
Generalized strictly periodic scheduling analysis, resource optimization,
and implementation of adaptive streaming applications
Niknam, S.

Citation
Niknam, S. (2020, August 25). Generalized strictly periodic scheduling analysis, resource
optimization, and implementation of adaptive streaming applications. Retrieved from
https://hdl.handle.net/1887/135946
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/135946
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/135946


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/135946 holds various files of this Leiden University 
dissertation. 
 
Author: Niknam, S. 
Title: Generalized strictly periodic scheduling analysis, resource optimization, and 
implementation of adaptive streaming applications 
Issue Date: 2020-08-25 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/135946
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 7

Summary and Conclusions

STREAMING applications have become prevalent in embedded systems
in several application domains, such as image processing, video/audio

processing, and digital signal processing. These applications usually have
high computational demands and tight timing requirements, such as through-
put requirements. To handle the ever-increasing computational demands and
satisfy tight timing requirements, Multi-Processor System-on-Chip (MPSoC)
has become a standard platform that is widely adopted in the design of em-
bedded streaming systems to benefit from parallel execution. To efficiently
exploit the computational capacity of such MPSoCs, however, streaming ap-
plications must be expressed primarily in a parallel fashion. To do so, the
behavior of streaming applications is usually specified using a parallel Model
of Computation (MoC), in which the application is represented as parallel
executing and communicating tasks. Although parallel MoCs resolve the
problem of explicitly exposing the available parallelism in an application, the
design of embedded streaming systems imposes two major challenges: 1) how
to execute the application tasks spatially, i.e., task mapping, and temporally,
i.e., task scheduling, on an MPSoC platform such that timing requirements
are satisfied while making efficient utilization of available resources (e.g, pro-
cessors, memory, energy, etc.) on the platform, and 2) how to implement and
run the mapped and scheduled application tasks on the MPSoC platform.
In this thesis, we have addressed several research questions related to the
aforementioned challenges in the design of embedded streaming systems. The
research questions and the logical connection between them are illustrated
in the design flow shown in Figure 1.2. Below, we provide a summary of the
presented research work in this thesis along with some conclusions.

To address the first aforementioned challenge in the design of embed-



124 Chapter 7. Summary and Conclusions

ded streaming systems, the strictly periodic scheduling (SPS) framework is
proposed in [8] which establishes a bridge between the data flow models
and the real-time theories, thereby enabling the designers to directly apply
the classical hard real-time scheduling theory to applications modeled as
acyclic CSDF graphs. In Chapter 3, we have extended the SPS framework and
have proposed a scheduling framework, namely Generalized Strictly Periodic
Scheduling (GSPS), that can handle cyclic CSDF graphs. The GSPS framework
converts each actor in a cyclic CSDF graph to a real-time periodic task. This
conversion enables the utilization of many hard real-time scheduling algo-
rithms that offer properties such as temporal isolation and fast calculation of
the number of processors needed to satisfy a throughput requirement. Based
on experimental evaluations, using a set of real-life streaming applications,
modeled as cyclic CSDF graphs, we conclude that our GSPS framework can
deliver an equal or comparable throughput to related scheduling approaches
for the majority of the applications, we experimented with. However, enabling
the utilization of scheduling algorithms from the classical hard real-time the-
ory on streaming applications by using our GSPS framework comes at the
costs of increasing the latency and buffer sizes of the data communication
channels for the applications by up to 3.8X and 1.4X when compared with
related scheduling approaches.

In Chapter 4, we have addressed the problem of efficiently exploiting the
computational capacity of processors when mapping a streaming application,
modeled as an acyclic SDF graph, on an MPSoC platform to reduce the number
of needed processors under a given throughput requirement. Given the fact
that an initial SDF application specification is often not the most suitable one
for the given MPSoC platform, we have explored an alternative application
specification, using an SDF graph transformation technique, which closely
matches the given MPSoC platform. In this regard, in Chapter 4, we have
proposed a novel algorithm to find a proper replication factor for each task/ac-
tor in an initial SDF application specification such that by distributing the
workloads among more parallel task/actor in the obtained transformed graph,
the computational capacity of the processors can be efficiently exploited and a
smaller number of processors is then required. Based on experimental eval-
uations, using a set of real-life streaming applications, we conclude that our
proposed algorithm can reduce the number of needed processors by up to 7
processors while increasing the memory requirements and application latency
by 24.2% and 17.2% on average compared to FFD task mapping heuristic
algorithms while satisfying the same throughput requirement. The experi-
mental evaluations also show that our proposed algorithm can still reduce the



125

number of needed processors by up to 2 processors and considerably improve
the memory requirements and application latency by up to 31.43% and 44.09%
on average compared to the other related approaches while satisfying the
same throughput requirement.

As embedded streaming systems operate very often using stand-alone
power supply such as batteries, energy efficiency has become an important
design requirement of such embedded streaming systems in order to pro-
long their operational time without replacing/recharging the batteries. In
this regard, in Chapter 5, we have addressed the problem of energy-efficient
scheduling of streaming applications, modeled as CSDF graphs, with through-
put requirements on MPSoC platforms with voltage and frequency scaling
(VFS) capability. In particular, we have proposed a novel periodic scheduling
approach which switches the execution of streaming applications periodically
between a few energy-efficient schedules, referred as modes, at run-time in
order to satisfy a given throughput requirement at a long run. Using such
specific switching scheme, we can benefit from adopting a dynamic voltage
and frequency scaling (DVFS) mechanism to efficiently exploit available idle
time in an application schedule. Based on experimental evaluations, using a
set of real-life streaming applications, we conclude that our novel scheduling
approach can achieve up to 68% energy reduction compared to related ap-
proaches depending on the application while satisfying the given throughput
requirement.

Finally, in Chapter 6, we have addressed the second aforementioned chal-
lenge in the design of embedded streaming systems, namely, how to im-
plement and run a mapped and scheduled adaptive streaming application,
modeled and analyzed with the MADF MoC, on an MPSoC platform such
that the properties of the analysis model are preserved. In particular, we
have proposed a generic parallel implementation and execution approach
for adaptive streaming applications modeled with MADF. Our approach can
be easily realized on top of existing operating systems while supporting the
utilization of a wider range of schedules. We have demonstrated our approach
on LITMUSRT which is one of the existing real-time extensions of the Linux
kernel. Based on a case study using a real-life adaptive streaming application,
we conclude that our approach is practically applicable on a real hardware
platform and conforms to the analysis model. In addition, another case study,
using a real-life streaming application, has shown that our proposed energy-
efficient periodic scheduling approach presented in Chapter 5, which adopts
the MOO protocol of the MADF MoC for switching the application mode, is
also practically applicable on a real hardware platform by using our generic



126 Chapter 7. Summary and Conclusions

parallel implementation and execution approach presented in Chapter 6.


