
Generalized strictly periodic scheduling analysis, resource optimization,
and implementation of adaptive streaming applications
Niknam, S.

Citation
Niknam, S. (2020, August 25). Generalized strictly periodic scheduling analysis, resource
optimization, and implementation of adaptive streaming applications. Retrieved from
https://hdl.handle.net/1887/135946

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/135946

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/135946

Cover Page

The handle http://hdl.handle.net/1887/135946 holds various files of this Leiden University
dissertation.

Author: Niknam, S.
Title: Generalized strictly periodic scheduling analysis, resource optimization, and
implementation of adaptive streaming applications
Issue Date: 2020-08-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/135946
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 6

Implementation and Execution
of Adaptive Streaming
Applications

Sobhan Niknam, Peng Wang, Todor Stefanov. "On the Implementation and Execution
of Adaptive Streaming Applications Modeled as MADF". In Proceedings of the 23rd
International Workshop on Software and Compilers for Embedded Systems (SCOPES), Sankt
Goar, Germany, May 25-26, 2020.

Jiali Teddy Zhai, Sobhan Niknam, Todor Stefanov. "Modeling, Analysis, and Hard
Real-time Scheduling of Adaptive Streaming Applications". IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 37, No. 11, pp.
2636-2648, Nov 2018.

IN this chapter, we present our implementation and execution approach for
adaptive streaming applications modeled as MADF graphs, which corre-

sponds to the fourth research contribution, briefly introduced in Section 1.5.4,
to address the research question RQ3, described in Section 1.4.3. The remain-
der of the chapter is organized as follows. Section 6.1 introduces, in more
details, the problem statement and the addressed research question. It is fol-
lowed by Section 6.2, which gives a summary of the contributions presented
in this chapter. Section 6.3 gives an overview of the related work. Section 6.4
introduces an extra background material, on K-Periodic Schedules, needed for
understanding the contributions of this chapter. Section 6.5 presents our exten-
sion of the MOO transition protocol (described in Section 2.1.2 and Section 2.4)
followed by Section 6.6 presenting our proposed parallel implementation and

104 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

execution approach for the MADF MoC. Section 6.7 presents two case stud-
ies to demonstrate the practical applicability of our approach, presented in
Section 6.6. Finally, Section 6.8 ends the chapter with conclusions.

6.1 Problem Statement

Recall, from Section 1.4.3, that the last phase of the design flow, considered in
this thesis and shown in Figure 1.2, is to implement and execute the analyzed
application on an MPSoC platform. This phase is an important step towards
designing an embedded streaming system where the system should behave
at run-time as expected according to the performed analysis at design-time.
Concerning static streaming applications, an implementation and execution
approach for such applications modeled as CSDF graphs and analyzed by
the SPS framework, briefly described in Section 2.3, is presented in [7]. For
adaptive streaming applications, modeled and analyzed with the MADF MoC
[94], briefly described in Section 2.1.2, however, no attention has been paid
so far at this implementation phase. Thus, in this chapter, we investigate
the possibility to implement and execute an adaptive streaming application,
modeled and analyzed with the MADF MoC, on an MPSoC platform, such
that the properties of the analyzed model are preserved.

6.2 Contributions

In order to address the problem described in Section 6.1, in this chapter,
we propose a simple, yet efficient, parallel implementation and execution
approach for adaptive streaming applications, modeled with the MADF model,
that can be easily realized on top of existing operating systems. Moreover, we
extend the offset calculation of the MOO transition protocol, briefly described
in Section 2.4, for the MADF model in order to enable the utilization of a
wider range of schedules, i.e., K-periodic schedules [17], during the model
analysis, implementation, and execution depending on the scheduling support
provided by the MPSoC and its operating system onto which the streaming
application runs.

More specifically, the main contributions of this chapter are as follows:

∙ We extend the MOO transition protocol employed by the MADF model.
This extension enables the applicability of many different schedules to
the MADF model, thereby generalizing the MADF model and making

6.3. Related Work 105

MADF schedule-agnostic as long as K-periodic schedules are consid-
ered;

∙ We propose a generic parallel implementation and execution approach
for adaptive streaming applications modeled with MADF that conforms
to the analysis model and its operational semantics [94]. We demonstrate
our approach on LITMUSRT [22] which is one of the existing real-time
extensions of the Linux kernel;

∙ Finally, to demonstrate the practical applicability of our parallel imple-
mentation and execution approach and its conformity to the analysis
model, we present a case study (see Section 6.7.1) on a real-life adap-
tive streaming application. In addition, we present another case study
(see Section 6.7.2) on a real-life streaming application to validate our
proposed energy-efficient periodic scheduling approach, presented in
Chapter 5, which adopts the MOO protocol of the MADF MoC for
switching the application schedule, with a practical implementation of
this approach by using our generic parallel implementation and execu-
tion approach presented in this chapter.

6.3 Related Work

In [60], the MCDF model is presented where the same application graph is
used for both analysis and execution on a platform. In such graph, special
actors, namely switch and select actors, are used to enable reconfiguration
of the graph structure according to an identified mode by a mode controller
at run-time. In the MCDF model, every mode is represented as a single-rate
SDF graph and the actors are scheduled on each processor according to a
precomputed static schedule, called quasi-static order schedule, in which extra
switch and select actors are required to model the schedule in the graph. In
contrast to MCDF, the MADF model [94], we consider in our work, is more
expressive as each mode is represented as a CSDF graph. Moreover, our
proposed MOO transition protocol extension and our implementation and
execution approach for the MADF model are schedule agnostic and do not
require extra switch and select actors. Therefore, our approach enables the
utilization of many different schedules than only a static-order schedule, with
no need of extra actors.

In [33], the FSM-SADF model is presented as another analysis model for
adaptive streaming applications. To implement an application modeled and
analyzed with FSM-SADF, two programming models have been proposed
in [89, 90]. In [89], the programming model is constructed by merging the SDF

106 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

graphs of all scenarios into a single graph which may be larger than the FSM-
SADF analysis graph. Then, to enable switching to a new scenario, all actors in
all scenarios are constantly kept active while only those actors belonging to the
identified new scenario by a detecting actor(s) will be executed after switching.
In this way, a single static-order schedule can be used for the application in
all scenarios. In contrast to [89], the proposed programming model in [90]
uses a similar switch/select actors, as in MCDF [60], in the constructed graph
for switching between scenario graphs at run-time. Then, the graph is recon-
figured at run-time using the switch/select actors according to the identified
scenario by a detecting actor(s) while updating the application’s static-order
schedule accordingly. However, the proposed programming models in [89,90]
need to be derived manually, thereby requiring extra effort by the designer.
More importantly, these programming models assume that actors in all scenar-
ios of an application are active all the time. This can result in a huge overhead
for applications with a high number of modes, thereby leading to inefficient
resource utilization. In contrast to [89, 90], our implementation and execution
approach does not require derivation of an additional model and enables the
utilization of many different schedules rather than only static-order schedule.
Moreover, our approach (de)activates actors in different modes at run-time,
so we do not need to keep all modes active all the time, thereby avoiding the
unnecessary overhead imposed by the approaches in [89, 90].

In [47], the task allocation of adaptive streaming applications onto MPSoC
platforms under self-timed (ST) scheduling is studied when considering tran-
sition delay during mode transitions. In [47], however, the verification of the
proposed approach and mode transition mechanism is limited to simulations
and no implementation and execution approach is provided. In contrast, in
this chapter, we propose a generic parallel implementation and execution ap-
proach for applications modeled with MADF which enables the applicability
of many different schedules on the application as well as execution of the
application on existing operating systems.

6.4 K-Periodic Schedules (K-PS)

In [19], K-periodic schedules (K-PS) of streaming applications modeled as
CSDF graphs are introduced, implying that Ki consecutive invocations of an
actor Ai ∈ 𝒜 occur periodically in the schedule. For example, when Ki = qi
for every actor Ai ∈ 𝒜, such K-PS is equivalent to a ST schedule [85] where all
qi invocations of the actor Ai in one graph iteration occur in each period and
can result in the maximum throughput for a given CSDF graph. On the other

6.5. Extension of the MOO Transition Protocol 107

hand, when Ki = 1 for every actor Ai ∈ 𝒜, 1-PS is achieved in which only
a single invocation of the actor occurs in each period. The SPS schedule [8],
briefly described in Section 2.3, is a special case of 1-PS in which the actors are
converted to real-time tasks to enable the application of classical hard real-time
scheduling algorithms [29], e.g., EDF, to streaming applications modeled as
CSDF graphs. Therefore, in general, the K-PS notion covers a wide set of
schedules ranging between 1-PS and ST schedules.

6.5 Extension of the MOO Transition Protocol

As explained in Section 2.4, when multiple actors of an application, modeled
as an MADF graph, are allocated on the same processor, the processor can be
potentially overloaded during mode transitions due to simultaneous execution
of actors from different modes. Therefore, a larger offset, than the offset x
computed by using Equation (2.4), may be needed by the MOO protocol to
delay the starting time of the new mode during a mode transition in order to
avoid processor overloading. Then, this offset, represented with δ, is computed
under the SPS schedule by using Equation (2.20). As the SPS schedule has
the notion of a task utilization, by converting the actors in a CSDF graph to
real-time (RT) tasks, the offset δ is computed, according to Equation (2.20),
by making the total utilization of the RT tasks allocated on each processor
during mode transition instants to not exceed the processor capacity. However,
since the K-periodic schedules (K-PS), considered in this chapter and briefly
introduced in Section 6.4, have no notion of a task utilization, the offset δ for
any K-PS cannot be computed as in Equation (2.20). Therefore, in this section,
we extend the MOO transition protocol to compute such an offset for any
K-PS.

In fact, to avoid the processor overloading under any K-PS, the schedule in-
terferences of modes (in terms of overlapping iteration period H) during mode
transitions must be resolved on each processor. For instance, consider the
MADF graph G1 in Figure 6.1(a), explained in Section 2.1.2, with two operating
modes SI1 and SI2. Figure 6.2(a) and Figure 6.2(b) show the corresponding
CSDF graphs of modes SI1 and SI2, respectively. An execution of both modes
SI1 and SI2 under a K-PS are shown in Figure 6.3(a) and Figure 6.3(b), re-
spectively, as well as an execution of G1 with two mode transitions and the
computed offsets x1→2 = 3 and x2→1 = 1, for mode transitions from SI1 to
SI2 and vice versa, according to Equation (2.4), is illustrated in Figure 6.4(a).
Now, let us assume the allocation of all actors of G1 on an MPSoC platform
Π = {π1, π2, π3, π4} containing four processors that is shown in Figure 6.1(b).

108 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

A1 A2 A3 A5
[1[1], 1[0]]

OP1:
[p2[1]]

A4
[1[0], 1[p6]]

[1[p5], 1[0]]

[1[0], 1[p1]]

Ac

IP1:
[p2[1]]

E1

[1[p4]] [1[p4]]

[1[1]][1[1]]

IC

E22

E2 E3

E4 E5

E44 E11

E55

IC1

E33

A1
1 A2

1 A3
1 A5

1[1, 0] [1, 1] [2, 0]

[0, 1]

[1, 0][1, 1] [1] [1]

A1
2 A2

2 A3
2 A5

2[1, 0]

A4
2

[0, 1]
[1, 0]

[0, 1]

[0, 1]

[1, 0]

[1] [1]

[1] [1][1] [1]

A1 A2

A3

A5

PE1 PE2

A4

Ac

PE4

PE3

(c)

(b)

(d)

1 4 1 2

1 5 1 2

2

E1 E2 E3

E1 E2 E3

E4 E5

E6

E6

(a)

A1 A2

A3

A5

π1

A4

Ac

π2 π4

π3

(b)

Figure 6.1: (a) An MADF graph G1 (taken from Section 2.1.2). (b) The allocation of actors
in graph G1 on four processors.

A1
1 A2

1 A3
1 A5

1

[1,1] [4,4] [1]E1 E2 E3

[1,0] [1,1] [1,1] [1] [1] [2,0]

[2,2]

(a) CSDF graph G1
1 of mode SI1.

A1
2 A2

2 A3
2 A5

2

A4
2

[1,1] [5] [1]

[2]

E1 E2 E3

E4 E5
[1][1]

[0,1]
[1,0] [1] [1] [1] [1] [1,0]

[0,1]

[2,2]

(b) CSDF graph G2
1 of mode SI2.

Figure 6.2: Two modes of graph G1 in Figure 2.1 (taken from Section 2.1.2 with modified
WCET of the actors).

Then, considering the execution of G1 in Figure 6.4(a), the schedule interfer-
ences on π1 happen during time periods [6, 11] and [25, 27] for mode transition
from SI2 to SI1 and vice versa, respectively, while no schedule interference
happens on π2 and π3. Obviously, to resolve the schedule interferences on
π1, the earliest start time of actors in the new mode should be further offset
by the length of the time period in which the schedule interferences happen.
Therefore, the extra offsets for mode transitions from SI2 to SI1 and vice versa
on π1 are 11− 6 = 5 and 27− 25 = 2 time units, respectively, thereby resolving
the schedule interferences on π1, as shown in Figure 6.4(b). In this example,
δ2→1 = x2→1 + 5 = 6 and δ1→2 = x1→2 + 2 = 5.

Now, considering any K-PS, the offset δo→n can be computed as the maxi-
mum schedule overlap among all processors when the new mode SIn starts
immediately after the source actor of the old mode SIo completes its last itera-
tion, as follows:

δo→n = max {xo→n, max
∀ mΨo

i ∈mΨo∧mΨn
i ∈mΨn

mΨo
i ̸=∅∧mΨn

i ̸=∅

(max
Ao

j∈Ψo
i

So
j − min

An
k∈mΨn

i

Sn
k)} (6.1)

where mΨ = {mΨ1, . . . , mΨm} is m-partition of all actors on m number of pro-

6.5. Extension of the MOO Transition Protocol 109

5 10 15

L1

S21

S31

S51

A11

A21

A31

A41

A51

20

H1

H1

H1

0

H1

(a) Mode SI1 in Figure 6.2(a)

5 10 15

S22

S32

S42

S52

A22

A12

A32

A42

A52

200

H2

H2

H2

H2

H2

(b) Mode SI2 in Figure 6.2(b)

Figure 6.3: Execution of both modes SI1 and SI2 under a K-PS.

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30 35

L1 L2

Start of mode SI1

H1

Start of mod e SI2

H2
Start of mod e SI 2

Δ2→1 Δ1→2

tMCR1 tMCR2

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30 35

L1 L2

Start of mode SI1

H2 H1

40

Δ2→1
Δ1→2

δ 2→1tMCR1 tMCR2

Start of mode SI2

(a) (b)

δ 1→2x1→2
x2→1

(a)

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30 35

L1 L2

Start of mode SI1

H1

Start of mod e SI2

H2
Start of mod e SI 2

Δ2→1 Δ1→2

tMCR1 tMCR2

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30 35

L1 L2

Start of mode SI1

H2 H1

40

Δ2→1
Δ1→2

δ 2→1tMCR1 tMCR2

Start of mode SI2

(a) (b)

δ 1→2x1→2
x2→1

(b)

Figure 6.4: Execution of G1 with two mode transitions under (a) the MOO protocol, and (b)
the extended MOO protocol with the allocation shown in Figure 6.1(b).

cessors, i.e., mΨo
i and mΨn

i are the sets of actors allocated on the i-th processor
(πi) in the old mode SIo and the new mode SIn, respectively. For instance,

110 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

consider the allocation of G1 on the four processors, shown in Figure 6.1(b),
and the K-PS of modes SI1 and SI2 given in Figure 6.3(a) and 6.3(b), respec-
tively. The offset δ1→2 of the mode transition from SI1 to SI2 on each proces-
sor is computed using Equation (6.1) as follows: (π1) S1

3 − S2
1 = 5− 0 = 5,

(π2) S1
2 − S2

2 = 1 − 1 = 0, and (π3) S1
5 − S2

5 = 10 − 7 = 3, thereby result-
ing in the offset δ1→2 = max(3, max(5, 0, 3)) = 5 for the start time of mode
SI2, as shown in Figure 6.4(b). Similarly, the offset δ2→1 of the mode transi-
tion from SI2 to SI1 on each processor is computed using Equation (6.1) as
follows: (π1) S2

3 − S1
1 = 6, (π2) S2

2 − S1
2 = 0, and (π3) S2

5 − S1
5 = −3, and

δ2→1 = max(1, max(6, 0,−3)) = 6.

6.6 Implementation and Execution Approach for MADF

In this section, we first present our generic parallel implementation and execu-
tion approach (Section 6.6.1) for an application modeled as an MADF. Then,
in Section 6.6.2, we demonstrate our approach on LITMUSRT [22].

6.6.1 Generic Parallel Implementation and Execution Approach

In this section, we will explain our approach by an illustrative example. Con-
sider the MADF graph G1 shown Figure 6.1(a). Our implementation consists
of three main components: 1) (normal) actors, 2) a control actor, and 3) FIFO
channels. We implement the actors as separate threads and the FIFO chan-
nels as circular buffers [15] with non-blocking read/write access. Thus, the
execution of the threads and the read/write from/to the FIFO channels are
controlled explicitly by an operating system supporting and using any K-PS,
briefly introduced in Section 6.4. A valid K-PS schedule always ensures the
existence of sufficient data tokens to read from all input FIFO channels and
sufficient space to write data tokens to all output FIFO channels when an actor
executes.

In our implementation, all FIFO channels in the MADF graph of an applica-
tion are created statically before the start of the application execution to avoid
duplication of FIFO channels and unnecessary use of more memory during
mode transitions. On the other hand, the threads corresponding to the actors
are handled at run-time. This means that when a mode change request (MCR)
occurs, in order to switch the application’s mode, the executing threads in the
old mode are stopped and terminated whereas the threads corresponding to
the actors in the requested new mode are created and launched at run-time. In
this way, our implementation enables task migration during mode transitions

6.6. Implementation and Execution Approach for MADF 111

A1
2 A2

2 A3
2 A5

2[1, 0] [1][1]

A4
2

[1] [1]

[0, 1][0, 1]

[1] [1]

E1 E2 E3

E5E4

Ac

IC

[1, 0]

(a)

A1
2 A2

2 A3
2 A5

2
[1, 0] [1]

[2, 0]

[1]

A4
2

[1]

[1]

[0, 1]

[1] [1]

A1
1 A2

1 A3
1 A5

1[1, 0] [1, 1] [1, 1] [1]

[1, 0][1]

[0,1]

E1 E2 E3

E5E4

(b)

A2
1

A5
2

[0, 1]

A1
1

A5
1

A3
1[1,1][1,0] [1,1] [1] [1]

E5E4

E1 E2 E3
[2, 0]

[1, 0]

(c)

A2
1A1

1 A3
1[1,1][1,0] [1,1] [1] [1]

A5
1[2, 0]

E5E4

E1 E2 E3

(d)

A2
1A1

1 A3
1[1,1][1,0] [1,1] [1] [1]

A5
1[2, 0]

E5E4

E1 E2 E3

(e)

A2
1A1

1 A5
1A3

1[1,1][1,0] [1,1] [1] [1] [2, 0]

E5E4

E1 E2 E3

(f)

Figure 6.5: Mode transition of G1 from mode SI2 to mode SI1 (from (a) to (f)). The control
actor and the control edges are omitted in figures (b) to (f) to avoid cluttering.

by using a different task allocation in each application’s mode. For instance,
the implementation and execution of the mode transition from mode SI2 to
mode SI1 of G1, with the given schedule in Figure 6.4(b), is shown in Figure 6.5
and has the following sequence - Figure 6.5(a): The application is in mode SI2

where the threads corresponding to the actors in this mode run. The threads
are connected to the control thread Ac, which runs on a separate processor,
through the control FIFO channels (the dashed arrows in Figure 6.5(a)). In our
approach, two extra FIFO channels, shown in the red color in Figure 6.5(a),
are required, both from the thread of source actor A1 to control thread Ac in
order to notify the control thread in which graph iteration number the source
actor is currently running and the time when the thread of the source actor
is terminated; Figure 6.5(b): When MCR1 occurs at time instant tMCR1 = 1
to switch to mode SI1, the threads corresponding to the actors in mode SI1

are created and connected to the corresponding FIFO channels. At this stage
the newly-created threads (the red nodes in Figure 6.5(b)) are suspended and
they wait to be released. Note that the mode transitions cannot be performed at
any moment. According to the operational semantics of the MADF model, a mode
transition is only allowed in a consistent state, that is, after the graph iteration in

112 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

which the MCR occurred, has completed and the graph has returned to its initial
state. Therefore, control thread Ac needs to check the current graph iteration
number of the source actor A2

1 and notify all threads at which graph iteration
number they have to be terminated; Figure 6.5(c): Next, when the thread of
the source actor A2

1 is terminated at time instant 5 (according to Figure 6.4(b)),
which is notified to control thread Ac as well, the control thread signals the
suspended threads to be released synchronously δ2→1 = 6 time units later at
time instant 11 (according to Figure 6.4(b)). At this stage, a mixture of threads
in both modes may be running on processors. In the meanwhile, the threads
of the actors in the old mode SI2 are gradually finishing their execution and
terminated at the same graph iteration number; Figure 6.5(d)-6.5(f): Since the
actors have different start time in the new mode SI1, as shown in Figure 6.4(b),
the threads in mode SI1 start executing accordingly after the releasing time.
The threads which are released but not yet running, are shown in the green
color. Then, the released threads in the new mode SI1 gradually start running
and finally, the application is switched to mode SI1 where all created threads
run and the unused channels E4 and E5 in this mode are left unconnected to
the threads.

6.6.2 Demonstration of Our Approach on LITMUSRT

In this section, we demonstrate how to realize our implementation and ex-
ecution approach on LITMUSRT [22] as one of the existing real-time (RT)
extensions of the Linux kernel. The realizations of a normal actor and the con-
trol actor in our approach are given in C++ in Listing 6.1 and 6.2, respectively,
in which the bolded primitives belong to LITMUSRT. Note that, any other
RT operating system which has similar primitives, e.g., FreeRTOS [72], can
be used instead. We also use the standard POSIX Threads (Pthreads) and the
corresponding API integrated in Linux to create the threads of the actors.

In Listing 6.1, the RT parameters of an actor, e.g., actor A2 of graph G1
shown in Figure 6.1(a), are set up using the data structure threadInfo passed
to the function as argument in Lines 2-6. Under partitioned scheduling al-
gorithms, e.g., Partitioned EDF, the processor core which the thread should
be statically executing on, is set in Line 7. Then, the RT configuration of the
thread is sent to the LITMUSRT kernel for validation, in Line 8, in which if it is
verified, the thread is admitted as a RT task in LITMUSRT, in Line 9. In Line
10, the RT task is suspended, in order to synchronize the start time of the tasks,
until signaled by the control actor to begin its execution. Next, the task enters
to a while loop in Lines 12-31, in which iterates infinitely. At the beginning
of each graph iteration, the current time instant is captured and stored in

6.6. Implementation and Execution Approach for MADF 113

1void Actor_A2(void *threadarg) {
2 threadInfo = (threadInfo *)threadarg; // Get the thread parameters
3 struct rt_task param; // Set up RT parameters
4 param.period = threadInfo.period;
5 param.relative_deadline = threadInfo.relative_deadline;
6 param.phase = threadInfo.start_time;
7 be_migrate_to_domain(threadInfo.processor_core); // For partitioned schedulers
8 set_rt_task_param(gettid(), ¶m));
9 task_mode(LITMUS_RT_TASK); // The actor is now executing as a RT task

10 wait_for_ts_release(); // The RT task is waiting for a release signal
11 int graph_iteration = 1;
12 while(1) { // Enter to the main body of the task
13 lt_t now = litmus_clock();
14 for(i=1; i<=threadInfo.repetition; i++){
15 lt_sleep_until(now + threadInfo.slot_offset[i]);
16 if(IC1 is not empty) READ(& terminate, threadInfo.IC1);
17 if(i == 1 && graph_iteration > terminate){
18 WRITE(& now, threadInfo.OCtrig);
19 task_mode(BACKGROUND_TASK); //Trans. back to non−RT mode
20 return NULL;
21 }
22 if(i == 1) WRITE(& graph_iteration, threadInfo.OCiter);
23 if(threadInfo.mode == 1){ // Do action according to the task’s mode
24 READ(& in1, threadInfo.IP1);
25 task_function(& in1, & out1);
26 WRITE(& out1, threadInfo.OP1);
27 }/* Actions according to the other modes */ { . . . }
28 if(i%threadInfo.K == 0) sleep_next_period();
29 }
30 graph_iteration += 1;
31 }
32}

Listing 6.1: C++ code of actor A2

variable now in Line 13. Then, the task iterates as many repetition times as it
has in one graph iteration in a for loop, in Lines 14-29. In Line 15, the task
sleeps until reaching the start time of its i-th invocation, corresponding to the
K-PS, from the time instant captured in now. After finishing Ki invocations,
the task sleeps again, in Line 28, until finishing the current period. In fact,
in this line, a kernel-space mechanism is triggered for moving the task from
the ready queue to the release queue. Then, LITMUSRT will move the task

114 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

1void main(int argc, char **argv) {
2 /* Create FIFO channel E1 */
3 size_E1_in_tokens = 4;
4 size_token_E1= sizeof(token_structure)/sizeof(int);
5 size_fifo_E1 = size_E1_in_tokens × size_token_E1;
6 E1 = calloc(size_fifo_E1+2, sizeof(int)); // Allocate memory for E1
7 /* Create other FIFO channels*/ {· · ·}
8 init_litmus(); // Initialize the interface with the kernel
9 old_mode = 1, new_mode = 1;

10 while(1){
11 switch(new_mode){
12 case 1: /* Create and launch the thread of actor A2 in mode SI1*/
13 threadInfo.mode = 1; thread.repetition = 2; threadInfo.processor_core = 1;
14 threadInfo.IP1 = E1; /* Connect other FIFO channels to the thread*/ {· · ·}
15 threadInfo.period = 8; threadInfo.relative_deadline = 8;
16 threadInfo.phase = 1; threadInfo.slot_offset = [0, 4];
17 pthread_create(&threadInfo.id, NULL, &Actor_A2, &threadInfo);
18 /* Create and launch the threads of the other actors in mode SI1*/ { . . . }
19 case 2: { /* Create and launch the thread of the actors in mode SI2*/ }
20 }
21 while(rt_task == ready_rt_tasks)
22 read_litmus_stats(&ready_rt_tasks);
23 if(new_mode != old_mode){
24 while(ICtrig is empty);
25 READ(& now, ICtrig);
26 }else now = litmus_clock();
27 release_ts(δ); old_mode = new_mode;
28 do{ READ(& new_mode, IC); } while(new_mode == old_mode)
29 READ(& graph_iteration, ICiter);
30 tleft = Ho −(litmus_clock() − now − δ)%Ho;
31 if(tleft < tOV) graph_iteration += ⌈(tOV − tleft)/Ho⌉;
32 for(all active actor Ai) WRITE(& graph_iteration, OCi);
33}

Listing 6.2: C++ code of control actor Ac

back to the ready queue at the start time of the next period when the task
will again be eligible for execution. In Line 16, the state of the input control
port IC1 is checked in which if it is not empty, the graph iteration number
where the task has to be terminated is read. Then, the termination condition is
checked in Line 17. If the condition holds, the mode of the thread is changed
to non-RT in Line 19 and the thread is terminated in Line 20. Otherwise, the

6.7. Case Studies 115

task reads from its input FIFO channels, executes its function, and writes the
result to the output FIFO channels, in Lines 23-27. Only for the source actor,
the latest graph iteration number where the task is currently running and the
time instant now are written to the output control ports OCiter and OCtrig, in
Lines 22 and 18 highlighted with red color, respectively, which are needed by
the control thread, as explained in Section 6.6.1.

In Listing 6.2, realizing control actor Ac, all FIFO channels are created
and the needed memory is allocated to them using the standard calloc()
function, in Lines 3-7. In Line 8, the interface with the LITMUSRT kernel is
initialized. In Lines 11-20, the data structure of threadInfo is initialized
for each actor of the requested new mode and the corresponding threads of
the actors in the new mode are created and launched. In Lines 21 and 22, the
number of suspended RT tasks is checked which if is equal to the number of
the actors in the new mode, they can be signaled to be released simultaneously.
Therefore, in Line 27, the global release signal is sent by δ time units after
receiving the time instant now on the input port ICtrig from the thread of
the source actor in the old mode in Line 25, implying the termination of the
thread and acting as a trigger. Afterwards, the control actor continuously
monitors the occurrence of a new MCR in Line 28. If an MCR occurs to a
new mode which differs from the current mode, the graph iteration number
in which the threads in the current mode need to be terminated is computed
in Lines 29-31. The primary graph iteration number is simply the current
graph iteration number of the source actor, read from the input port ICiter
in Line 29. However, since the control actor has certain timing overhead,
represented by tOV, the primary graph iteration number needs to be revised
corresponding to the time left from the current graph iteration of the source
actor tleft, computed in Line 30, and tOV, in Line 31, to ensure that all threads
will be terminated in the same graph iteration number. Then, the new graph
iteration number is written on the control port of all threads in the current
mode in Line 32 to notify them when they have to be terminated.

6.7 Case Studies

In this section, we present two case studies using real-life streaming appli-
cations to validate the proposed implementation and execution approach in
Section 6.6 as well as the proposed periodic scheduling approach in Chapter 5
by running the applications on actual hardware. We perform these case stud-
ies on the ARM big.LITTLE architecture [40], shown in Figure 1.1, including
a quad-core Cortex A15 (big) cluster and a quad-core Cortex A7 (LITTLE)

116 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

Table 6.1: Performance results of each individual mode of Vocoder.

Mode
Analysis [94] Implementation and execution

Number/Type of processor
H (ms) L (ms) H (ms) L (ms)

SI8 25 21 25 21 1 LITTLE
SI16 25 19 25 19 1 big
SI32 25 33 25 33 2 big
SI64 25 56 25 56 3 big

cluster, that is available on the Odroid-XU4 platform [66]. The Odroid XU4
runs Ubuntu 14.04.1 LTS along with LITMUSRT version 2014.2.

6.7.1 Case Study 1

In this section, we present a case study, using a real- life adaptive streaming
application, to demonstrate the practical applicability of our parallel imple-
mentation and execution approach for MADF. Moreover, we show that our
approach conforms to the MADF analysis model in [94] by measuring the
application’s performance, in terms of the achieved iteration period, iteration
latency, and mode transition delay, and comparing them with the computed
ones using the MADF analysis model.

In this case study, we take a real-life adaptive streaming application from
the StreamIT benchmark suite [37], called Vocoder, which implements a phase
voice encoder and performs pitch transposition of recorded sounds from
male to female. We modeled Vocoder using the MADF graph, shown in
Figure 6.6, with four modes which captures different workloads. The four
modes {SI8, SI16, SI32, SI64} specify different lengths of the discrete Fourier
transform (DFT), denoted by dl ∈ {8, 16, 32, 64}. Mode SI8 (dl = 8) requires the
least amount of computation at the cost of the worst voice encoding quality
among all DFT lengths. Mode SI64 (dl = 64) produces the best quality of voice
encoding among all modes, but is computationally intensive. The other two
modes SI16 and SI32 exploit the trade-off between the quality of the encoding
and the computational workload. Therefore, the resource manager of an
MPSoC can take advantage of this trade-off and adjust the quality of the
encoding according to the available resources, such as energy budget and
number/type of processors, at run-time.

We measured the WCET of the actors in Figure 6.6 in the four modes on
both big and LITTLE processors. Then, since the shortest time granularity
visible to LITMUSRT, i.e., the OS clock tick, is 1 millisecond (ms), the WCET
of the actors are rounded up to the nearest multiple of the OS clock tick
duration. This is necessary to derive the period and start time of the actors

6.7. Case Studies 117

R
ea
d

W
av
e

D
FT

Ad
dC
os
W
in

R
ec
2P
ol
ar

U
nw
ra
p

Sp
ec
2E
nv

m
al
e2
fe
m
al
e

Po
la
r2
R
ec

In
vD
FT

W
rit
e

W
av
e

A c IC

[1
[1
28
dl
]]

[1
[2
56
]]

[1
28
[d
l]
]

[1
[2
56
]]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
[2
56
]]
[1
[2
56
]]

[1
[1
28
dl
]]
[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

Fi
gu

re
6.

6:
M

A
D

F
gr

ap
h

of
th

e
V

oc
od

er
ap

pl
ic

at
io

n.

118 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

Table 6.2: Performance results for all mode transitions of Vocoder (in ms).

Transition Analysis [94] Implementation and execution
(SIo to SIn) ∆o→n

min ∆o→n
max ∆o→n

SI8 → SI64 146 171 160
SI8 → SI32 123 148 131
SI8 → SI16 111 136 122
SI16 → SI64 165 190 185
SI16 → SI32 142 167 157
SI16 → SI8 112 137 130
SI32 → SI64 162 187 168
SI32 → SI16 125 150 139
SI32 → SI8 125 150 145
SI64 → SI32 160 185 182
SI64 → SI16 146 171 162
SI64 → SI8 146 171 152

under any K-PS to be executed by LITMUSRT. Table 6.1 shows the performance
results of each individual mode under the self-timed (ST) schedule, which
is a particular case of K-PS explained in Section 6.4. In this table, columns
2-3 show the iteration period H and iteration latency L of each individual
application mode computed by the analysis model, respectively. The iteration
period H indicates the guaranteed production of 256 samples per 25 ms, as a
performance requirement, in all modes by sink actor WriteWave. Column 6
shows the number and type of processors required in each mode to guarantee
the aforementioned performance requirement. On the other hand, columns
4-5 show the measured iteration period H and iteration latency L of each
individual application mode achieved by our implementation and execution
approach, respectively. Comparing columns 2-3 with columns 4-5, we see
that the performance of Vocoder computed using the MADF analysis model
is the same as the measured performance when Vocoder is implemented and
executed using our approach. This is because the ST schedule of each mode is
implemented in our approach by setting up, in LITMUSRT, the same periods
and start times of the actors as in the analysis model. Based on the results,
shown in Table 6.1, we can conclude that our implementation and execution
approach conforms to the MADF analysis model in terms of H and L for the
Vocoder application.

Now, we focus on the performance results related to the mode transition
delays for all 12 possible transitions between the four modes of Vocoder. Using
the MADF analysis model in [94], the computed minimum and maximum
transition delays are shown in columns 2-3 of Table 6.2, respectively. By using

6.7. Case Studies 119

 0

 25

 50

 75

 100

 125

 150

 175

 200

5 10 15 20 25 30 35 40 45 50

Ti
m

e
(m

illi
se

co
nd

)

Number of actors of the application

Figure 6.7: The execution time of control actor Ac for applications with different numbers of
actors.

our implementation and execution approach, however, the measured transi-
tion delay depends on the occurrence time of the mode change request (MCR)
at run-time, thus the measured transition delay could vary between the com-
puted minimum and maximum values in each transition. For instance, column
4 in Table 6.2 shows the measured transition delay for each transition with a
random occurrence time of an MCR, within the iteration period, at run-time.
These measured transition delays (column 4) are within the computed bounds
using the analysis model (columns 2-3). Therefore, our implementation and
execution approach also conforms to the MADF analysis model in terms of
mode transition delay ∆o→n for the Vocoder application.

Finally, we evaluate the scalability of our proposed implementation and
execution approach in terms of the execution time tov of the control actor for
applications with different numbers of actors. Since the most time-consuming
and variable part of the control actor is located in Lines 11 to 22 of Listing 6.2,
that is the time needed for the threads creation and the threads admission as
RT tasks, we only measure the time needed for this part of the control actor.
In this regard, the measured time for applications with a varying number of
actors is shown in Figure 6.7. In this figure, we can clearly observe that the
execution time of the control actor follows a fairly linear scalability when the
number of actors in the application increases.

6.7.2 Case Study 2

In this section, we present a case study, using a real-life streaming application,
for our energy-efficient periodic scheduling approach presented in Chapter 5.
As explained in Chapter 5, this scheduling approach primarily selects a set

120 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

Video
Out

[1][1][1][1] [1][1]
[1]

[1,1,...,1]

[1]

DCT QVideo
In

VLE

Init
Video

[1,0,...,0]}

127 Times

Figure 6.8: CSDF graph of MJPEG encoder.

of SPS schedules, as operating modes, for an application modeled as a CSDF
graph where each mode provides a unique pair of performance and power
consumption. Then, it satisfies a given throughput requirement at a long
run by switching the application’s schedule periodically between modes at
run-time. As this scheduling approach is evaluated using only simulations in
Chapter 5, this case study aims to validate its applicability on a real hardware
platform using our parallel implementation and execution approach presented
in Section 6.6. To do so, we only adopt the ARM Cortex A15 cluster with four
processors available on the Odroid-XU4 platform. This platform provides
the DVFS mechanism per cluster in which the operating frequency of the
Cortex-A15 cluster can be varied between 200 MHz to 2 GHz with a step of
100 MHz.

In this case study, we take the Motion JPEG (MJPEG) video encoder ap-
plication which CSDF graph is shown in Figure 6.8. The specifications of
two modes where the SPS schedule is used in each mode of this application,
referred as mode SI1 and mode SI2, are given in Table 6.3. The iteration period
H of these modes, in milliseconds, is given in the second column in Table 6.3.
Mode SI1 has an iteration period of 128 ms which results in the application
throughput of 1000/128 = 7.81 frames/second. Likewise, the iteration pe-
riod of mode SI2 is 256 ms which results in the application throughput of
1000/256 = 3.9 frames/second. In these modes, the operating frequency of
the A15 cluster is set to 1.4 GHz and 600 MHz for mode SI1 and SI2, respec-
tively, while satisfying their aforementioned application throughput. As a
result, these modes have different power consumption which is given in the
fourth column in Table 6.3. The WCETs of all actors in these mode are also
given in the fifth to tenth columns in Table 6.3. In these modes, we use the
partitioned EDF scheduler plugin (PSN-EDF) in LITMUSRT to schedule the
actors allocated on each processor separately.

Note that modes SI1 and SI2 correspond to two consecutive SPS schedules

6.7. Case Studies 121

Table 6.3: The specification of modes SI1 and SI2 in MJPEG encoder application

Mode
Iteration Period Frequency Power WCET of actors (ms)

(ms) (GHz) (W) Init Video Video In DCT Q VLE Video Out
SI1 128 1.4 2.24 0.003 0.139 0.272 0.136 0.267 0.779
SI2 256 0.6 1.62 0.004 0.219 0.682 0.251 0.682 1.437

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r o

f V
id

eo
 F

ra
m

es

Time (Second)

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

7.81 6.94 6.25 5.68 5.2 4.8 4.46 4.16 3.9

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Throughput of MJPEG encoder application
(Video frames/second)

(b)

Figure 6.9: (a) The video frame production of the MJPEG encoder application over time for
the throughput requirement of 5.2 frames/second. (b) Normalized energy consumption of the
application for different throughput requirements.

of the MJPEG encoder application, i.e., no other valid SPS schedule exists
between them. So, to satisfy a throughput requirement between 3.9 to 7.81
frames/second, the naive solution is to constantly execute the application in
mode SI1. As a consequence, the application consumes more energy due to
producing more frames/second than required. In contrast, our scheduling
approach, presented in Chapter 5, can satisfy the throughput requirement at a
long run by periodically switching the application execution between mode
SI1 and SI2. For instance, let us consider the throughput requirement of 5.2
frames/second. Then, Figure 6.9(a) shows the production of video frames
over time by the MJPEG encoder application under our proposed scheduling
approach. The red line in this figure represents the required number of frames
per second according to the throughput requirement whereas the blue curve
represents the measured number of produced video frames per second by
our scheduling approach implemented and executed on the real hardware
platform Odroid XU4. As shown in this figure, the application executes
initially in mode SI1 for about 4 seconds while producing more video frames
than required. These excessive frames are accumulated in a buffer to be

122 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

consumed when the application executes in mode SI2 with lower throughput
for the next about 7 seconds. After finishing one period of the schedule at
about 11 seconds, the application delivers the throughput requirement where
the red line and the blue curve in Figure 6.9(a) hit each other. This execution is
then repeated indefinitely.

For different throughput requirements, we also measure the energy con-
sumption of the Odroid XU4 platform when running the application using
our periodic scheduling approach. To do so, the energy consumption of the
Odroid XU4 platform is E = V ×

∫ t
0 I(t)dt, where the current I(t) is obtained

by precisely measuring (sampling) the current drawn by the platform during
the time interval t of the application execution under the platform operating
voltage V. The normalized energy consumption of the platform executing
the application with different throughput requirements for a duration of one
minute is shown in Figure 6.9(b). This figure clearly shows the effectiveness of
our periodic scheduling approach which can reduce the energy consumption
by up to 26% compared to the naive scheduling approach, mentioned earlier,
where the approach constantly executes in mode SI1 in order to satisfy any
throughput requirement between 3.9 and 7.81 frames per second.

6.8 Conclusions

In this chapter, we proposed a generic parallel implementation and execution
approach for adaptive streaming applications modeled with MADF. Our ap-
proach can be easily realized on top of existing operating systems and support
the utilization of a wider range of schedules. In particular, we demonstrated
our approach on LITMUSRT which is one of the existing real-time extensions
of the Linux kernel. Finally, we performed a case study using a real-life adap-
tive streaming application and showed that our approach conforms to the
analysis model for both execution of the application in each individual mode
and during mode transitions. In addition, we performed another case study
using a real-life streaming application to validate the practical applicability
of our proposed periodic scheduling approach, presented in Chapter 5, on
a real hardware platform by using our generic parallel implementation and
execution approach presented in this chapter.

