JDK.

Since EvoCrash currently requires a line number to compute the fitness values during
the search, those frames have been ignored during our evaluation and do not appear
in the results. Yet, as frames with missing line number appear in JCrashPack (and
in other stack traces), we decided to mention this trial here as a search-based crash
reproduction challenge. A possible solution, as the future work, is to relax the fitness
function so that it can still approximate fitness if line numbers are missing.

Chosen example: XRENDERING-422.34

3.8.13 Incorrect line numbers

In 37 cases, the target frame points to the line in the source code where the target
class or method is defined. This happens when the previous frame points to an an-
onymous class or a lambda expression. Such frames practically cannot be used for
crash reproduction as the location they point to does not reveal where exactly the tar-
get exception occurs. One possible solution would be to consider the frame as having
a missing line number and use the relaxed fitness function to approximate the fitness.

Chosen examples: MATH-49b, frames 1 and 4.35

3.8.14 Unknown

We were unable to identify why EvoCrash failed to reproduce 16 frames (out of 1,653
frames manually analyzed). In these cases, neither the logs nor the source code could
help us understand how the exception was propagated.

34The stack trace is available at https://github.com/STAMP-project/
EvoCrash-JCrashPack-application/blob/master/evaluation/JarFiles/resources/
logs/XWIKI/XRENDERING-422/XRENDERING-422.log

35See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/examples/IrrelevantFrames.md.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/evaluation/JarFiles/resources/logs/XWIKI/XRENDERING-422/XRENDERING-422.log
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/evaluation/JarFiles/resources/logs/XWIKI/XRENDERING-422/XRENDERING-422.log
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/evaluation/JarFiles/resources/logs/XWIKI/XRENDERING-422/XRENDERING-422.log
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/IrrelevantFrames.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/IrrelevantFrames.md
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3.8.14.0.1 Summary (RQ3) What are the open problems that need to be solved
to enhance search-based crash reproduction? Based on the manual analysis of
the frames that could not be reproduced at least once out of 10 rounds of executions,
we identified 13 challenges for search-based crash reproduction. We confirmed chal-
lenges previously identified in other search-based software testing approaches and
specified how they affect search-based crash reproduction. And discovered new chal-
lenges, more specific to search-based crash reproduction and explained how the can
affect other search-based software testing approaches.

These challenges are related to the difficulty to generate test cases due to complex
input data, environmental dependencies, or complex code; abstraction (static ini-
tialization, interfaces, abstract, and anonymous classes); encapsulation mechanisms
(private inner classes and nested private calls in the given stack trace) of object-
oriented languages; or the selection of the target frame in crash reproduction (in
try/catch blocks, in empty enumerations, when the location in the source code is
unknown, or when the frame has an incorrect line number).

3.9 Discussion

3.9.1 Empirical evaluation for crash reproduction

Conducting empirical evaluation for crash reproduction is challenging. It requires to
collect various artifacts from different sources and to analyze the results to determine,
in the case of a negative outcome, the cause that prevents the crash reproduction.
Some are easy to fix, like missing dependencies that were added to the project linked
to the stack trace, and for which we rerun the evaluation on the stack traces. The
others are detailed in Section 3.8, and serve to identify future research directions.

One of the most surprising causes is due to a line mismatch in some stack traces.
During the manual analysis of our results, we found out that three frames in two
different stack traces, coming from Defects4J projects, target the wrong lines in the
source code: the line numbers in the stack traces point to lines in the source code that
cannot throw the targeted exception. Since the stack traces were collected directly
from the Defects4J data (which reports failing tests and their outputs), we tried to
regenerate them using the provided test suite and found a mismatch between the line
numbers of the stack traces indeed. We reported those two projects to the Defects4J
developers:36 a bug in JDK7 [130] causes this mismatch. Since EvoCrash relies on

36See the issue at https://github.com/rjust/defects4j/issues/142.

https://github.com/rjust/defects4j/issues/142
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line numbers to guide its search, it could not reproduce the crashes. We recompiled
the source code, updated the stack trace accordingly in JCrashPack, and rerun the
evaluation for those two stack traces.

Thanks to JCrashPack and ExRunner, we are now able to ease empirical evaluation for
crash reproduction. ExRunner can be extended to other crash reproduction tools37 for
comparison, or assess the development of new ideas in existing tools. Our future work
also includes the prioritization of crashes from JCrashPack to allow quick feedback on
new ideas in a fast and automated way [43].

3.9.2 Usefulness for debugging

In our evaluation, we focused on the crash-replication capabilities of EvoCrash and
identified problems affecting those capabilities. We considered the generated tests
only to classify the outcomes of the EvoCrash generation process but did not assess
their actual usefulness for debugging.

Chen et al. [81] introduced a usefulness criterion for the crash reproduction ap-
proaches. According to this criterion, a crash reproducing test is useful to the de-
velopers if it covers the buggy frame: i.e., if the target frame for which the reproduc-
tion is successful is higher than the frame that points to the buggy method.

In our previous work [204], we conducted a controlled experiment to assess the use-
fulness of EvoCrash for debugging and bug fixing of two crashes (one from Apache
Commons Collections and one from Apache Log4j) with 35 master students. Res-
ults show that using a crash-replicating test case generated by EvoCrash may help to
locate and fix the defects faster. Also, this study confirmed the usefulness criterion
defined by the Chen et al. [81] but also found evidence that test cases categorized as
not useful can still help developers to fix the bug.

Since JCrashPack also includes two open source industrial and actively maintained
applications, it represents an excellent opportunity to confirm the usefulness of Evo-
Crash in an industrial setting. The key idea is to centralize the information in the issue
tracker by providing a test case able to replicate the crash reported in an issue in the
same issue (as an attachment for instance). This can be automated using, for instance,
a GitHub, GitLab or JIRA plugin that executes EvoCrash when a new issue contains
a stack trace. To assess the usefulness of EvoCrash in an industrial setting, we plan
to setup a case study [213] with our industrial partners. Hereafter, we outline the
main steps of the evaluation protocol using XWiki as subject: (i) select four crashes

37See how to extend ExRunner at https://github.com/STAMP-project/ExRunner.

https://github.com/STAMP-project/ExRunner
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to fix (two from open issues and two from closed issues) for which EvoCrash could
generate a crash reproducing test for frame 3 or higher; (ii) clone the XWiki Git re-
pository in GitHub and open four issues, corresponding to the four crash; (iii) remove
the fix for the two fixed issues; (iv) for each issue, append the test case generated by
EvoCrash; (v) ask (non-XWiki) developers to fix the issues; and finally, (vi) repeat the
same steps without adding the test cases generated by EvoCrash (i.e., omit step iv).
We would measure the time required to fix the issues (by asking participants to log
that time). For the two previously fixed issues, we will compare the fixes provided by
the participants with the fixes provided by XWiki developers. And for the two open
issues, we will ask feedback from the XWiki developers through a pull request with
the different solutions.

3.9.3 Benchmark building

JCrashPack is the first benchmark dedicated to crash reproduction. We deliberately
made a biased selection when choosing Elasticsearch as the most popular, trending,
and frequently-forked project from GitHub. Elasticsearch was among several other
highly ranked projects, which addressed other application domains, and thus were
interesting to explore. In the future, further effort should extend JCrashPack, possibly
by: (i) using a random selection methodology for choosing projects; (ii) involving
industrial projects from other application domains; and (iii) automatically collecting
additional information about the crashes, the stack traces, and the frames to further
understand current strengths and limitations of crash reproduction.

Building JCrashPack required substantial manual effort, not just for finding the issues,
but also for collecting the right versions of the system itself and its dependencies
needed to reproduce the given crash. Since we want it to be representative of current
crashes, we need to automate this effort as much as possible: for instance, by mining
stack traces from issue tracking systems [170].

Despite the benefits that the evaluation infrastructure could get from the inclusion of
JCrashPack bugs in Defects4J, i.e., the isolation of the bugs to ease replicatbility of
the evaluations [135], we designed JCrashPack as a standalone instead of extending
Defects4J. The main reason is that not all bugs in Defects4J manifest as crashes (only
73 out of 395 where selected to be part of JCrashPack). We also believe that the in-
tegration of the two benchmarks is not a smooth and easy process. Defects4J requires
isolation of the buggy and fixed versions of the source code, as wel as a test case able
to expose the bug [135]. However, not all issues were fixed at the time we collected
the crashes in JCrashPack. Also, XWiki and Elasticsearch are much larger applications
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(124,000 NCSS for Elasticsearch, 177,000 NCSS for XWiki distributed in a hierarchy
of several thousands of Maven projects) compared to the API libraries considered in
Defects4J (63,000 NCSS for JFreeChart). Only building them with their default test
suites already raised several issues. For those reasons, isolating the bug, the patch,
and the non-regression test cases for such kind of large projects is not a trivial task.

3.10 Future research directions for search-based crash
reproduction

From the evaluation and the challenges derived from our manual analysis, we devise
the following future research directions. While the same challenge can be addressed
in different ways, some requiring technical improvements of EvoCrash and other rais-
ing new research directions, we focus the discussion of this section on the latter.

3.10.1 Context matters

While search-based crash-reproduction with EvoCrash [202,204] outperformed other
approaches based on (i) backward symbolic execution [81], (ii) test case mutation
[?], and (iii) model-checking [173], our evaluation shows that the extent to which
crashes are reproduced varies. These results indicate the need for taking various
types of contexts and properties of software applications into account when devis-
ing an approach to a problem. Thus, we show that indeed, rather than seeking a
universal approach to search-based crash reproduction, it is important to find out
and address challenges specific to various types of application domains (e.g., RESTful
microservices vs. enterprise wiki applications) [49].

Furthermore, search-based crash replication boils down to seeking the execution path
that will reproduce a given stack trace. As with other search-based testing approaches,
it faces challenges about input data generation during the search when the input space
is large. Previous research on mocking and seeding [56,192] address this problem by
using functional mocking and extracting objects and constants from the bytecode.

We believe that taking context into account should go one step further for crash replica-
tion. With the development of DevOps [189] and continuous integration and delivery
pipelines, there is an increasing amount of available data on the execution of the soft-
ware. Those data can be used to guide the search more accurately. For instance, by
seeding the search using values observed in the execution logs and setting up values
for environmental dependencies (databases, external services, etc.).
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3.10.2 Stack trace preprocessing and target frame selection

Various factors may influence the selection of a target frame in a stack trace. As ob-
served in our evaluation, when not performed cautiously, this selection leads to un-
successful executions of EvoCrash. For instance, frames targeting code in a private
inner class, or irrelevant source code location (like, as we observed, class header or
annotation) should be discarded before performing the selection.

Frames targeting code in abstract classes or interfaces (only if the target method is
defined in the interface, which is possible from Java 8) may be of some use to find
the cause of the crash: for instance, to identify an incorrect subclass implementation
[154]. However, as abstract classes and interfaces cannot be directly instantiated,
the stack trace generated by EvoCrash can never be exactly the same as the given
stack trace. And, as for input arguments and generic type parameters, EvoCrash has
no indication on which subclass to pick, making the search difficult. In this case,
considering higher level frames (i.e., frames that are lower in the stack trace) may
help to pick the right subclass.

Those reasons motivate the need to develop stack trace analysis techniques in order to
help the selection of a target frame. This analysis will discard irrelevant and unknown
source location frames and provide a visualization to the developer to have a clear
view on what are his or her options, for instance by marking stack traces that point
to interfaces and abstract classes and recommend him to pick higher level frames.

For a given stack trace, this analysis will also identify frames pointing to a try/catch
block. Those stack traces are commonly reported by users to issue tracking systems
but cannot (for now) be completely reproduced by EvoCrash. Further investigation on
current error handling practices in Java code [75, 86] and how they are reported by
users [157] will help us to devise efficient approaches to replicate such stack traces.

3.10.3 Guided search

Besides usage of contextual information to enhance the generation of test cases dur-
ing the search process, we also consider to enhance the guidance itself. Search based
testing algorithms have several parameters (365 in EvoCrash), like population size,
search budget, probability of applying crossover and mutation, etc. As demonstrated
by Arcuri and Fraser [51], default parameters values work well on average, but may
be fare from optimal for specific frames and stack traces. A better characterization
of the stack traces in JCrashPack, trying different parameters, as well as improving
the fitness function itself are part of our future work. For instance the fitness func-
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tion could take other elements into account (e.g., compute a similarity for exception
messages). We will also consider multi-objectives search, where, for a given target
frame, reproducing each lower frame becomes an objective of the search. We plan
to reuse our evaluation infrastructure to compare those different approaches and in-
vestigate their different fitness landscapes to gain deeper understanding of the search
process for crash reproduction. And eventually devise guidelines on EvoCrash settings
to maximize crash reproduction for a given stack trace and its characteristics.

3.10.4 Improving testability

Finally, as we observed, code complexity was among the major challenges in crash
reproduction with EvoCrash. To improve testability, several testability transformation
techniques [?, 61, 118, 119, 152] have been proposed in the literature so far. Future
research may investigate testability transformation techniques and their impact on
search-based crash reproduction.

3.11 Threats to validity

Evaluations of crash reproduction approaches, such as the one we conducted for Evo-
Crash, come with threats to internal validity, external validity, and reliability. The
overarching goal of JCrashPack is to reduce such threats for all evaluations of any
crash reproduction tool, by offering a curated set of crashes to conduct such evalu-
ations.

Concerning external validity, we carefully designed JCrashPack so that it offers a mix
of small and large systems, as well as of different types of exceptions. Furthermore,
it includes open source systems directly developed by industry. Nevertheless, any set
is incomplete, which is why we keep JCrashPack open for extension, as discussed in
Section 4.6. For example, there still remain several other domains, such as gaming or
financial applications, for which there is no representative project in the benchmark.

With respect to internal validity, implementation faults can be a source of confounding
factors. These can occur in the tools themselves, such as EvoCrash or EvoSuite, but
also in the infrastructure used to actually conduct the experiment. To address the
latter, JCrashPack comes with ExRunner, which automates the process of scheduling,
executing, monitoring, and reporting crash reproduction attempts.

Concerning reliability, JCrashPack and ExRunner make it easy to repeat experiments,
thus making it possible for researchers to independently replicate each others crash
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reproduction findings.

Besides these threats partially mitigated by JCrashPack, our evaluation of EvoCrash
comes with additional threats to (internal and external) validity. This particularly
relates to the randomized nature of genetic algorithms, which we addressed by run-
ning the evaluations 10 times, and following the guidelines by Arcuri and Briand [50]
for analyzing the results. Furthermore, such threats concern the risk of bias during
the manual analysis, which we mitigated by using cross-checking: the result of each
manual analysis has been validated by at least one other person. In case of disagree-
ment, we asked for a third opinion. Finally, our evaluation includes only one tool:
EvoCrash. Previous work showed that EvoCrash performs better than other state-of-
the-art crash reproduction tools. Unfortunately, since to the best of our knowledge, no
other tool was publicly available, we were not able to confirm that conclusion on the
crashes in JCrashPack. We believe that JCrashPack enhances the current state-of-the-
practice in crash reproduction research by offering a publicly available benchmark for
which other tool providers can report their results.

3.12 Conclusion

Experimental evaluation of crash reproduction research is challenging, due to the
computational resources needed by reproduction tools, the difficulty of finding suit-
able real life crashes, and the intricacies of executing a complex system so that the
crash can be reproduced at all.

To remedy this problem, this paper sets out to create a benchmark of Java crashes,
that can be reused for experimental purposes. To that end we propose JCrashPack
and ExRunner, a curated benchmark of 200 real life crashes, and a tool to conduct
massive experiments on these crashes. This benchmark is publicly available and can
be used to compare existing and new tools against each other, as well as to analyze
how proposed improvements to existing reproduction techniques actually constitute
an improvement.

We applied the state of the art search-based Java crash reproduction tool, EvoCrash,
to JCrashPack. Our findings include that the state of the art can reproduce 87 crashes
out of 200 in a majority of time, that crash reproduction for industry-strength systems
is substantially harder, and that NullPointerExceptions are generally easiest to
reproduce. Furthermore, we identified 13 challenges that crash reproduction research
needs to address to strengthen uptake in practice, as well a future research directions
to address those challenges.
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JCrashPack can be extended in various ways: by including more crashes from other
types of applications; by automating the collection of information about eh crashes
and stack traces to further understand current strengths and limitations of crash re-
production; as well as automating the collection of the crashes themselves. Further-
more, since executing crash reproduction tools on 200 crashes may be time taking,
JCrashPack could be extended to offer prioritization for benchmarks, based on the
known theoretical strengths and limitations if the tools. For instance, by ordering
crashes based on the cyclomatic complexity of the involved frames to evaluate search-
based or symbolic execution-based crash reproduction approaches.

Finally, our future work for EvoCrash itself include improving input data generation
by taking information from the execution context and the application (e.g., existing
source code and test cases) into account. We also want to deeper our understanding
of stack traces in order to be able to recommend target frames to the developers.
Finally, we will improve the search process itself by refining the fitness function to
improve the guidance trough the different frames of the stack trace.
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Table 3.4: Number of stack traces (st), total number of frames (fr), and average num-
ber of frames (ƒ r) and standard deviation (σ) per stack trace for the different excep-
tions: NullPointerException (NPE), IllegalArgumentException (IAE), ArrayIndexOut-
OfBoundsException (AIOOBE), ClassCastException (CCE), StringIndexOutOfBounds-
Exception (SIOOBE), IllegalStateException (ISE), and other exceptions types (Other).
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Total
Commons-lang st 5.0 3.0 2.0 0.0 6.0 0.0 6.0 22.0

fr 8.0 3.0 12.0 0.0 10.0 0.0 12.0 45.0
ƒ r 1.6 1.0 6.0 1.7 2.0 2.0
σ 0.9 0.0 5.7 1.0 1.5 2.1

Commons-math st 3.0 3.0 4.0 2.0 1.0 0.0 14.0 27.0
fr 8.0 7.0 9.0 11.0 1.0 0.0 70.0 106.0
ƒ r 2.7 2.3 2.2 5.5 1.0 5.0 3.9
σ 0.6 1.5 2.5 6.4 NA 3.0 3.0

Mockito st 2.0 0.0 2.0 2.0 0.0 0.0 8.0 14.0
fr 3.0 0.0 12.0 2.0 0.0 0.0 48.0 65.0
ƒ r 1.5 6.0 1.0 6.0 4.6
σ 0.7 7.1 0.0 3.8 4.1

Joda-Time st 0.0 3.0 0.0 0.0 0.0 0.0 5.0 8.0
fr 0.0 5.0 0.0 0.0 0.0 0.0 26.0 31.0
ƒ r 1.7 5.2 3.9
σ 0.6 1.5 2.2

JFreechart st 1.0 1.0 0.0 0.0 0.0 0.0 0.0 2.0
fr 6.0 6.0 0.0 0.0 0.0 0.0 0.0 12.0
ƒ r 6.0 6.0 6.0
σ NA NA 0.0

XWiki st 20.0 4.0 0.0 6.0 1.0 0.0 20.0 51.0
fr 535.0 39.0 0.0 131.0 8.0 0.0 687.0 1400.0
ƒ r 26.8 9.8 21.8 8.0 34.4 27.5
σ 33.3 3.7 22.2 NA 47.0 37.0

Elasticsearch st 18.0 10.0 6.0 0.0 1.0 7.0 34.0 76.0
fr 222.0 152.0 102.0 0.0 15.0 135.0 717.0 1343.0
ƒ r 12.3 15.2 17.0 15.0 19.3 21.1 17.7
σ 9.8 9.2 18.0 NA 11.9 13.4 12.5

Total st 49.0 24.0 14.0 10.0 9.0 7.0 87.0 200.0
fr 782.0 212.0 135.0 144.0 34.0 135.0 1560.0 3002.0
ƒ r 16.0 8.8 9.6 14.4 3.8 19.3 17.9 15.0
σ 23.9 8.5 13.3 19.3 4.8 11.9 26.3 22.3
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Figure 3.4: Highest reproduced frame levels
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Figure 3.5: An overview of the reproduction outcome

Table 3.5: Statistics for the average number of fitness evaluations for the reproduced
frames (fr) belonging to different stack traces (st), grouped by applications, out of
10 rounds of execution. The confidence Interval (CI) is calculated for the median
bootstrapping with 100,000 runs, at a 95% confidence level.

Applications st fr Min Lower Quart. Median CI Med. Upper Quart. Max
Com.-lang 19 213 1 2.0 [ 5.0 ,22.0] 15.0 237.0 52,240
Com.-math 24 471 1 13.0 [ 124.0 ,211.0] 178.0 1,046.5 58,731
Mockito 2 40 1 1.0 [ 1.0 ,1.0] 1.0 5.2 138
Joda-Time 6 138 1 15.5 [ 79.1 ,369.0] 253.5 1,290.2 40,189
JFreechart 1 41 1 10.0 [ -292.0 ,350.0] 221.0 1,188.0 20,970
XWiki 25 531 1 2.5 [ 14.0 ,30.0] 23.0 209.0 34,089
Elasticsearch 19 287 1 4.0 [ 5.0 ,32.0] 23.0 125.0 17,461

Total 96 1721 1 4.0 [ 34.0 ,59.0] 48.0 534.0 58,731



120 3.12. Conclusion

Commons−lang Commons−math Mockito Joda−Time JFreechart XWiki Elasticsearch (all)

N
P

E
IA

E
A

IO
O

B
E

C
C

E
S

IO
O

B
E

IS
E

O
ther

(all)

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

N
um

be
r 

of
 fr

am
es

 (
lo

ga
rit

hm
ic

 s
ca

le
)

Figure 3.6: Detailed reproduction outcome for the different frames.



Chapter 3. Large-scale Evaluation of EvoCrash 121

Table 3.6: Statistics for the average number of fitness evaluations for the reproduced
frames (fr) belonging to different stack traces (st), grouped by exceptions, out of
10 rounds of execution. Confidence Interval (CI) is calculated for median with boot-
strapping with 100,000 runs, at 95% confidence level.

Applications st fr Min Lower Quart. Median CI Med. Upper Quart. Max
NPE 26 330 1 6.0 [ 9.0 ,63.0] 44.5 220.0 34,089
IAE 16 399 1 2.0 [ 7.0 ,12.0] 10.0 49.0 38,907
AIOOBE 5 58 1 15.5 [ 252.0 ,1,104.5] 675.0 1,671.2 53,644
CCE 6 103 1 6.5 [ 74.0 ,210.0] 120.0 560.0 10,197
SIOOBE 8 95 1 12.5 [ 122.0 ,945.0] 505.0 2,326.0 52,240
ISE 2 42 1 1.0 [ 1.0 ,3.0] 2.0 105.8 1,138
Other 33 694 1 7.0 [ 99.0 ,139.0] 125.5 825.0 58,731

Total 96 1721 1 4.0 [ 34.0 ,59.0] 48.0 534.0 58,731

Table 3.7: Challenges with the number and percentage of frames identified for this
challenge.

Category Frames Frequency
Input Data Generation 825 49.91%
Abstract Class 242 14.64%
Anonymous Class 142 8.59%
Static Initialization 141 8.53%
Complex Code 118 7.14%
Private Inner Class 56 3.39%
Environmental Dependencies 52 3.15%
Irrelevant Frame 37 2.24%
Unknown Sources 16 0.97%
Nested calls 10 0.60%
try/catch 7 0.42%
Interface 6 0.36%
Empty Enum Type 1 0.06%
Total 1653 100%
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Figure 3.7: Average number of fitness evaluations for the reproduced frames for each
applications and exception type.



4
Fitness Function Evaluation

EvoCrash is a recent search-based approach to generate a test case that reproduces
reported crashes. The search is guided by a fitness function that uses a weighted sum
scalarization to combine three different heuristics: (i) code coverage, (ii) crash cov-
erage and (iii) stack trace similarity. In this study, we propose and investigate two
alternatives to the weighted sum scalarization: (i) the simple sum scalarization and
(ii) the multi-objectivization, which decomposes the fitness function into several op-
timization objectives as an attempt to increase test case diversity. We implemented
the three alternative optimizations as an extension of EvoSuite, a popular search-
based unit test generator, and applied them on 33 real-world crashes. Our results
indicate that for complex crashes the weighted sum reduces the test case generation
time, compared to the simple sum, while for simpler crashes the effect is the oppos-
ite. Similarly, for complex crashes, multi-objectivization reduces test generation time
compared to optimizing with the weighted sum; we also observe one crash that can
be replicated only by multi-objectivization. Through our manual analysis, we found
out that when optimizing the original weighted function gets trapped in local optima,
optimization for decomposed objectives improves the search for crash reproduction.
Generally, while multi-objectivization is under-explored, our results are promising
and encourage further investigations of the approach.



124 4.1. Introduction

4.1 Introduction

Crash reproduction is an important step in debugging field crashes. Therefore, various
automated approaches to crash reproduction [65, 81, 173, 194, 202, 215] have been
proposed in the literature. Among these, EvoCrash [202] is a search-based approach,
which applies a Guided Genetic Algorithm (GGA) to generate a crash-reproducing
test. To optimize test generation for crash reproduction, the GGA uses a weighted-
sum scalarized function, which is a sum of three heuristics, namely: (i) line coverage,
(ii) exception coverage, and (iii) stack trace similarity rate. The function resulting
from the sum scalarization is further subject to the constraint that the target excep-
tion has to be thrown at the code line reported in the crash stack trace. Depending
on how close a generated test case may come to trigger a reported crash, its fitness
value may be between 0.0 (i.e., each of the three heuristics evaluates to 0.0), and
6.0 (i.e., none of the heuristics is satisfied by the generated test). Soltani et. al [202]
evaluated EvoCrash on 50 real-world crashes and showed that the search-based ap-
proach improved over other non-search-based approaches proposed in the related
literature [81,173,215].

As any search-based technique, the success of EvoCrash depends on its capability of
maintaining a good balance between exploitation and exploration [88]. The former
refers to the ability to visit regions of the search space within the neighborhood of
the current solutions (i.e., refining previously generated tests); the latter refers to
the ability to generate completely different new test cases. In crash reproduction, the
exploitation is guaranteed by the guided genetic operators that focus the search on
methods appearing in the crash stack trace [202]. However, such a depth and focused
search may lead to a low exploration power. Poor exploration results in low diversity
between the generated test cases and, consequently, the search process easily gets
trapped in local optima [88].

In this paper, we investigate two strategies to increase the diversity of generated test
cases for crash reproduction. While EvoCrash uses one single-objective fitness func-
tion to guide the search, prior studies in evolutionary computation showed that re-
laxing the constraints [87] or multi-objectivizing the fitness function [140] help pro-
moting diversity. Multi-objectivization is the process of (temporarily) decomposing
a single-objective fitness function into multiple sub-objectives to optimize simultan-
eously with multi-objective evolutionary algorithms. At the end of the search, the
global optimal solution of the single-objective problem is one of the points of the
Pareto front generated by the multi-objective algorithms. The decomposed objectives
should be as independent of each other as possible to avoid getting trapped in local
optima [140].
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Therefore, we study whether transforming the original weighted scalarized function
in EvoCrash into (i) a simple scalarized function via constraint relaxation, and (ii)
multiple decomposed objectives, impacts the crash reproduction rate, and test gener-
ation time. EvoCrash [202] relies on EvoSuite [103] for test generation, and as such,
we implemented the original weighted function as an extension of EvoSuite. Simil-
arly, we implemented the alternative optimization functions by extending EvoSuite.
We evaluated the alternatives on 33 real-world crashes from four open source pro-
jects. Our results show that indeed, when crashes are complex and require several
generations of test cases, using multi-objectivization reduces the test generation time
compared to the weighted scalarized function, and in turn, the weighted scalarized
function reduces test generation time compared to the simple scalarized function. Fur-
thermore, we observe that one crash can be fully replicated only by multi-objectivized
search and not by the two single-objective strategies. Generally, our results show that
problems that are single-objective by nature can benefit from multi-objectivization.
We believe that our findings will foster the usage of multi-objectivization in search-
based software engineering.

The remainder of the chapter is structured as follows: Section 4.2 provides back-
ground and related work. Section 4.3 describes single and multi-objectivization for
crash reproduction. Sections 4.4 and 4.5 present the evaluation and results, respect-
ively. Discussion follows in Section 4.6. Section 4.7 concludes.

4.2 Background and Related Work

Crash reproduction tools aim at generating a test case able to reproduce a given crash
based on the information gathered during the crash itself. This crash reproduction test
case can help developers to identify the fault causing the crash [81]. For Java pro-
grams, the available information usually consists of a stack trace, i.e., lists of classes,
methods and code lines involved in the crash. For instance, the following stack trace
has been generated by the test cases of LANG v9b from the Defects4J [135] dataset:

0 java.lang.ArrayIndexOutOfBoundsException:
1 at org.apache.commons.lang3.time.FastDateParser.toArray(FastDateParser.java:413)
2 at org.apache.commons.lang3.time.FastDateParser.getDisplayNames(FastDateParser
3 .java:381)
4 ...

It has a thrown exception (ArrayIndexOutOfBoundsException) and different
frames (lines 1 to 3), each one pointing to a method call in the source code.
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4.2.1 Related Work

Over the years, various Java crash replication approaches that use stack traces as
input have been developed. RECORE [194] is a search-based approach that in addi-
tion to crash stack traces, uses core dumps as input data for automated test gener-
ation. MUCRASH [215] applies mutation operators on existing test cases, for classes
that are present in a reported stack trace, to trigger the reported crash. While BU-
GREDUX [134] is based on forward symbolic execution, STAR [81] is a more recent
approach that applies optimized backward symbolic execution on the method calls re-
corded in a stack trace in order to compute the input parameters that trigger the target
crash. JCHARMING [173] is also based on using crash stack traces as the only source of
information about a reported crash. JCHARMING [173] applies directed model check-
ing to identify the pre-conditions and input parameters that cause the target crash.
Finally, CONCRASH [65] is a recent approach that focuses on reproducing concurrency
crashes, in particular. CONCRASH applies pruning strategies to iteratively look for test
code that triggers the target crash in a thread interleaving.

More recently, Soltani et al. have proposed EVOCRASH [202], an evolutionary search-
based tool for crash replication built on top of EVOSUITE [105]. EvoCrash uses a
novel Guided Genetic Algorithm (GGA), which focuses the search on the method
calls that appear in the crash stack trace rather than maximizing coverage as in clas-
sical coverage-oriented GAs. Their empirical evaluation demonstrated that EvoCrash
outperforms other existing crash reproduction approaches.

4.2.2 EvoCrash

To design EvoCrash, Soltani et al. [202] defined a fitness function (weighted sum
fitness function) and a search algorithm (guided genetic algorithm) dedicated to crash
reproduction. The fitness function is used to characterize the “quality” of test case
generated during each iteration of the guided GA.

4.2.2.1 Weighted Sum (WS) Fitness Function

The three components of the WS fitness function are: (i) the coverage of the code
line (target statement) where the exception is thrown, (ii) the target exception has to
be thrown, and (iii) the similarity between the generated stack trace (if any) and the
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original one. Formally, the fitness function for a given test t is defined as [202]:

ƒ (t) =







3 × ds(t) + 2 ×m(decept) +m(dtrce) if the line is not reached
3 ×mn(ds) + 2 × decept(t) +m(dtrce) if the line is reached
3 ×mn(ds) + 2 ×mn(decept) + dtrce(t) if the exception is thrown

(4.1)
where ds(t) ∈ [0,1] denotes how far t is from executing the target statement using
two well-known heuristics, approach level and branch distance [201]. The approach
level measures the minimum number of control dependencies between the path of the
code executed by t and the target statement s. The branch distance scores how close
t is to satisfying the branch condition for the branch on which the target statement
is directly control dependent [160]. In Equation 4.1, decept(t) ∈ {0,1} is a bin-
ary value indicating whether the target exception is thrown (0) or not (1); dtrce(t)
measures the similarity of the generated stack trace with the expected one based on
methods, classes, and line numbers appearing in the stack traces; m(decept) and
m(dtrce) denote the maximum possible value for decept and dtrce, respect-
ively. Therefore, the last two addends of the fitness function (i.e., decept and dtrce)
are computed upon the satisfaction of two constraints. This is because the target ex-
ception has to be thrown in the target line s (first constraint) and the stack trace
similarity should be computed only if the target exception is actually thrown (second
constraint).

4.2.2.2 Guided Genetic Algorithm (GGA)

EvoCrash (as EvoSuite) generates test cases at the unit level, meaning that test cases
are generated by instrumenting and targeting one particular class (the target class).
Contrary to classical unit test generation, EvoCrash does not seek to maximize cover-
age by invoking all the methods of the target class, but privileges those involved in
the target failure. This is why the GGA algorithm relies on the stack trace to guide the
search and reduces the search space at different steps. (i) A target frame is selected
by the user amongst the different frames of the input stack trace. Usually, the target
frame is the last one in the crash trace as it corresponds to the root method call where
the exception was thrown. The class appearing in this target frame corresponds to the
target class for which a test case will be generated. (ii) The initial population of test
cases is generated in such a way that the method m of the target frame (the target
method) is called at least once in each test case [202]: either directly if m is public or
protected, or indirectly by calling another method that invokes the target method if
m is private. (iii) During the search, dedicated guided crossover and guided mutation
operators [202] ensure that newly generated test cases contain at least one call to the
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target method. (iv) The search is guided by the WS fitness function. (v) Finally, the al-
gorithm stops if the time budget is consumed or when a zero-fitness value is achieved.
In this last case, the test case is minimized by a post-processing that removes randomly
inserted method calls that do not contribute to reproducing the crash.

4.3 Single-Objective and Multi-Objectivization for Crash
Reproduction

A key limitation of evolutionary algorithms (and metaheuristics in general) is that
they may become trapped in local optima due to diversity loss [88], a phenomenon
in which no modification (with crossover and mutation) of the current best solutions
will lead to discovering a better one. This phenomenon is quite common in white-box
unit-level test case/suite generation, as shown by previous studies in search-based
software testing [42, 99, 121, 138]. Many strategies have been investigated by the
evolutionary computation community to alleviate the problem of diversity loss, in-
cluding (i) combining different types of evolutionary algorithms [88,121], (ii) defin-
ing new genetic operators to better promote diversity [88, 93, 121], (iii) altering the
fitness function [88,113,140], and (iv) relaxing the constraints of the problem [87].

In the context of crash replication, most attention has been devoted to improving the
genetic operators [201,202] to better focus the search on method calls related to the
target crash. However, to the best of our knowledge, no previous study investigated
alternative formulations to the fitness function in Equation 4.1 and how they are
related to diversity and convergence to local optima. The original equation by Soltani
et al. [202] (i.e., Equation 4.1) combines three different factors into one single scalar
value based on some constraints. Given this type of equation, there are two possible
alternatives to investigate: (i) relaxing the constraints and (ii) split the fitness function
into three search objectives to optimize simultaneously. The next subsections describe
these two alternative formulations of the crash replication problem and how they are
related to test case diversity.

4.3.1 Constraints Relaxation

As explained in Section 4.2, the crash replication problem has been implicitly formu-
lated in previous studies as a constraint problem. The constraints are handled using
penalties [202], i.e., the fitness score of a test case is penalized by adding (or sub-
tracting in case of a maximization problem) a certain scalar value proportional to the
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number of constraints being violated. For example, in Equation 4.1 all test cases that
do not cover the target code line are penalized by the two addends 2×m(decept)
and m(dtrce) as there are two violated constraints (i.e., the line to cover and the
exception to throw in that line). Instead, tests that cover the target line but that do
not trigger the target exception are penalized by the factor m(dtrce) (only one
constraint is violated in this case).

While adding penalties is a well-known strategy to handle constraints in evolution-
ary algorithms [87], it may lead to diversity loss because any test not satisfying the
constraints have very low probability to survive across the generations. For example,
let us assume for example that we have two test cases t1 and t2 for the example
crash reported in Section 4.2. Now, let us assume that both test cases have a distance
ds = 1.0 (i.e., none of the two could cover the target line), but the former test could
generate an exception while the latter does not. Using Equation 4.1, the fitness value
for both t1 and t2 is ƒ (t1) = ƒ (t2) = 3 × ds + 3.0 = 6.0. However, t2 should be
promoted if it can generate the same target exception of the target crash (although
on a different line) and the generated trace is somehow similar to the original one
(e.g., some methods are shared).

Therefore, a first alternative to the fitness function in Equation 4.1 consists of relaxing
the constraints, i.e., removing the penalties. This can be easily implemented with a
Simple Sum Scalarization (SSS):

ƒ (t) = ds(t) + decept(t) + dtrce(t) (4.2)

where ds(t), decept(t) ∈ {0,1}, and dtrce(t) are the same as in Equation 4.1.
This relaxed variant —hereafter referred as simple sum scalarization— helps increase
test case diversity because test cases that lead to better decept(t) or dtrce(t) may
survive across the GGA generation independently from the value of ds(t), which was
not the case for the weighted sum, thanks to the constraints from Equation 4.1. On the
other hand, this reformulation may increase the number of local optima; therefore,
an empirical evaluation of weighted and simple sum variants to the fitness function
is needed.

4.3.2 Multi-objectivization

Knowles et al. [140] suggested to replace the original single-objective fitness function
of a problem with a set of new objectives in an attempt to promote diversity. This
process, called multi-objectivization (MO), can be performed in two ways [127,140]:
(i) by decomposing the single-objective function into multiple sub-objectives, or (ii)
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by adding new objectives in addition to the original function. The multi-objectivized
problem can then be solved using a multi-objective evolutionary algorithm, such
as NSGA-II [93]. By definition, multi-objectivization preserves the global optimal
solution of the single-objective problem that, after problem transformation, becomes
a Pareto efficient solution, i.e., one point of the Pareto front generated by multi-
objective algorithms.

In our context, applying multi-objectivization is straightforward as the fitness function
in Equation 4.1 is defined as the weighted sum of three components. Therefore, our
multi-objectivized version of the crash replication problem consists of optimizing the
following three objectives:







ƒ1(t) = ds(t)
ƒ2(t) = decept(t)
ƒ3(t) = dtrce(t)

(4.3)

Test cases in this three-objectivized formulation are therefore compared (and selec-
ted) according to the concept of dominance and Pareto optimality. A test case t1 is
said to dominate another test t2 (t1 ≺p t2 in math notation), iff ƒ(t1) ≤ ƒ(t2) for
all  ∈ {1,2,3} and ƒj(t1) < ƒj(t2) for at least one objective ƒj. A test case t is said
Pareto optimal if there does not exist any another test case t3 such that t3 ≺p t1. For
instance, for the test cases (i.e., solutions) generated by a multi-objectivized (Multi-
obj.) search presented in Figure 4.1, A, B, and D dominate C, E, and F.

In our problem, there can be multiple non-dominated solutions within the population
generated by GGA at a given generation. These non-dominated solutions represent
the best trade-offs among the search objectives that have been discovered/gener-
ated during the search so far. Diversity is therefore promoted by considering all non-
dominated test cases (trade-offs) as equally good according to the dominance relation
and that are assigned the same probability to survive in the next generations.

It is worth noting that a test case t that replicates the target crash will achieve the
score ƒ1(t) = ƒ2(t) = ƒ3(t) = 0, which is the optimal value for all objectives. In
terms of optimality, t is the global optimum for the original single-objective problem
but it is also the single Pareto optimal solution because it dominates all other test
cases in the search space. This is exactly the main difference between classical multi-
objective search and multi-objectivization: in multi-objective search we are interested
in generating a well-distributed set of Pareto optimal solutions (or optimal trade-
offs); in multi-objectivization, some trade-offs are generated during the search (and
preserved to help diversity), but there is only one optimal test case, i.e., the one
reproducing the target crash.1

1Note that there might exist multiple tests that can replicate the target crash; however, these tests are
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Figure 4.1: A Graphical Interpretation of Different Fitness Functions

Non-dominated Sorting Genetic Algorithm II. To solve our multi-objectivized prob-
lem, we use NSGA-II [93], which is a well-known multi-objective genetic algorithm
(GA) that provides well-distributed Pareto fronts and good performance when deal-
ing with up to three objectives [93]. As any genetic algorithm, NSGA-II evolves an ini-
tial population of test cases using crossover and mutation; however, differently from
other GAs, the selection is performed using tournament selection and based on the
dominance relation and the crowding distance. The former plays a role during the non-
dominated sorting procedure, where solutions are ranked in non-dominance fronts ac-
cording to their dominance relation; non-dominated solutions have the highest prob-
ability to survive and to be selected for reproduction. The crowding distance is further
used to promote the more diverse test cases within the same non-dominance front.

In this paper, we implemented a guided variant of NSGA-II, where its genetic operators
are replaced with the guided crossover and guided mutation implemented in GGA. We
used these operators (i) to focus the search on the method call appearing in the
target trace and (ii) to guarantee a fair comparison with GGA by adopting the same
operators.

4.3.3 Graphical Interpretation

Figure 4.1 shows commonalities and differences among the tree alternative formula-
tions of the crash reproduction problem (see sections 4.3.1 and 4.3.2). For simplicity,
let us focus on only two objectives (ds and dtrce) and let us assume that we have
a set of generated tests which are shown as points in the bi-dimensional space de-
limited by the two objectives. As shown in Figure 4.1(c), points (test cases) in multi-
objectivization are compared in terms of non-dominance. In the example, the tests

coincident points as they will all have a zero-value for all objectives.
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A, B, and D are non-dominated tests and all of them are assigned to the first non-
dominance front in NSGA-II, i.e., they have the same probability of being selected.
On the other hand, sum scalarization (either simple or weighted) projects all point to
one single vector, i.e., the blue lines in Figures 4.1(a) and 4.1(b). With weighted sum
scalarization (WSS), the vector of the aggregated fitness function is inclined to the
ds axis due to the higher weight of the line coverage penalty. In contrast, the vector
obtained with simple sum scalarization (SSS) is the bisector of the first quadrant, i.e.,
both objectives share the same weights. While in both Figure 4.1(a) and 4.1(b), the
best solution (point A) is the one closer to the origin of the axes, the order of the
solutions (and their selection probability) can vary. For instance, we can see in the
Figure that case C is a better choice than case D in the weighted sum because it has a
lower value for ds. But, case D is better than C in the simple sum. These differences
in the selection procedure may lead the search toward exploring/exploiting different
regions of the search space.

4.4 Empirical Evaluation

We conducted an empirical evaluation to assess the impact of the single objective or
multi objectivization fitness functions, answering the following research questions:

RQ1 How does crash reproduction with simple sum scalarization compare to crash re-
production using weighted sum scalarization?

RQ2 How does crash reproduction with a multi-objectivized optimization function com-
pare to crash reproduction using weighted sum scalarization?

Comparisons for RQ1 and RQ2 are done by considering the number of crashes re-
produced (crash coverage rate) and the time taken by EvoCrash to generate a crash
reproducing test case (test generation time).

4.4.1 Setup

To perform our evaluation, we randomly selected 33 crashes from five open source
projects: 18 crashes from four projects contained in Defects4J [135], which is a well-
known collection of bugs from popular libraries; and 12 crashes from XWiki,2 a web
application project developed by our industrial partner.

2http://www.xwiki.org/
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Table 4.1: Crashes used in the study.

Exception Type Defects4J XWiki

NullPointerException (NPE) 9 9
ArrayIndexOutOfBoundsExceptions (AIOOBE) 7 0
ClassCastException (CCE) 2 3

We execute the EvoSuite extensions, with the three approaches (weighted sum, simple
sum, and multi-objectivization), on 23 virtual machines. Each machine has 8 CPU-
cores, 32 GB of memory, and a 1TB shared hard drive. All of them run CentOs Linux
release 7.4.1708 as operating system, with OpenJDK version 1.8.0-151.

For each crash c, we run each approach in order to generate a test case that repro-
duces c and targeting each frame one by one, starting from the highest one (the last
one in the stack frame). As soon as one of the approaches is able to generate a test
case for the given frame (k), we stop the execution and do not try to generate test
cases for the lower frames (< k). To address the random nature of the evaluated
search approaches, we execute each approach 15 times on each frame for a total
number of 12,022 executions independent runs.

Parameter settings. We use the default parameter configurations from EvoSuite with
functional mocking to minimize the risk of environmental interactions and increase
the coverage [56]. We set the search budget to 10 minutes, which is double of the
maximal amount reported by Soltani et al. [202].

4.4.2 Analysis

Since the crash coverage data is a binary distribution (i.e., a crash is reproduced
or not), we use the Odds Ratio (OR) to measure the impact of the single or multi-
objectivization on the crash coverage rate. A value of OR > 1 for comparing a pair
of factors (A,B) indicates that the coverage rate increases when factor A is applied,
while a value of OR < 1 indicates the opposite. A value of OR = 1 indicates that there
is no difference between A and B. In addition, we use Fisher’s exact test, with α=0.05
for Type I errors to assess the significance of the results. A p-value < 0.05 indicates
the observed impact on the coverage rate is statistically significant, while a value of
p-value > 0.05 indicates the opposite.

Furthermore, we use the Vargha-Delaney Â12 statistic [207] to assess the effect size of
the differences between the two sum scalarization approaches or between weighted
sum and multi-objectivization for test generation time. A value of Â12 < 0.5 for a pair
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of factors (A,B) indicates that A reduces the test generation time, while a value of
Â12 > 0.5 indicates that B reduces the generation time. If Â12 = 0.5, there is no dif-
ference between A and B on generation time. To check whether the observed impacts
are statistically significant, we used the non-parametric Wilcoxon Rank Sum test, with
α=0.05 for Type I error. P-values smaller than 0.05 indicate that the observed dif-
ference in the test generation time is statistically significant.

4.5 Results

In this section, we present the results of the experiments. Thereby, we answer the two
research questions on comparing simple and weighted sum aggregation functions as
well as weighted sum and multi-objectivization for crash reproduction.

Results (RQ1). Table 4.2 (please see the end of the chapter) presents the crash re-
production results for the 33 crashes used in the experiment. As the table shows, 21
cases were reproduced using the original weighted sum scalarized function, while 20
cases were reproduced using simple sum scalarization. Thus, MATH-32b is only re-
produced by the weighted sum approach. Both optimization approaches reproduced
the crashes at the same frame level.

As Table 4.3 (please see the end of the chapter) shows, we do not observe any statistic-
ally significant impact on the crash reproduction rate, comparing weighted and simple
sum scalarization. However, for one case, XWIKI-13031, the odds ratio measure is
6.5, which indicates that the rate of crash reproduction using the weighted scalarized
function is 6.5 times larger than the reproduction rate of using the simple scalar-
ized function. In this case, the p value is 0.1, therefore we cannot draw a statistically
significant conclusion.

For four cases, we see a significant impact on the test generation time. Based on
our manual analysis, we observe that when a crash (XWIKI-13031) is complex,
i.e., it takes several generations to produce a crash reproducing test case, weighted
sum reduces execution time. However, when a crash, e.g., XWIKI-13377, is easy to
reproduce, then weighted sum takes longer to find a crash reproducing test.

Results (RQ2). Table 4.2 shows that 22 cases were reproduced using decomposed
crash optimization objectives, while 21 cases were reproduced by the original weighted
sum function. XWIKI-14475 is reproduced by the multi-objectivized approach only.

As Table 4.3 shows, in most cases, we do not observe any impact on the rate of
crash coverage. However, for MATH-81b and LANG-57b, the odds ratio measures are
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4.8 and 1.7 respectively, which indicates that the rate of crash reproduction using
multi-objectivized optimization is 4.8 times and 1.7 times higher than the rate of
reproduction using the weighted sum function. For these cases, the p-values are 0.3
and 0.6 respectively, therefore, we cannot draw a statistically significant conclusion
yet.

Moreover, as Table 4.3 shows, for six cases, namely: MATH-100b, MATH-32b, MATH-
4b, MATH-98b, XWIKI-13031, and XWIKI-14319, we observe that using multi-
objectivization reduces the time for test generation (as Â12 measures are lower than
0.5). For all these cases, the p values are lower than 0.05, which indicates the ob-
served impacts are statistically significant. On the other hand, for four other cases,
namely: LANG-33b, LANG-39b, LANG-47b, and MATH-70b, we observe an op-
posite trend, i.e., the weighted sum achieves a lower test generation time (as the Â12
measures are larger than 0.5). Based on our manual analysis, as also indicated by the
average execution time values reported in Table 4.2, when a crash is complex and
the search requires several generations (e.g., XWIKI-13031), multi-objectivization
reduces the execution time. On the other hand, when a crash is easy to be reproduced
and a few generations of test cases quickly converge to a global optimum, then using
the weighted sum approach is more efficient.

4.6 Discussion

As Table 4.3 shows, for only one case, XWIKI-13031, the weighted sum is more effi-
cient than the simple sum, while for two other cases, XWIKI-13377 and CHART-4b,
the simple sum is more efficient. From our manual analysis of these cases, we see
that when the target line is covered in a few seconds (when initializing the first pop-
ulation), the simple sum is more efficient than the weighted sum. However, when
more search iterations (generations) are needed to find a test that reaches the target
line, like for XWIKI-13031, the weighted sum is much faster. As indicated in Section
4.3, while using weights in single-objective optimization may reduce the likelihood of
getting stuck in local optima, it may accept solutions that trigger the target exception
but not at the target code line. Therefore, a possible explanation for these cases is
that while maintaining diversity improves efficiency to a small degree, relaxing the
constraints may penalize the exploitation. In practice, since it is not possible to know
a priori when getting stuck in local optima occurs, using weighted sum (that provides
more guidance, thanks to the constraints it takes into account) seems a more reliable
approach, which might be few seconds less efficient compared to simple sum (in some
cases).
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As Knowles et. al [140] discussed, when applying multi-objectivization, for a success-
ful search, it is important to derive independent objectives. In our multi-objectivization
approach, as presented in Section 4.3, we decompose the three heuristics in the ori-
ginal scalarized function into three optimization objectives. However, these objectives
are not entirely independent of each other; line coverage is interrelated to the stack
trace similarity. Thus, if the target line is not covered, the stack trace similarity will
never converge to 0.0. This can be one possible explanation for why when the target
frame is one, single-objective optimization performed better for most cases in our ex-
periments. The fewer frames to reproduce, the stronger the interrelation between the
two objectives is.

Furthermore, we observe that when a crash is complex and requires several gener-
ations to be reproduced, the multi-objectivized approach performs more efficiently
than single-objective optimization. On the other hand, when crashes can be repro-
duced in few generations (i.e., the target line is covered by the initial population of
GAs and evolution is mostly needed for triggering the same crash), then the single-
objective approach is more efficient. This is due to the cost of the fast non-domination
sorting algorithm in NSGA-II [93], whose computational complexity is O(MN2), where
M is the number of objectives and N is the population size. Instead, the computational
complexity of the selection in a single-objective GA is O(M), where N is the population
size. Thus, sorting/selecting individuals is computationally more expensive in NSGA-
II and it is worthwhile only when converging to 0.0 requires effective exploration
through the enhanced diversity in NSGA-II.

Insights. From our results and discussion, we formulate the following insights: (i) pre-
fer multi-objectivization, as it substantially reduces the execution time for com-
plex crashes (up to three minutes) and the time loss for simple crashes is small
(few seconds on average); furthermore, it allows to reproduce one additional crash
that weighted sum could not reproduce; (ii) Alternatively, use a hybrid search that
switches from weighted sum to multi-objectivized search when the execution time is
above a certain threshold (20 seconds in our case) or if the target code line is not
covered within the first few generations; and finally, (iii) Avoid simple sum scalariz-
ation as it may get stuck into local optima (multi-objectivization).

Threats to validity. We randomly selected 33 crashes from five different open source
projects for our evaluation. Those crashes come from Defects4J, a collection of defects
from popular libraries, and from the issue tracker of our industrial partner, ensuring
diversity in the considered projects. In addition, the selected crashes contain three
types of commonly occurring exceptions. While we did not analyze the exception
types, they may be a factor that impacts the test generation time and crash reproduc-
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tion rate. Finally, our extension to EvoSuite may contain unknown defects. To mitigate
this risk, in addition to testing the extensions, the first three authors reviewed the ar-
tifacts independently.

4.7 Conclusion

Crash reproduction is an important step in the process of debugging field crashes that
are reported by end users. Several automated approaches to crash reproduction have
been proposed in the literature to help developers debug field crashes. EvoCrash is
a recent approach which applies a Guided Genetic Algorithm (GGA) to generate a
crash reproducing test case. GGA uses a weighted scalarized function to optimize test
generation for crash reproduction. In this study, we apply the GGA approach as an
extension of EvoSuite and show that using a weighted sum scalarization fitness func-
tion improves test generation compared to a simple sum scalarization fitness func-
tion when reproducing complex crashes. Moreover, we also investigate the impact of
decomposing the scalarized function into multiple optimization functions. Similarly,
compared to using the weighted scalarized function, we observe that applying multi-
objectivization improves the test generation time when reproducing complex crashes
requiring several generations of test case evolution.

In general, we believe that multi-objectivization is under-explored to tackle (by-nature-
) single-objective problems in search-based software testing. Our results on multi-
objectivization by decomposition of the fitness function for crash reproduction are
promising. This calls for the application of this technique to other (by-nature-) single-
objective search-based problems.
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Table 4.2: Experiment results for Multi-objectivized (Multi-obj.), Weighted (WSS) and
Simple Sum (SSS) Scalarization. "-" indicates that the optimization approach did not
reproduce the crash. Bold cases represent the crashes only reproduced by some of the
approaches, not all. Rep., T., and SD indicate reproduction rate, average execution
time, and standard deviation, respectively.

Multi-obj. WSS SSS
Crash ID Exception Frame Rep. T SD Rep. T SD Rep. T SD

CHART-4b NPE 6 15 16.5 1.4 15 16.6 1.4 15 14.8 1.3
LANG-12b AIOOBE 2 15 2.5 0.3 15 2.5 0.5 15 2.4 0.5
LANG-33b NPE 1 15 1.7 0.0 15 1.0 0.2 15 1.0 0.0
LANG-39b NPE 2 15 2.7 1.0 15 1.1 0.5 15 1.6 1.2
LANG-47b NPE 1 15 3.4 1.3 15 2.1 1.1 15 1.0 0.7
LANG-57b NPE 1 11 1.1 0.0 9 185.0 288.0 12 86.1 218.1
LANG-9b AIOOBE - - - -
MATH-100b AIOOBE 1 15 8.4 13.4 15 7.2 1.7 15 8.2 7.3
MATH-32b CCE 1 15 3.9 0.9 15 5.3 2.5 -
MATH-4b NPE 3 15 27.3 49.2 14 21.7 16.1 14 62.0 150.0
MATH-70b NPE 3 15 1.7 0.2 15 1.1 0.3 15 1.0 0.0
MATH-79b NPE 1 15 1.7 0.1 15 1.0 0.2 15 1.0 0.0
MATH-81b AIOOBE 6 9 82.0 63.0 11 180.7 230.5 15 115.0 114.0
MATH-98b AIOOBE 1 15 7.7 5.3 14 9.5 5.7 15 9.9 9.7
MOCKITO-12b CCE - - - -
MOCKITO-34b AIOOBE - - - -
MOCKITO-36b NPE 1 15 10.9 6.9 15 9.2 7.5 15 13.7 11.3
MOCKITO-38b NPE - - - -
MOCKITO-3b AIOOBE - - - -
XRENDERING-418 NPE - - - -
XWIKI-12482 NPE - - - -
XWIKI-12584 CCE - - - -
XWIKI-13031 CCE 3 15 25.8 17.4 15 47.2 67.0 10 249.0 175.0
XWIKI-13096 NPE - - - -
XWIKI-13303 NPE - - - -
XWIKI-13316 NPE 2 15 37.9 47.7 15 16.6 34.6 15 31.3 86.8
XWIKI-13377 CCE 1 15 10.7 8.6 15 11.8 7.7 15 4.8 3.9
XWIKI-13616 NPE 3 15 4.1 0.1 15 4.0 0.0 15 4.0 0.0
XWIKI-14227 NPE - - - -
XWIKI-14319 NPE 1 15 87.0 21.2 15 89.4 17.5 15 87.8 15.2
XWIKI-14475 NPE 1 15 117.1 53.6 - -
XWIKI-13916 CCE 1 15 59.7 19.8 14 65.0 13.6 15 57.6 13.8
XWIKI-14612 NPE 1 15 8.9 2.0 15 8.7 1.8 15 8.5 2.4
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Table 4.3: Comparing coverage rate and test generation time between the optimiz-
ation approaches, for cases where both optimization approaches in each pair repro-
duces the crash. P-values for both Wilcoxon tests and odds ratios are reported. Effect
sizes and p-values of the comparisons are in bold when the p-values are lower than
0.05.

Multi-Weighted Weighted-Simple
Crash ID Exception Fr. Â12 p OR p Â12 p OR p

CHART-4b NPE 6 0.3 0.30 0.0 1.0 0.8 <0.01 0.0 1.00
LANG-12b AIOOBE 2 0.5 0.50 0.0 1.0 0.4 0.70 0.0 1.00
LANG-33b NPE 1 0.9 <0.01 0.0 1.0 0.5 0.30 0.0 1.00
LANG-39b NPE 2 0.9 <0.01 0.0 1.0 0.4 0.10 0.0 1.00
LANG-47b NPE 1 0.9 <0.01 0.0 1.0 0.4 0.70 0.0 1.00
LANG-57b NPE 1 0.6 0.20 1.7 0.6 0.5 0.60 0.3 0.40
MATH-100b AIOOBE 1 0.1 <0.01 0.0 1.0 0.5 0.40 0.0 1.00
MATH-32b CCE 2 0.3 <0.01 0.0 0.5 0.4 0.50 0.0 1.00
MATH-4b NPE 3 0.4 0.04 1.0 1.0 0.4 0.70 1.0 1.00
MATH-70b NPE 3 0.8 <0.01 0.0 1.0 0.5 0.10 0.0 1.00
MATH-81b AIOOBE 6 0.5 0.60 4.8 0.3 0.5 0.50 0.0 0.09
MATH-98b AIOOBE 1 0.3 <0.01 0.0 1.0 0.6 0.20 0.0 1.00
MOCKITO-36b NPE 1 0.2 0.60 0.0 1.0 0.3 0.30 Inf 1.00
XWIKI-13031 CCE 3 0.3 0.03 Inf 1.0 0.1 <0.01 6.5 0.10
XWIKI-13316 NPE 2 0.6 0.09 0.0 1.0 0.6 0.10 0.0 1.00
XWIKI-13377 CCE 1 0.6 0.50 0.0 1.0 0.7 0.01 0.0 1.00
XWIKI-13616 NPE 3 0.5 <0.01 0.0 1.0 0.5 <0.01 0.0 1.00
XWIKI-14319 NPE 1 0.4 <0.01 0.0 1.0 0.5 0.70 0.0 1.00
XWIKI-13916 CCE 1 0.3 0.60 0.0 1.0 0.6 0.08 0.0 1.00
XWIKI-14612 NPE 1 0.5 0.40 0.0 1.0 0.4 0.70 0.0 1.00





5
The Significance of Bug Report

Elements

Open source software projects often use issue repositories, where project contributors
submit bug reports. Using these repositories, more bugs in software projects may
be identified and fixed. However, the content and therefore quality of bug reports
vary. In this study, we aim to understand the significance of different elements in bug
reports. We interviewed 35 developers to gain insights into their perceptions on the
importance of various contents in bug reports. To assess our findings, we surveyed
305 developers. The results show developers find it highly important that bug reports
include crash description, reproducing steps or test cases, and stack traces. Software
version, fix suggestions, code snippets, and attached contents have lower importance
for software debugging. Furthermore, to evaluate the quality of currently available
bug reports, we mined issue repositories of 250 most popular projects on Github.
Statistical analysis on the mined issues shows that crash reproducing steps, stack
traces, fix suggestions, and user contents, have statistically significant impact on bug
resolution times, for ∼70%, ∼76%, ∼55%, and ∼33% of the projects. However, on
average, over 70% of bug reports lack these elements.

5.1 Introduction

Open source software projects often maintain issue repositories to manage feature re-
quests and bug reports. There are potential advantages to using open issue repositor-



142 5.1. Introduction

ies [45]. Contributors of software projects provide their inputs and maintain focused
conversations over them. As a result, more bugs in software projects may be identified
and fixed [45].

Bug reports contain various types of information, including: software version, crash
description, reproducing steps, reproducing test cases, crash stack traces, and fix sug-
gestions. To make bug reports consistent, often default templates are provided in
project repositories, where certain required or at least recommended fields are spe-
cified to be filled by the contributors. Yet, the content and therefore quality of bug
reports vary [224]. Potential reasons for this issue include: data loss during a soft-
ware crash, difficulty to find crash data in log files, and lack of sufficient technical
experience [224].

If too little data is provided in bug reports, then understanding the problem, and
therefore reproducing it is nontrivial and time-consuming. On the other hand, re-
producing software crashes is a vital step in software debugging. Developers need
to know how to reproduce the crashes to be able to confirm the fixes they deliver.
Furthermore, low quality bug reports may demotivate developers and therefore take
longer to be processed.

The following are examples of bug reports from various popular projects on Github
[1–8]. These examples illustrate when a crash stack trace or reproducing test case
are missing, developers respond by first asking the bug reporter to provide these
elements. Figure 5.1 shows a bug report [1] as well as the responses to the bug
report. As Figure 5.1a shows, the bug report includes various elements such as actual
behavior, reproducing steps, versions of various components, etc. However, the bug
report misses a crash stack trace. As Figure 5.1b shows, the developers explicitly ask
for the crash stack trace. Since after one month, this information is not provided, the
bug report is closed.

We aim to understand the significance of various information in bug reports for soft-
ware debugging. To gain an in-depth understanding of developers’ perceptions, we
interviewed 35 developers. We used Grounded Theory [40] [111] techniques to ana-
lyse the interview results. To examine the findings from the interviews, we surveyed
305 developers. Our findings confirm that crash description, crash reproducing steps
and test cases, and stack traces are of high importance for developers when debug-
ging. On the other hand, developers find extra information that users may provide
such as fix suggestions, code snippets, and links to user content, such as screenshots,
of lower importance.

To gain insights on how often important elements are included in bug reports and
their impact on bug resolution times, we developed the IMaChecker approach. IMa-
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Checker receives Github repositories as input, then mines all issues posted in the input
repository. Once the issues are downloaded, IMaChecker analyses the issues to check
whether they are bug reports, and if they contain elements including: crash descrip-
tion, reproducing steps or test cases, stack traces, code snippets, links to user content,
or fix suggestions.

To create a corpus of repositories for evaluation, we first selected five popular lan-
guages used in Github according to The State of Octoverse [16] [17], which are
namely: Javascript, Python, Java, PHP, and Ruby. For each language, we selected 50
most popular repositories, resulting in 250 repositories in total, on Github.

To analyse the impact of various elements of bug reports on bug resolution times, we
used the Wilcoxon-Mann Whitney test.

To study realistic projects and maintain statistical power, only those projects which
provided at least 10 issues for both experimental and control groups, were analysed.
Experimental groups contained issues which only included the element of interest in
the bug report (e.g., the issue only included stack traces). Control groups contained
issues which only included general description of the crash. The results confirm that
reproducing steps, stack traces, fix suggestions, and user contents have statistically
significant impact on bug resolution times, for ∼70%, ∼76%, ∼55%, and ∼33% of
the projects, respectively. For code snippets, representative projects were not found.

Furthermore, we used descriptive statistics to report the average percentages of bug
reports that include different bug report elements. Despite our findings on important
bug report elements and their impact on bug resolution times, on average, over ∼70%
of bug reports lack all important elements.

The above results help to raise awareness of the significance of various contents in
bug reports for software debugging. Developers can use this information to prepare
better templates for bug reports, in which all important elements are explicitly asked
for. Furthermore, future work may investigate means to support and enable users to
find and provide the information elements.

The contributions of the paper1 are the following:

1. an extensive report from developer interviews and surveys, in addition to the
interview and survey questionnaires,

2. IMaChecker as an open source tool, written in Python, which can be used to
mine and analyse issues from Github repositories, and

1 The interview and survey questions, as well as the dataset package are available via the following
DOI: 10.5281/zenodo.3666763
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3. a reproducible package which contains the data set of all mined issues from 250
most popular Github repositories, together with the R scripts used to analyse the
mined data.

The remainder of this chapter is organized as following: Section 5.2 presents the
research methodology. Section 5.3 presents the IMaChecker approach. Section 5.4
presents the results. Section 5.5 provides discussion on the findings of the paper.
Section 5.6 provides related work. Finally, Section 5.7 concludes the paper.

5.2 Research Methodology

The overarching goal of this study is to identify the significance of elements of bug
reports for software debugging. Therefore we define the following research questions:

• RQ1: What types of information do developers perceive as important in bug
reports?

Motivation: The quality of bug reports varies depending on the kinds of inform-
ation which are included in them. The study by Zimmermann et al. [224] shows
developers and user of Apache, Eclipse, and Mozilla find reproduction steps and
crash stack traces to be the most useful elements in bug reports. However, there
is little knowledge about the other elements in bug reports and the extent to
which they are perceived as important for software debugging. We raise RQ1 to
broaden our perspective and gain a holistic understanding about the extent to
which different bug report elements are of importance for software debugging
in developers’ perception.

Data collection and analysis: To answer RQ1 we aim to combine interviewing
developers with surveying them. By conducting interviews, we intend to gain
a preliminary understanding of developers’ views on bug reports and the role
that each bug report element plays in the process of software debugging. We use
thematic analysis and coding techniques to analyse the interview data. Using the
information from the interviews, we devise a survey study where we examine
and quantify the results from the interviews. We use descriptive statistics to
measure the percentages of participants who consider a bug report element as
highly important, moderately important, slightly important, or not important
for software debugging.

• RQ2: Do the important elements in bug reports impact bug resolution times?
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Motivation: While with RQ1 we identify the extent to which different bug re-
port elements are important in developers’ perception, it would still be unclear
what impact these elements may have on bug resolution times. Therefore, we
raise RQ2 to understand the effect of different bug report elements on the time
it takes to resolve bug reports.

Data collection and analysis: To answer RQ2, we use Github APIs to mine bug
report repositories from Github. Once we obtain the bug reports from Github,
we use the IMaChecker technique (presented in Section 3) to parse the bug
reports statically. Once the static analysis is done, we then use statistical tests to
measure the impact of various bug report elements on bug resolution times.

• RQ3: How often do bug reports contain the important elements?

Motivation: With RQ1 and RQ2, we gain an understanding about the extent
to which different bug report elements are important for bug resolution. How-
ever, it would still be unclear how often these important elements are actually
provided in bug reports. For example, as the study by Zimmermann et al. [224]
shows, elements such as crash stack traces are difficult to provide.

Data collection and analysis: To answer RQ3, we use the results from the static
analysis which is performed by IMaChecker on the mined bug reports. As a result
of this analysis, different elements of bug reports are identified. Therefore, we
use descriptive statistics to report how often various elements appear in bug
reports.

By combining qualitative and quantitative research methods, we use a mixed-method
research approach [89] to answer the research questions. In what follows, we further
present the research techniques we used.

5.2.1 Interviews

To answer RQ1, we followed a qualitative research method [89]. We interviewed 35
developers in order to gain an understanding of their debugging techniques and the
kind of information they find important to receive in bug reports. In what follows, we
present the interview protocol, the participants, and data analysis technique we used
for the interviews.
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5.2.1.1 Protocol

We conducted semi-structured interviews [125], in which we combined broad and
open-ended questions2 with specific questions. In this way, we let participants freely
respond and explore relevant topics, while we made sure the intended topics were
also explored by asking specific questions. As suggested by Barriball et al. [62] [126],
we conducted four pilot interviews before we performed the main interviews. As a
result, we received feedback on the general flow of the questions from two of the
pilot interviews. According to this feedback, we should have noted the role the parti-
cipants play in their organization. Therefore, we added two questions in the interview
instrument where we specifically ask about the role of the participant and we ask if
the participant can briefly explain what this role entails.

We let the participants know in advance that we intend to use the data anonym-
ously. Prior to the interviews we got permission from the participants to record the
interviews. Furthermore, 15 out of 35 interviews were conducted through online calls
because the developers were not available in person. Each interview took between 20
minutes to 60 minutes.

5.2.1.2 Participants

We intended to form a diverse group of participants. Thus, using our social con-
tacts, we reached out to developers who work in the following areas: e-commerce
development, ERP application development, automotive industry, artificial intelli-
gence, embedded programming, and database administrating. We sent personalized
emails to 50 developers who worked in these industries. 40 people with background
in e-commerce development, ERP application development, and automotive industry
agreed to participate in this study. After 35 interviews we reached theoretical satur-
ation [111]. Figure 5.2 shows the years of professional experience of the interview
participants. The participants had at least five and at most 25 years of professional
experience as a developer.

5.2.1.3 Data Analysis

After the interviews, we manually transcribed the recorded interviews. To analyse the
collected data, we used thematic analysis [110] [71] to identify emerging categories

2The interview questions are provided in the reproduction package, via DOI: 10.5281/zenodo.3666763
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in the transcripts. Thematic analysis is a technique that is used when analysing tex-
tual data. Using this technique, the first author read the transcripts intensively. The
first author then used open and axial coding techniques [164] to tag the pieces of
text which would relate to RQ1. After identifying the tags, the first author reviewed
them and grouped them together to form more generic themes. Ultimately, the iden-
tified themes addressed two main categories: the debugging techniques developers
used, and the kind of information in bug reports they considered important for soft-
ware debugging. Figure 5.3 is a visual representation of the main themes that were
identified throughout this process.

5.2.2 Surveying Developers

To generalize the findings from the interviews, and measure the prevalence of the de-
bugging practices and developers’ perceptions on the importance of different bug re-
port elements for software debugging, we surveyed 305 developers. In what follows,
we describe the survey protocol, survey participants, and our data analysis approach.

5.2.2.1 protocol

To construct the survey3, we used guidelines from Fink [100], De Vaus [91], Pfleeger
and Kitchenham [183], and Kitchenham and Pfleeger [139]. We used closed questions
to make the survey more compelling for the participants to fill in. To avoid forcing
the participants to choose an option, for each closed question, there was an option
where the participants could write their responses. We provided a brief overview of
the purpose of the survey in the introduction. We let participants know we would use
the data anonymously.

Before sending out the survey, we used pilot studies with four participants who were
professional developers. We asked the participants to fill in the survey, and provide us
with their feedback about the structure and questions of the survey. One feedback we
received was about the length of the introduction at the beginning of the survey. The
participant mentioned that the introduction could be shortened for more readability.
In addition, another feedback was about asking the participants if they wish to receive
the results after the survey is done. This is why we added one last question at the end
of survey where the participants can leave their contact information if they wish to
receive the results. We discarded the results of the pilot studies from the main results
in this paper.

3The survey questions are provided in the reproduction package, via DOI: 10.5281/zenodo.3666763
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5.2.2.2 Participants

To find participants for the survey, we searched for trending developers4. In addition,
we searched for active developers from 85 popular software projects on Github. The
main rationale behind this approach for selecting the participants is that we intended
to involve participants who are selected from a pool of experienced developers. From
each project we selected three to four active developers. This way we reached out to
317 people. We sent personalized emails to these developers, and briefly explained
the purpose of the study to them. We received 222 responses. In addition, we used
the snowballing technique [167] to collect more participants. After the participants
responded to the survey, we asked them if they could introduce us to colleagues who
would be interested to participate in the study. We sent personalized emails to 105
developers, and we received 83 responses. In total, we received 305 responses for
the survey. Figure 5.4 shows the years of professional experience of the survey parti-
cipants.

5.2.2.3 Data Analysis

To analyse the results of the survey, we used descriptive statistics to report the findings
from the closed questions. Therefore, for each bug report element, we simply measure
the percentages of participants who perceive the element as highly important, mod-
erately important, slightly important, or not important. Furthermore, we count the
number of participants who are project manager, software developer, software tester,
software maintainer, scrum master, or those who indicate any other type of role they
play. We also count the number of years of professional experience the participants in-
dicate to have. For the questions which let the participants write an answer in text, we
use thematic textual analysis to identify emerging categories from the written texts.

5.2.3 Mining Github Issues

To answer RQ2 and RQ3, we mined and analysed issues from 250 projects on Git-
hub. To do so, we developed the Issue Miner and Checker (IMaChecker) approach.
IMaChecker mines the issues of the received repositories, and further checks them to
detect whether stack traces, reproducing steps, fix suggestions, code snippets, and
user content are provided in the issues. In Section 5.4 we will further describe the
IMaChecker approach.

4Through https://github.com/trending/developers
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To select the projects, we first identified the five most popular programming languages
used in Github. According to The State of Octoverse [16] [17], the languages are:
Javascript, Python, Java, PhP, and Ruby. Next, based on the measures of popularity
that Borgens et al. identify [68], for each language, we selected 50 projects, 250
projects in total, that have the most number of stars and forks. Table 4 (in Appendix
A) presents an overview of the projects, the number of stars, forks, contributors, as
well as the year in which the first commits were provided in the project5.

5.2.3.1 Analysis of the Mined Issues

To measure the impact of various elements of bug reports on bug resolution times, we
use the Wilcoxon-Mann Whitney statistical test. This is a non-parametric test that is
used to analyse the impact of an independent variable that is at least ordinal. When
it is not possible to make assumptions about whether the data is normally distributed
or not, Wilcoxon-Mann Whitney is an alternative approach that can be used instead
of techniques such as the independent samples t-test. Since in this case the dependent
variable is resolution time, we only consider closed issues where the reported bug is
fixed. The null hypotheses in these experiments are the following:

• H01: the time it takes to close a bug report which only includes a problem
description and crash stack trace is the same as the time it takes to close a bug
report that only includes a problem description.

• H02: the time it takes to close a bug report which only includes a problem
description and reproduction steps is the same as the time it takes to close a
bug report that only includes a problem description.

• H03: the time it takes to close a bug report which only includes a problem
description and fix suggestion is the same as the time it takes to close a bug
report that only includes a problem description.

• H04: the time it takes to close a bug report which only includes a problem
description and user content is the same as the time it takes to close a bug
report that only includes a problem description.

• H05: the time it takes to close a bug report which only includes a problem
description and code snippet is the same as the time it takes to close a bug
report that only includes a problem description.

We use experimental and control groups. In experimental groups, only those issues
are present which only include one of the bug report elements e.g., stack traces,

5The results were collected on 2019-05-15.
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depending on the element under analysis. Control groups contain those issues in
which none of the bug report elements are present. To analyse realistic projects and
maintain statistical power, we make sure that the sample sizes are at least 10, i.e.,
at least 10 issues are analysed in each group. Furthermore, the test does not assume
that the samples are normally distributed. We consider α=0.05 for Type I errors to
assess the significance of the results.

We use the Vargha-Delaney Â12 statistic [207] to assess the effect sizes. Vargha-
Delaney Â12 is also a non-parametric approach for comparing performances of two
independent groups. The outcome of this test is a value between 0 and 1. Therefore,
if the outcome of Vargha-Delaney Â12 is 0.5, the two groups perform the same. On
the other hand, if the result of Vargha-Delaney Â12 is less than 0.5, the first group
performs worse, while if the outcome is larger than 0.5, the first group perform bet-
ter than the second group. Using Vargha-Delaney Â12, we report effect magnitudes
which indicate the following effect sizes: negligible, small, medium, and large.

5.3 The IMaChecker Approach

To mine and analyse the issues, we developed the Issue Miner and Checker (IMaChecker)
in Python 3. This approach has been tested on a Linux kernel version 4.15, as well as
a MacOS 10.14 machine.

Figure 5.5 presents an overview of the approach. IMaChecker receives the list of Git-
hub Repositories as input. Next, IMaChecker downloads all issues posted to the repos-
itory, using the Github API [9]. After the issues of all projects are downloaded, the
user can use the APIs that IMaChecker provides to analyse the downloaded issues.

Mine Issues 
for All 

Repositories

Repositories
and 

Configurations
Mined Issues Detect 

Elements
Analysed 

Issues

Figure 5.5: The figure presents an overview of the IMaChecker Approach.

IMaChecker uses regular expressions to detect issues that are originally labeled as
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bugs. Often various terms (e.g. “crash") are used to mark an issue as a bug in issue
repositories. Therefore, it is possible to feed IMaChecker with specific terms of interest
to detect originally labeled bugs.

IMaChecker uses specific strings and regular expressions to detect whether the issues
include stack traces, reproducing steps, fix suggestions, code snippets, and links to
user contents. To identify the strings and design the regular expressions, we studied
255 bug reports which were randomly selected from the projects presented in Table 4
(in Appendix A). After we reached the saturation point and did not find any new keys
in the context of the bug reports, we collected a pool of strings which were commonly
used to refer to different bug report elements. Table 2 shows these strings and regular
expressions.

Table 5.1: The strings and regular expressions we used to parse reproduction steps,
fix suggestions, user contents, and code snippets in bug reports.

Element Strings or regular expressions
Reproduction Step “reproducing steps"

“steps to reproduce"
“reproduce"
“reproducible test case"
“reproducible"
“to reproduce"
“minimal reproduction"

Fix Suggestion “fix suggestion"
“suggestion to fix"
“suggestions to fix"
“suggest"
“suggestions"

User Content https://user-images.githubusercontent.com/[\Sa-z0-9A-Z]+.[a-zA-z]
Code Snippet [\w+\s]+```` \\r \\n

Since each programming language uses a specific format to generate stack traces,
IMaChecker uses five different regular expressions that are adjusted to the five dif-
ferent stack trace formats in Javascript, Python, Java, PhP, and Ruby. Table 2 shows
examples of stack traces for different languages as well as the regular expressions
used to detect them.

If IMaChecker detects a stack trace in the issue, the exception type of the stack trace
is recorded as well. This can be used when one wishes to report frequency of various
exception types. In addition, if IMaChecker detects crash reproducing steps or stack
traces, or fix suggestions, then it automatically marks the issue as a bug. This can be
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Table 5.2: Examples of stack traces in different languages as well as the regular ex-
pressions used to detect them.

Language Example Regular Expression
Javascript at split (angular.js:27114)

at updateClasses (angular.js:27043)
..., from [10]

[\s]+at[\s]+[\w+.]+[\s]+\([/*\
w+]+.js:[0-9]+:*[0-9]*\)\\r\\n

Python Traceback (most recent call last):
File “facedetect.py", line 251,
in <module> main loop()
..., from [11]

Traceback\s\Smost\srecent\scall\s
last\S: |File[\s].+,[\s]+line[\s]
+[0-9]+,[\s]+in[\s]+.+\\r\\n

Java at android.view.ViewGroup.
dispatchDraw(ViewGroup.java:3554)
at android.view.View.updateDisplay
ListIfDirty(View.java:15237) ..., from [12]

[\s]+at[\s]+[\w+.\S]+\(\w+.java
:[0-9]+\)

PHP #0 /Applications/MAMP/htdocs/
learning/laravel/larabootstrap5/
vendor/laravel/framework/src/
Illuminate/Foundation/Bootstrap/
HandleExceptions.php(118):
..., from [13]

\#[0-9]+\s+[\w+\S]+.php
\([0-9]+\):

Ruby /home/navin/.rvm/gems/
ruby-2.2.1/gems/sprockets-3.4.0/lib/
sprockets/sass processor.rb:278:in
sprockets context
..., from [14]

[\w+\S]+.rb:[0-9]+:in\s+

useful as not always the issues are labeled in a Github Repository.

Furthermore, Figure 5.6 shows an example6 of a bug report from the AngularJS
project. As the example shows, this bug report contains a description of a memory
allocation problem together with a snapshot that is included as a .png file. When
IMaChecker parses the bug report content, it detects the user content is provided
through the .png file.

6This bug report can be found via: https://github.com/angular/angular.js/issues/16853
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Figure 5.6: An example of a bug report from the AngularJS project.

To evaluate the precision of the IMaChecker approach, we randomly selected 100
bug reports from the projects in Table 4 (in Appendix A). We manually analyzed the
bug reports and made an account of the elements included in them. We then ran
IMaChecker in order to detect the bug report elements automatically. The precision
was around 92%. This was because there were bug reports in which reproduction
steps or stack traces were provided through user contents (e.g., through links to ex-
ternal pages). Therefore, it was not possible for the IMaChecker approach to detect
these elements by parsing the texts.

5.4 Results

We used a mixed-method research approach to discover the significance of bug re-
port elements in software debugging. To answer the research questions, we combined
interviewing developers with surveying them. In addition, we mined 250 issue repos-
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itories and used descriptive statistics as well as statistical tests on the mined issues.
In this section, we present the results and thereby answer RQ1, RQ2, and RQ3.

5.4.1 RQ1. What types of information do developers perceive as
important in bug reports?

During the interviews, in order to get a broad understanding of the debugging process
the developers have, we asked the participants to describe the debugging approach
they take typically. In this regard, we gained the following insights. The interview
participants often prefer using printfs for debugging. When a crash is complex, then
45% of the interview participants indicated they would use a debugger to further
analyse the execution scenarios. In addition, all participants indicated that especially
when they face a new error they have not seen before, they typically google the error
message. Often it is the case that on platforms such as stackoverflow7, someone else
has posted a similar problem, which provides the participants an opportunity to get
further insights. Otherwise, they may open a new issue on those platforms, share their
problem, and ask the community to look into the questions.

To answer RQ1, we derived 7 categories from the interview results which indicate the
information elements that developers perceive as important, which they prefer to be
included in bug reports: crash description, software version, reproduction steps, stack
traces, code snippets, user content and fix suggestions. To quantify these results and
gain insights into the extent to which these elements are of importance for debugging,
we surveyed the developers.

Figure 5.7 presents the results from the surveys. According to the results, 96% of the
participants find reproduction steps or test cases of high importance while 4% of them
believe reproducing steps or tests are moderately important. 95% of the participants
find crash stack traces of high importance while 5% of them find crash stack traces of
moderate importance.

In addition, around 89% of the participants find crash description of high importance,
while 11% of them believe crash descriptions are of average importance. Around
12% of the participants find software version of high importance, while 66% of them
believe software versions are of average importance.

Around 14% of the participants find code snippets of high importance, while 68% of
them believe code snippets are of average importance. 16% of the participants find
code snippets of slight importance. 2% of the participants find code snippets of no

7https://stackoverflow.com/
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importance for software debugging. In this regard, a participant mentioned: “I prefer
to receive them in a pull request not in a bug report."

13% of the participants find software versions of slight importance. 9% of the par-
ticipants do not find software version important for software debugging. One of the
participants indicated: “Often the version is understood from the context of the bug
report. For example, certain features are only available in our latest release."

Around 8% of the participants find fix suggestions of high importance, while around
81% of them believe fix sugestions are of average importance. 11% of the participants
believe fix suggestions are of little importance.

Around 3% of the participants find user contents of high importance, while 74% of
them believe user contents are of average importance. 19% of the participants find
user contents of slight importance. 3% of the participants find user contents of no
importance for software debugging. In this regard, a participant mentioned: “User
content could be anything. They are supplementary."

5.4.2 RQ2. Do the important elements in bug reports impact bug
resolution times?

Table 3 presents the results of Wilcoxon-Mann Whitney and Vargha Delaney Â12
statistical analysis on four elements of bug reports, namely: stack traces, crash repro-
ducing steps or test cases, fix suggestions, and user contents.

Since we compare resolution times, we only consider closed issues where the reported
bug is fixed. To maintain statistical power, we made sure that in each project, there
are at least 10 issues which have none of the comparison elements in the description
(control group), and there are at least 10 issues which have only the comparison
factor (e.g., stack traces) in the description (experimental group). If a project does
not provide such groups, we excluded it from the analysis.

To analyse the impact of stack traces, we found 139 projects, which provide the con-
trol and experimental groups. In 106 projects out of 139 projects (∼76%) statistically
significant results show that including stack traces impacts the bug resolution times.
For 33 projects (∼24%) no conclusion was drawn.

To analyse the impact of reproducing steps or test cases, we found 142 projects, which
provide the control and experimental groups. In 100 projects out of 142 projects
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(∼70%) statistically significant results show that including reproducing steps impacts
the bug resolution times. For 42 projects (∼30%) no conclusion was drawn.

To analyse the impact of fix suggestions, we found 148 projects, which provide the
control and experimental groups. In 81 projects out of 148 projects (∼55%) statistic-
ally significant results show that including fix suggestions impacts the bug resolution
times. For 67 projects (∼45%) no conclusion was drawn.

To analyse the impact of user contents, we found 33 projects, which provide the
control and experimental groups. In 11 projects out of 33 projects (∼33%) statistically
significant results show that including user contents impacts the bug resolution times.
For 22 projects (∼67%) no conclusion was drawn.

Table 5.3: The table shows the results from the Wilcoxon-Mann Whitney, and Vargha
Delaney Â12 statistical analysis on four elements of bug reports, namely: Stack Traces,
crash Reproducing Steps, Fix Suggestions, and User Contents. p indicates the p values
from the Wilcoxon test. v-mag. indicates the Vargha Delaney measures of magnitude,
which show the effect sizes. l,m,s, and n, indicate large, medium, small, and negli-
gible effect sizes, respectively. - indicates that control or experimental groups were
not found for the comparison factor.

Stack Trace Reproducing Step Fix Suggestion User Content
Repository p v-mag. p v-mag. p v-mag. p v-mag.
30-seconds/30-
seconds-of-code

- - 0.094 m 0.561 n - -

activeadmin/
activeadmin

0 l 0 l 0 m - -

adobe/brackets - - 0 m 0 s - -
angular/angular.js - - 0 m 0 s - -
ansible/ansible 0 m 0 n 0.001 n 0.015 m
apache/incubator-
dubbo

0 m 0.005 s 0.125 s - -

apache/incubator
-echarts

- - 0 m 0.485 n 0.745 n

apache/incubator
-zipkin

0.09 s 0.146 s 0.026 m 0.499 n

atech/postal 0.517 s - - - - - -
atom/atom 0 l 0 m 0 s - -
axios/axios 0.048 s 0.088 s 0.714 n - -
babel/babel 0 s 0.02 n 0 s 0.002 m
bazelbuild/bazel0.002 s 0.002 n 0.059 n - -
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bcit-ci/CodeIgni
ter

- - 0.701 n 0.281 n - -

BetterErrors/
better_errors

0.209 s - - - - - -

briannesbitt/
Carbon

- - 0.025 m 0.503 s - -

bumptech/glide 0.02 n 0.17 n 0.046 s - -
CachetHQ/Cach
et

0 s 0 s 0.065 s 0 l

cakephp/cake
php

0.003 m 0.047 s 0.389 n - -

capistrano/capis
trano

0 l 0 l 0.001 m - -

carrierwaveupload
er/carrierwave

0 l 0 l 0 l - -

celery/celery 0 m 0 s 0.001 s - -
certbot/certbot 0 s 0.026 s 0.046 n - -
chartjs/Chart.js - - 0 s 0.001 s 0.172 n
chrisbanes/Photo
View

0 l - - - - - -

composer/comp
oser

0.002 m 0 s 0 s - -

deeplearning4j/
deeplearning4j

0 s 0.412 n 0.979 n 0.507 n

deployphp/deplo
yer

- - 0 s 0.357 n - -

diaspora/diaspo
ra

0.081 n 0.014 n 0.009 s - -

dingo/api 0 l 0.009 m 0 l - -
docker/compose0.005 n 0 s 0.697 n - -
Dogfalo/material
ize

0 l 0 l 0 l - -

elastic/elastic
search

0.786 n 0 n 0 s - -

elastic/logstash 0.001 n 0 s 0.031 n - -
encode/django-
rest-framework

0 m 0 m 0 s - -



158 5.4. Results

explosion/spaCy0.002 s 0.025 n 0.945 n - -
expressjs/exp
ress

0.006 s 0.003 s 0.036 s - -

facebook/create-
react-app

0 m 0 s 0.615 n - -

facebook/fresco 0 m 0 m 0.025 s 0.015 m
facebook/react 0 l 0 l 0 s - -
facebook/react-
native

0 m 0.969 n 0.12 n 0.051 s

facebook/stetho 0.77 n - - - - - -
fastlane/fastlane 0 s 0.898 n 0 s 0.478 n
fluent/fluentd 0.001 s 0.04 s 0.193 s - -
FortAwesome/
Font-Awesome

- - 0 m 0 s 0.546 n

freeCodeCamp/
devdocs

0.523 n 0.124 s 0.006 l - -

freeCodeCamp/
freeCodeCamp

- - 0 l 0.072 n 0.7 n

FriendsOfPHP/
PHP-CS-Fixer

- - 0.681 n 0.117 s - -

gatsbyjs/gatsby 0.007 s 0 s 0.649 n 0.218 s
getgrav/grav 0.057 s 0.602 n 0.178 n - -
getredash/redash 0 m 0.037 n 0.021 m 0.158 s
getsentry/sentry0.094 s 0.968 n 0.01 s - -
github/linguist 0.071 m - - 0.327 s - -
gollum/gollum 0 m 0.084 s 0.059 s - -
google/ExoPlayer 0 m 0 s 0 s 0.029 m
GoogleChrome/
puppeteer

0 m 0.001 s 0.394 n - -

greenrobot/
greenDAO

0.405 n - - - - - -

gulpjs/gulp 0 l 0 l 0 l - -
guzzle/guzzle 0.005 l 0.092 s 0.318 s - -
h5bp/html5-
boilerplate

- - 0.083 m 0.028 s - -

hakimel/reveal.js - - 0.115 s 0.407 n - -
hashicorp/vagrant 0 l 0 s 0 s - -
HelloZeroNet/
ZeroNet

0.146 s 0.313 n 0.312 s - -
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home-assistant/
home-assistant

0.007 s 0.925 n 0.595 n - -

Homebrew/brew 0 l 0 m 0 m - -
huge-success/
sanic

0.054 s - - 0.752 n - -

huginn/huginn 0.046 m - - 0.567 n - -
imathis/octopress 0 m 0.735 n 0.096 s - -
ipython/ipython 0 m 0 s 0.043 n - -
jakubroztocil/
httpie

0.02 s - - - - - -

javan/whenever 0 l - - 0.001 l - -
jordansissel/
fpm

0.116 s - - - - - -

jquery/jquery - - 0 l 0 l - -
kaminari/kami
nari

0 l 0.108 s 0.236 s - -

kennethreitz/
requests

0 l 0 l 0 l - -

keras-team/
keras

0.048 s 0.02 s 0.005 m - -

Konloch/byte
code-viewer

0.865 n - - - - - -

laravel/frame
work

0 l 0 l 0 l - -

localstack/local
stack

0.251 n 0.529 n - - - -

lodash/lodash 0.058 s 0.021 s 0.01 s - -
magento/magent
o2

0 m 0 s 0 m - -

matomo-org/
matomo

0.699 n 0.244 n 0 s 0.28 n

meteor/meteor 0 l 0 s 0 s - -
Microsoft/vscode 0 s 0 n 0.889 n 0.007 n
middleman/mid
dleman

0 l 0.001 m 0.09 s - -

mikepenz/Mate
rialDrawer

0.541 n 0.299 n 0.054 s - -
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mitmproxy/mitmpr
oxy

0 m 0.002 s 0.563 n - -

mockery/mockery - - 0.003 l 0.026 m - -
moment/moment - - 0 m 0.005 s - -
monicahq/
monica

0.595 n 0.192 s - - 0.011 s

mrdoob/three.js0.002 m 0.002 s 0.005 n 0.696 n
mui-org/
material-ui

0 l 0 m 0 m 0 m

mybatis/my
batis-3

0.615 n 0.196 n 0.876 n - -

NationalSecurity
Agency/ghidra

- - 0.731 n - - 0.819 n

netty/netty 0.002 s 0 s 0 m - -
nextcloud/
server

0.458 n 0.549 n 0.033 n 0.505 n

nicolargo/
glances

0.333 n - - 0.998 n - -

nodejs/node 0 m 0 s 0.049 n - -
nostra13/And
roid-Universal-
Image-Loader

0.001 m - - 0.005 m - -

octobercms/oct
ober

0 l 0 s 0 m 0.057 s

omniauth/omni
auth

0.01 l - - 0.406 s - -

pallets/flask 0 l 0.025 m 0.021 m - -
pandas-
dev/pandas

0 s 0 s 0.512 n - -

parcel-
bundler/parcel

0 m 0 s 0.029 s 0.896 n

phalcon/cphalcon 0 s 0 s 0.528 n - -
phanan/koel - - 0.038 s 0.014 m - -
PhilJay/MP
AndroidChart

0.365 n 0.226 s 0.24 n - -

plataformatec/
devise

0 l 0 m 0 l - -

plataformatec/
simple_form

0 l 0.018 m 0 l - -
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prettier/prettier 0 l 0.005 s 0.674 n 0.271 s
pypa/pipenv 0 l 0 l 0 m - -
rapid7/metasploit
-framework

0 s 0 m 0.428 n - -

react-native-
community/lottie
-react-native

- - 0.06 m - - - -

ReactiveX/Rx
Java

0.637 n 0 m 0.042 s - -

ReactTraining/
react-router

0 l 0 l 0 l - -

realm/realm-java 0 s 0 s 0.01 s - -

reduxjs/redux - - 0.002 l 0.203 s - -
resque/resque 0 l - - 0.007 m - -
roots/sage - - 0 l 0.01 m - -
rubocop-hq/ru
bocop

0 m 0.447 n 0.23 n - -

ruby-grape/grape 0 s - - 0.525 n - -

scikit-learn/
scikit-learn

0 s 0 m 0.2 n - -

scrapy/scrapy 0 m 0.02 m 0.013 s - -
sebastianberg
mann/phpunit

0.167 n 0.491 n 0.305 n - -

Seldaek/mono
log

0.002 l - - 0.004 l - -

Semantic-Org/
Semantic-UI

0.577 n 0.99 n 0.149 n 0.008 m

serverless/ser
verless

0.001 s 0.346 n 0.089 n 0.635 n

sferik/rails_
admin

0.005 s 0.457 n 0.954 n - -

Shopify/liquid 0.001 l - - - - - -
signalapp/
Signal-Android

0 l 0 l 0 l - -

sinatra/sinatra 0.001 m 0.189 s 0.407 n - -
skylot/jadx 0.191 s - - - - - -
slimphp/Slim 0.992 n 0.478 n 0.12 s - -
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socketio/socket
.io

- - 0.001 s 0.018 s - -

spring-projects/
spring-boot

0 n 0 s 0.069 n - -

spring-projects/
spring-framework

0 n 0 s 0 s - -

sqlmapproject/
sqlmap

0.359 n 0.054 n 0.031 s - -

square/okhttp 0 m 0 m 0.002 s - -
square/retrofit 0.001 l 0.131 m 0.057 m - -
StevenBlack/
hosts

0.93 n - - 0.467 s - -

storybooks/
storybook

0.037 s 0 s 0.507 n 0.67 n

stympy/faker 0.002 l - - - - - -
symfony/symfony 0 m 0 s 0.587 n 0.034 s
teamcapybara/
capybara

0 l 0 l 0 l - -

Tencent/tinker 0 l - - - - - -
tensorflow/models 0 m 0 l 0.001 m - -
the-control-group/
voyager

- - 0 s 0.372 n 0.652 n

thepracticaldev/
dev.to

- - 0 l 0.763 n 0.049 s

thoughtbot/bour
bon

- - 0 l 0.001 l - -

thoughtbot/
factory_bot

0.01 m 0.325 s 0.317 s - -

thoughtbot/pap
erclip

0 l 0 l 0.005 s - -

tmuxinator/
tmuxinator

0.006 m 0.827 n - - - -

tootsuite/masto
don

0 s 0 m 0.622 n 0.902 n

trailofbits/algo - - 0.007 s 0.873 n - -
TryGhost/Ghost 0 l 0 s 0.001 s 0.515 n
twbs/bootstrap 0.009 m 0 s 0 m - -
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twbs/bootstrap-
sass

0.626 n 0.909 n 0.067 s - -

vuejs/vue 0 l 0 l 0 m - -
webpack/web
pack

0 l 0 l 0 s - -

wix/react-
native-
navigation

0.707 n 0.825 n 1 n - -

yarnpkg/yarn 0.016 s 0.029 n 0.429 n - -
yiisoft/yii2 0 s 0 s 0 n - -
ytdl-org/youtu
be-dl

0 m 0 m 0 l - -

zeit/next.js 0 m 0 s 0.067 n - -
zxing/zxing 0.001 l 0 l 0 l - -

5.4.3 RQ3. How often do bug reports contain the important ele-
ments?

To identify how often various bug report elements are included in bug reports, we
used IMaChecker8 to mine and analyse issue repositories from 250 Github projects.
In total, 835381 issues were mined, out of which 89761 issues (∼11%) were open
while 745620 issues (∼89%) were closed. 114053 bug reports (∼29.64%) were ori-
ginally labeled as bugs in bug repositories while 219803 bug reports (∼70.36%) were
automatically detected.

According to the results, for 228 projects, crash reproducing steps and stack traces
were detected. For 244 projects fix suggestions were detected. For 226 projects user
contents were detected. For 178 projects code snippets were identified. Finally, for 34
projects no bugs were originally labeled while IMaChecker detected bugs.

For kilimchoi/engineering-blogs, doctrine/inflector, and doctrine/lexer repositories no
issues were originally or automatically marked as bugs. These repositories have 66,
27, and 2 issues, respectively. For these repositories, no reproducing steps, stack
traces, fix suggestions, code snippets, or user contents were detected. For more de-
tailed results, please see Table 5 in Appendix B.

8The mining was done on 2019-05-13.
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In addition, Figure 5.8 presents the average percentages of different bug report ele-
ments. According to Figure 5.8, on average, ∼27.16% of the bug reports included
stack traces, ∼27.07% of the bug reports included reproducing steps, and ∼20.59%
of the bug reports included fix suggestions. In addition, on average, ∼14.23% of the
bug reports included user contents, and ∼1.06% of the bug reports included code
snippets.

5.5 Discussion

In this paper, we aim to identify the contents in bug reports that are of importance
for debugging. Therefore, we sought for developers’ perceptions in this regard, we
analysed whether any of the bug report elements impact bug resolution times, and
we measured how often various information elements are included in bug reports.

Our results show that certain elements, namely: crash description, reproducing steps,
and stack traces are of high importance for debugging in developers’ perceptions. Ac-
cording to the statistical analysis, reproducing steps, stack traces, fix suggestions, and
user contents have statistically significant impacts on bug resolution times. Despite
the above findings, as Figure 5.8 shows, on average, over ∼ 70% of the bug reports
lack these elements. In what follows we further discuss the findings.

5.5.1 Bug Report Templates and User Support

In order to keep the issues consistent, and make sure certain elements are provided
in bug reports, repositories often provide templates for reporting issues. The specified
elements in such templates vary. While these templates often specify reproducing
steps, or fix suggestions as fields to be filled by the users, stack traces, user contents
or code snippets are not mentioned in the templates. Therefore, it is up to the issue
reporter to provide them.

Our results show each of those elements, particularly stack traces, impact the bug
resolution times. Therefore, to help keep the structure of issues consistent, and make
sure important elements of bug reports are asked for, it is important to provide com-
plete and well-structured bug report templates. The results presented in this paper
help increase awareness in this regard.
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On the other hand, as Zimmermann et al. [224] report, it may not be possible for
users to provide certain information in their bug reports while at the same time it is
important to do so. It is simply because important information are not always easy
to be found. For example, stack traces are often hidden in log files, and therefore, it
is not easy to find them, even if the issue templates ask for them. Therefore, future
work may investigate means to support users and enable them to provide important
information in bug reports.

5.5.2 Representative Samples

When analysing the impact of various bug report elements, many projects were ex-
cluded from the analysis because they did not offer representative samples for exper-
iment and control groups. This is why it was not possible to analyse the impact of
code snippets on bug resolution times.

The automated mechanism in IMaChecker helps increase the number of bug reports,
thereby the sample sizes for experimental groups. IMaChecker detects whether an
issue is a potential bug if a certain element such as stack trace or fix suggestion is
included in the reported issue.

However, if an issue does not include any of the elements, the only way to identify
whether it is a bug report would be to check the labels put on the issue. At the same
time, many of the bug reports were not originally labeled as bugs. Therefore, they
could not be used in the control groups. As a result, many projects were excluded
from the analysis.

This observation highlights the importance of properly documenting the bug reports.
The IMaChecker approach provides a more accurate overview of the issues if bug
reports are properly marked by developers.

5.5.3 Internal Validity of the Experiments

Internal validity of a study refers to how well the findings of the study explain a claim
about a cause and effect. In the context of our study, threats to internal validity refer
to alternative reasons why a bug report is closed more quickly than others.

In some cases, bug reports are created, however they either have no content or very
minimal amount of information. We have observed that these kinds of bug reports
are typically very quickly closed because there is not much that can be done for them.
When developers close such bug reports, often they ask the contributors who opened
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the bug reports to provide further information. Furthermore, sometimes bug reports
are re-opened. One possible explanation is that the issue, which was addressed previ-
ously, resurfaces, either for the same contributor who previously opened the issue or
someone else.

In our experiments, IMaChecker automatically checks the contents in experimental
groups and control groups before they are included in the statistical tests. Therefore,
the bug reports used in these experiments are never entirely empty. However, it could
be that they are closed because they included too little information. In addition, in
these experiments, we do not check whether an issue is re-opened later on. This is
mainly due to the fact that the information that can be retrieved through the Git-
hub API does not include sufficient details with regards to whether the issue was
re-opened or not.

5.5.4 Generalizability of Results

As Basili et al. [63] discuss, carrying out empirical work in software engineering is
complex and time consuming. They argue that one reason for such complexity is
that there are a large number of context variables. Therefore, creating a cohesive
understanding of the experimental results requires effort.

We selected participants from three different industries, e-commerce, ERP, and auto-
motive. In addition, the survey participants were either trending developers on Github
or selected from over 85 distinct popular software projects. The professional exper-
ience of these participants ranged from one year to 27 years. While we intended to
involve experienced developers in the survey, we did not ensure if the developers have
experience in developing closed source projects or not.

To make a corpus of open-source projects, we selected 250 projects from Github.
Github is a popular platform where over 2 million organizations and 96 million re-
positories are hosted to which over 31 million developers contribute, according to The
State of Octoverse [15]. To select the open source projects, first we chose five popu-
lar programming languages, and then we used common measures of popularity, i.e.,
number of stars and forks, to identify the projects. Furthermore, we used statistical
tests to analyse the results.

However, we can not claim that the findings are transferable to closed-source projects.
Communication with users and debugging practices differ in closed-source projects.
Future work may investigate closed-source projects as well as expert developers in
the field, and compare the results with the findings reported in this paper.
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5.5.5 Automated Crash Reproduction

Depending on the available information and complexity of the reported crash, repro-
ducing the crash may be a complex and time consuming task for developers. Research-
ers have proposed several approaches to automated crash reproduction. The state of
the art techniques are: STAR [81], EVOCRASH [204], and JCHARMING [171].

Each of the proposed approaches have certain advantages and limitations, which are
to some extent reported in [204]. Upon further advances in this direction, automated
crash reproduction may compensate for lack of crash reproducing steps in bug reports.

5.5.6 What Do User Contents Provide?

The results show that user contents have statistically significant impact on bug resol-
ution times for ∼33% of the projects. User contents are provided through a link in the
bug reports. However, their contents vary. In our manual analysis, we found out that
the links may refer to long stack traces that the users preferred to provide separately
from the main bug report. It is also possible for user contents to address fix sugges-
tions or UI features. Future work may investigate the kinds of data provided through
user contents and their frequencies. Such investigation helps analyse the impact of
user contents more accurately.

5.6 Related Work

To understand what makes a good bug report, Zimmermann et el. [224] conducted a
survey among developers and users of Apache, Eclipse, and Mozilla. They found out
that across all three projects, crash reproducing steps, and stack traces, are most use-
ful. At the same time these types of information are most difficult for users to provide.
Their results show, to a large extent, lack of tool support causes this mismatch. For
example, while stack traces are hidden in log files, experienced users of Eclipse know
that Error logs exists. Therefore, experienced users can provide stack traces while for
other users it is difficult to do so [224].

In addition, Zimmermann et al. [224] asked developers to rate 289 bug reports, that
were selected randomly, from very poor to very good, using a five-point Likert scale
[153]. They use the rated bug reports to train the CUEZILLA approach they propose.
CUEZILLA measures the quality of bug reports, and recommends which elements
should be added to improve the quality of bug reports.



168 5.6. Related Work

This paper builds on the work by Zimmermann et al. [224] in that we interviewed
and surveyed developers to understand their perceptions on the importance of dif-
ferent bug report elements. However, while Zimmermann et al. [224] surveyed the
developers and users of Apache, Eclipse, and Mozilla, our approach to finding inter-
view and survey participants were different. We first found participants from ERP, E-
commerce, and automotive industries to execute the interviews. We used the insights
from the interviews to construct a survey study where we contacted active developers
from 85 different trending projects on Github. Furthermore, while CUEZILLA uses de-
velopers’ ratings to measure the quality of bug reports, IMaChecker takes a different
approach for analyzing the bug reports. IMaChecker statically parses the bug reports
from 250 projects (developed in five different languages) to identify which elements
are present in the bug reports, and using this information, IMaChecker applies statist-
ical tests to identify the impact of the bug report elements on bug resolution times.
Our findings with regards to the impact of bug report elements on bug resolution
times are aligned with the findings reported by Zimmermann et al. [224] in that the
results from interviews, surveys, and statistical tests show crash reproduction steps
and stack traces are most useful for processing bug reports. Furthermore, despite the
indicated importance, our results show that the majority of times, these elements are
not included in bug reports.

Schroter et al. [197] conducted an empirical study with the Eclipse project to under-
stand the extent to which stack traces are useful when debugging. Their findings show
that the average lifetimes of bug reports which include stack traces are significantly
lower than of other bugs. Furthermore, their findings show up to 60% of bug reports
which included stack traces involved changes to one of the stack frames.

In this paper, we expand the findings reported by Schroter et al. [197] in that we study
bug reports from 250 projects to assess the impact of several different bug report
elements, including crash stack traces. Our results on the importance of crash stack
traces for bug resolution times are aligned with the findings reported by Schroter et
al. [197].

With regard to characterizing bug report quality, Hooimeijer and Weimer [123] provide
a descriptive model based on a statistical analysis of 27000 publicly available bug re-
ports for the Mozilla Firefox project. The proposed model predicts whether a reported
bug is fixed within a given amount of time.

With regards to estimating the time it take to fix a bug report, [222] present a non-
parametric approach based on using dissimilarity matrix and self-organizing neural
networks. They used NASA’s KC1 data set to evaluate their approach. The results
indicated that their clustering approach performs well when applied on a family of
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products such as software projects in product lines. However, the defect fix estimation
performed poorly when applied on software projects from different environments.
Moreover, Weiss et al. [211] propose an approach that automatically predicts the time
it takes to fix a bug. Given a new reported issue, their technique finds similar older
issues and uses their resolution time for prediction. They evaluated their approach
using effort data from JBoss project. For bug reports, their technique is off by one
hour.

In this paper, rather than providing a prediction model for estimating the time it takes
to fix a bug, we use statistical tests to show how different bug report elements impact
the time it takes to close bug reports. Furthermore, rather than looking into a single
case study, we studied bug reports from 250 open source projects from Github.

5.7 Conclusions

Software projects often have open issue repositories. Bug reports that are submitted
to issue repositories have varying contents. Therefore it is important to gain under-
standing about the significance of different elements in bug reports.

To understand the extent to which developers perceive various types of information
important, we interviewed 35 developers. To asses the findings, we further surveyed
305 developers. The results show crash description, reproducing steps, and stack
traces are of high importance in developers’ perceptions.

To identify how often the important information elements are provided in bug re-
ports, and what their impact is on bug resolution times, we developed IMaChecker to
mine and analyse issues from Github repositories. Our statistical analysis, on issues
from 250 projects on Github, confirms that crash reproducing steps, stack traces, fix
suggestions and user contents have statistically significant impact on bug resolution
times. However, on average, over ∼70% of the bug reports of a given repository lack
these elements. Future work may investigate means to support users and developers
for providing high quality bug reports.

Appendix A

Table 5.4 shows the corpus of 250 open source projects we selected from Github.

Table 5.4: This table shows the repositories we use in the evaluation.
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Repository Since Stars Language Forks Contributors
30-seconds/30-seconds-of-code 2017 43.1k Javascript 4.7k 164
achael/eht-imaging 2016 4.6k Python 414 9
activeadmin/activeadmin 2010 8.4k Ruby 2.9k 569
adam-p/markdown-here 2012 37.3k Javascript 6.3k 12
adobe/brackets 2011 29.7k Javascript 6k 355
ageitgey/face_recognition 2017 23.7k Python 6.2k 23
airbnb/lottie-android 2016 25.3k Java 3.9k 71
androidannotations/
androidannotations

2010 10.7k Java 2.4k 56

angular/angular.js 2010 59.5k Javascript 28.9k 1595
ansible/ansible 2012 37.1k Python 15.1k 4372
apache/incubator-dubbo 2012 25.9k Java 17.2k 198
apache/incubator-echarts 2013 33.6k Javascript 9.8k 71
apache/incubator-zipkin 2015 10.9k Java 1.9k 78
atech/postal 2017 8.9k Ruby 522 14
atom/atom 2011 48.5k Javascript 11.4k 431
axios/axios 2014 58.2k Javascript 4.5k 164
aymericdamien/TensorFlow-Examples 2015 30.9k Python 11.7k 54
babel/babel 2012 32.8k Javascript 3.4k 724
barryvdh/laravel-debugbar 2013 9.3k PHP 905 95
barryvdh/laravel-ide-helper 2013 8.2k PHP 782 107
bazelbuild/bazel 2015 11.9k Java 1.9k 441
bcit-ci/CodeIgniter 2006 17.2k PHP 7.6k 441
BetterErrors/better_errors 2012 6.5k Ruby 430 75
binux/pyspider 2014 13k Python 3.2k 51
bobthecow/psysh 2012 7.4 PHP 216 48
briannesbitt/Carbon 2012 12.4k PHP 1k 197
bumptech/glide 2013 26k Java 9k 96
CachetHQ/Cachet 2014 9.6k PHP 1.1k 161
cakephp/cakephp 2005 7.8k PHP 3.4k 523
capistrano/capistrano 2013 11k Ruby 1.7k 215
carrierwaveuploader/
carrierwave

2008 8.3k Ruby 1.4k 326

celery/celery 2009 12.3k Python 3.2k 714
certbot/certbot 2012 25k Python 2.5k 352
chartjs/Chart.js 2013 43k Javascript 9.5k 298
chrisbanes/PhotoView 2012 15.2k Java 3.5k 34
CocoaPods/CocoaPods 2011 11.6k Ruby 2k 266
composer/composer 2011 19.6k PHP 5.4k 729
daimajia/AndroidSwipe
Layout

2014 11.1k Java 2.6k 16

daimajia/AndroidView
Animations

2014 10.5k Java 2.2k 17

deeplearning4j/deep
learning4j

2013 10.7k Java 4.6k 250

deployphp/deployer 2013 6.7k PHP 977 174
diaspora/diaspora 2010 12.2k Ruby 2.9k 342
dingo/api 2014 8.3k PHP 1.1k 96
docker/compose 2013 16k Python 2.4k 299
doctrine/inflector 2009 7k PHP 90 55
doctrine/instantiator 2014 6.8k PHP 42 22
doctrine/lexer 2013 6.8k PHP 29 16
Dogfalo/materialize 2014 35.6k Javascript 4.7k 252
donnemartin/system-design-primer 2017 62.9k Python 9.2k 65
egulias/EmailValidator 2013 6.7k PHP 91 37
elastic/elasticsearch 2010 40.3k Java 13.4k 1205
elastic/logstash 2009 10.2k Ruby 2.7k 398
encode/django-rest-
framework

2010 14k Python 4.1k 851

EnterpriseQualityCoding
/FizzBuzzEnterpriseEdition

2012 10.8k Java 505 30

erusev/parsedown 2013 10.8k PHP 881 39
eugenp/tutorials 2013 14k Java 20.4k 500
explosion/spaCy 2014 13.2k Python 2.2k 333
expressjs/express 2009 43.4k Javascript 7.4k 220
facebook/create-react-app 2016 66.5k Javascript 14.8k 672
facebook/fresco 2015 15.5k Java 3.6k 152
facebook/react 2013 127k Javascript 23.2k 1296
facebook/react-native 2015 76.2k Javascript 17k 1947
facebook/stetho 2015 11k Java 1k 49
facebookresearch/Detectron 2018 20.3k Python 4.3k 27
faif/python-patterns 2012 20.4k Python 4.4k 86
fastlane/fastlane 2014 25.4k Ruby 3.8k 961
filp/whoops 2013 10k PHP 523 99
fluent/fluentd 2011 7.8k Ruby 913 169
FortAwesome/Font-Awesome 2018 59.5k Javascript 10k 5
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freeCodeCamp/devdocs 2013 20.5k Ruby 1.3k 93
freeCodeCamp/freeCode
Camp

2013 302k Javascript 21.6k 3532

FriendsOfPHP/Goutte 2010 7.2k PHP 871 66
FriendsOfPHP/PHP-CS-Fixer 2012 7.5k PHP 203k 1k
gatsbyjs/gatsby 2015 33.9k Javascript 4.8k 1954
getgrav/grav 2014 10.8k PHP 1k 148
getredash/redash 2013 12.5k Python 2k 247
getsentry/sentry 2008 20.7k Python 2.3k 383
github/linguist 2011 6.7k Ruby 2.4k 748
gollum/gollum 2010 9.9k Ruby 1.4k 144
google-research/bert 2018 14.8k Python 3.4k 26
google/ExoPlayer 2014 12.9k Java 3.9k 135
google/gson 2008 15.5k Java 3.1k 93
google/guava 2011 31.1k Java 7k 185
google/python-fire 2017 14k Python 818 28
GoogleChrome/puppeteer 2017 48.2k Javascript 4.2k 208
greenrobot/greenDAO 2011 11.2k Java 2.7k 6
gulpjs/gulp 2013 31.1k Javascript 4.4k 216
guzzle/guzzle 2011 16.6k PHP 1.9k 294
h5bp/html5-boilerplate 2010 42.6k Javascript 10.1k 231
hakimel/reveal.js 2011 45.8k Javascript 13.2k 245
hashicorp/vagrant 2010 18.4k Ruby 3.7k 884
hdodenhof/CircleImageView 2014 11.7k Java 2.6k 12
HelloZeroNet/ZeroNet 2015 13.7k Python 1.7k 101
home-assistant/home-assistant 2013 23.5k Python 6.8k 1441
Homebrew/brew 2009 17.6k Ruby 3.9k 669
Homebrew/homebrew-cask 2012 15.2k Ruby 7.2k 5214
huge-success/sanic 2016 12k Python 1.1k 206
huginn/huginn 2013 21.3k Ruby 2.3k 171
iluwatar/java-design-patterns 2014 46.8k Java 15.1k 145
imathis/octopress 2009 9.5k Ruby 2.9k 111
impress/impress.js 2011 34.7k Javascript 6.8k 63
Intervention/image 2013 9.2k PHP 1k 71
ipython/ipython 2008 13.5k Python 3.8k 593
JakeWharton/butterknife 2013 23.7k Java 4.5k 83
jakubroztocil/httpie 2012 41.1k Python 2.6k 74
javan/whenever 2009 7.9k Ruby 685 82
jekyll/jekyll 2008 37.7k Ruby 8.2k 852
jfeinstein10/SlidingMenu 2012 11.1k Java 5.3k 21
jordansissel/fpm 2011 9.1k Ruby 915 234
josephmisiti/awesome-machine-learning 2014 39.8k Python 9.7k 371
jquery/jquery 2006 51.4k Javascript 18k 275
juliangarnier/anime 2016 30.7 Javascript 2.2k 27
kaminari/kaminari 2011 7.4k Ruby 958 133
kennethreitz/requests 2011 38.6k Python 6.9k 533
keon/algorithms 2016 14.9k Python 2.7k 105
keras-team/keras 2015 41.1k Python 15.3k 795
kilimchoi/engineering-blogs 2015 15.2k Ruby 1.7k 303
Konloch/bytecode-viewer 2014 10.1k Java 637 15
laravel/framework 2013 17.2k PHP 6.4k 1944
lgvalle/Material-Animations 2015 12.7k Java 2.5k 9
LMAX-Exchange/disruptor 2011 10.3k Java 2.6k 31
localstack/localstack 2016 16.7k Python 1.1k 157
lodash/lodash 2009 38.7k Javascript 22.5k 280
loopj/android-async-http 2011 10.4k Java 4.2k 75
Maatwebsite/Laravel-Excel 2013 6.9k PHP 1.1k 95
magento/magento2 2011 7.3k PHP 6.3k 1129
mame/quine-relay 2013 7.8k Ruby 383 12
matomo-org/matomo 2007 11.1k PHP 1.7k 224
matterport/Mask_RCNN 2017 11.9k Python 5.1k 40
meteor/meteor 2011 41k Javascript 5k 402
Microsoft/vscode 2015 73.9k Javascript 10k 871
middleman/middleman 2009 6.4k Ruby 694 182
mikepenz/MaterialDrawer 2014 10.3k Java 2k 87
minimaxir/big-list-of-naughty-strings 2015 32.3k Python 1.3k 56
mitmproxy/mitmproxy 2010 14.9k Python 1.9k 253
mockery/mockery 2009 7.7k PHP 356 139
moment/moment 2011 40.9k Javascript 6.1k 492
monicahq/monica 2017 7.1k PHP 838 158
mperham/sidekiq 2012 9.6k Ruby 1.6k 397
mrdoob/three.js 2010 50.7k Javascript 19k 1077
mui-org/material-ui 2014 46.1k Javascript 9.9k 1229
mybatis/mybatis-3 2010 10.6k Java 6.6k 121
NARKOZ/hacker-scripts 2015 34.9k Javascript 5.9k 41
NationalSecurityAgency
/ghidra

2019 15.3k Java 1.8k 40
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netty/netty 2008 18.8k Java 8.4k 373
nextcloud/server 2010 7.4k PHP 1.3k 601
nicolargo/glances 2011 13.3k Python 906 92
nikic/PHP-Parser 2011 10.4k PHP 614 82
nodejs/node 2009 60.3k Javascript 13.4k 2444
nostra13/Android-Universal-Image-Loader 2011 16.4k Java 6.3k 35
nvbn/thefuck 2015 43.7k Python 2.1k 123
octobercms/october 2013 8.5k PHP 1.9k 303
omniauth/omniauth 2010 6.8k Ruby 870 143
openai/gym 2016 16.6k Python 4.4k 176
orhanobut/logger 2015 11.1k Java 1.7k 10
overtrue/wechat 2015 7.8k PHP 1.9k 98
pallets/flask 2010 44k Python 12.2k 507
pandas-dev/pandas 2009 19.4k Python 7.7k 1479
parcel-bundler/parcel 2017 31.3k Javascript 1.4k 204
phalcon/cphalcon 2012 9.6k PHP 1.7k 226
phanan/koel 2015 10.2k PHP 1.2k 45
PhilJay/MPAndroidChart 2014 27k Java 7k 67
php-ai/php-ml 2016 6.8k PHP 947 28
PHPMailer/PHPMailer 2008 13.1k PHP 7.2k 168
plataformatec/devise 2009 19.9k Ruby 4.6k 541
plataformatec/simple_form 2009 7.3k Ruby 1.2k 219
prettier/prettier 2916 31.4k Javascript 1.7k 413
pypa/pipenv 2017 16.8k Python 1.2k 276
rails/rails 2004 43.1k Ruby 17.3k 3818
ramsey/uuid 2012 8.7k PHP 315 59
rapid7/metasploit-framework 2005 16.3k Ruby 8.1k 628
react-native-community/lottie-react-native 2016 11.2k Java 1k 53
ReactiveX/RxAndroid 2013 17.9k Java 2.8k 59
ReactiveX/RxJava 2012 38.6k Java 6.5k 240
reactphp/react 2012 6.8k PHP 672 29
ReactTraining/react-router 2014 35.9k Javascript 7.3k 548
realm/realm-java 2012 10.4k Java 1.6k 80
reduxjs/redux 2015 48.1k Javascript 12.3k 673
resque/resque 2009 8.5k Ruby 1.5k 207
resume/resume.github.com 2011 40.3k Javascript 1k 48
roots/sage 2011 10k PHP 2.8k 193
rubocop-hq/rubocop 2012 9.9k Ruby 2k 596
ruby-grape/grape 2010 8.8k Ruby 1k 319
ryanb/cancan 2009 6.3k Ruby 839 54
scikit-learn/scikit-learn 2010 35k Python 16.9k 1304
scrapy/scrapy 2008 32.8k Python 7.6k 313
sebastianbergmann/phpunit 2006 13.8k PHP 1.7k 358
Seldaek/monolog 2011 14.6k PHP 1.5k 324
SeleniumHQ/selenium 2004 14.3k Java 4.8k 429
Semantic-Org/Semantic-UI 2013 45.2k Javascript 4.8k 190
serbanghita/Mobile-Detect 2012 8.6k PHP 2.3k 83
serverless/serverless 2015 29.9k Javascript 3k 571
sferik/rails_admin 2010 7k Ruby 2k 357
Shopify/liquid 2008 7.1k Ruby 931 121
signalapp/Signal-Android 2011 11.4k Java 2.9k 183
sinatra/sinatra 2007 10.6k Ruby 1.9k 361
skylot/jadx 2013 18.5k Java 2k 31
slimphp/Slim 2010 9.8k PHP 1.8k 202
socketio/socket.io 2004 46k Javascript 8.5k 154
spree/spree 2008 9.7k Ruby 4.2k 252
spring-projects/spring-boot 2012 36.8k Java 24.1k 571
spring-projects/spring-framework 2008 29k Java 19k 364
sqlmapproject/sqlmap 2008 14.1k Python 3k 79
square/okhttp 2012 31.8k Java 7k 182
square/picasso 2013 16.7k Java 3.9 91
square/retrofit 2010 32k Java 5.9k 125
StevenBlack/hosts 2012 12k Python 1.1k 61
storybooks/storybook 2015 36.7k Javascript 2.9k 677
stympy/faker 2007 7.7k Ruby 1.9k 585
swiftmailer/swiftmailer 2007 7.8k PHP 738 133
symfony/symfony 2010 20.6k PHP 6.8k 1866
teamcapybara/capybara 2009 8.7k Ruby 1.2k 259
Tencent/tinker 2016 13.6k Java 2.7k 22
tensorflow/magenta 2016 13.1k Python 2.5k 97
tensorflow/models 2016 52.6k Python 31.7k 497
the-control-group/voyager 2016 8k PHP 1.9k 288
TheAlgorithms/Java 2016 13.5k Java 5k 137
TheAlgorithms/Python 2016 38.4k Python 10.9k 218
thedaviddias/Front-End-Checklist 2017 34.2k Javascript 3.2k 82
thephpleague/flysystem 2013 9.3k PHP 512 171
thepracticaldev/dev.to 2018 9.1k Ruby 1k 187
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thoughtbot/bourbon 2011 8.8k Ruby 918 101
thoughtbot/factory_bot 2008 6.4k Ruby 1.7k 187
thoughtbot/guides 2012 8k Ruby 1.2k 98
thoughtbot/paperclip 2008 9k Ruby 2k 371
tmuxinator/tmuxinator 2010 8.9k Ruby 549 109
toddmotto/public-apis 2016 56.8k Python 5.7k 475
tootsuite/mastodon 2016 17.6k Ruby 3.1k 558
tornadoweb/tornado 2009 17.7k Python 4.9k 304
trailofbits/algo 2016 13.1k Python 1.1k 119
trekhleb/Javascript-algorithms 2018 47.9k Javascript 6.7k 89
TryGhost/Ghost 2013 29.6k Javascript 6.3k 314
twbs/bootstrap 2011 133k Javascript 64.9k 1074
twbs/bootstrap-sass 2011 12.7k Ruby 3.5k 95
tymondesigns/jwt-auth 2014 7.7k PHP 968 65
typicode/json-server 2013 39.6k Javascript 3.5k 61
udacity/fullstack-nanodegree-vm 2015 263 Python 11.3k 7
Valloric/YouCompleteMe 2012 19k Python 2.1k 136
varvet/pundit 2012 6.4k Ruby 489 92
vinta/awesome-python 2014 67.2k Python 12.7k 306
vlucas/phpdotenv 2013 9.2k PHP 439 47
vuejs/vue 2016 136k Javascript 19.3k 274
walkor/Workerman 2013 7.4k PHP 1.9k 49
webpack/webpack 2012 48.3k Javascript 6k 516
wix/react-native-navigation 2016 10.2k Java 2.2k 280
yarnpkg/yarn 2016 35.5k Javascript 2.1k 496
yiisoft/yii2 2011 12.8k PHP 6.7k 961
ytdl-org/youtube-dl 2008 50.3k Python 8.5k 671
zeit/next.js 2016 36.7k Javascript 4.2k 700
zxing/zxing 2013 22.4k Java 8.1k 94

Appendix B

Table 5.5 presents the results of mining 250 issue repositories in detail.

Table 5.5: This table shows the frequencies of various elements in bug reports for
different projects. O/C indicates the ratio between open issues and closed one. bugA
indicates that the issues is originally labeled as a bug, whereas bugB indicates that
IMaChecker detected the issue as a bug. ST indicates Stack Traces, RS indicates Re-
producing Steps, FS indicates Fix Suggestions, UC shows User Content, and C shows
Code.

Repository #O/C #bugA #bugB #ST #RS #FS #UC #C
30-seconds/30-
seconds-of-code

9/184 23 49 0 17 32 11 1

achael/eht-imag
ing

1 0 2 2 0 0 0 0

activeadmin/
activeadmin

34/541 203 527 317 130 101 17 4

adam-p/
markdown-here

227/284 86 21 0 6 15 14 1

adobe/
brackets

1169/3474 160 1148 4 923 238 253 2

ageitgey/
face_recognition

302/431 0 175 114 41 26 44 1

airbnb/
lottie-android

33/853 3 158 75 67 21 70 0

android
annotations/
android
annotations

43/1564 0 253 150 67 52 3 3
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angular/
angular.js

129/2849 1622 1214 14 944 727 37 3

ansible/ansible 280/1349 13982 15790 3367 14834 612 97 83
apache/
incubator
-dubbo

331/2032 99 394 90 294 27 140 3

apache/
incubator
-echarts

3209/6916 566 1442 18 1397 28 1309 5

apache/incubator
-zipkin

13/41 88 95 45 23 29 49 0

atech/postal 93/161 20 52 27 2 24 49 2
atom/atom 557/14128 2937 5693 816 5343 672 600 5
axios/axios 515/1168 86 138 50 37 56 99 9
aymericdamien/
TensorFlow-
Examples

129/53 0 21 20 0 2 3 0

babel/babel 625/5711 795 852 142 477 492 146 18
barryvdh/
laravel-debugbar

107/120 0 28 7 6 15 27 0

barryvdh/
laravel-ide-helper

294/257 0 28 6 4 18 24 3

bazelbuild/
bazel

875/2251 1931 1724 217 1426 177 27 18

bcit-ci/
CodeIgniter

45/2944 161 132 4 33 97 17 2

BetterErrors/
better_errors

42/209 16 46 37 1 8 3 0

binux/pyspider 219/529 6 166 110 50 17 11 1
bobthecow/psysh 55/282 39 16 4 6 7 11 1
briannesbitt/
Carbon

7/698 15 45 5 29 12 5 3

bumptech/glide 137/3205 395 538 414 71 87 129 5
CachetHQ/
Cachet

127/1859 432 266 129 100 50 82 1

cakephp/cake
php

65/1704 30 379 68 88 231 31 10

capistrano/
capistrano

18/509 77 220 141 56 42 0 2

carrierwave
uploader/carrier
wave

169/1489 30 236 165 26 51 4 1

celery/celery 383/3441 376 1476 884 751 117 32 11
certbot/certbot 352/1629 470 837 606 69 184 11 4
chartjs/
Chart.js

424/4137 1003 684 6 497 382 353 11

chrisbanes/
PhotoView

116/451 39 59 44 7 10 10 0

CocoaPods/
CocoaPods

178/6943 0 1778 1168 482 191 63 15

composer/
composer

87/1280 663 577 35 163 395 45 14

daimajia/
AndroidSwipe
Layout

30/13 9 27 15 5 7 5 1

daimajia/Android
ViewAnimations

14/23 1 9 6 1 2 0 0

deeplearning4j/
deeplearning4j

391/1780 967 533 306 138 108 122 6

deployphp/
deployer

20/93 171 310 18 274 44 8 5

diaspora/
diaspora

418/4141 1761 564 264 176 149 33 2

dingo/api 67/359 52 133 52 57 28 6 2
docker/
compose

505/3891 511 970 461 488 109 24 17

doctrine/inflector 4/23 0 0 0 0 0 0 0
doctrine/instantiator 1/9 3 1 0 1 0 0 0
doctrine/lexer Inf 0 0 0 0 0 0 0
Dogfalo/
materialize

481/4486 279 533 22 390 222 176 7

donnemartin/
system-design
-primer

29/14 9 2 1 0 1 2 0

egulias/Email
Validator

21/83 24 2 0 1 1 1 0

elastic/
elasticsearch

1736/18139 3510 5540 1719 3898 832 165 47
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elastic/log
stash

1366/3745 965 1071 506 457 200 41 7

encode/django
-rest-framework

143/3023 311 812 158 608 120 35 3

EnterpriseQuality
Coding/FizzBuzz
EnterpriseEdition

134/27 1 15 2 0 13 0 0

erusev/parsedown 2/29 89 23 0 7 16 6 4
eugenp/tutorials 2/65 0 27 15 1 12 4 2
explosion/spaCy 70/1363 411 896 444 452 125 65 14
expressjs/
express

111/2956 90 178 48 58 73 29 4

facebook/
create-react-app

317/4174 400 1453 177 1243 181 338 12

facebook/fresco 79/1897 282 351 267 75 26 61 3
facebook/react 503/6964 369 1435 55 1212 204 217 10
facebook/react-
native

219/7931 1319 4847 285 4329 436 1490 46

facebook/stetho 1/9 39 62 54 8 3 11 1
facebook
research/Detectron

213/571 6 256 139 130 24 36 0

faif/python-
patterns

9/47 1 3 1 0 2 1 0

fastlane/
fastlane

171/9137 522 2085 1754 69 332 140 24

filp/whoops 42/251 0 18 3 0 15 4 0
fluent/fluentd 197/960 106 290 232 52 36 16 3
FortAwesome/
Font-Awesome

4769/9638 385 456 6 143 312 1079 4

freeCodeCamp/
devdocs

77/647 102 51 14 21 17 24 0

freeCodeCamp/
freeCodeCamp

75/4444 261 7730 26 7465 366 944 9

FriendsOfPHP/
Goutte

105/131 0 9 4 3 2 3 0

FriendsOfPHP/
PHP-CS-Fixer

234/1373 247 77 9 23 48 8 4

gatsbyjs/gatsby 419/6047 534 2005 148 1611 564 442 27
getgrav/grav 103/556 219 121 24 39 59 75 5
getredash/redash 43/148 220 499 120 407 36 102 2
getsentry/sentry 68/253 73 489 291 152 72 184 0
github/linguist 5/417 16 62 17 7 38 30 0
gollum/gollum 14/449 212 114 66 24 25 4 0
google/Exo
Player

294/4849 841 1334 756 524 171 112 3

google/gson 8/19 2 345 92 273 30 6 1
google/guava 371/1104 0 249 27 90 136 7 0
google/
python-fire

23/31 13 14 8 1 6 1 1

google-
research/bert

11/8 0 71 42 13 21 23 0

GoogleChrome/
puppeteer

376/2539 186 1271 227 1115 83 226 26

greenrobot/
greenDAO

31/181 35 67 54 6 12 15 1

gulpjs/gulp 17/1707 27 116 47 20 52 22 3
guzzle/guzzle 127/597 24 194 30 138 40 17 3
h5bp/html5-
boilerplate

1/1142 38 78 1 12 65 0 0

hakimel/
reveal.js

370/1269 49 80 3 35 42 19 1

hashicorp/
vagrant

199/3767 1600 2657 869 1738 256 54 14

hdodenhof/Circle
ImageView

9/275 3 35 29 2 5 10 0

HelloZeroNet/
ZeroNet

535/1064 98 231 82 118 41 56 0

home-assistant
/home-assistant

1007/8670 143 4607 2641 2840 158 545 19

Homebrew/brew 3/707 86 647 239 406 111 19 13
Homebrew/
homebrew-cask

1/222 18 1090 956 31 138 20 3

huge-success/
sanic

21/223 42 119 91 14 21 11 1

huginn/huginn 288/1207 20 223 160 9 65 20 2
iluwatar/java-
design-patterns

181/263 40 9 2 0 7 0 0
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imathis/
octopress

179/808 70 140 101 16 30 0 1

impress/
impress.js

46/379 5 28 0 16 12 0 0

Intervention/
image

229/500 8 29 6 4 19 19 1

ipython/ipython 144/611 930 1118 679 266 240 73 8
JakeWharton/
butterknife

39/484 9 103 65 12 30 32 4

jakubroztocil/
httpie

13/41 81 79 61 8 13 9 0

javan/whenever 55/463 25 87 69 2 16 0 0
jekyll/jekyll 67/3872 23 833 318 421 136 25 2
jfeinstein10/
SlidingMenu

263/381 6 72 43 13 21 1 0

jordansissel/fpm 14/13 64 188 146 24 34 2 0
josephmisiti/
awesome-machine-
learning

1/57 0 3 0 1 2 0 0

jquery/jquery 13/358 103 145 5 84 59 38 1
juliangarnier/
anime

68/377 23 34 1 25 8 15 2

kaminari/kaminari 5/146 57 66 42 16 11 1 1
kennethreitz/
requests

25/391 137 655 512 107 94 27 6

keon/algorithms 14/29 7 5 1 0 4 3 0
keras-team/
keras

2323/6809 112 2479 1044 1324 389 212 21

kilimchoi/
engineering-blogs

7/59 0 0 0 0 0 0 0

Konloch/
bytecode-viewer

29/154 35 37 27 3 8 3 0

laravel/
framework

29/4011 346 3704 197 3255 431 176 49

lgvalle/Material-
Animations

1/2 0 2 1 0 1 0 0

LMAX-Exchange/
disruptor

6/187 2 33 10 16 8 3 2

localstack/
localstack

410/489 199 256 210 38 26 11 4

lodash/lodash 0 227 154 12 49 94 40 2
loopj/android-
async-http

243/799 0 134 107 2 28 2 0

Maatwebsite/
Laravel-Excel

27/1832 18 418 18 378 42 104 8

magento/
magento2

557/6754 3604 9383 664 8826 445 1787 15

mame/quine-
relay

1/8 0 3 0 0 3 0 0

matomo-
org/matomo

1717/8490 4102 920 85 439 416 301 3

matterport/
Mask_RCNN

857/483 0 203 143 4 61 99 5

meteor/meteor 290/7729 553 994 250 506 300 90 16
Microsoft/
vscode

2743/31334 17233 28328 503 25881 3228 10134 119

middleman/
middleman

123/1426 56 366 226 130 41 1 2

mikepenz/
MaterialDrawer

8/2269 120 180 100 40 45 89 4

minimaxir/big-list
-of-naughty-strings

43/24 0 7 0 1 6 1 0

mitmproxy/
mitmproxy

53/425 368 1002 456 777 42 51 2

mockery/mockery 52/437 62 36 8 15 15 2 1
moment/moment 47/628 252 550 15 478 73 47 8
monicahq/
monica

332/717 199 65 15 22 29 103 0

mperham/
sidekiq

12/3073 0 575 414 69 128 31 13

mrdoob/
three.js

629/8187 900 571 28 172 378 322 8

mui-org/material-
ui

281/8286 1286 3057 74 2716 868 779 21

mybatis/
mybatis-3

95/763 113 259 73 190 21 16 1
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NARKOZ/hacker-
scripts

9/8 0 2 0 1 1 0 0

NationalSecurity
Agency/ghidra

241/276 258 176 6 163 14 109 1

netty/netty 388/4203 231 1332 565 776 112 46 1
nextcloud/
server

1961/5781 3389 4114 546 3891 206 828 26

nicolargo/
glances

107/955 345 284 258 22 23 30 3

nikic/PHP-Parser 41/343 0 33 8 7 18 2 1
nodejs/node 337/4612 645 1727 799 599 419 192 40
nostra13/
Android-Universal
-Image-Loader

273/472 89 181 145 10 31 2 0

nvbn/thefuck 37/80 3 156 76 60 48 11 0
octobercms/
october

163/1164 717 779 23 696 85 179 13

omniauth/
omniauth

29/263 15 87 57 19 17 2 0

openai/gym 175/689 1 191 136 21 43 22 1
orhanobut/logger 44/129 13 11 6 0 5 7 1
overtrue/wechat 22/719 8 17 17 0 0 72 3
pallets/flask 1/52 28 275 204 37 53 13 4
pandas-
dev/pandas

963/4034 4242 1798 1144 354 377 138 16

parcel-
bundler/parcel

321/715 779 598 126 387 349 151 9

phalcon/
cphalcon

48/2011 630 351 82 184 100 19 5

phanan/koel 8/79 26 94 9 67 23 11 1
PhilJay/MP
AndroidChart

201/389 82 314 174 40 112 342 2

php-ai/php-ml 26/35 0 10 4 0 6 7 0
PHPMailer/
PHPMailer

29/1306 8 201 13 140 50 22 1

plataformatec/
devise

5/764 147 586 416 87 114 11 5

plataformatec/
simple_form

17/1099 61 76 39 15 25 8 0

prettier/
prettier

583/2822 1142 220 41 126 60 96 41

pypa/pipenv 281/2355 332 877 733 118 80 46 9
rails/rails 371/12260 0 4799 1535 3541 361 86 30
ramsey/uuid 27/89 15 11 0 2 9 2 0
rapid7/
metasploit-
framework

637/2466 1032 1265 531 892 65 91 1

react-native-
community/lottie-
react-native

29/151 23 63 10 46 8 29 6

ReactiveX/
RxAndroid

0 0 35 22 3 12 3 0

ReactiveX/
RxJava

14/1333 237 347 164 95 102 13 8

reactphp/react 0 14 10 1 1 8 0 0
ReactTraining/
react-router

7/988 141 871 25 731 138 90 10

realm/realm-java 425/3378 589 1161 568 694 102 38 14
reduxjs/redux 26/1615 16 209 8 113 96 33 1
resque/resque 34/769 113 104 79 12 19 2 0
resume/resume
.github.com

29/54 11 6 0 4 2 0 0

roots/sage 17/1124 40 123 7 93 29 4 5
rubocop-
hq/rubocop

225/2999 615 1312 341 1000 170 13 10

ruby-grape/
grape

59/244 313 121 87 15 25 2 0

ryanb/cancan 68/215 15 84 50 3 33 0 0
scikit-learn/scikit-
learn

1253/4945 930 1748 628 1111 248 61 12

scrapy/scrapy 59/149 141 384 282 42 79 17 4
sebastianberg
mann/phpunit

69/2329 170 187 55 71 68 25 5

Seldaek/monolog 7/85 35 37 12 5 21 2 1
SeleniumHQ/
selenium

365/5286 0 2941 251 2701 162 157 16
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Semantic-Org/
Semantic-UI

781/5176 1190 487 22 322 149 180 5

serbanghita/
Mobile-Detect

36/109 78 39 0 0 39 5 1

serverless/
serverless

497/3000 793 363 209 72 93 45 11

sferik/rails
_admin

340/1787 151 258 192 24 55 14 0

Shopify/liquid 27/106 46 36 16 10 10 4 2
signalapp/
Signal-Android

282/6443 104 2417 224 2064 597 345 2

sinatra/sinatra 65/638 86 98 64 18 21 0 0
skylot/jadx 39/188 31 29 21 4 5 33 0
slimphp/Slim 2/713 54 95 28 15 54 6 1
socketio/socket
.io

377/2333 108 343 20 265 219 26 2

spree/spree 33/1186 0 838 394 404 152 31 2
spring-
projects/spring
-boot

381/13093 1375 2164 802 1187 298 110 30

spring-
projects/spring
-framework

731/17331 4006 1422 323 505 656 13 2

sqlmapproject/
sqlmap

4/281 828 1611 1451 226 80 26 1

square/okhttp 85/1228 508 611 492 107 60 33 5
square/picasso 27/214 8 207 161 25 30 9 0
square/retrofit 29/1051 19 295 230 31 45 19 5
StevenBlack/
hosts

28/307 17 42 23 3 16 19 1

storybooks/
storybook

111/1010 706 1106 105 992 87 405 15

stympy/faker 47/334 35 49 30 13 9 9 0
swiftmailer/
swiftmailer

151/223 0 87 29 37 23 3 3

symfony/
symfony

635/11437 2787 1747 109 1225 560 268 35

teamcapybara/
capybara

1/1302 78 304 156 146 44 7 0

Tencent/tinker 69/440 63 198 197 0 3 34 0
tensorflow/
magenta

173/381 0 132 109 5 25 28 0

tensorflow/
models

1269/2959 112 1904 913 1226 141 207 10

the-control-
group/voyager

66/773 470 1289 6 1239 68 350 7

TheAlgorithms/
Java

1/10 2 6 0 0 6 1 1

TheAlgorithms/
Python

35/86 3 5 2 0 3 3 0

thedaviddias/
Front-End-Checklist

3/88 14 7 0 1 6 7 0

thephpleague/
flysystem

9/520 5 52 15 18 21 2 4

thepracticaldev/
dev.to

11/35 332 317 9 274 39 291 3

thoughtbot/
bourbon

1/275 18 45 8 24 15 0 0

thoughtbot/
factory_bot

18/767 25 129 88 15 30 3 1

thoughtbot/guides 1/15 0 3 0 0 3 1 0
thoughtbot/
paperclip

15/1801 138 243 170 24 58 3 1

tmuxinator/
tmuxinator

80/321 41 50 28 13 10 1 0

toddmotto/public-
apis

8/95 0 10 0 1 9 2 0

tootsuite/
mastodon

1175/3353 779 741 169 270 325 412 8

tornadoweb/
tornado

142/1301 0 313 251 39 51 9 2

trailofbits/algo 4/109 77 478 46 454 28 22 1
trekhleb/
Javascript-algorithms

33/68 13 9 0 4 5 5 0

TryGhost/Ghost 81/5305 1424 1659 90 1459 215 205 5
twbs/
bootstrap

329/18145 200 1185 18 473 708 601 13
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twbs/bootstrap-
sass

3/811 39 71 36 15 23 4 1

tymondesigns/
jwt-auth

397/892 6 158 21 101 42 24 2

typicode/json-
server

199/183 3 42 21 7 15 15 5

udacity/fullstack-
nanodegree-vm

3/2 0 4 1 3 3 3 0

Valloric/You
CompleteMe

42/2609 5 927 376 546 181 62 1

varvet/pundit 8/329 4 48 29 1 18 1 1
vinta/awesome-
python

71/69 0 5 0 1 4 0 1

vlucas/phpdotenv 0 0 11 1 3 7 0 0
vuejs/vue 67/2606 330 3150 47 2991 176 146 26
walkor/
Workerman

8/255 10 10 6 0 4 10 1

webpack/
webpack

442/5893 811 2404 176 2222 185 195 21

wix/react-
native-navigation

69/1738 119 1549 77 1461 75 459 18

yarnpkg/yarn 347/674 571 2627 309 2447 80 108 31
yiisoft/yii2 14/249 1638 2214 189 1763 376 87 28
ytdl-org/
youtube-dl

2352/14395 474 9337 6980 127 4517 97 10

zeit/next.js 205/3877 208 1336 254 1064 324 319 16
zxing/zxing 2/223 40 123 48 53 29 70 1



180 5.7. Conclusions

(a) Snapshot of the bug report [1].

(b) Snapshot of the responses to the bug report [1].

Figure 5.1: An snapshot of a bug report [1] which is missing a crash stack trace, as
well as the responses to it.
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Figure 5.2: The years of professional experience of the interview participants.

Figure 5.3: The identified themes after analysing the interview transcripts.
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Figure 5.4: The figure presents the years of professional experience of the survey
participants.
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Figure 5.7: Developers’ perception on the importance of various data for bug
resolution time.
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6
The Use of Contracts in Open Source

Software

Design by Contract (DBC) is a software development approach in which contracts are
formally specified between client and supplier components. Specified contracts can
be used in program verification, automated testing, and API documentation, thereby,
helping improve software quality. Assertions and other built-in features of program-
ming languages, as a lightweight form of contracts, have been investigated in related
work. However, the use of DBC in popular languages has been underexplored. In this
study, we present results of an empirical evaluation on the use of contracts in 124
open source projects, written in Java, C++, and Python. Our findings show that the
average use of different types of contracts differ depending on the program language.
In addition, we derived the following use cases of contracts: checking null condi-
tions, as well as checking equality and semantics of objects, data collections, strings,
and numbers. Furthermore, the results of regression analysis shows there is a neg-
ative relation between the number of contracts and frequency of defect occurrence
in a method. These results are statistically significant for all Java, C++, and Python
projects.

6.1 Introduction

Delivering a reliable software product is a pressing concern in software development.
Software reliability is especially important when software components are designed to
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be reused in various applications. In order to support the goal of developing reliable
software, Meyer [162] [163] presents pragmatic guidelines based on the theory of
Design By Contract (DBC).

The underlying idea in DBC is that software components are expected to collaborate
based on mutual expectations and benefits, which are formally specified in software
programs. In a program, if a client routine calls a supplier routine, the client must
meet certain requirements on entry, which are typically referred to as preconditions.
At the exit, the supplier routine may guarantee certain properties, named postcondi-
tions. class invariants are certain conditions which must be always guaranteed. Thus,
program contracts are used for various purposes such as static and runtime verifica-
tion, API documentation, and automated software testing [98].

Recently, Casalnuovo et al. [78] explored the connection between the use of asser-
tions and occurrence of defects in C and C++ projects from Github. They report
that the use of assertions does have small (yet significant) effect on reducing the de-
fect density. In addition, they report that assertions tend to be added to methods by
developers who have a larger ownership of those methods. Kochhar and Lo [144] per-
formed a partial replication of the study by Casalnuovo et al. [78] on Java programs
from Github. Their results confirm the findings reported by Casalnuovo et al. [78].
Furthermore, Estler et al. [98] study the use of contracts in 21 projects developed
in Eiffel, C#, and Java. Their findings show that contracts are quite stable and may
change infrequently. In addition, they report that there is no strong preference for
different types of contracts.

In this study, we intend to broaden the scope of the studies which were previously
performed with regards to the use of contracts. Therefore, we aim to investigate how
often different types of contracts are used and for what purposes. In addition, similar
to the studies by Casalnuovo et al. [78] and Kochhar and Lo [144] which analyze the
relation between use of assertions and occurrence of defects, we aim to analyze the
relation between the use of contracts and occurrence of defects. Therefore, we devise
the following research questions:

• RQ1: How often are different types of contracts used?

• RQ2: For which use cases do developers use contracts?

• RQ3: Does the use of contracts relate to occurrence of defects?

To answer the above research questions, we study three popular programming lan-
guages in Github [16] [17]: Java, Python and C++, which support design by con-
tract (DBC). Java and C++ are popular instances of strongly typed object-oriented
and semi object-oriented programming languages, respectively. Python is a popular
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instance of a high-level interpreted programming language. For each language we
selected popular libraries that support DBC, namely: JML [31, 149], Valid4j [37],
Cofoja [23], Boost.contract [20], Icontract [27,146], and Pycontracts [34]. We selec-
ted projects that use these libraries from Github, thereby, we created a corpus that
contains 124 projects.

For each library we developed a static source code parser which can detect and record
the use of contracts. In addition, for each language, we developed a Git commit log
parser, which can detect and record methods that are changed in commits. Moreover,
we manually analyzed a subset of 1505 (out of 18494) automatically identified con-
tracts that we randomly selected from each project.

Our results indicate that in Java projects, on average, 56% of the contracts are pre-
conditions while 31% of them are postconditions, and 13% are class invariants. These
results contradict the results reported by Estler et al. [98] showing that there is indeed
strong preference for using preconditions, compared to postconditions and invariants.
On the other hand, in C++ projects, on average, 46% of the contacts are postcondi-
tions, %29 are preconditions, and 19% are class invariants. For Python projects, on
average, 77% of the contracts are preconditions, 16% of the contracts are postcondi-
tions, and 7% of the contracts are invariants. In addition, we derived five categories of
use cases for contracts: contracts for objects, contracts for data collections, contracts
for numbers, contracts for strings, and contracts for null conditions. These categories
are further divided into: equality checks on objects, boundary checks and equality
checks for numbers, semantic checks and equality checks for strings, size checks and
semantic checks for data collections.

Regarding the analysis on the relation between use of contracts and occurrence of
defects, we parsed the Git commit logs and filtered the fixing commits using the
same heuristics used by Kochhar and Lo [144]. We used Poisson regression analysis
[198] on the parsed commits. The results show negative relation between the use
of contracts and occurrence of defects. For all Java, C++, and Python libraries, the
results are statistically significant.

The contributions in this paper are the following:1

1. a set of six open source static parsers written in Python, for six different libraries
that support DBC in Java, C++, and Python programs,

2. a set of three open source Git commit log parsers written in Python, for Java,
C++, and Python projects,

1The corpus of projects, extracted contracts, extracted Git commit logs, the results of Git commit analysis
and R scripts are provided through the following DOI link: 10.5281/zenodo.3610696
Upon acceptance of the paper, all contributions will be made publicly available.
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3. the collection of 124 Java, C++, and Python projects in which DBC is used,

4. an extensive data set that contains the results of automated contract detection
on 124 projects, and automated change detection from Git logs,

5. the results of the manual analysis on 1505 contracts which were automatically
detected, and

6. all R scripts used to analyze the results.

The remainder of the chapter is organized as follows: Section 6.2 provides related
work. Section 6.3 presents the research methodology. Section 6.4 presents the res-
ults. Section 6.5 and 6.6 provide discussion and threats to validity, respectively. Sec-
tion 6.7 concludes the paper.

6.2 Related Work

In this section, we present the related work about the use of assertions and their effect
on defect occurrence, in addition to the related work about empirical studies using
projects which are hosted on Github.

6.2.1 Assertion Use and Impact on Quality

Prior to the analysis Casalnuovo et al. [78] performed on the use of assertions in
Github projects, Kudrjavets et al. [147] performed an empirical case study on two
software components from Microsoft to investigate the relation between software
assertions and software faults. According to their observations, with an increase in
the assertion density in a file, there is a statistically significant decrease in the fault
density.

Later, Casalnuovo et al. [78] studied the use of assertions in Github projects which
were developed in C and C++. They found out that assertions are widely used in
popular C and C++ projects. They further explored the connection between the use
of assertions and occurrence of defects in these projects. Therefore, they report that
the use of assertions does have small, but significant, effect on reducing the frequency
of defect occurrence. In addition, they report that assertions tend to be added to
methods by developers who have a larger contribution to those methods.

Recently, Kochhar and Lo [144] performed a partial replication of the study by Casal-
nuovo et al. [78] on 185 Java projects from Github. Their results confirm the findings
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reported by Casalnuovo et al. [78]. Additionally, they performed manual analysis and
identified eight categories of assertions that developers used in the Java projects.
The identified categories are: null condition check, process state check, initialization
check, resource check, resource lock check, minimum and maximum value constraint
check, collection data and length check, and implausible condition check.

In order to support development of reliable software, Meyer [162] [163] provided
pragmatic techniques which are based on the theory of Design By Contract (DBC).
Contracts are executable form of formal specifications, which are typically expressed
as method preconditions, method postconditions, and class invariants. Estler et al.
[98] performed an empirical study on 21 Eiffel, C# and Java projects to investigate
which types of contracts are used more often, and how contracts are evolved over
time. Estler et al. [98] report that they did not observe strong preference for a certain
type of contract. However, when preconditions are used, they typically include more
predicates than when postconditions are used. In addition, they observe that the use
of contracts tends to be quite stable over time.

Moreover, Dietrich et al. [94] report from an empirical study on 200 Java programs
and highlight that while the adoption of contracts has been slow in reality, the adop-
tion of lightweight contracts through utilizing built-in features of programming lan-
guages and runtime checking has progressed. Thus a wide range of techniques and
constructs are used to represent contracts. Often the same program uses different
techniques at the same time. Therefore, Dietrich et al. [94] catalogue 25 techniques
and tools for lightweight contract checking, using built-in features of the language
such as assertions and exceptions.

6.2.2 Empirical Studies on Github Projects

Jiang et al. [133] explore why and how developers fork what from whom in GitHub.
Therefore they collect a dataset containing 236,344 developers and 1,841,324 forks.
Their observations indicate developers fork repositories to submit pull requests, fix
bugs, add new features and keep copies. Developers find repositories to fork from
various sources: search engines, external sites (e.g., Twitter, Reddit), social relation-
ships, etc. More than 42 % of developers that they surveyed agree that an automated
recommendation tool is useful to help them pick repositories to fork, while more than
44.4 % of developers do not value a recommendation tool. Moreover, their findings
indicate that a repository written in a developer’s preferred programming language is
more likely to be forked.

Kochhar et al. [141] [142] explore 50,000 projects and investigate the correlation
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between the presence of test cases and various project development characteristics,
including the lines of code and the size of development teams. According to their find-
ings, projects having test cases are bigger in size than projects without test cases. How-
ever, as projects get larger the number of tests per line of code decreases. Moreover,
they report that projects having bigger team size have higher number of test cases
whereas the number of test cases per developer decreases with an increase in the size
of the development team.

Kochhar et al. [145] perform a large scale empirical study where they gather a large
dataset consisting of popular projects from Github (628 projects, 85 million SLOC,
134 thousand authors, 3 million commits, in 17 languages) to understand the im-
pact of using multiple languages on software quality. They build multiple regression
models to study the effects of using different languages on the number of bug fixing
commits while controlling for factors such as project age, project size, team size, and
the number of commits. Their findings show that in general implementing a project
with more languages has a significant effect on project quality, as it increases defect
proneness. Moreover, they find specific languages that are statistically significantly
more defect prone when they are used in a multi-language setting. These languages
are popular languages like C++, Objective-C, and Java.

6.3 Research Methodology

The overarching goal of this paper is to investigate the use of Design By Contract
(DBC) in open source projects. More specifically, we aim to identify how often dif-
ferent types of contracts are used as well as the use cases in which contracts are
specified. To this end, we develop a set of 6 parsers to statically analyze source code
and detect contract specifications.

To derive the use cases in which contracts are used we took the following approach.
First, we select a random number of contracts from each project. To preserve a lower
bound in the selection process, we made sure to select at least 10 contracts from each
project. We then analyze the source code manually to understand the context and
rationale for specifying the contracts. We identify a category for each contract as we
analyze it. These categories are not predefined, but rather formed as we comprehend
the context and rationale behind the usage of the contracts. At the end, we revise
the identified categories and if the categories are too fine-grained, we may combine
a number of categories to form larger groups of contracts. To extend our perspective
and minimize the risk of making mistakes, we ask five independent (non-author)
developers to double check our analysis. Each of the developers has at least 5 years



Chapter 6. The Use of Contracts in Open Source Software 191

of professional experience in programming with either Java, or Python, or C++.

In addition, we aim to investigate the relation between using contracts and occur-
rence of defects. To that end, we develop a set of three commit log parsers for Java,
C++, and Python. Similar to Casalnuovo et al. [78] and Kochhar and Lo, [144] for
each project, we extract the commit logs using git log -U1 -W. The -U1 argument is
used to get the commit patches and -W is used to get the source contexts in which
the patches were provided. After extracting the Git commit logs, we filter the fixing
commits, using the same heuristics that were also used by Casalnuovo et al. [78]
and Kochhar and Lo, [144], namely: “fix”, “issue”, “bug”, “defect”, “incorrect”, “er-
ror”, “fault”, “mistake”, and “flaw”. We then use the commit log parsers to record an
account of every method that is changed in the fixing patches.

To analyze the relation between using contracts and occurrence of defects, we use
Poisson regression analysis [198], as opposed to Casalnuovo et al. [78] and Koch-
har and Lo, [144] who use Hurdle regression model to analyze relation between
developer experience, use of assertions, and frequency of defect occurrences. Hurdle
regression analysis is used when the minimum value in the dependent variable is 0.
Therefore, Hurdle analysis has two components: Hurdle and Count. Hurdle compon-
ent measures the effect of overcoming the hurdle, which is 0. On the other hand,
the count component measures the effect of going from a non-zero value to another
non-zero value.

In our case, the minimum value of the defect occurrence is 1 because all methods were
recorded from bug fixing commits where the methods were updated. As a result, we
use Poisson regression which is similar to regular multiple regression analysis, which
is used to model observed counts. Therefore, the possible values of the dependent
variable are non-negative integers in this analysis. In our case, the dependent variable
is the number of times a method is updated in the fix patches. The independent
variable is the number of contracts used in the methods.

We devise the research questions presented in Section 6.1. In what follows, we fur-
ther describe our approach to developing the contract and commit log parsers.

6.3.1 Automated Contract Detection

Dataset Collection. According to The State of Octoverse [16, 17], Java, C++ and
Python are among the ten most popular languages used in Github. At the same time,
these languages are popular instances of strongly typed object oriented, semi object
oriented, and high-level interpreted programming languages, respectively, which sup-
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port the use of DBC. Therefore, we collected 124 projects which are written in these
languages from Github.

Table 6.1: Strings used to search for projects

Library String
Cofoja “com.google.java.contract”
Valid4j “org.valid4j”
JML “org.jmlspecs.models”
Icontract “import icontract”
Pycontracts “from contracts import”
Boost.contract “boost::contract::check”

Table 6.2: Statistics of the projects

Language Library Projects Files KLOC
Java Cofoja 21 6340 767,809
Java Valid4j 15 1353 72,900
Java JML 8 15171 1376,265
C++ Boost.contract 48 389146 54239,413
Python Icontract 9 408 49,010
Python Pycontracts 23 12787 1839,081

For each language we selected popular libraries that support DBC, namely: JML
[31, 149], Valid4j [37], and Cofoja [23] for Java projects, Boost.contract [20] for
C++ projects, Icontract [27,146], and Pycontracts [34] for Python projects. Next, in
order to collect the projects using these libraries, we used Github explore [26]. To
this end, we first familiarized ourselves with the use of these libraries through their
official tutorials. We identified specific key strings, presented in Table 6.1, which are
used within source code to import the aforementioned libraries. Therefore, using Git-
hub explore, we used the identified strings to search for projects that use a certain
library. We then manually investigated the repositories. As long as the contracts were
used in the source code and not only in the test code, we included the projects. Later
on, contract parsers filter the test files in the projects in order to prevent combining
test case assertions with source code contracts in the evaluation. Thereby, we collec-
ted 124 projects. Table 6.2 presents the statistics of the collected projects, which are
produced by CLOC [19,22].
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Listing 6.1: An example of Cofoja contract specifications.

import com.google.java.contract.Ensures;
import com.google.java.contract.Invariant;
import com.google.java.contract.Requires;

@Invariant({ "elements != null", "isEmpty() || top() != null" }) // (1)
public class CofojaStack<T> {

private final LinkedList<T> elements = new LinkedList<T>();

@Requires("o != null") // (2)
@Ensures({ "!isEmpty()", "top() == o" }) // (3)
public void push(T o) {

elements.add(o);
}
... }

Developing Contract Analyzers. Each of the DBC libraries provide unique syntax
for specifying the contracts. Using Cofoja, to define class invariants @Invariants are
used in the source code. Preconditions and postconditions are specified through @Re-
quires and @Ensures, respectively. To analyze these contracts, every time these tags
are included in a source code line, the Cofoja parser expects to arrive at a class or
method declaration line. Therefore, every successive line would be checked until a
line where a method declaration is defined arrives. Once the line is found, all the pre-
dicates defined within the contract blocks are summed and an account of file names,
class names, method names, and the identified contracts is recorded. Listing 6.1 is an
example from [25] which illustrates how Cofoja contracts are specified.

On the other hand, using Valid4j, to define preconditions and postconditions, require
and ensure blocks are specified within the method declarations, respectively. In ad-
dition, for error handling purposes, validate blocks are specified, and unreachable
code is specified using neverGetHere checks. Therefore, Valid4j parser first identifies
method declarations. Once a method declaration is found, the parser checks every
successive line in order to identify the contracts. Once end of a method is reached, an
account of the file name, class name, method names, and identified contracts are re-
corded. Listing 6.2 is an example [38] of specifying a precondition for a client method
that invokes the Country constructor.

Using JML, several different types of contracts can be specified, namely: requires,
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ensures, signals, invariant, non_null, pure, etc. Similar to Cofoja, JML contracts are
specified before method declarations begin. Therefore the JML parser takes the same
approach as earlier presented for Cofoja. Thus, the JML parser first looks for JML tags,
and if any of them is detected, then the following method together with an account of
the detected contracts are recorded. Listing 6.3 shows an example [30] of specifying
jml contracts.

Listing 6.2: An example of precondition specification using Valid4j.

public class Country {

// Use contract to specify that it is the _clients_ responsibility
// to make sure only valid country codes are given to the constructor.
// Invoking this constructor with an invalid country code is considered
// to be a programming error on the clients part.
public Country(String code) {

require(isValidCountryCode(code));
//

}
...}

Listing 6.3: An example of contract specification using JML.

/*@ protected normal_behavior
@ assignable size , theStack;
@ assignable_redundantly theItems, nextFree;
@ ensures nextFree == 0;
@*/

public BoundedStackImplementation( )
{

theItems = new Object[MAX_STACK_ITEMS];
nextFree = 0;

}

Class invariants, preconditions, postconditions, exception guarantees, and old value
copies can be specified as contracts, using Boost.contract [21]. Listing 6.6 is an ex-
ample [21] that shows how these contracts are specified using Boost.contract.

As Listing 6.6 illustrates, Class invariants are declared using the void invariant() const
method declaration. Therefore, when the Boost parser identifies the invariant declar-
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ations, it will expect the successive lines to include assertions. The parser continues
to sum the number of assertions until it reaches the end of the method declaration.
As for the rest of the contracts, since they are embedded within the method declara-
tions, the Boost parser detects them in a similar way as the Valid4j parser. Thus, every
time a method declaration is detected, Boost parser counts the embedded assertions,
if there is any.

Using Icontract, it is possible to specify preconditions, postconditions, invariants,
and snapshots, using @icontract.require, @icontract.ensure, @icontract.invariant, and
@icontract.snapshot, respectively.

@icontract.snapshot are similar to old contracts using Boost.contract which record old
values of the arguments before state transitions. Therefore, this type of contract can
be used to verify the state transitions of arguments [27]. Listing 6.5 shows an example
of using @icontract.snapshot and @icontract.ensure contracts.

Preconditions and postconditions can be specified in three ways, using Pycontract.
@contract decorators can be used to embed the contract specifications. Therefore,
every time the Pycontract parser detects a @contract decorator, it counts the number
of predicates that are defined within the @contract block. In addition, if annotations
are used, using Python 3, preconditions and postconditions can also be defined within
the method signatures. Therefore, if the Pycontract parser detects a @contract tag and
Python 3 annotations, it looks for possible contract specifications within the method
signatures. Otherwise, if the parser detects a @contract tag and no Python 3 annota-
tion is detected, then the parser looks for docstrings with :type: and :rtype: tags which
are used to specify preconditions and postconditions. Listing 6.4 illustrates three ex-
ample of how to specify contracts, using Pycontracts.

Listing 6.4: Three examples of contract specification using Pycontract.

### using an @contract decorator
@contract(a=’int,>0’, b=’list[N],N>0’, returns=’list[N]’)
def my_function(a, b):

...
### using an @contract tag and Python 3 annotations
@contract
def my_function(a : ’ int,>0’, b : ’ list [N],N>0’) −> ’list[N]’:

# Requires b to be a nonempty list, and the return
# value to have the same length.
...

### using an @contract tag and docstrings
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@contract
def my_function(a, b):

""" Function description.
:type a: int,>0
:type b: list [N],N>0
:rtype: list [N]

"""
...

Listing 6.5: An example of contract specification using Icontract.

>>> @icontract.snapshot(lambda lst: lst[:])
... @icontract.ensure(lambda OLD, lst, value: lst == OLD.lst + [value])
... def some_func(lst: List [int ], value: int) −> None:
... lst .append(value)
... lst .append(1984) # bug

6.3.2 Parsing Commit Logs

Listing 6.7 illustrates an excerpt from git commit log from the library-manager [32]
project, which was generated by the git log -U1 -W command. As the listing shows,
a git diff that is included in a commit is indicated by the line that starts with diff
–git. When this line is detected, the parsers record the file name that is referred to
in this line. After the commit index, a relative number of changes are indicated by +
or − symbols next to the file name. A pair of @@ opening symbols indicate chunk
headers where the changed lines are shown. Additional context information such
as method names may be provided after the closing @@ symbols, which to a large
extent depends on the programming language used in the project and if git internal
configurations support the language.

Listing 6.7: Excerpt of a sample git commit log.

diff −−git a/src/main/java/com/mykosoft/librarymanager/options
/common/BookSelectingById.java
b/src/main/java/com/mykosoft/librarymanager/options/common
/BookSelectingById.java
index 27feeac..a905857 100644
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Listing 6.6: An example of contract specification using Boost.contract.

void invariant() const { // Checked in AND with base class invariants.
BOOST_CONTRACT_ASSERT(size() <= capacity());

}

virtual void push_back(T const& value,
boost::contract :: virtual_* v = 0) /* override */ { // For virtuals .

boost::contract ::old_ptr<unsigned> old_size =
BOOST_CONTRACT_OLDOF(v, size()); // Old values for virtuals.

boost::contract :: check c = boost::contract ::public_function< // For overrides.
override_push_back>(v, &vector::push_back, this, value)

.precondition([&] { // Checked in OR with base preconditions.
BOOST_CONTRACT_ASSERT(size() < max_size());

})
.postcondition([&] { // Checked in AND with base postconditions.

BOOST_CONTRACT_ASSERT(size() == *old_size + 1);
});
vect_.push_back(value);

}
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−−− a/src/main/java/com/mykosoft/librarymanager/options/
common/BookSelectingById.java
+++ b/src/main/java/com/mykosoft/librarymanager/options/
common/BookSelectingById.java
@@ −10,28 +10,27 @@
public class BookSelectingById implements BookSelectingStrategy {

private static ConsoleReader reader = new ConsoleReader();

@Override
public Book selectBookFromCollection(Collection<Book> booksByTitle)

throws IOException{
Book book = null;

if (booksByTitle.size() > 1) {
System.out.println("Multiple books exist with that title ! ");
...

} else {
− reader.readLine("One book found");
− System.out.println(book);

book = booksByTitle.iterator().next();
+ reader.readLine("One book found\n" + book.toString());

}

return book;
}

}

The context of changes begins after the chunk headers. In Listing 6.7, this is where
the BookSelectingById class is declared. Commit parsers record class names at this
point depending on the programming language being analyzed. For example, Python
scripts may or may not define classes. From this point onwards, the parsers analyze
each successive line until a method declaration arrives. Once a method declaration
is detected, the method name and method signature are temporarily recorded. If
inside the method, lines indicate changes (by starting with + or −), then the recorded
method name and signatures are stored permanently. The parsers continue analyzing
the lines and looking for changed methods until the next patch (diff –git) or the next
commit is detected.
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Listing 6.8 is another example of an excerpt from git commit log from the Mapry
project [28] which is developed in Python. As the listing shows, the initial lines which
indicate the diff –git, commit index, and header chunk follow the same format. In this
case, the name of the method where the changes were made is also indicate after
the closing @@. However, to detect the defective method, parsing Python syntax is
required. This is why we developed three git commit parsers for Java, C++, and
Python.

In addition, prior to detecting defective methods, merge commits are filtered. In ad-
dition, test files are excluded from the analysis in order to maintain the focus on the
use of contracts in source code.

Listing 6.8: Another excerpt of a sample git commit log.

diff −−git a/docs/source/conf.py b/docs/source/conf.py
index 787f476..086ca83 100644
−−− a/docs/source/conf.py
+++ b/docs/source/conf.py
@@ −40,11 +40,13 @@ mapry_meta.__version__
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named ’sphinx.ext.*’) or your custom
# ones.
extensions = [

’ sphinx.ext.autodoc’,
’ sphinx.ext.doctest ’ ,
’ sphinx_autodoc_typehints’,

− ’ sphinx_icontract ’
+ ’ sphinx_icontract ’ ,
+ ’ sphinx.ext. autosectionlabel ’
]

+autosectionlabel_prefix_document = True

# Add any paths that contain templates here, relative to this directory .

6.4 Results

In this paper, we aim to investigate the use of contracts in open source projects which
are developed in popular programming languages. In this section, we present the
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results of our empirical analysis on the use of contracts in open source Java, C++,
and Python programs. Thereby, we answer the three research questions presented in
Section 6.1.

6.4.1 RQ1. How often are different types of contracts used?

To answer RQ1, we used the set of parsers we developed in Python in order to
automatically detect the specified contracts in Java, C++, and Python projects. As
Table 6.3 shows, 57% of the contracts are preconditions in Cofoja projects while 36%
are postconditions, and 7% are invariants. 59% of the contracts are preconditions in
Valid4j, while 23% are exception guarantees, and 18% are postconditions.

In JML, 35% of the contracts are generic postconditions, while 24% are generic pre-
conditions. In addition, specific contracts are also used as the following: 13% of the
contracts in JML are none_null checks, 11% are assignable contracts, 7% are invari-
ants, and 2% are exception signals.

In C++ projects, 46% of the contracts are postconditions, while 29% are precondi-
tions, 18% are invariants, 4% indicate old parameter values, and 2% are exception
guarantees.

In Icontract, 65% of the contracts are preconditions, 20% are postconditions, and
15% are invariants. Finally, in Pycontracts, 89% of the contracts are preconditions,
while 11% are postconditions.

Table 6.3: Percentages of contract use in Java, C++, and Python projects. Pre.,
Post., Inv., Exc., Val., Pure, Nnull, Sig., Assign., and Nget indicate “precondition”,
“postcondition”, “invariant”, “exception”, “non_null”, “signals”, “assignable”, “never-
gethere” contracts, respectively. - indicates that the type of contract is not supported
by the given library.

Library Pre. Post. Inv. Old Exc. Val. Pure Nnull Sig. Assign. Nget.
Cofoja 57 36 7 - - - - - - - -
Valid4j 59 18 - - - 23 - - - - 0
JML 24 35 7 - - - 8 13 2 11 -
Boost.
contract

29 46 18 4 2 - - - - -

Icontract 65 20 15 - - - - - - - -
Py
contracts

89 11 - - - - - - - - -
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6.4.2 RQ2. For which use cases do developers use contracts?

To answer RQ2, we randomly selected at least 10 contracts from each project (unless
there were less than 10 contracts in a project), which are in total 1505 contracts out of
18494 ( 8%). We performed manual analysis to identify categories for each contract.
At the end, if the categories were too fine-grained, we aggregated them to form a
larger group, and vice versa, if a category seemed too coarse grained, we further
broke it down to more accurate categories.

As a result, we identify five use cases for contracts, namely: checking null condi-
tions, evaluating objects, evaluating data collections, evaluating strings, and evaluat-
ing numbers. The evaluations on the data types are further divided into qualitative
and quantitative checks on the values. In what follows, we provide examples we iden-
tified during the manual analysis.

Listing 6.9 presents four invariants, from the Cofoja-api project [24], which perform
semantic checks on a string. In this case, the string under question is a class name
which must always be a simple, qualified, and binary name, according to the invari-
ants.

Listing 6.9: Examples of invariants that evaluate string format.

@Invariant({
"isSimpleName(getSimpleName())",
"isQualifiedName(getQualifiedName())",
"isQualifiedName(getSemiQualifiedName())",
"isBinaryName(getBinaryName())"

})

In addition, Listing 6.10 presents examples of contracts, from the Streamline project
[36], which provide quantitative and qualitative checks on two lists, joinPointA
and joinPointsB. According to the contracts, the lengths of the lists must be equal
while none of the lists can have duplicates. Furthermore, both lists must be sorted,
while each member of the lists must be within certain bounds.

Listing 6.10: Examples of qualitative and quantitative checks on lists.

public void validateStreamlineConfiguration(
Integer[] jointPointsA , Integer[] jointPointsB , Integer capacityA,

Integer capacityB) {
valid4jValidator . validate(jointPointsA .length == jointPointsB.length,

"Number of point pairs must be mutually equal");



202 6.4. Results

valid4jValidator . validate(ifNoRepetitions(jointPointsA , jointPointsB),
"None joint points array must contain duplicates");

valid4jValidator . validate(ifSorted(jointPointsA , jointPointsB),
"Joint points within arrays must be sorted in increasing order");

valid4jValidator . validate(ifPointsAreWithinBounds(joint
PointsA, jointPointsB , capacityA, capacityB),

"Joint point must be within capacity bounds");
}

Furthermore, Listing 6.11, illustrates contracts, from the MiniUrl project [33], which
perform null checks, string semantics checks, and boundary checks on objects. In
this case, the contracts require that originalUrl and hashedUrl arguments are
not null, not can hashedUrl be an empty string. In addition, the ttl which is an
immutable instance of Duration, cannot be null, 0, or negative.

Listing 6.11: Examples of preconditions and postconditions which perform null checks
and boundary checks, respectively.

//Proper domain validation when instantiating
public ShortenedUrl(URI originalUrl,

String hashedUrl,
Duration ttl ) {

this . originalUrl = require(originalUrl , notNullValue());
this .hashedUrl = require(hashedUrl, notEmptyString());
this . ttl = require( ttl , notNullValue());
ensure(!( ttl . isZero() && ttl .isNegative())); //Ensure ttl is positive

}

Finally, Listing 6.12, from the INF3143_TP2 project [29], illustrates preconditions
which perform semantic checks on an object called target. In this case, target
represents a player, which can neither be null, nor can it be the same as the current
instance of a player. In addition, target must be still alive so it can be attacked by
the current player.

Listing 6.12: An example of preconditions which perform semantic checks on an Ob-
ject.

@Requires({ "target != null" , // A target can not be null .
" target != this " , // A Player can not attack himself.
" isAlive ()" }) // A Player can not attack if he is dead.
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// The attacking player wins.
@Ensures("getXp() > old(getXp())")
public void attack(Player target) {

int dmg = 20 + this.getStrength() − target.getEndurance();
Logger.getLogger().log("Player " + this + " attacks " + target);
target .hurt(dmg);
this .gainXp(dmg * 2);

}

6.4.3 RQ3. Does the use of contracts relate to occurrence of de-
fects?

To answer RQ3, we performed Poisson regression analysis in order to identify if there
is a relation between the use of contracts and occurrence of defects in a method.
Table 6.4 presents the results of the regression analysis. According to the table, all
estimates are negative, which means that there is a negative relation between the use
of contracts and the frequency of defect occurrence. In other words, the results of
the regression analysis show that defect density is lower when contracts are used in
projects. In addition, as the table shows, all p values are less than 0.05, which means
the observed relation is statistically significant.

In addition, we further performed regression analysis for each project separately in
order to observe the results of each project independently. The same observation holds
for the majority of the projects in Java, C++, and Python. For 2% of the projects
which use Cofoja, 3% of the projects which use Valid4j, 7% of the projects which
use Boost.contract, and 5% of the projects which use Pycontracts, we did not observe
statistically significant effects for using contracts on defect occurrence.

6.5 Discussion

6.5.1 Preference for Different Contracts

Estler et al. [98] investigated 21 contract-equipped Eiffel, C#, and Java projects to
identify which types of contracts are used more often, and how contracts evolve over



204 6.5. Discussion

Table 6.4: The results from Poisson regression analysis to analyze the relation between
the number of contracts and frequency of defect occurrence.*** indicates that p <
0.001. * indicates that p < 0.05.

Library Coefficients: Std. Error Z value Pr(>|z|)
Cofoja -5.473595 0.288201 -18.99 2e−16 ***
Valid4j -0.79738 0.35435 -2.25 0.0244 *
JML -5.451936 0.407862 -13.37 2e−16 ***
Boost -3.61906 0.15130 -23.92 2e−16 ***
Icontract -4.43053 0.46262 -9.577 2e−16 ***
Pycontracts -3.706112 0.226755 -16.34 2e−16 ***

time. They report that contracts are stable over time and that they did not observe
strong preference for different contracts.

The results of our analysis on 124 Java, C++, and Python projects show, in average,
preconditions form the majority of the contracts used in projects which use Cofoja,
Valid4j, Icontract and Pycontracts. However, in the case of JML, in average, generic
postconditions were used more often compared to generic preconditions. At the same
time, JML provides more specific contracts, namely, pure, non_null, signal, and as-
signable, which together, in average, form 33% of the JML contracts that are used in
Java projects.

In the case of Boost.contract, in average, postconditions form the majority of the
contracts used in C++ projects. Finally, in the case of Icontract and Pycontracts,
similar trends as Cofoja and Valid4j are observed, meaning, preconditions are, in
average, the majority of the contracts used in Python projects.

Therefore, we observe that our results contradict the results reported by Estler et al.
[98] in that we observe strong preferences for using generic preconditions in several
cases. Future research may investigate developers’ underlying reasons for preferring
different types of contracts for specification purposes.

6.5.2 Automated Semantic Analysis of Contracts

We observe that JML, Boost.contract, and Valid4j provide more specific constructs
to indicate specific conditions. On the other hand, Cofoja, Icontract, and Pycontract
provide standard constructs to specify generic preconditions, postconditions, and in-
variants.

Using specific contracts facilitates means to develop automated approaches to detect-
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ing the semantic use cases of contracts. However, currently there is little support for
fine-grain contract specification.

Furthermore, in the case of JML, even though various specific constructs are available
for contract specification, in average, generic postconditions still form the majority
of the contracts that are used in open source projects. Future work may pursue fur-
ther advancements in development and analysis of using fine-grained constructs for
contracts specifications.

6.5.3 Effect of Using Contracts

As Dietrich et al. [94] highlight, projects which use contracts continue to do so, as
a result, they will expand the use of contracts as they evolve. However, in general,
contracts are used less than expected. On the other hand, according to the results
from Poisson regression analysis, we observe that using contracts does impact the
frequency of defect occurrences in open source projects. Despite the advantages of
contracts, the use of contracts does not progress fast. Future research may investigate
the perception of developers in this regard.

6.6 Threats to Validity

In what follows, we present the threats to internal and external validities, respectively.

6.6.1 Threats to Internal Validity

In order to minimize the risk of having faults in the developed Python code, we re-
viewed the source code and wrote test cases. However, with this approach, it is not
possible to entirely guarantee absence of defects. As mentioned in Section 6.1, we
provide a replication package and intend to make all contributions publicly available
in the future. We believe taking this approach and fostering openness increases the
possibilities to identify potential faults.

With reards to defect identification from commit logs, we used the same approach as
Casalnuovo et al. [78] and Kochhar and Lo, [144], instead of using defect databases.
This approach entails false positives and or false negatives, similar to links to defects
in defect databases which may also contain errors according to Bird et al. [66]. On
the other hand, according to Bissyandé et al. [67], not all projects use issue trackers.
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Also, not all bugs are recorded in issue trackers. In our case, a defect may appear
in several bug fixing commits. In addition, if bug fixing commits are not sufficiently
accurate, bug fixing commits may be missed.

During the manual analysis process, we asked feedback from five independent de-
velopers who had several years of professional experience in programming. Incor-
porating the feedback from professional developers helped us minimize the risk of
making mistakes in our manual analysis.

6.6.2 Generalizability of Findings

We used Github to collect the projects. Github is a popular platform which hosts over
96 million repositories [35]. Over 31 million developers contribute to projects which
are hosted on Github. In addition, we studied three different programming languages
and formed a large corpus of projects.

Moreover, we used statistical regression model to perform analysis on the relation of
defect occurrence and contracts use. Since the results of the regression analysis are
statistically significant, it is possible to extrapolate the observations reported in this
paper.

However, while we tried to minimize the threats to generalizability, we cannot ar-
gue that our results generalize to industrial closed-source software. Therefore, future
studies may replicate this study in closed-source projects and compare the outcomes.

6.7 Conclusion

Delivering robust and reliable software is a pressing demand for software developers.
These qualities matter even more when software components are developed to be
reused in many applications. To support development of reliable software, Meyer
[162] [163] provides pragmatic techniques and guidelines based on the concept of
Design By Contract (DBC).

DBC is based on the idea that software components collaborate with each other based
on mutual expectations and benefits. Thus is a client component uses services of a
supplier component, the client needs to guarantee preconditions of the supplier. The
supplier in return guarantees certain conditions at the time of delivering the services.
Thus, contracts are a kind of formal specifications that can be used for different pur-
poses such as automated testing, and static and dynamic verifications.
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Despite the advantages of using contracts, contracts are used less than expected ac-
cording to Dietrich et al. [94]. On the other hand, assertions, exceptions and other
built-in features of programming languages are used as lightweight contracts. There-
fore, the use of assertions and other lightweight contracts have been studied in depth
by Kudrjavets et al. [147], Casalnuovo et al. [78], and Kochhar and Lo [144]. How-
ever, the use of contracts has been underexplored to the best of our knowledge. In this
paper, we aim to investigate the use of contracts in open source projects. In addition,
we aim to analyze the relation between using contracts and frequency of defect oc-
currences. Therefore, we studied 124 Java, C++, and Python projects. We developed
a set of contract parsers which we used to parse contract-equipped source code. The
results of automated contract detection show in most cases, except for C++ projects,
the use of preconditions, in average, forms the majority of the contract specifications.
We derived five categories of contracts which are: null checks, checks on objects,
checks on data collections, checks on strings, checks on numbers, Moreover, we use
Poisson regression analysis to identify the relation between the use of contracts and
defect occurrences. The results of the regression analysis confirms there is a statistic-
ally significant negative relation between the use of contracts and defect occurrences.
Thus, when methods use contracts, the rate of defect occurrences becomes smaller.
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Dutch Summary

Tegenwoordig vertrouwen we op verschillende manieren op computersystemen. Toch
zijn deze systemen gevoelig voor falen. Deze mislukkingen kunnen levens verstoren,
doden veroorzaken en miljarden dollars kosten. Daarom spelen testen en verificatie
van software een cruciale rol bij het voorkomen van dergelijke catastrofale fouten.
Omdat softwaretests en verificatieactiviteiten kostbaar en arbeidsintensief zijn, is veel
moeite gedaan om zoveel mogelijk activiteiten op deze gebieden te automatiseren. In
dit proefschrift is het overkoepelende doel om verschillende manieren te onderzoeken
om geautomatiseerde software-foutopsporing te vergemakkelijken.

We presenteren EvoCrash, een zoekgebaseerde benadering van geautomatiseerde crash-
reproductie. EvoCrash past een genetisch algoritme toe om te zoeken naar een test-
case die een softwarecrash reproduceert. We hebben een grootschalige evaluatie uit-
gevoerd om de prestaties van de EvoCrash-aanpak te beoordelen en de gebieden te
identificeren waar verdere verbetering nodig is.

Verder introduceren we de IMaChecker-aanpak, die Github bug repositories verkent,
met behulp van Github API’s. IMaChecker analyseert bovendien bugrapporten en iden-
tificeert welke elementen (bijv. Reproductiestappen) erin zijn opgenomen. Met behulp
van statistische tests identificeert IMaChecker de impact van verschillende elementen
van het bugrapport op de tijden voor het oplossen van de bugs.

Ten slotte ontwikkelen we statische analyzers die het gebruik van programmacon-
tracten in open source programma’s detecteren die zijn ontwikkeld in Java, C ++
en Python. We ontwikkelen verder parsers om fixing commits te identificeren bij de
hele commit historie. Met behulp van Poisson-regressietests laten we zien dat er een
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negatieve correlatie bestaat tussen het gebruik van contracten en het optreden van
bugs. We tonen dus een manier om bugs te voorkomen door programmacontracten te
gebruiken.
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English Summary

Today we rely on computer systems in numerous ways. Yet, these systems are sus-
ceptible to failure. These failures may disrupt lives, cause deaths, and cost billions of
dollars. Thus, software testing and verification play paramount roles in attempting
to prevent such catastrophic failures. Since software testing and verification activit-
ies are costly and labor-intensive, much effort has been put into automating as many
activities in these areas as possible. In this thesis, the overarching goal is to investigate
different means to facilitate automated software debugging.

We present EvoCrash, which is a search-based approach to automated crash reproduc-
tion. EvoCrash applies a genetic algorithm to search for a test case that reproduces a
software crash. We performed a large-scale evaluation to asses the performance of the
EvoCrash approach and identify the areas where further improvement is needed.

Furthermore, we introduce the IMaChecker approach, which mines Github bug repos-
itories, using Github APIs. In addition, IMaChecker parses bug reports and identifies
which elements (e.g. reproducing steps) are included in them. Using statistical tests,
IMaChecker identifies the impact of different bug report elements on bug resolution
times.

Finally, we develop static analyzers which detect the use of program contracts in
open source programs which are developed in Java, C++, and Python. In addition,
we develop parsers to identify fixing commits among the entire commit histories.
Using Poisson regression tests, we show there is a negative correlation between the
use of contracts and bug occurrences. Thus, we show one way to avoid bugs is to use
program contracts.
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