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Chapter 5

Energy-Efficient Scheduling of
Streaming Applications

Sobhan Niknam, Todor Stefanov. "Energy-Efficient Scheduling of
Throughput-Constrained Streaming Applications by Periodic Mode Switching". In
Proceedings of the 17th IEEE International Conference on Embedded Computer Systems:
Architectures, MOdeling, and Simulation (SAMOS), Samos, Greece, July 17 - 20, 2017.

IN this chapter, we present our energy-efficient periodic scheduling ap-
proach, which corresponds to the third research contribution, briefly in-

troduced in Section 1.5.3, to address the research question RQ2(B), described
in Section 1.4.2. The remainder of this chapter is organized as follows. Sec-
tion 5.1 introduces, in more details, the problem statement and the addressed
research question. It is followed by Section 5.2, which gives a summary of
the contributions presented in this chapter. Section 5.3 gives an overview
of the related work. Section 5.4 introduces the extra background material
needed for understanding the contributions of this chapter. Section 5.5 gives a
motivational example. Section 5.6 presents the proposed scheduling approach.
Section 5.7 presents the experimental evaluation of the proposed scheduling
approach. Finally, Section 5.8 ends the chapter with conclusions.

5.1 Problem Statement

As mentioned in Section 1.1, energy efficiency has become a critical challenge
for the design of modern embedded systems, especially for those which are
battery-powered. To address the energy efficiency challenge, many approaches
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have been proposed in the past decades by several research communities [11].
These approaches mostly exploit the Voltage and Frequency Scaling (VFS)
mechanism that is widely adopted in modern processors. The general idea
behind these approaches is to exploit available idle, i.e., slack, time in the
schedule of an application in order to slow down the execution of tasks of
the application, by running processors at a lower voltage and operating clock
frequency, using the VFS mechanism and to reduce the energy consumption
while satisfying a given throughput requirement for the application.

Concerning the SPS framework, briefly described in Section 2.3, some
heuristic approaches have been proposed in [25, 55, 80] to find an energy-
efficient task mapping and scheduling using the VFS mechanism. Recall from
Equation (2.12) that under the SPS framework, briefly described in Section 2.3,
the period of real-time periodic tasks corresponding to the actors of a CSDF
graph can be enlarged by taking any s ≥ š ∈N as long as a given application
throughput requirement is satisfied. This period enlargement under the SPS
framework, however, results in a set of application schedules that can only
satisfy a discreet set of application throughputs, as the timing requirement.
Therefore, given a required application throughput that is not in this set of
guaranteed throughputs by the SPS framework, the schedule that provides
the closest higher throughput to the required one must be selected from the
set. As a consequence, this reduces the amount of available slack time in the
application schedule, that can be potentially exploited using the VFS mecha-
nism to reduce the energy consumption, and limits the energy-efficiency of the
approaches in [25, 55, 80]. Thus, in this chapter, we investigate the possibility
to exploit more slack time in the schedule of an application, modeled as a
CSDF graph, under the SPS framework with a given throughput requirement
using the VFS mechanism to achieve more energy efficiency.

5.2 Contributions

In order to address the problem described in Section 5.1, in this chapter, we
propose a novel energy-efficient scheduling approach that combines the VFS
mechanism [71] and the SPS framework [8] in a sophisticated way. In this
novel approach, the execution of an application is periodically switched at
run-time between a few off-line determined energy-efficient schedules, called
operating modes, to satisfy a given throughput requirement at a long run. As
a result, this approach can reduce the energy consumption significantly by
exploiting the slack time in the application schedule more efficiently using
the Dynamic Voltage and Frequency Scaling (DVFS) mechanism [50], where
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multiple operating frequencies are computed at design-time for the processors
to be used at run-time. More specifically, the main contributions of this chapter
are as follows:
∙ A simple scheme has been devised for determining a set of discrete op-

erating modes of a system at different operating frequencies where each
operating mode provides a unique pair of throughput and minimum
power consumption to achieve this throughput.

∙ With such a set of discrete operating modes and a given throughput
requirement, we have devised an energy-efficient periodic scheduling
approach which allows streaming applications to switch their execution
periodically between operating modes at run-time to satisfy the through-
put requirement at a long run. Using this specific switching scheme, we
can benefit from adopting the DVFS mechanism to exploit the available
static slack time in an application schedule efficiently.

∙ The experimental results, on a set of real-life streaming applications,
show that our scheduling approach can achieve energy reduction by up
to 68% depending on the application and the throughput requirement
compared to the straightforward way of applying VFS as done in related
works.

5.3 Related Work

Several approaches aiming at reducing the energy consumption of stream-
ing applications have been presented in the past decades. Among these
approaches, [26, 42, 61, 74, 96] are the closest to our work. These approaches
have a common goal to reduce the energy consumption of a system by exploit-
ing the static slack time in the schedule of throughput-constrained streaming
applications using per-task [26, 61], per-core [42, 74, 96] or global [42] VFS.

The approaches in [26, 42, 61], formulate the energy optimization prob-
lem as a mixed integrated linear programming (MILP) problem to integrate
the VFS capability of processors with application scheduling. Compared to
these approaches, our approach mainly differs in two aspects. First, these ap-
proaches consider streaming applications modeled either as a Directed Acyclic
Graph (DAG) [26, 42] or a Homogeneous SDF (HSDF) graph [61] derived by
applying a certain transformation on an initial SDF graph. Therefore, these
approaches cannot be directly applied to streaming applications modeled with
more expressive MoCs, e.g., (C)SDF as considered in our work. In addition,
transforming a graph from SDF to HSDF is a crucial step in [61] where the
number of tasks in the streaming application can exponentially grow. This
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growth of the application in terms of the number of tasks can lead to time-
consuming analysis and significant memory overhead for storing the tasks’
code. In contrast, our approach directly handles a more expressive MoC, such
as (C)SDF. Second, the approach in [42] uses per-core VFS where the off-
line computed operating frequencies of processors are fixed at run-time and
cannot be changed. In contrast, our approach uses DVFS where a sequence
of frequency changes which is computed off-line is used on the processors
during execution at run-time while satisfying the throughput requirement. As
a result, the DVFS mechanism enables our approach to exploit the available
static slack time in the application schedule more efficiently for better energy
reduction. The approaches in [26, 61] use a fine-grained DVFS, i.e., per-task
VFS, where the operating frequency of processors can be changed before ex-
ecuting each task. Fine-grained DVFS, like in [26, 61], can be beneficial only
when the overhead of DVFS is negligible. In contrast to these approaches, we
adopt a coarse-grained DVFS where the operating frequencies of processors
are changed at the granularity of graph iterations to avoid the large overhead
associated with the operating frequency changes.

The approaches in [74, 96] perform energy reduction directly on an SDF
graph. To this end, the approaches in [74,96] perform design space exploration
(DSE) at design time to find an energy-efficient schedule (in a self-timed
manner) of an SDF graph mapped on an MPSoC platform with per-core VFS
capability such that a given throughput requirement is satisfied. However, as
shown in the motivation example in Section 5.5, applying VFS in a similar way
as in [74,96] for streaming applications scheduled using the SPS framework [8]
is not energy-efficient. Compared to the approaches in [74, 96], our approach
is different in two aspects. First, these approaches use self-timed scheduling
for which analysis techniques suffer from a complex DSE. In contrast, we use
the SPS framework that enables the utilization of many scheduling algorithms
with fast analysis techniques from the classical hard real-time scheduling
theory [29]. Second, these approaches use per-core VFS to exploit static slack
time in the application schedule. In contrast, our approach uses a coarse-
grained DVFS. As a result, the processors are able to run periodically at lower
operating frequencies by exploiting available static slack time more efficiently
which can result in lower energy consumption.

5.4 Background

In this section, we define the system model and present the power model
considered throughout this chapter.
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5.4.1 System Model

In this section, we define the system model used in this chapter. The con-
sidered MPSoC platforms in this chapter are homogeneous, i.e., a platform
contains a set Π = {π1, π2, · · · , πm} of m identical processors with distributed
memories. We assume that processors are endowed with the VFS capability.
In this regard, we assume that each processor supports only a discrete set
θ = { fmin = f1, f2, · · · , fn = fmax} of n operating frequencies and different
processors can operate at different frequencies at the same time. Without loss
of generality, we assume that the operating frequencies in the set θ are in
ascending order, in which f1 is the lowest operating frequency and fn is the
highest operating frequency.

5.4.2 Power Model

This section defines the power model used in this chapter. According to [55],
the power consumption of a (fully utilized) processor can be computed by the
following equation:

P( f ) = α f b + β

where the first term is the dynamic power consumption and includes all
frequency-dependent components, the second term is the static power con-
sumption and includes all frequency-independent components, and f is the
operating frequency. Parameters α, b, and β are dependent on the platform
and they are determined in [55] by performing real measurements on a real
MPSoC platform. When all tasks are allocated on processors of platform Π,
the power consumption of processor πj can be computed by the following
equation:

Pj = α · f b
πj
· fmax

fπj
∑

∀τi∈mΓj

Ci

Ti
+ β (5.1)

where fπj ∈ θ is the operating frequency of πj and mΓj ∈ mΓ represent the set
of tasks allocated on processor πj. Therefore, the energy consumption of πj
within one graph iteration period (hyper period) is Ej = H · Pj and the energy
consumption of the platform within one iteration period is E = ∑∀πj∈Π H · Pj.

5.5 Motivational Example

In this section, we motivate the necessity of devising a new energy-efficient
scheduling approach using the VFS mechanism in the context of the SPS
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Figure 5.1: An SDF graph G.

framework [8]. To do so, this motivational example consists of two parts.
In the first part, we show that a straightforward way of applying the VFS
mechanism in the context of the SPS framework is not energy efficient. Then,
in the second part, we show how we can schedule an application more energy
efficient using our novel periodic scheduling approach.

5.5.1 Applying VFS Similar to Related Works

Let us consider a simple streaming application modeled as the SDF graph G
shown in Figure 5.1. This graph has three actors𝒜 = {A1, A2, A3}with worst-
case execution times C1 = 1, C2 = 2, and C3 = 2 at the maximum processor
operating clock frequency. The repetition vector of this graph, according to
Theorem 2.1.1, is~q = [3, 6, 2]T. By applying the SPS framework for graph G,
the task set Γ = {τ1 = (C1 = 1, T1 = 4, S1 = 0, D1 = 4), τ2 = (2, 2, 4, 2), τ3 =
(2, 6, 10, 6)} of three IDP tasks can be derived. Note that the derived periods of
the tasks are the minimum periods by using the scaling factor s = š = ⌈ 12

6 ⌉ = 2
in Equation (2.12). Based on these tuples, a strictly periodic schedule, as shown
in Figure 5.2(a), can be obtained for this graph. Using Equation (2.15), the
throughput of this schedule can be computed asℛ = 1

T3
= 1

6 . The minimum
number of processors needed for this schedule under partitioned First-Fit
Decreasing (Utilization) EDF (FFD-EDF) is two. Therefore, we consider a
homogeneous MPSoC platform Π = {π1, π2} containing two processors,
where we allocate task τ2 on processor π1 and tasks τ1 and τ3 on processor π2,
i.e., 2Γ = {2Γ1 = {τ2}, 2Γ2 = {τ1, τ3}}.

So far, we have assumed that the tasks run at the maximum operating fre-
quency of the processors. Let us assume that each processor can only support
a discrete set θ = {1/4, 1/2, 3/4, 1}(GHz) of four operating frequencies. In
order to make this schedule more energy efficient, we use the VFS mechanism
to exploit the available static slack time in the schedule for the purpose of
slowing down the execution of tasks by decreasing the operating frequency of
the processors. For this example, we can only decrease the operating frequency
of processor π2 to 3/4 GHz while still satisfying all timing requirements, i.e.,
job deadlines shown as down arrows in Figure 5.2(a). This slowing down
of the execution of tasks is visualized by extending the gray boxes with the
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Figure 5.2: The (a) SPS and (b) scaled SPS of the (C)SDF graph G in Figure 5.1. Up
arrows represent job releases, down arrows represent job deadlines. Dotted rectangles show
the increase of the tasks execution time when using the VFS mechanism.

dotted boxes in Figure 5.2(a). Using Equation (5.1), the power consumption
of this schedule is 0.61 mW. The energy consumption of this schedule for a
period of 36 time units, which is equivalent to 3 graph iterations, is 21.96 mJ.

To further reduce the power consumption by decreasing the operating
frequency of processors, more static slack time is needed to be created in
the application schedule. To do so, we can derive larger periods for tasks
by using any integer scaling factor s > š = 2 in Equation (2.12). We refer
to this approach as period scaling in this chapter. In this way, if we take s =
3, a new schedule can be derived using the SPS framework, as shown in
Figure 5.2(b), with throughput ℛ = 1

T3
= 1

9 . As a result, there is more static
slack time available in the application schedule which enables the processors
π1 and π2 to run at lower operating frequencies of 3/4 GHz and 1/2 GHz,
respectively. This is visualized by extending the white boxes with the dotted
boxes in Figure 5.2(b). Using Equation (5.1), the power consumption of this
schedule is 0.43 mW. The energy consumption of this schedule for a period
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of 36 time units, which is equivalent to 2 graph iterations, is 15.48 mJ. As a
result, the energy consumption is reduced by 29.5% using the schedule in
Figure 5.2(b) corresponding to s = 3 compared to the schedule in Figure 5.2(a)
corresponding to s = 2 for the same time period at the expense of decreasing
the application throughput from 1/6 to 1/9. By increasing the value of scaling
factor s and enlarging the periods of tasks as much as possible such that the
corresponding schedule still satisfies a given throughput requirement, we can
apply the VFS mechanism in the straightforward way, described above, similar
to the related works [74, 96]. Therefore, the maximum created static slack time
in the application schedule can be exploited using the VFS mechanism to
reduce the energy consumption as much as possible.

Now, assume that a throughput requirement of 1/8 has to be satisfied.
Following the period scaling approach, described above, the schedule corre-
sponding to s = 2 with the throughput of 1/6, shown in Figure 5.2(a), must be
selected to satisfy the throughput requirement of 1/8. However, this schedule
is not the most energy-efficient one. This is because, although the through-
put requirement of 1/8 is satisfied, more energy is consumed as a result of
delivering higher throughput than needed.

5.5.2 Our Proposed Scheduling Approach

In this section, we introduce our novel energy-efficient scheduling approach
for graph G in Figure 5.1 that satisfies the same throughput requirement of 1/8
while consuming less energy compared to the scheduling approach explained
in Section 5.5.1. In our approach, among all possible application schedules
corresponding to different values of scaling factor s to enlarge periods, we
select only Pareto optimal schedules and form a set γ of schedules called
operating modes. For instance, the set γ = {SI1, SI2, SI3, SI4, SI5} of five operat-
ing modes for graph G is given in Table 5.1. In this table, every row shows
an operating mode with the iteration period H, the operating frequencies of
the two processors ( fπ1 , fπ2), the pair of throughput and power consumption
(ℛ, P), and the energy consumption corresponding to the operating mode. In
the last column, the energy consumption of the operating modes is given for
a period of 720 time units which is the least common multiply of the iteration
periods H of all operating modes. As can be seen in this column, the energy
consumption of the operating modes is being reduced by slowing down the
application execution during this common period of time. The value of scaling
factor s corresponding to each operating mode is also given in the first column.
For instance, operating mode SI4 is the application schedule corresponding to
s = 5 that delivers throughput of 1/15. In this schedule, processors π1 and
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Table 5.1: Operating modes for graph G

Mode H fπ1 fπ2 (ℛ [ Token
Time units ], P [mW ]) E [mJ ]

SI1 (s = 2) 12 1 3/4 (1/6, 0.61) 439.2
SI2 (s = 3) 18 3/4 1/2 (1/9, 0.43) 309.6
SI3 (s = 4) 24 1/2 1/2 (1/12, 0.36) 259.2
SI4 (s = 5) 30 1/2 1/4 (1/15, 0.34) 244.8
SI5 (s = 8) 48 1/4 1/4 (1/24, 0.31) 223.2

π2 must operate at frequencies of 1/2 GHz and 1/4 GHz in order to meet all
task’s job deadlines. The power consumption of this schedule is 0.34 mW and
the energy consumption of this schedule for 720 time units is 244.8 mJ.

Looking at set γ of operating modes in Table 5.1, the throughput require-
ment of 1/8, we consider in this example, is between the throughput of op-
erating modes SI1 and SI2. Therefore, we propose the idea of periodically
switching the application execution between operating modes SI1 and SI2 to
satisfy the throughput requirement. Such a periodic switching schedule is
depicted for one period in Figure 5.3, where the application executes for three
graph iterations according to the schedule of operating mode SI1 and two
graph iterations according to the schedule of operating mode SI2. Different
graph iterations are separated by dotted and dashed lines for consecutive
executions of the application in operating mode SI1 and SI2, respectively, in
Figure 5.3. Note that this schedule repeats periodically every 77 time units, as
shown in Figure 5.3 (Q1 + Q2 + o12 = 77). In one period, task τ3 executes 10
times in total during 77 time units, meaning that throughput of 10/77=1/7.7
is delivered at a long run that is more closer to the throughput requirement of
1/8 compared to the throughput of 1/6 delivered as a result of the schedule
in Figure 5.2(a). More importantly, the energy consumption of our proposed
novel schedule in Figure 5.3 for a period of 924 time units, which is the least
common multiply of the period of our schedule (77 time units) and the iteration
period of the schedule in Figure 5.2(a) (12 time units), is 496.68 mJ. The energy
consumption of the schedule in Figure 5.2(a) in the same period of 924 time
units is 563.64 mJ. Therefore, our novel scheduling approach can reduce the
energy consumption by 11.87% when the throughput requirement of 1/8 has
to be satisfied. The energy reduction of our proposed schedule, referred as
Switching, compared to the scheduling approach explained in Section 5.5.1,
referred as Scale, for a wide range of throughput requirements is given in
Figure 5.4. In this figure, the x-axis shows different throughput requirements
for graph G in Figure 5.1 while the y-axis shows the normalized energy con-
sumption. From Figure 5.4, we can see that our proposed scheduling approach
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Switching can reduce the energy consumption significantly compared to Scale
for a large set of throughput requirements.

Note that our proposed scheduling approach uses the DVFS mechanism.
This is because, processors run at different operating frequencies in each
operating mode. Therefore, when the application switches to execute in a
different operating mode, the operating frequencies of the processors are
changed accordingly. The way of changing the operating frequencies of the
processors, for our example, is shown by the horizontal arrows on top of
Figure 5.3. Note that we also consider the switching time cost of the DVFS
mechanism in our analysis that is shown by the boxes with dotted pattern in
Figure 5.3.

From the above example, we can see the necessity and usefulness of our
novel scheduling approach, presented in detail in Section 5.6, to obtain more
energy-efficient application schedule when the VFS mechanism is used in the
context of the SPS framework.

5.6 Proposed Scheduling Approach

In this section, we describe our proposed energy-efficient periodic scheduling
approach for throughput-constrained streaming applications. The basis of our
approach is to determine a set of operating modes where each operating mode
provides a unique pair of throughput and minimum power consumption to
achieve this throughput. Then, for a given throughput requirement, there
may exist an operating mode whose throughput matches the throughput
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Figure 5.5: (a) Switching scheme, (b) Associated energy consumption of the switching scheme
and (c) Token production function Z(t).

requirement. In this unlikely case, we simply select this operating mode.
Otherwise, we choose the two operating modes with the closest higher and
lower throughput to the throughput requirement, referred as higher operating
mode (SIH) and lower operating mode (SIL), respectively. Then, we satisfy the
throughput requirement at a long run by periodically switching the execution
of the application between these two operating modes.

A general overview of our proposed switching scheme for the execution
of an application between the higher and lower operating modes is illustrated
in Figure 5.5. The periodic execution of the application between the higher
and lower operating modes in our approach is shown in Figure 5.5(a) and the
period of switching is denoted by λ. The associated energy consumption and
token production of the application caused by our switching scheme corre-
sponding to Figure 5.5(a) are also shown in Figure 5.5(b) and Figure 5.5(c),
respectively. According to Figure 5.5(a), the execution of the application in
each period λ consists of four parts. In the first part, the application exe-
cutes in the higher operating mode for QH time units where the application
has throughput ℛH and power consumption PH. Then, in the second part,
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the execution of the application switches to the lower operating mode SIL.
However, this switching cannot happen immediately and it takes some time,
denoted as oHL, before the application can produce tokens again in the lower
operating mode. Therefore, during the switching, the application does not
have any token production for oHL time units while consuming the energy
of eHL, as shown in Figure 5.5(b) and Figure 5.5(c), respectively. After com-
pleting the switching, in the third part, the application executes in the lower
operating mode for QL time units where the application has the throughput
and power consumption ofℛL and PL, respectively. Finally, in the fourth part,
the application switches again to the higher operating mode SIH for the next
period of λ. However, this switching cannot happen immediately and it takes
some time that is denoted by oLH. During the switching time oLH, no tokens
are produced by the application while the energy of eLH is consumed. As a
result of the switching scheme in Figure 5.5(a), the application generates a
number of tokens in total, see the curve Z(t) in Figure 5.5(c), by executing in
the higher and lower operating modes during every period of λ and in every
λ the application effectively delivers the throughput ofℛe f f in a long run. The
curves corresponding to the token production Z(t) in our switching scheme
and the effective throughput ofℛe f f are shown in Figure 5.5(c) with a solid
line and a dotted line, respectively. The throughput requirementℛreq is also
shown with a dashed line in this figure. Therefore, to satisfy the throughput
requirement, we have to always keep the effective throughput ℛe f f above
the throughput requirementℛreq. This ensures that the number of produced
tokens at any time instant is greater than or equal to what is needed.

Considering Figure 5.5(c), the effective throughput obtained by executing
the application in operating mode SIH for QH time units and operating mode
SIL for QL time units is computed by the following expression:

ℛe f f =
ℛHQH +ℛLQL

QH + QL + oHL + oLH
=
ℛHQH +ℛLQL

λ
(5.2)

where ℛH and ℛL are the throughputs of the application in the higher and
lower operating modes, respectively, andℛHQH andℛLQL are the number
of produced tokens in the higher and lower operating modes, respectively.
Similarly, the effective power consumption for the same operating mode
switching is computed as follows:

Pe f f =
PHQH + PLQL + eHL + eLH

λ
=

PHQH + PLQL

λ
+

eHL + eLH

λ
(5.3)

where PH and PL are the power consumption of the higher and lower operating
modes, respectively, and PHQH and PLQL are the energy consumption in the
higher and lower operating modes, respectively.
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Using the periodic switching scheme, described above, we can benefit from
adopting the DVFS mechanism to exploit the available static slack time in the
application schedule more efficiently that can reduce the energy consumption
considerably. The shaded area in Figure 5.5(b) shows the energy consumption
corresponding to one period λ in our scheduling approach. Although the
throughput requirement of the application is satisfied by our proposed ap-
proach, the mentioned energy reduction comes at the expense of increasing the
memory requirement. This is because the application samples the input data
stream and produces output data tokens in the higher operating mode more
frequently than in the lower operating mode. As a consequence, this results
in irregularity of sampling the input data stream and producing the output
data tokens over time. Therefore, to solve this irregular sampling/production
problem, we need extra memory buffers for the input and output of the appli-
cation, as shown in Figure 5.6. The reason to use an output buffer is to gather
the produced tokens and release them regularly over time in order to deliver
the throughput requirement in a long run. In the same manner, to regularly
sample the input data stream coming to the application, regardless of which
operating mode the application is running in, we need an extra buffer at the
input of the application. This buffer is needed to distribute the sampled data
regularly over the input data stream to guarantee certain sampling accuracy
instead of sampling the input data stream differently in each operating mode
leading to different accuracy in every operating mode.

According to the discussion above and looking at Figure 5.5, there are
some parameters in our scheduling approach that have to be determined,
namely, the time duration to stay in the higher and lower operating modes
(QH , QL), as well as switching costs (oHL, oLH , eHL, eLH). Therefore, in the rest
of this section, we explain how to compute these parameters. We first explain
how the operating modes are determined in Section 5.6.1. Then, we compute
the switching costs, oHL, eHL, oLH and, eLH and the time duration of staying
in the higher and lower operating modes, QH and QL, that are key elements
in our approach, in Section 5.6.2 and Section 5.6.3, respectively. Finally, we
compute the memory overhead (the input and output buffers in Figure 5.6)
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Algorithm 2: Operating modes determination.
Input: A CSDF graph G = (𝒜, ℰ).
Input: A set Π = {π1, π2, · · · , πm} of m identical processors.
Input: A set θ = { fmin = f1, f2, · · · , fn = fmax} of n discrete operating

frequencies for the processors.
Input: A set mΓ = {mΓ1, mΓ2, · · · , mΓm} of task allocation on the

processors.
Output: A set γ of operating modes.

1 γ← ∅;
2 Compute s = š using Equation (2.13);
3 while true do
4 for ∀ τi ∈ Γ do
5 Ti =

lcm(~q)
qi
· s;

6 for ∀ πj ∈ Π do
7 Compute a minimum operating frequency fπj such that

uπj =
fmax
fπj

∑∀τi∈xΓj
Ci
Ti
≤ 1;

8 ℛ = Compute the throughput of new schedule using Equation (2.15);
9 P = Compute the power consumption of new schedule

corresponding to the operating frequency set ~f using Equation (5.1);
10 SI← (ℛ, P, Γ, ~f );
11 if {¬∃ SIi ∈ γ : ~fi = ~f } then
12 γ← γ + SI;

13 if the operating frequency of all processors reaches to fmin then
14 return γ;

15 s = s + 1;

associated with our scheduling approach in Section 5.6.4.

5.6.1 Determining Operating Modes

The procedure for determining the operating modes is given in Algorithm 2.
The inputs of this algorithm are a CSDF graph G, a homogeneous platform
Π containing m processors, a set θ of n discrete operating frequencies for the
processors, and a set mΓ of task allocations on the processors. The output of
this algorithm is a set γ of determined operating modes. First, Line 2 in this
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algorithm initializes the scaling factor s = š using Equation (2.13). Then, we
use this initial value of s in Lines 4 and 5 to compute the minimum period of
tasks corresponding to the actors in the CSDF graph G using Equation (2.12).
Then, the minimum operating frequencies of the processors are computed
in Lines 6 and 7 in such a way that the schedulability of the allocated tasks
on each processor is still preserved. To do so, a simple utilization check is
performed where the total utilization of the allocated tasks on each processor
has to be less than or equal to 1, for partitioned EDF, for the selected operating
frequency. These operating frequencies are then stored in the frequency set ~f .
In Lines 8 and 9, the throughputℛ and power consumption P of the periodic
scheduling of task set Γ are computed using Equation (2.15) and Equation (5.1),
respectively. Then, in Line 10 a new operating mode SI that is characterized
with the strictly periodic task set Γ corresponding to s, throughputℛ, power
consumption P, and the set of operating frequencies ~f for the processors is
created. Line 11 checks a condition whether to include the newly created
mode to the set γ of operating modes. According to this condition, an op-
erating mode is included to the set γ, in Line 12, if there does not exist any
operating mode in set γ with the same operating frequency set ~f . This is
because, if there exists such an operating mode in set γ, it corresponds to
smaller s than the new operating mode. Therefore, the tasks in the existing
operating mode have shorter periods where less unused slack time remains in
the application schedule with the same operating frequency of the processors.
This selection strategy ensures that the static slack time in the application
schedule is exploited more efficiently using the DVFS mechanism. Then, the
explained procedure from Lines 4 to 12 repeats by incrementing s in Line
15 until the operating frequency of all processors reaches to the minimum
available operating frequency. Finally, the set γ of all determined operating
modes is returned by this algorithm in Line 14. As an example, following
Algorithm 2, the operating modes for the graph G shown in Figure 5.1 are
determined and listed in the Table 5.1.

5.6.2 Switching Costs oHL, oLH , eHL, eLH

In this section, we introduce the switching costs associated with our proposed
switching scheme and explain the way we compute them.

(1) Time Costs: As shown in Figure 5.5(a), we switch the operating mode in
our approach between SIH and SIL. In Section 2.4, mode switching has been
investigated for an MADF graph to determine the earliest time that tasks in the
new operating mode can start their execution during mode switching instants.
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In Section 2.4, it has been shown that the tasks in the new operating mode
cannot be executed immediately. Therefore, their execution has to be offset
by δ time units according to Equation (2.20). As a consequence, the system
may not have any token production during the operating mode switching. In
our case, the time cost of switching from the higher operating mode SIH to
the lower operating mode SIL and vice versa using the offset δ, according to
Equation (2.20), can be computed as follows:

oHL = SL
out + δH→L − SH

out, oLH = SH
out + δL→H − SL

out (5.4)

where SL
out and SH

out are the starting time of the output task in the lower and
higher operating modes, respectively. This time cost is exactly the elapsed
time between the finishing of the output task in one operating mode and
the starting time of the output task in the other operating mode. However,
since the operating frequencies of the processors are changed during the
switching, the computed δ offset in Equation (2.20) may not be sufficient.
This is because, the time that is needed for physically changing the operating
frequencies in the processors, denoted by ζ, is not considered in Equation (2.20).
Apparently, the operating frequency must not be changed when the tasks in
the higher operating mode are still executing in the system. Therefore, when
the operating mode is switched from the higher operating mode to the lower
operating mode, the operating frequency of the processors must be changed
after the end of the execution of the allocated tasks on the processors in the
higher operating mode. Similarly, when the operating mode is switched
from the lower operating mode to the higher operating mode, the operating
frequency of the processors must be changed before the start of the execution
of the allocated tasks on the processors in the higher operating mode. This
ensures that the tasks’ job deadlines in both operating modes are met. For
instance, for the proposed switching scheduling approach in Figure 5.3, the
time instants of changing the operating frequencies of π1 and π2 are shown
by the boxes with a dotted pattern where the size of these boxes denotes the
frequency switching delay ζ. The δ offset in Equation (2.20) is a function of the
tasks utilization. Therefore, to involve such switching delay ζ associated with
the DVFS mechanism into the δ offset, we have changed the utilization of each
task τi in the lower operating mode SIL, i.e., τL

i , from CL
i /TL

i to (CL
i + ζ)/TL

i
that is executing when the operating frequency change happens. As a result,
using Equation (2.20), we can compute a sufficient δ with the new utilization
of tasks to make sure that the job deadlines of all tasks in both operating
modes are still met during operating mode switching. Clearly, the last starting
time instant of the new operating mode, using Equation (2.20), can be when
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the execution of the previous operating mode is completely finished and the
operating frequencies of the processors are also changed. This is the safest
starting time for the new operating mode while no extra schedulability test is
needed as there is no overlapping execution between two operating modes.
Using the method, explained above, for the proposed schedule in Figure 5.3,
the starting offset of δ1→2 = 0 can be computed for operating mode SI2 when
the operating mode is switched from SI1 to SI2. Similarly, the starting offset of
δ2→1 = 5 can be computed for operating mode SI1 when the operating mode
is switched from SI2 to SI1. Finally, the time cost of o12 = 5 and o21 = 0 can be
computed using Equation (5.4) for the operating mode switching from SI1 to
SI2 and vice versa, respectively, as can be seen in Figure 5.3.

(2) Energy Costs: By applying sufficient δ offset, as computed in Sec-
tion 5.6.2(1) above, tasks belonging to both the lower and higher operating
modes may be concurrently executing on the processors during mode switch-
ing instants. For instance, in Figure 5.3 tasks in both operating modes SI1 and
SI2 execute from time instant 26 to 36 and from time instant 67 to 77 when the
operating mode is switched from SI1 and SI2 and vice versa, respectively. To
meet the tasks’ job deadlines in both operating modes, the processors must run
at the operating frequency corresponding to the higher operating mode during
operating mode switching instants. Therefore, the total energy consumption of
our proposed scheduling approach is more than the summation of the energy
consumption of operating modes SIH and SIL for the execution intervals of
QH and QL time unit, respectively. As a result, we define eHL and eLH as extra
energy consumption when the operating mode is switched from the high
operating mode to the low operating mode and vice versa, respectively, and
we compute them using the following expressions:

eHL = oHLPL (5.5)

eLH = (SH
out − oLH)(PH − PL) + oLHPH = SH

out(PH − PL) + oLHPL (5.6)

where the SH
out is the start time of the task corresponding to output actor Aout

in the graph in the higher operating mode. These energy costs are visualized
by the hatched boxes in Figure 5.5(b). These energy costs are overestimated
using the above expressions because a single time instant is assumed for
changing the operating frequency of all processors in each operating mode
switching. This time instant is referred by fswitch in Figure 5.5(b). Note that we
also include the energy overhead of DVFS into this energy costs.
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5.6.3 Computing QH and QL

In our approach, we only allow the switching of operating modes at the graph
iteration boundary. This means that the operating mode can be switched as
soon as an application graph iteration is completed. Under this assumption,
the time that an application is executed, in any operating mode, must be a
multiple of the duration of one graph iteration. Therefore, the time that the
application spends in the higher and lower operating modes can be defined
as follows:

QH = NH · HH, NH ∈N (5.7)

QL = NL · HL, NL ∈N (5.8)

where NH and NL are the number of graph iterations in the higher and lower
operating modes, respectively, and HH and HL are the graph iteration pe-
riod in the higher and lower operating modes, respectively, as defined in
Equation (2.14). Finally, by substituting Equation (5.7) and Equation (5.8) in
Equation (5.2) and settingℛe f f = ℛreq, the number of graph iterations to stay
in the higher operating mode, NH, can be derived as follows:

NH =

⌈
HLNL(ℛreq −ℛL) +ℛreq(oHL + oLH)

HH(ℛH −ℛreq)

⌉
. (5.9)

Note that, in the above equation, the ceiling function is used to derive an
integer value for NH such that the effective throughputℛe f f can still satisfy
the throughput requirement ℛreq. This fact is shown in Figure 5.5(c) where
our proposed effective throughputℛe f f is higher than the throughput require-
ment ℛreq. Using Equation (5.9), we have to derive the pair of NH and NL
that satisfies the throughput requirement ℛreq. Clearly, Equation (5.9) has
more than one solution for the pair of NH and NL. Since all of these solu-
tions have the same timing requirement, i.e., throughput requirement, the
energy reduction is equivalent with the power reduction. Therefore, to find
the less power consuming solution that consequently results in the less energy
consumption, we can see from Equation (5.3) that less power is consumed
when we have an arbitrarily large period λ. This is because, the contribu-
tion of the switching power consumption eHL+eLH

λ becomes negligible in the
total power consumption Pe f f . Moreover, as the period λ is enlarged, the
delivered effective throughput ℛe f f using our switching scheme becomes
closer to the throughput requirement ℛreq. This is because, as NL increases
in Equation (5.9), the ceiling function becomes less contributing and the pair
of NL and NH can produce the effective throughputℛe f f more closely to the
throughput requirementℛreq. As a result, this leads to exploiting static slack
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Algorithm 3: Finding the least power consuming pair of NH and NL.

Input: ℛreq, SIH, SIL.
Output: NL, NH.

1 Prev_Power = +∞;
2 NL = 1;
3 while True do
4 Calculate NH using Equation (5.9) andℛreq;
5 Power = Calculate power consumption by using Equation (5.3);
6 if Prev_Power−Power

Prev_Power × 100 < 1 then
7 return NL, NH;

8 Prev_Power = Power;
9 NL = NL + 1;

time in the application scheduling more efficiently leading to further power
reduction. Therefore, to find a valid solution for NH and NL which satisfies
Equation (5.9) and reduces the power consumption significantly, we search for
the largest NL where if it is further enlarged, the power reduction diminishes
to less than one percent.

Algorithm 3 presents the pseudo-code of finding the least power con-
suming pair of NH and NL. The inputs of this algorithm are the throughput
requirement and the higher and lower operating modes. The output of this
algorithm is the pair of NH and NL. First, we initialize NL = 1 in Line 2
and compute the corresponding NH using Equation (5.9) in Line 4. Then, we
compute the power consumption corresponding to the derived pair of NH and
NL using Equation (5.3) in Line 5. We repeat this procedure by incrementing
NL in Line 9 until further power reduction compared to the previous iteration
becomes less than one percent. This condition to terminate the procedure is
given in Line 6. Then, the pair NH and NL is returned by the algorithm.

5.6.4 Memory Overhead

In this section, we compute the memory overhead that our approach incurs
to the system, that is, the input and output buffers shown in Figure 5.6. In
order to compute the output buffer, we should consider Figure 5.5(c) which
shows the variable rate of token production Z(t) delivered by our scheduling
approach (the solid curve) and the needed constant rate of token production
ℛe f f (the dotted line). When the application executes in the higher operating
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Figure 5.7: Token consumption function Z′(t). Note that, oHL + oLH = o′HL + o′LH =
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mode, it produces more tokens than needed while in the lower operating
mode it produces less tokens than needed. Therefore, the purpose of using the
output buffer is to accumulate the maximum difference between the number
of produced and needed tokens over time. This maximum difference is given
by ρout in Figure 5.5(c). Therefore, the size of the output buffer must be at least

Bout =

⌈
ρout

⌉
=

⌈
QH(ℛH −ℛe f f )

⌉
(5.10)

To compute the input buffer, the same method as for the output buffer
can be used. To do so, we should consider Figure 5.7 which shows the rate
of sampling data tokens Z′(t) in our scheduling approach given by the solid
curve. As can be seen, the application samples the data tokens in the higher
operating mode more often than in the lower operating mode. To solve such
irregular sampling of the input data tokens over the time, we introduce a
constant rate of sampling data tokensℛ′e f f give by the dotted line in Figure 5.7
for the application and we compute it as follows:

ℛ′e f f =
ℛ′HQH +ℛ′LQL

QH + QL + o′HL + o′LH
(5.11)

whereℛ′H andℛ′L are the throughput of the input task in the higher and lower
operating modes,ℛ′HQH andℛ′LQL are the number of sampled data tokens
from the input data stream in the higher and the lower operating modes,
and o′HL and o′LH are the time overhead for the input task where no input
data stream is sampled during switching from the higher to lower operating
mode and vice versa, respectively. These time overheads are equal to the
offset δ computed using Equation (2.20). Apparently, the constant sampling
rate of ℛ′e f f has to always provide sufficient sampled data tokens in both
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operating modes. Thus, to be able to guarantee this feature, the sampling of
the input data stream with the rate of ℛ′e f f must be started twait time units
before the application starts executing, as shown in Figure 5.7. This time can
be computed as follows:

twait =
(ℛ′H −ℛ′e f f )QH

ℛ′e f f
(5.12)

Finally, the size of the input buffer must be at least

Bin =

⌈
ρin

⌉
=

⌈
twaitℛ′e f f

⌉
=

⌈
QH(ℛ′H −ℛ′e f f )

⌉
(5.13)

where ρin is the maximum difference between the number of sampled and
needed tokens, as shown in Figure 5.7.

5.7 Experimental Evaluation

In this section, we evaluate the effectiveness of our scheduling approach in
terms of energy reduction. We compare our proposed scheduling approach, re-
ferred as Switching, in terms of energy reduction with two related approaches:
the straightforward approach of always selecting the operating mode whose
throughput is the closest higher to the throughput requirement, referred as
Higher mode, and the period scaling approach, referred as Scale, explained
in Section 5.5.1, which is the way of using the VFS mechanism similar to the
related works [74,96] in the context of the SPS framework [8]. In the following,
we first explain our experimental setup in Section 5.7.1. Then, we present the
experimental results in the Section 5.7.2.

5.7.1 Experimental Setup

Applications

We have performed experiments on a set of six real-life streaming applications
collected from the StreamIt benchmark suit [88], the SDF3 suit [84] and the
individual research article [69], where all streaming applications are modeled
as CSDF graphs. An overview of all streaming applications is given in Table 5.2.
In this table, |𝒜| denotes the number of actors in a CSDF graph, while |ℰ |
denotes the number of FIFO communication channels among actors.
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Table 5.2: Benchmarks used for evaluation.

Application |𝒜| |ℰ | Source
Discrete cosine transform (DCT) 8 7 [88]
Fast Fourier transform (FFT) 17 16 [88]
Data modem 6 5 [84]
MP3 audio decoder 14 18 [84]
H.263 video decoder 4 3 [84]
Heart pacemaker 4 3 [69]

Architecture and Power Model

In the experiments, we use the power model presented in Section 5.4.2. In this
model, we adopt the power parameters of the Cortex A15 core given in [55],
where these parameters have been obtained based on real measurements on
the ODROID XU-3 platform [66]. The overhead of the DVFS mechanism
is set to values taken from [67], i.e., 10µs and 1µJ are used for the delay
and energy overhead associated with the physical change of the operating
frequency in processors, respectively. We evaluate the effectiveness of our
scheduling approach on platforms with limited number of processors. To this
end, we compute the minimum number of processors needed to schedule each
application using FFD-EDF when the maximum achievable throughput under
the SPS framework is required.

5.7.2 Experimental Results

All experimental results are shown in Figure 5.8 and Figure 5.9, where the
comparison is made for a set ℛapp of selected application throughputs as
throughput requirements. In Figure 5.8, we show the different throughput
requirements for the applications on the x-axis and the normalized energy
consumption of all three approaches is shown on the y-axis. As can be seen in
Figure 5.8, the energy reduction varies considerably among different applica-
tions and throughput requirements. When compared to the approach Higher
mode, our proposed approach Switching achieves significant energy reduction
for all applications. This energy reduction for the Modem, Pacemaker, DCT,
MP3, FFT, and H.263 applications can be up to 68.18%, 61.94%, 21.14%, 22.4%,
19.9%, and 19%, respectively. Compared to the approach Scale, our approach
Switching can still reduce the energy consumption considerably. This energy
reduction for the Modem, Pacemaker, DCT, MP3, FFT, and H.263 applications
can be up to 68.18%, 61.94%, 13.1%, 13.78%, 10.7%, and 12.07%, respectively.
Among all these applications, the Modem and Pacemaker are the two applica-
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Figure 5.8: Normalized energy consumption vs. throughput requirements.
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Figure 5.9: Total buffer sizes needed in our scheduling approach for different applications.
Note that the y axis has a logarithmic scale.

tions for which our approach can obtain the largest energy reduction when
compared to the approach Scale. This is mainly because the period of the tasks
in Pacemaker and Modem applications are quickly increased by applying the
period scaling approach, explained in Section 5.5.1. Therefore, a fewer number
of operating modes can be determined for these applications and no other ap-
plication scheduling remains between the operating modes. As a consequence,
the same application scheduling as the approach Higher mode is selected in
the approach Scale to satisfy the throughput requirement in these applications.
This fact can be seen in Figure 5.8 for Pacemaker and Modem applications
in which the result of the approach Scale and the approach Higher mode are
overlapped on each other.

As can be seen in Figure 5.8, for some throughput requirements no energy
reduction is achieved by our approach Switching compared to approach Higher
mode and approach Scale. This happens when the throughput requirements
match with the throughput of one of the operating modes. In such cases,
we simply select the operating mode whose throughput matches with the
throughput requirement because mode switching is not needed.

Finally, the memory overhead, discussed in Section 5.6.4, introduced by
our scheduling approach, is given in Figure 5.9. In this figure, the x-axis
shows the different applications while the y-axis shows the buffer size for each
application which is calculated as follows:

Bapp = max
ℛi∈ℛapp

(Bi
in + Bi

out)

where Bi
in and Bi

out are the size of the input and output buffers shown in Fig-
ure 5.6, computed by using Equation (5.13) and Equation (5.10), respectively,
for a required application throughputℛi. In this regard, the memory overhead
for the H.263 application is 1.7 MB whereas for the other applications it is
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less than 83 KB. Given such memory overhead and given the size of memory
available in modern embedded systems, we can conclude that the memory
overhead introduced by our scheduling approach is acceptable.

5.8 Conclusions

In this chapter, we have proposed a novel energy-efficient periodic schedul-
ing approach for streaming applications. This approach can satisfy a system
throughput requirement at a long run by periodically switching the applica-
tion schedule between two selected schedules, referred as operating modes.
Contrary to related approaches, our scheduling approach benefits from using
multiple voltage and frequency levels at run-time leading to more efficient
static slack time utilization while the throughput requirement is still satisfied.
The experimental results, on a set of six real-life streaming applications, show
that our approach can reduce the energy consumption by up to 68% while satis-
fying the same throughput requirement when compared to related approaches.
However, for some throughput requirements that match with the throughput
of one of the operating modes, no energy reduction can be achieved by our
approach compared to the related approaches. This is because, in such cases,
we can simply select the operating mode which throughput matches with
the throughput requirement instead of adopting the mode switching scheme.
Finally, although the throughput requirement of the applications is satisfied by
our proposed approach, the mentioned energy reductions come at the expense
of increased memory requirements.


