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Chapter 4

Exploiting Parallelism in
Streaming Applications to
Efficiently Utilize Processors

Sobhan Niknam, Peng Wang, Todor Stefanov. "Resource Optimization for Real-Time
Streaming Applications using Task Replication". IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 37, No. 11, pp. 2755-2767, Nov
2018.

IN this chapter, we present our novel algorithm to derive an alternative
application specification for efficient utilization of processors, which corre-

sponds to the second research contribution, briefly introduced in Section 1.5.2,
to address research question RQ2(A), described in Section 1.4.2. The remain-
der of this chapter is organized as follows. Section 4.1 introduces, in more
details, the problem statement and the addressed research question. It is fol-
lowed by Section 4.2, which gives a summary of the contributions presented
in this chapter. Section 4.3 gives an overview of the related work. Section 4.4
introduces the extra background material needed for understanding the con-
tributions of this chapter. Section 4.5 gives a motivational example. Section 4.6
presents our proposed algorithm. Section 4.7 presents the experimental eval-
uation of our proposed algorithm. Finally, Section 4.8 ends the chapter with
conclusions.
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4.1 Problem Statement

Recall, from Section 2.2, that in real-time systems, tasks can be scheduled on
multiprocessor systems using three main classes of algorithms, i.e., global,
partitioned, and hybrid scheduling algorithms, based on whether a task can
migrate between processors [29]. Under global scheduling algorithms, all the
tasks can migrate between all processors. Such scheduling guarantees optimal
utilization of the available processors but at the expense of high scheduling
overheads due to extreme task preemptions and migrations. More impor-
tantly, implementing global scheduling algorithms in distributed-memory
MPSoCs imposes a large memory overhead due to replicating the code of each
task on every processor [24]. Under partitioned scheduling algorithms, how-
ever, no task migration is allowed and the tasks are allocated statically to the
processors, hence they have low run-time overheads. The tasks on each pro-
cessor are scheduled separately by a uniprocessor (hard) real-time scheduling
algorithm, e.g., earliest deadline first (EDF) [54]. The third class of schedul-
ing algorithms is hybrid scheduling that is a mix of global and partitioned
approaches to take advantages of both classes. However, since hybrid schedul-
ing algorithms allow task migration, they still introduce additional run-time
task migration/preemption overheads and memory overhead on distributed-
memory MPSoCs. By performing an extensive empirical comparison of global,
clustered (hybrid) and partitioned algorithms for EDF scheduling, Bastoni
et al. [14] concluded that the partitioned algorithm outperforms the other
algorithms when hard real-time systems are considered.

Although partitioned scheduling algorithms do not impose any migration
and memory overheads, they are known to be non-optimal for scheduling real-
time periodic tasks [29]. This is because the partitioned scheduling algorithms
fragment the processors’ computational capacity such that no single processor
has sufficient remaining capacity to schedule any other task in spite of the
existence of a total large amount of unused capacity on the platform. Therefore,
more processors are needed to schedule a set of real-time periodic tasks using
partitioned scheduling algorithms compared to optimal (global) scheduling
algorithms.

However, for better resource usage and energy efficiency in a real-time
embedded system while taking advantages of partitioned scheduling algo-
rithms, the number of processors needed to satisfy a performance requirement,
i.e., throughput, in an application should be minimized. This can be difficult
because often the given initial application specification, i.e., the initial graph,
is not the most suitable one for the given MPSoC platform because the ap-
plication developers typically focus on realizing certain application behavior
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while neglecting the efficient utilization of the available resources on MPSoC
platforms. Therefore, to better utilize the resources on an underlying MPSoC
platform while using partitioned scheduling algorithms, the initial application
specification should be transformed to an alternative one that exposes more
parallelism while preserving the same application behavior and performance.
This is mainly because by replicating a task of the application, its workload is
distributed among more parallel task’s replicas in the obtained transformed
graph. Therefore, the task’s required capacity is split up in multiple smaller
chunks that can more likely fit into the left capacity on the processors and
alleviate the capacity fragmentation due to partitioned scheduling algorithms.
However, having more parallelism, i.e., tasks’ replicas, than necessary in-
troduces significant overheads in code and data memory, scheduling and
inter-tasks communication. Thus, in this chapter, we investigate the possibility
to determine the right amount of parallelism in a streaming application, mod-
eled as an acyclic SDF graph, to minimize the number of required processors
under partitioned scheduling algorithms while satisfying a given performance
requirement.

4.2 Contributions

In order to address the problem described in Section 4.1, in this chapter, we
propose a novel algorithm to find a proper replication factor for each task
in an initial application specification, such that the obtained alternative one
requires fewer processors under partitioned scheduling algorithms and a
given throughput requirement is satisfied. More specifically, the main novel
contributions of this chapter are summarized as follows:
∙ We propose a novel heuristic algorithm to allocate the tasks in a hard

real-time streaming application modeled as an acyclic SDF graph, which
is subject to a throughput constraint, onto a heterogeneous MPSoC such
that the number of required processors is reduced under partitioned
scheduling algorithms. The main innovation in this algorithm is that by
using the unfolding graph transformation technique in [81], we propose
an approach to determine a replication factor for each task of the appli-
cation such that the distribution of the workloads among more parallel
tasks, in the obtained graph after the transformation, results in a better
resource utilization, which can alleviate the capacity fragmentation issue
introduced by partitioned scheduling algorithms, hence reducing the
number of required processors.

∙ We show, on a set of real-life streaming applications, that our algorithm
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significantly reduces the number of required processors compared to the
First-Fit Decreasing (FFD) allocation algorithm with slightly increasing
the memory requirements and application latency while maintaining
the same application throughput. We also show that our algorithm
can still reduce the number of required processors compared to the
related approaches in [4, 23, 81, 92] with significantly improving the
memory requirements and application latency while maintaining the
same application throughput.

Scope of work. In this chapter, we consider that streaming applications
are modeled as acyclic SDF graphs. This restriction comes from the related
approaches that are adopted for comparison with our proposed algorithm.
These approaches can only be applied on sets of implicit deadline periodic
tasks which can be derived from acyclic SDF graphs using the SPS framework,
described in Section 2.3.

4.3 Related Work

In order to overcome the scheduling problems in global and partitioned
scheduling algorithms, briefly explained in Section 4.1, a restricted-migration
semi-partitioned scheduling algorithm, called EDF- f m, in the class of hybrid
scheduling algorithms, is proposed in [4] for homogeneous platforms. In this
scheduling algorithm, the tasks can be either fixed or migrating between only
two processors at job boundaries. The purpose of this migration is to utilize
the remaining capacity on the processors where a migrating task cannot be
entirely allocated. However, this scheduler provides hard real-time guarantees
only for migrating tasks and soft real-time guarantees for fixed tasks, i.e., fixed
tasks can miss their deadlines by a bounded value called tardiness. In [92],
another semi-partitioned scheduling algorithm, called EDF-sh, is proposed
that, in contrast to EDF- f m, supports heterogeneous platforms and allows the
tasks to migrate between more than two processors. In EDF-sh, however, both
migrating and fixed tasks may miss their deadlines.

Similarly, [20] proposes the C=D approach to split real-time periodic tasks
on homogeneous multiprocessor systems while on each processor a normal
EDF scheduler is used. In the C=D approach, a task which cannot be entirely
allocated on any processor is split up in two parts that can be entirely allocated
on different processors. However, since the task splitting is performed in
every job execution, this approach requires transferring the internal state of
the splitted tasks between processors at run-time, thereby imposing high task
migration overhead. Moreover, these approaches in [4, 20, 92] only consider
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sets of independent tasks. In contrast, we consider a more realistic application
model which consists of tasks with data dependencies. In addition, we use par-
titioned scheduling to allocate the tasks statically on the processors. Therefore,
since task migration is not allowed in partitioned scheduling, no extra run-
time overhead is imposed to the system by our algorithm in comparison to [20]
and no task is subjected to a deadline miss in comparison to [4,92]. Compared
to the approaches in [4, 20] that only support homogeneous platforms, our
proposed algorithm also supports heterogeneous platforms.

To allocate data-dependent application tasks to a multiprocessor platform,
many techniques have already been devised [75]. Existing approaches which
are close to our work are [8, 23, 81]. The authors in [8] propose the SPS frame-
work, briefly described in Section 2.3, to only convert each actor in an acyclic
(C)SDF graph to an implicit-deadline periodic task by deriving parameters
such as period and start time to enable the usage of all well-developed real-
time theories. In [8], however, no optimization technique for different system
design metrics, such as, throughput, latency, memory, number of processors,
etc., is proposed. In contrast, in this chapter, we propose a heuristic algorithm
on top of the SPS framework to optimize the number of required processors
when scheduling a hard real-time streaming application with a given through-
put requirement onto a heterogeneous MPSoC under partitioned scheduling
algorithms.

Using the SPS framework, the authors in [23] propose a heuristic under
the semi-partitioned scheduling algorithm in [4] to allocate tasks to processors
while taking the data dependencies into account. Although the fixed tasks
can miss their deadlines in the EDF- f m scheduling approach, a hard real-time
property can be guaranteed on the input/output interfaces of the application
with the external environment, using the proposed extension of the SPS frame-
work in [23]. In [4], the authors also propose three task-allocation heuristics
under EDF- f m to allocate independent tasks to processors in which the one
called f m-LUF requires the least number of processors. In a similar way, this
heuristic can be used while taking data dependencies into account using the
approach presented in [23]. However, in these approaches [4, 23], the deadline
misses of the fixed tasks due to task migration have significant overheads on
the memory requirements and the application latency. In contrast, we provide
hard real-time guarantees for all tasks in an application modeled as an SDF
graph. Moreover, we use partitioned scheduling and to utilize processors
efficiently, we adopt the unfolding graph transformation technique. By using
our proposed algorithm, as shown in Section 4.7, processors can be more effi-
ciently utilized while imposing considerably lower overheads on the memory
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requirements and the application latency compared to the approaches in [4,23].
In addition, our proposed algorithm supports heterogeneous platforms while
the approaches in [4, 23] can only support homogeneous platforms.

In [81], the authors propose an approach to increase the application through-
put in a homogeneous platform with a fixed number of processors. This
approach considers partitioned scheduling and exploits an unfolding trans-
formation technique to fully utilize the platform by replicating the bottleneck
tasks which are the ones with the maximum workload, i.e., highest utilization,
when mapping a streaming application modeled as an SDF. However, to
satisfy a given throughput requirement under limited resources, the approach
in [81] does not always replicate the right tasks, as shown in Section 4.5. Con-
sequently, this leads to more parallelism than needed which increases the
memory requirements and application latency unnecessarily. In contrast, we
propose an algorithm that supports heterogeneous platforms. In addition, our
proposed algorithm first detects which tasks cause the capacity fragmentation
in partitioned scheduling on the processors. Note that these tasks are not
the bottleneck tasks identified and used in [81]. This is because, the bottle-
neck tasks efficiently utilize the processors’ capacity and there is no need
to replicate them. Then, using the unfolding transformation technique, we
replicate the detected tasks causing the capacity fragmentation to distribute
their workloads among more parallel tasks and utilize the platform more
efficiently with less unused capacity on the processors. As a result, shown
in Section 4.7, our proposed algorithm can reduce the number of required
processors to guarantee the same throughput while keeping a low memory
and latency overheads under partitioned scheduling in comparison to [81].

In [80], the authors use the same approach as in [81] for energy efficiency
purpose under partitioned scheduling algorithms, when there are a lot of
processors available on a cluster heterogeneous MPSoC. To reduce energy
consumption, they iteratively take the bottleneck tasks which are limiting the
processors to work at a lower frequency and replicate them. By replicating
the application tasks with heavy utilization, their utilization is distributed
among more task’s replicas while still providing the same application per-
formance. Consequently, the workload distribution of these bottleneck tasks
enables the processors to work at a lower frequency, thereby reducing the
energy consumption. In this chapter, however, we focus on and solve a totally
different problem, that is, how the unfolding transformation technique can
be exploited to reduce the number of required processors when a partitioned
scheduling algorithm is used. In our algorithm, we do not search for and take
the bottleneck task, which is taken in [80], for replication in every iteration.
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In contrast, we detect which task is responsible for fragmentation of the pro-
cessors’ capacity when using a partitioned scheduling algorithm and try to
resolve this fragmentation by replicating this task such that the number of
processors is reduced. We do not replicate the bottleneck task because it can
efficiently utilize the processor and it does not contribute to the fragmentation
of the processors’ capacity.

4.4 Background

In this section, we first introduce the unfolding transformation technique,
presented in [81], that we use to replicate the tasks in an application initially
modeled as an SDF graph. Then, we present the system model considered in
this chapter.

4.4.1 Unfolding Transformation of SDF Graphs

The authors in [81] have shown that an SDF graph can be transformed into an
equivalent CSDF graph by using a graph unfolding transformation technique
to better utilize the underlying MPSoC platform by exposing more parallelism
in the SDF graph. In fact, the intuition behind the unfolding, i.e., replication,
of an actor in the initial SDF graph is to evenly distribute the workload of
the actor among multiple of its replicas that are running concurrently. Given
a vector ~f ∈ N|𝒜| of replication factors, where fi denotes the replication
factor for actor Ai ∈ 𝒜, the unfolding transformation replaces actor Ai with
fi replicas of actor Ai, denoted by Ai,k, k ∈ [1, fi]. To ensure the functional
equivalence, the production and consumption sequences on FIFO channels
in the obtained CSDF graph are calculated accordingly to the production and
consumption rates in the initial SDF graph. After the replication, each replica
Ai,k of actor Ai will have the repetition

qi,k =
qi · lcm(~f )

fi
, (4.1)

where lcm(~f ) is the least common multiple of all replication factors in ~f . For
example, consider the SDF graph G shown in Figure 4.1 with the repetition
vector ~q = [2, 1, 1, 1, 1, 2]T, derived using Theorem 2.1.1. After unfolding of
G with replication vector ~f = [1, 1, 1, 1, 2, 1], the CSDF graph G′ shown in
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Figure 4.1: An SDF graph G.
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Figure 4.2: Equivalent CSDF graphs of the SDF graph G in Figure 4.1 obtained by (a)
replicating actor A5 by factor 2 and (b) replicating actors A3 and A4 by factor 2.

Figure 4.2(a) is obtained which has the repetition vector~q′ = [4, 2, 2, 2, 1, 1, 4]T,
e.g.,

q5,1 = q5,2 =
1 · lcm(1, 1, 1, 1, 2, 1)

2
= 1.

4.4.2 System Model

The considered MPSoC platforms in this chapter are heterogeneous containing
two types of processors 1, i.e., performance-efficient (PE) and energy-efficient
(EE) processors, with distributed memories. We use ΠPE and ΠEE to denote
the sets containing the PE processors and the EE processors, respectively. We
denote the heterogeneous MPSoCs containing all PE and EE processors by
Π = {ΠPE, ΠEE}. Since application tasks may run on two different types
of processors (PE and EE), the worst-case execution time value Ci for each
periodic task τi ∈ Γ has two values, i.e., CPE

i and CEE
i , when EE and PE

processors run at their maximum operating clock frequencies supported by

1We refer to the ARM big.LITTLE architecture [40] including Cortex A15 ’big’ (PE) and
Cortex A7 ’LITTLE’ (EE) that is shown in Figure 1.1.
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the hardware platform. The utilization of task τi on a PE processor and
an EE processor, denoted as uPE

i and uEE
i , is defined as uPE

i = CPE
i /Ti and

uEE
i = CEE

i /Ti, respectively. Now, let us consider an x-partition xΓ of task set
Γ. Then, the total utilizations of the tasks allocated on a PE processor j and an
EE processor k can be calculated by:

uπPE
j

= ∑
τi∈xΓj

CPE
i
Ti

, uπEE
k

= ∑
τi∈xΓk

CEE
i
Ti

(4.2)

where xΓj and xΓk ∈ xΓ represent sets of tasks allocated on PE processor j and
EE processor k, respectively.

4.5 Motivational Example

In this section, we take the SDF graph G shown in Figure 4.1 as our motiva-
tional example to demonstrate the necessity and efficiency of our proposed
algorithm, presented in Section 4.6, compared to the related approaches [81],
[23], [4], and [92] in terms of memory requirements, application latency, and
number of required processors on a homogeneous platform2, i.e., including
only PE processors, to schedule the actors in the SDF graph under a given
throughput requirement. By applying the SPS framework [8], briefly described
in Section 2.3, for graph G, the task set Γ = {τ1 = (C1 = 3, T1 = 5, S1 =
0, D1 = T1 = 5), τ2 = (6, 10, 10, 10), τ3 = (10, 10, 20, 10), τ4 = (7, 10, 30, 10),
τ5 = (5, 10, 40, 10), τ6 = (3, 5, 50, 5)} of six IDP tasks can be derived. Based
on these tuples, a strictly periodic schedule, as shown in Figure 4.3(a), can be
obtained for this graph. Using Equation (2.15), the throughput of this schedule
can be computed asℛ = 1

T6
= 1

5 . In this example, we consider this throughput
as the given throughput requirement. Moreover, using Equation (2.19), the ap-
plication latencyℒ for this schedule is 55 which is the elapsed time between the
arrival of the first sample to the application, at t = 0, and the departure of the
processed sample from task τ6, at t = 55. The minimum number of processors
needed for this schedule using an optimal scheduling algorithm, according to
Equation (2.8), is m̌OPT =

⌈
∑τi∈Γ ui

⌉
=
⌈ 3

5 +
6
10 +

10
10 +

7
10 +

5
10 +

3
5

⌉
= 4. How-

ever, using the partitioned EDF and the First-Fit Decreasing (Utilization) [28]
allocation algorithm, that is proven to be the resource efficient heuristic al-
location algorithm [5], 6 processors are required for this schedule with task

2In this section, we adopt a homogeneous platform because the related approaches [4,23,81]
can support only such platform. Later, in Section 4.7.2, we compare our proposed approach
and the approach proposed in [92] in terms of memory requirements and application latency
on different heterogeneous platforms for a set of real-life applications.
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Figure 4.3: A strictly periodic execution of tasks corresponding to the actors in: (a) the SDF
graph G in Figure 4.1 and (b) the CSDF graph G′ in Figure 4.2(a). The x-axis represents the
time.

allocation 6Γ = {6Γ1 = {τ3}, 6Γ2 = {τ4}, 6Γ3 = {τ1}, 6Γ4 = {τ2}, 6Γ5 =
{τ6}, 6Γ6 = {τ5}}. We refer to this scheduler as partitioned First-Fit Decreas-
ing EDF (FFD-EDF) scheduler.

To reduce the number of required processors under the FFD-EDF sched-
uler while satisfying the given throughput requirement ℛ = 1

5 , we adopt
the unfolding graph transformation technique in [81], briefly explained in
Section 4.4.1. Let us assume that the platform has only 5 processors. Then, to
schedule the application on 5 processors under FFD-EDF scheduler, our pro-
posed algorithm, explained in Section 4.6, replicates actor A5 in graph G by a
factor of 2. Figure 4.2(a) shows the CSDF graph G′ obtained after applying the
unfolding transformation on the initial graph G shown in Figure 4.1. By apply-
ing the SPS framework for graph G′, the task set Γ′ = {τ1,1 = (3, 5, 0, 5), τ2,1 =
(6, 10, 10, 10), τ3,1 = (10, 10, 20, 10), τ4,1 = (7, 10, 30, 10), τ5,1 = (5, 20, 40, 20),
τ5,2 = (5, 20, 50, 20), τ6,1 = (3, 5, 60, 5)} of seven IDP tasks can be derived
which is schedulable on 5 processors under FFD-EDF scheduler, with task
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allocation 5Γ′ = {5Γ′1 = {τ3,1}, 5Γ′2 = {τ4,1, τ5,1}, 5Γ′3 = {τ1,1, τ5,2}, 5Γ′4 =

{τ2,1}, 5Γ′5 = {τ6,1}}, while satisfying the given throughput requirement of
1
5 . This is because, the workload of task τ5, corresponding to actor A5 of
graph G, with u5 = 5

10 is now evenly distributed between two tasks τ5,1 and
τ5,2, corresponding to replicas A5,1 and A5,2 of actor A5, i.e., u5,1 = u5,2 = 5

20 .
Apparently, this workload distribution using the unfolding transformation
can enable the FFD-EDF scheduler to more efficiently utilize the processors
and schedule the tasks on fewer processors while satisfying the throughput
requirement. The strictly periodic schedule of the task set Γ′ is shown in
Figure 4.3(b).

The approach in [81] is very close to our approach as it adopts the un-
folding transformation technique to increase the throughput of an SDF graph
scheduled on an MPSoC with fixed number of processors under partitioned
scheduling. However, to schedule Γ on a platform with 5 processors under the
throughput requirement of 1

5 , the approach in [81] performs differently. It first
scales the period of the tasks in Γ using Equation (2.13) to make Γ schedulable
on 5 processors under FFD-EDF scheduler. Due to scaling the periods, i.e.,
s = 6 >

⌈ 10
2

⌉
= 5, however, the throughput is dropped to 1

6 . Then, to in-
crease the throughput, the approach in [81] replicates the actor corresponding
to the bottleneck task, i.e., the actor with the heaviest workload during one
graph iteration, and scales again the minimum computed periods of the tasks
such that the new task set can be scheduled on 5 processors under FFD-EDF
scheduler. This procedure is repeated until no throughput improvement can
be gained anymore by task replication under the resource constraint. For
our example in Figure 4.1, the approach in [81] replicates actors A3 and A4
corresponding to tasks τ3 and τ4 by a factor of 2 that results in the through-
put of 1

3 . Figure 4.2(b) shows the CSDF graph G′′ obtained after applying
the unfolding transformation on graph G. Then, to schedule the tasks on 5
processors under FFD-EDF scheduler, the periods of tasks are scaled by using
Equation (2.13), i.e., s = 5 >

⌈ 12
4

⌉
= 3, where the throughput of 1

5 finally
could be achieved with the derived task set Γ′′ = {τ1,1 = (3, 5, 0, 5), τ2,1 =
(6, 10, 10, 10), τ3,1 = (10, 20, 20, 20), τ3,2 = (10, 20, 30, 20), τ4,1 = (7, 20, 40, 20),
τ4,2 = (7, 20, 50, 20), τ5,1 = (5, 10, 60, 10), τ6,1 = (3, 5, 70, 5)} of eight IDP tasks
and the task allocation 5Γ′′ = {5Γ′′1 = {τ4,1, τ1,1}, 5Γ′′2 = {τ4,2, τ2,1}, 5Γ′′3 =

{τ6,1}, 5Γ′′4 = {τ3,1, τ3,2}, 5Γ′′5 = {τ5,1}}.
The approaches in [4,23], adopt differently the semi-partitioned scheduling

EDF- f m to allow certain tasks to migrate between processors for efficiently
utilizing the remaining capacity on the processors. Under EDF- f m scheduling,
the LUF heuristic in [4] allocates the tasks in Γ to 5 processors with task
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allocation 5Γ={5Γ1 = {τ3}, 5Γ2 = {τ4, τ5}, 5Γ3 = {τ5, τ1}, 5Γ4 = {τ6, τ2}, 5Γ5 =
{τ2}}, where task τ5 is allowed to migrate between π2 and π3 and task τ2
is allowed to migrate between π4 and π5. In this task allocation, however,
the fixed tasks τ1, τ4, and τ6 that are allocated to the same processors as the
migrating tasks τ2 and τ5, can miss their deadline by a bounded tardiness.
To reduce the number of affected tasks by tardiness, the FFD-SP heuristic is
proposed in [23] to restrict the task migrations. Under EDF- f m scheduling,
this approach allocates the tasks in Γ to 5 processors with task allocation 5Γ =
{5Γ1 = {τ3}, 5Γ2 = {τ4, τ5}, 5Γ3 = {τ5, τ1}, 5Γ4 = {τ6}, 5Γ5 = {τ2}}, where
only task τ5 is allowed to migrate between π2 and π3. Similar to the approach
in [23], EDF-sh [92] allocates the tasks in Γ to 5 processors with task allocation
5Γ = {5Γ1 = {τ3}, 5Γ2 = {τ4, τ5}, 5Γ3 = {τ5, τ1}, 5Γ4 = {τ6}, 5Γ5 = {τ2}},
where only task τ5 is allowed to migrate between π2 and π3.

The reduction on the number of required processors using our proposed
algorithm and the related approaches, however, comes at the expense of more
memory requirements and longer application latency either because of task
replication3, i.e., more tasks and data communication channels, or task migra-
tion, i.e., task tardiness. The throughputℛ, latency ℒ, memory requirements
ℳ, i.e., the sum of the buffer sizes of the communication channels in the graph
and the code size of the tasks, and the number of required processors m for
different scheduling/allocation approaches are given in Table 4.1. Table 4.1
clearly shows that our proposed algorithm can reduce the number of required
processors while keeping a low memory and latency increase compared to the
related approaches for the same throughput requirement.

Let us now assume that the platform has only 4 processors. Then, all the
related approaches, except EDF-sh, fail to satisfy the throughput requirement
of 1

5 under this resource constraint. However, our approach finds a vector of
replication factors ~f = [1, 2, 1, 1, 5, 1] such that the CSDF graph obtained after
applying the unfolding transformation on the initial SDF graph G, is schedu-
lable on 4 processors under FFD-EDF scheduler using the SPS framework
while satisfying the throughput requirement of 1

5 . EDF-sh can also allocate
the tasks in Γ to 4 processors with task allocation 4Γ = {4Γ1 = {τ3}, 4Γ2 =
{τ4, τ2}, 4Γ3 = {τ2, τ5, τ1}, 4Γ4 = {τ5, τ6}}, where task τ2 is allowed to migrate
between π2 and π3 and task τ5 is allowed to migrate between π3 and π4. The
memory requirement and application latency to schedule G on 4 processors

3When replicating an actor, the period of the task corresponding to the actor is enlarged. As
a consequence, the production of data tokens that are required by its data-dependent tasks to
execute are postponed which results in a further offsetting of their start time, when calculating
the earliest start time of tasks in the SPS framework using Equation (2.16), hence increasing the
application latency.
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Table 4.1: Throughputℛ (1/time units), latency ℒ (time units), memory requirementsℳ
(bytes), and number of processors m for G under different scheduling/allocation approaches.

Scheduling Allocation ℛ [ 1
t.u ] ℒ [t.u] ℳ [B] m̌ m̌OPT

EDF

FFD 1/5 55 155 6 4

our 1/5 65 189 5 4(105) (327) (4)
FFD-EP [81] 1/5 75 228 5 4

EDF-fm FFD-SP [23] 1/5 90 197 5 4
LUF [4] 1/5 94 217 5 4

EDF-sh [92] 1/5 113 217 5 4(192) (311) (4)

using our proposed algorithm and EDF-sh are given in the third and sev-
enth rows of Table 4.1 in parenthesis. As a result, our proposed algorithm
can decrease the application latency by 45.3% while increasing the memory
requirement by only 4.9% compared to EDF-sh.

From the above example, we can see the deficiencies of the related ap-
proaches because they have significant impact on the memory requirements
and application latency when reducing the number of processors. Oppositely,
our proposed algorithm which adopts the graph unfolding transformation,
can reduce the number of processors while introducing lower memory and
latency increase compared to the related approaches for the same throughput
requirement.

4.6 Proposed Algorithm

As explained and shown in Section 4.5, the partitioned scheduling algorithms,
potentially, have the disadvantage that processors cannot be fully utilized, i.e.,
capacity fragmentation, because the static allocation of tasks on processors
leaves an amount of unused capacity which is not sufficient to accommodate
another task. Therefore, in this section, we present our novel algorithm that
aims to exploit these unused capacity on the processors to reduce the num-
ber of processors needed to schedule the tasks in a hard real-time streaming
application, modeled as an acyclic SDF graph and subjected to a through-
put constraint, onto a heterogeneous MPSoC under partitioned scheduling
algorithms, e.g., FFD-EDF scheduler. Our propose algorithm can achieve
this goal by replicating tasks such that the required capacity of each resulting
task replica is sufficiently small to make use of the available capacity on the
processors.

The rationale behind our algorithm is the following: our algorithm first
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detects every task which cannot be entirely allocated to any individual under-
utilized processor due to insufficient free capacity while, in total, there exists
sufficient remaining capacity on under-utilized processors to schedule the
tasks. Then, our algorithm replicates some of these tasks to distribute their
workloads equally among more parallel replicas and fit them entirely on
the remaining capacity of the processors without increasing the number of
processors. As a result, our algorithm can alleviate the capacity fragmentation
due to the FFD-EDF scheduler and utilize the processors more efficiently.
In this section, therefore, we present a novel heuristic algorithm to derive
the proper replication factor for each actor in an SDF graph and the task
allocation to reduce the number of required processors while satisfying a
given throughput requirement.

The algorithm is given in Algorithm 1. It takes as input an SDF graph G,
and a heterogeneous platform Π = {ΠPE, ΠEE} with fixed number of PE and
EE processors onto which the actors in the graph have to be allocated. The
algorithm returns as output a CSDF graph G′, that is functionally equivalent
to the initial SDF graph, and a task allocation set xΓ if a successful allocation,
i.e., x ≤ |Π|, is found. Otherwise, it returns false as output.

In Line 1, the algorithm initializes the replication factor of all actors in
graph G to 1, G′ to G, and Π′ to Π. In Line 2, the actors in the graph G′ are
converted to periodic tasks using the SPS framework, explained in Section 2.3,
where the minimum period T′i of each task τ′i,k corresponding to actor Ai,k in
G′ is calculated for PE type of processors, i.e., using CPE

i , by Equation (2.12)
and Equation (2.13). In this chapter, we take the maximum throughput of graph
G, achievable by the SPS framework with the minimum calculated periods, as the
throughput requirement. Note that we can set another throughput requirement
by scaling the minimum calculated periods. Then, the algorithm builds a set
of periodic tasks Γ in Line 3 and sorts the tasks in the order of decreasing
utilization. Next, the algorithm enters to a while loop, Lines 4 to 37, where the
task allocation is started on platform Π′. The body of the while loop, then, is
repetitively executed to better utilize the processors’ capacity using the graph
unfolding transformation, explained in Section 4.4.1, and allocate the tasks on
platform Π′.

In Line 5, a task allocation set |Π
′|Γ is created, to keep the tasks allocated to

each processor individually. Please note that in sets Π′ and |Π
′|Γ, the processors

are ordered according to their type, where EE processors are followed by PE processors,
to first utilize the energy-efficient processors. In Line 5, an empty task set Γ1 is
also defined to keep the candidate tasks for replication. In Lines 6 to 23, the
algorithm allocates every task τ′i,k ∈ Γ to one of the processors according
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Algorithm 1: Proposed task allocation and finding proper replication
factors for an SDF graph.

Input: An SDF graph G = (𝒜, ℰ) and a heterogeneous MPSoC Π = {ΠPE, ΠEE}.
Output: True, an equivalent CSDF graph G′ = (𝒜′, ℰ ′), and a task allocation set xΓ if a successful

task allocation onto platform Π is found, False otherwise.
1 ~f = [1, 1, · · · , 1]; G′ ← G; Π′ ← Π;
2 Calculate period T′i for PE type of processors for each task τ′i,k corresponding to actor Ai,k in G′ by

using Equation (2.12) and Equation (2.13);
3 Γ← Sort tasks corresponding to actors in G′ in order of decreasing utilization;
4 while True do
5 |Π′ |Γ← {|Π′ |Γ1, |Π

′ |Γ2, · · · , |Π
′ |Γ|Π′ |}; Γ1 ← ∅;

6 for τ′i,k ∈ Γ do
7 for 1 ≤ j ≤ |Π′| do
8 if πj is an EE processor then

9 ule f t =
j−1
∑
`=1

(1− uπEE
`
); ui = uEE

i ;

10 if πj is a PE processor then

11 ule f t =
CPE

i
CEE

i

|ΠEE |
∑
`=1

(1− uπEE
`
) +

j−1
∑

`=|ΠEE |+1
(1− uπPE

`
); ui = uPE

i ;

12 Check EDF schedulability test on πj;
13 if task τ′i,k is not schedulable on πj then continue;
14 else
15 if uπj = 0∧ ule f t ≥ ui then
16 if actor Ai,k corresponding to task τ′i,k is not stateful/in/out then
17 Γ1 ← Γ1 + {τ′i,k , πj};

18 |Π′ |Γj ← τ′i,k ;
19 break;

20 if task τ′i,k is not allocated then
21 if ui > ule f t then return False;
22 Π′ ← Π′ + πPE;
23 go to 5

24 for |ΠEE| < j ≤ |Π′| do
25 if |Π

′ |Γj = ∅ then
26 Π′ ← Π′ − πPE

j ;

27 if |Π′PE| ≤ |ΠPE| then break;
28 if Γ1 ̸= ∅ then
29 ule f t = 0;
30 for {τ′i,k , πj} ∈ Γ1 do
31 if 1− uπj > ule f t then
32 ule f t = 1− uπj ; sel = i;

33 else return False;
34 fsel = fsel + 1; fsel ∈ ~f ;
35 Get CSDF graph G′ = (𝒜′, ℰ ′) by unfolding G with replication factors ~f using the method in

Section 4.4.1;
36 Calculate period T′i for PE type of processors for each task τ′i,k corresponding to actor Ai,k in

G′ by using Equation (2.12) and Equation (2.13);
37 Γ← Sort tasks corresponding to actors in G′ in order of decreasing utilization;

38 return True, G′, |Π
′ |Γ;
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to the FFD-EDF scheduler. In Lines 8 to 11, the total unused capacity ule f t
from the first processor π1 to the current processor πj is calculated. The
current processor πj can be either an EE processor or a PE processor. If it is
an EE processor, all the previous processors are also EE processors due to
the ordering of processors based on their type in platform Π′. In this case,
the total unused capacity is calculated in Line 9 and stored in variable ule f t.
Otherwise, if πj is a PE processor, the total unused capacity from π1 to the
current processor πj, that includes all the EE processors followed by a subset
of PE processors, is calculated in Line 11 and stored in variable ule f t. Since the
tasks have different utilization on the PE and EE processors, the total unused
capacity on the EE processors are scaled accordingly by the proportion of the
worst-case execution time of task τ′i,k on the PE processor and EE processor, in
Line 11.

In Line 12, the EDF schedulability test [54] is performed to check the
schedulability of task τ′i,k on processor πj, i.e., τ′i,k is schedulable if the total
utilization of all tasks currently allocated to processor πj (including τ′i,k) is
not greater than the utilization bound of 1. If task τ′i,k is not schedulable on
processor πj, the procedure of visiting the next processors is continued in Line
13. Otherwise, the candidate tasks for replication are identified first in Lines 15
to 17. If task τ′i,k is allocated to an unused processor πj while there is, in total,
a sufficient unused capacity on the other under-utilized processors, the task
is selected as a candidate to be replicated. This condition is checked in Line
15. Note that stateful tasks, whose next execution depends on the current execution,
and input and output tasks, which are connected to the external environment, are not
replicated. So, if task τ′i,k satisfies the condition in Line 16, it is added in Line 17
to task set Γ1 together with the processor πj which it will be allocated to. Task
τ′i,k is actually allocated on processor πj in Line 18 and the procedure of vising
the next processors is terminated in Line 19.

If task τ′i,k is not allocated after visiting all processors in platform Π′ and
if the utilization of the task is larger than the total unused capacity left on
the platform, then the algorithm cannot allocate the application tasks onto
the given platform and returns False in Line 21. Otherwise, a PE processor
is added to platform Π′ in Line 22. This is because to reasonably find all
candidate tasks for replication, the algorithm first checks how the processors
are finally utilized by continuing the task mapping through adding an extra
processor and finding a valid tasks’ allocation using the FFD-EDF scheduler.
For instance, the capacity of a processor that is fragmented by a big task can
be efficiently exploited later by smaller tasks. Therefore there is no need to
replicate such a big task. Later, by iteratively replicating the selected tasks,
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the algorithm gradually exploits the processors’ capacity more efficiently and
removes the extra added PE processors to finally find a valid tasks’ allocation
on the given platform Π. Next, the procedure is moved to Line 5 to find new
tasks’ allocation on the new platform Π′.

In Lines 24 to 26, the reduction of the number of required processors is
performed by removing PE processors. If a PE processor with no allocated
tasks is found, it means the task set Γ requires one PE processor fewer to
be scheduled under FFD-EDF scheduler. Therefore, the PE processor with
no allocated tasks is removed from platform Π′ in Line 26. Then, Line 27
checks whether the number of PE processors in platform Π′ is fewer than
or equal to the number of PE processors in the given platform Π (Note that
both platforms Π′ and Π have an equal number of EE processors as the algorithm
only adds/removes PE processor to/from platform Π′). If yes, then the CSDF graph
G′ and the task allocation set ΓΠ are returned in Line 38 and the algorithm
terminates successfully.

If not, to better utilize the processors, a task is selected among the candidate
tasks in Γ1 for replication, in Lines 28 to 32. If task set Γ1 is empty then no
task could be selected for replication, therefore the algorithm cannot allocate
the application tasks onto platform Π and returns False as output in Line
33. Among all the candidates in task set Γ1, the task allocated to a processor
with the largest amount of unused capacity is identified as a fragmentation-
responsible task, in Lines 31 and 32. Then, the replication factor of the actor
corresponding to this task in the initial SDF graph is increased by one in Line
34 and the initial SDF graph is transformed into an equivalent CSDF graph
using the unfolding transformation technique with unfolding vector ~f , in Line
35. The periods of the tasks corresponding to actors in the obtained CSDF
graph are calculated again for PE type of processors using Equation (2.12)
and Equation (2.13) in Line 36 and the new periodic tasks are sorted in Γ in
the order of decreasing utilization, in Line 37. The body of the while loop,
then, is repeated to either find successfully a task allocation of the transformed
graph onto platform Π or fail due to lack of candidate tasks for replication,
i.e., empty task set Γ1.

4.7 Experimental Evaluation

In this section, we present the experiments to evaluate our proposed algorithm
in Section 4.6. The experiments have been performed on a set of seven real-life
streaming applications modeled as acyclic SDF graphs taken from [23]. These
applications, from different application domains, are listed in Table 4.2. In this
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Table 4.2: Benchmarks used for evaluation taken from [23].

Domain Application |𝒜| |ℰ |

Signal Processing
Fast Fourier transform (FFT) kernel 32 32
Multi-channel beamformer 57 70
Time delay equalization (TDE) 35 35

Cryptography
Data Encryption Standard (DES) 55 64
Serpent 120 128

Video processing MPEG2 video 23 26
Sorting Bitonic Parallel Sorting 41 48

table, |𝒜| and |ℰ| denote the number of actors and FIFO communication
channels in the corresponding SDF graph of an application.

To demonstrate the effectiveness and efficiency of our proposed algorithm,
we perform two experiments. In the first experiment, in Section 4.7.1, we
consider a homogeneous platform as considered in the related works [4,23,81].
In this experiment, we compare the application latency, the memory require-
ments, and the minimum number of processors needed to schedule the tasks
of each application under a given throughput requirement for a homogeneous
platform, i.e, platform with only PE processors, obtained with six different
scheduling/allocation approaches: (i) partitioned EDF with FFD heuristic;
(ii) partitioned EDF with our proposed heuristic algorithm; (iii) partitioned
EDF with the heuristic proposed in [81]; (iv) semi-partitioned EDF-fm, with
the FFD-SP heuristic proposed in [23]; (v) semi-partitioned EDF-fm, with the
LUF heuristic proposed in [4]; (vi) semi-partitioned EDF-sh [92]. These ap-
proaches are denoted in Table 4.3 with FFD, our, FFD-EP, FFD-SP, fm-LUF, and
EDF-sh, respectively. In the second experiment, in Section 4.7.2, we consider
heterogeneous platforms, including PE and EE processors, as considered in
the related work [92]. In this experiment, we compare the application latency
and the memory requirements needed to schedule the tasks of each applica-
tion under a given throughput requirement obtained with partitioned EDF
with our proposed heuristic algorithm and semi-partitioned EDF-sh [92] for
different heterogeneous platforms. Please note that we use the approach presented
in [23] to handle data dependencies when using the scheduling/allocation approaches
in [4, 92] for comparison with our algorithm. The throughput requirementℛ for
each application, that is, the maximum achievable throughput under the SPS
framework, is given in the second column in Table 4.3.
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4.7.1 Homogeneous platform

Let us first compare our algorithm with the related approaches in terms of the
number of required processors. The minimum number of required processors
to satisfy the throughput requirement for each application using an optimal
scheduler, denoted as m̌OPT and calculated using Equation (2.8), is given in the
third column in Table 4.3. To find the minimum number of required processors
using our proposed algorithm and the related approaches proposed in [4, 23,
81, 92], we set the number of PE processors on the homogeneous platform
initially to m̌OPT. Then, if the task set cannot be scheduled on the platform,
we add one more PE processor and repeat the task allocation procedure again
until a successful task allocation is found.

As can be seen in Table 4.3, the FFD approach requires considerably more
processors, on average 17.6% more, than the number of required processors
by an optimal scheduler, see column m̌FFD. In contrast, our algorithm and
EDF-sh require the same number of processors as the optimal scheduler while
maintaining the same throughput for this set of applications, see columns m̌our
and m̌sh, respectively. For the other approaches, although they require fewer
processors than FFD, they still require more processors than our algorithm
for some applications. For instance, the approach FFD-EP requires one more
processor for TDE, DES, and Serpent, see column m̌EP; The approach FFD-SP
requires two more processors for FFT and one more processor for DES and
Serpent, see column m̌SP; Finally the approach fm-LUF requires two more
processors for FFT and DES and one more processor for TDE and MPEG2,
see column m̌LUF. Although this difference in terms of number of required
processors is not too large, it clearly reveals that our algorithm is more capable
of scheduling the applications with fewer processors compared to the FFD-
EP, FFD-SP, and fm-LUF approaches while satisfying the same throughput
requirement.

However, this reduction on the number of required processors comes at
the expense of increased memory requirements and application latency. For
each application, columnsℳFFD and ℒFFD report the memory requirements,
expressed in bytes, and the application latency, expressed in time units, under
FFD, respectively. The memory requirements is computed as the sum of the
buffer sizes of the FIFO communication channels in the (C)SDF graph and the
code size of the tasks. For each application, the increase on memory require-
ments and application latency by our algorithm over FFD are given in columns
ℳour
ℳFFD

and ℒour
ℒFFD

, respectively, that are on average 24.2% and 17.2%, respectively.
Similarly, the increases on memory requirements and application latency are
on average respectively 100% and 52.85% for FFD-EP, 24.3% and 29.2% for
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FFD-SP, 65.9% and 90.2% for fm-LUF, and finally 88.5% and 127.8% for EDF-sh
compared to FFD. From these numbers, we can conclude that not only our
algorithm achieves fewer processors compared to the related approaches, but
also it imposes, on average, lower memory and latency overheads.
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(b) Latency reduction

Figure 4.4: Memory and latency reduction of our algorithm compared to the related approach
with the same number of processors.

To further compare our algorithm with the related approaches, we com-
pute the memory requirements and application latency of our algorithm when
equal number of processors as the related approaches are used, see the bolded
numbers in parenthesis in columns m̌our, ℳour

ℳFFD
, and ℒour

ℒFFD
. To ease the interpre-

tation of Table 4.3 for this comparison, Figure 4.4(a) and Figure 4.4(b) illustrate
the memory and latency reductions obtained by our algorithm compared to
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Figure 4.5: Total number of task replications needed by FFD-EP and our proposed algorithm.

the related approaches, respectively. For instance, the reduction on memory
requirements is computed using the following equation:

r =
ℳrel −ℳour

ℳrel
(4.3)

whereℳrel is the memory requirements of scheduling an application using a
related approach andℳour denotes the memory requirements achieved by
our algorithm for the same number of processors. In Figure 4.4(a), we can
see that our algorithm can reduce the memory requirements by an average of
31.43%, 5.72%, 27.11%, and 27.46% compared to FFD-EP, FFD-SP, fm-LUF, and
EDF-sh, respectively. In Figure 4.4(a), however, there are two exceptions where
our algorithm achieves 2.43% and 0.19% more memory for TDE and Bitonic
compared to FFD-SP and FFD-EP, respectively. In Figure 4.4(b), we can also
see that our algorithm can reduce the application latency considerably for all
applications by an average of 22.60%, 13.24%, 37.92%, and 44.09% compared
to FFD-EP, FFD-SP, fm-LUF, and EDF-sh, respectively. This comparison clearly
demonstrates that for most of the applications our algorithm is more efficient
than the related approaches in exploiting the available resources. Compared to
FFD-EP, that is the closest approach to our algorithm as both adopt the graph
unfolding transformation, our efficiency comes from significantly reducing
the number of required task replications due to our novel Algorithm 1, as
shown in Figure 4.5. This figure clearly shows that, by replicating the right
tasks, our proposed algorithm can reduce the total number of task replications
significantly, by up to 30 times, compared to FFD-EP. From Figure 4.4, it can be
also observed that our proposed algorithm works better for some applications
than for others compared to the related approaches. Given the (C)SDF graph of
each application has different properties, e.g, the number of actors, the actors’
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Table 4.4: Runtime (in seconds) comparison of different scheduling/allocation approaches.

Benchmark tFFD tour tFFD-EP tFFD-SP tfm−LUF tEDF-sh

FFT 0.001 5.95 451.48 0.22 0.17 0.024
Beamformer 0.011 5.16 126.30 0.100 0.037 0.022

TDE 0.005 3.96 138.32 0.011 0.013 0.011
DES 0.002 9.41 14.20 0.28 1.013 0.021

Serpent 0.025 56.43 960.30 1.44 0.45 0.09
MPEG2 0.001 0.015 3.25 0.002 0.002 0.004
Bitonic 0.001 0.127 0.093 0.003 0.011 0.034

workload, the graph’s topology, repetition vector, etc., the applications are
represented with a different set of periodic tasks by using the SPS framework
in terms of the number of tasks and the utilization of tasks. Therefore, this
variation on the number of tasks and the utilization of tasks in the set of
periodic tasks according to each application can have different impact on the
performance of different scheduling/allocation approaches.

Finally, we evaluate the efficiency of our algorithm in terms of the execution
time. We compare the execution time of our algorithm with the corresponding
execution times of FFD, FFD-EP, FFD-SP, fm-LUF, and EDF-sh. The comparison
is given in Table 4.4. As can be seen from Table 4.4, the execution time of FFD
and EDF-sh are always within less than 34 millisecond, while the execution
times of FFD-SP and fm-LUF are within less than 1.5 seconds. However, the
execution time of our algorithm is longer than FFD, FFD-SP, fm-LUF, and EDF-
sh due to its iterative execution nature, but it is within less than 10 seconds
for most of the cases and within less than 1 minute for one case which is
reasonable given that our proposed algorithm is used at design-time and that
it achieves better resource utilization. Among all the approaches, FFD-EP
has the highest execution time, which is within less than 17 minutes, due to
excessive number of algorithm iterations. This excessive number of iterations
is due to the excessive number of required task replications in FFD-EP as
shown in Figure 4.5.

4.7.2 Heterogeneous platform

To compare our proposed algorithm and EDF-sh [92] on heterogeneous plat-
forms, in this section, we conduct experiments on a set of heterogeneous
platforms including different number of PE and EE processors. To do so, we
initially generate a heterogeneous platform having m̌FFD−1 PE processors
(see Table 4.3 for m̌FFD) and 1 EE processor for each application and itera-
tively replace one PE processor with one EE processor (or more EE processors
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Figure 4.6: Memory and latency reduction of our algorithm compared to EDF-sh [92] for
real-life applications on different heterogeneous platforms.
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if the task set is not schedulable on the platform). However, due to the re-
strictive allocation rules in EDF-sh to ensure bounded tardiness for deadline
misses, EDF-sh cannot find a task allocation for some heterogeneous plat-
forms that have fewer than a certain number of PE processors. Therefore, we
only compare our algorithm with EDF-sh on the heterogeneous platforms for
which EDF-sh can successfully allocate the tasks for each application. Fig-
ure 4.6 shows the memory and latency reductions obtained by our algorithm
compared to EDF-sh for each application individually. The reductions are
computed using Equation (4.3). In Figure 4.6, the x-axis shows different het-
erogeneous platforms, comprised of different number of PE and EE processors
denoted by {number of PEs, number of EEs}. The y-axis shows the reduction
on the memory requirements and application latency.

From Figure 4.6, it can be observed that our proposed algorithm outper-
forms EDF-sh in terms of memory requirements and application latency for
most of the cases. Compared to EDF-sh, our algorithm can reduce the memory
requirements and application latency by an average of 42.6% and 51.1%, 12.4%
and 43.8%, 21.7% and 36.2%, 21.8% and 35.4%, 11.9 % and 20.1%, 37.6 % and
42.2%, and 3.6 % and 33.8% for the FFT, Beamformer, DES, Bitonic, MPEG,
TDE, and Serpent applications, respectively. For the MPEG application, how-
ever, our proposed algorithm increases the memory requirements compared
to EDF-sh by 20.6% on a platform including 6 PE and 3 EE processors. This is
because our algorithm excessively replicates a task to utilize the unused capac-
ity left on the under-utilized processors. Therefore, the memory requirements
increase significantly due to the code and data memory overheads. However,
since the replicated task has low impact on the application latency, our algo-
rithm can still reduce the application latency by 8.3% compared to EDF-sh. For
the TDE application, both approaches find a task allocation without requiring
either task replication (our) or task migration (EDF-sh) on a platform including
24 PE and 1 EE processors, therefore no reduction is achieved for both memory
requirements and latency in this case.

In addition, it can be observed in Figure 4.6 that for most of the cases by
replacing more PE processors with EE processors on the platform, our algo-
rithm can further reduce the memory requirements and application latency
compared to EDF-sh. This is mainly because, by replacing more number of
PE processors with EE processors on the platform, the number of migrating
tasks under EDF-sh scheduler is considerably increased while the number of
task replications is only gently increased by our algorithm. As a result, more
fixed tasks are affected by migrating tasks and can miss their deadlines, by
a bounded tardiness, under EDF-sh scheduler that comes at the expense of
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more memory requirements and longer application latency. According to the
approach presented in [23], the memory requirements increase due to both
the size of buffers, that have to be enlarged to handle task tardiness, and the
code size overhead of task replicas, which are necessary in case of migrating
tasks. In addition, the application latency increases due to the postponement
of task start times needed to handle task tardiness.

4.8 Conclusions

In this chapter, we have presented a novel heuristic algorithm which deter-
mines a replication factor for each actor in an acyclic SDF graph, with a given
throughput requirement, such that the number of processors needed to sched-
ule the periodic tasks corresponding to actors in the obtained transformed
graph is reduced under partitioned scheduling algorithms. By performing
tasks replication, the tasks’ workload is distributed among more parallel tasks’
replicas with larger period and lower utilization in the obtained transformed
graph. Therefore, the required capacity of the tasks which are replicated, is
split up in multiple smaller chunks that can more likely fit into the left capacity
on the processors and alleviate the capacity fragmentation due to partitioned
scheduling algorithms, hence reducing the number of needed processors. The
experiments on a set of real-life streaming applications show that our proposed
algorithm can reduce the number of needed processors by up to 7 processors
with increasing the memory requirements and application latency by 24.2%
and 17.2% on average compared to FFD while satisfying the same throughput
requirement. We also show that our algorithm can still reduce the number
of needed processors by up to 2 processors and considerably improve the
memory requirements and application latency by up to 31.43% and 44.09% on
average compared to the other related approaches while satisfying the same
throughput requirement.


