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Chapter 3

Hard Real-Time Scheduling of
Cyclic CSDF Graphs

Sobhan Niknam, Peng Wang, Todor Stefanov. "Hard Real-Time Scheduling of
Streaming Applications Modeled as Cyclic CSDF Graphs". In Proceedings of the
International Conference on Design, Automation and Test in Europe (DATE’19), pp.
1528-1533, Florence, Italy, March 25 - 29, 2019.

IN this chapter, we present our Generalized Strictly Periodic Scheduling
(GSPS) framework, which corresponds to the first research contribution,

briefly introduced in Section 1.5.1, to address research question RQ1, described
in Section 1.4.1. The remainder of this chapter is organized as follows. Sec-
tion 3.1 introduces, in more details, the problem statement and the addressed
research question. It is followed by Section 3.2, which gives a summary of the
contributions presented in this chapter. An overview of the related work is
given in Section 3.3. A motivational example is given in Section 3.4. Then,
Section 3.5 presents our proposed GSPS framework. Section 3.6 presents the
experimental evaluation of our proposed GSPS framework. Finally, Section 3.7
ends the chapter with conclusions.

3.1 Problem Statement

Recall, from Section 2.3, that the Strictly Periodic Scheduling (SPS) frame-
work [8] has been recently proposed to convert a streaming application, mod-
eled as an acyclic CSDF graph, to a set of implicit-deadline periodic tasks.
As a result, a variety of hard real-time scheduling algorithms for periodic
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tasks, from the classical hard real-time scheduling theory [21, 29] (briefly intro-
duced in Section 2.2), can be applied to schedule such streaming applications
with a certain guaranteed performance, i.e., throughput/latency, on MPSoC
platforms. These algorithms can perform fast admission control and schedul-
ing decisions for new incoming applications in an MPSoC platform using
fast schedulability analysis while providing hard real-time guarantees and
temporal isolation. In addition, these algorithms provide a fast analytical
calculation of the minimum number of processors needed to schedule the
tasks in an application instead of performing a complex and time-consuming
design space exploration needed by conventional static scheduling of stream-
ing applications, i.e., self-timed scheduling [85]. The SPS framework, however,
is limited to acyclic CSDF graphs and cannot schedule a streaming application
modeled as a cyclic CSDF graph, i.e., a graph where the actors have cyclic data
dependencies. Consequently, hard real-time scheduling algorithms cannot be
applied to many streaming applications modeled as cyclic CSDF graphs. Thus,
in this chapter, we investigate the possibility to apply scheduling algorithms
from the classical hard real-time scheduling theory to streaming applications
modeled as cyclic CSDF graphs.

3.2 Contributions

In order to address the problem described in Section 3.1, in this chapter, we
propose a novel scheduling framework, called Generalized Strictly Periodic
Scheduling (GSPS), that can handle cyclic CSDF graphs. As a consequence,
our framework enables the application of a variety of proven hard real-time
scheduling algorithms [21, 29] for multiprocessor systems on a wider range
of applications compared to the SPS framework. More specifically, the main
novel contributions of this chapter are summarized as follows:
∙ We propose a sufficient test to check for the existence of a strictly periodic

schedule for a streaming application modeled as a cyclic (C)SDF graph;
∙ If a strictly periodic schedule exists for an application, the tasks of the ap-

plication are converted to a set of constrained-deadline periodic tasks by
computing their periods, deadlines, and earliest start times. As a conse-
quence, this conversion enables the utilization of many well-developed
hard real-time scheduling algorithms [29] on streaming applications
modeled as cyclic (C)SDF graphs to benefit from the properties of these
algorithms such as hard real-time guarantees, fast admission control,
temporal isolation, and fast calculation of the number of required pro-
cessors;
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∙ We show, on a set of real-life streaming applications, that our approach
can schedule the tasks in an application, modeled as a cyclic (C)SDF
graph, as strictly periodic tasks with hard real-time guaranteed through-
put which is equal or comparable to the throughput obtained by existing
scheduling approaches.

3.3 Related Work

In this section, we compare our hard real-time scheduling framework with
the existing hard real-time and periodic scheduling approaches [3, 8, 18, 79, 85]
for streaming applications. In [8] and [78], the authors convert each actor
in an acyclic CSDF graph to an implicit-deadline periodic task, by deriving
the actor’s earliest start time and period. In addition, the minimum buffer
sizes of FIFO channels, that guarantee the strictly periodic execution of the
tasks, are computed in [8] and [78]. These approaches, however, are limited
to applications modeled as acyclic (C)SDF graphs. In contrast, our approach
is more general than the approaches in [8] and [78] and can schedule an
application, modeled as a cyclic (C)SDF graph, in strictly periodic fashion, if a
strictly periodic schedule exists. As a result, many well-developed hard real-
time scheduling algorithms [29] for periodic tasks can be applied to schedule
the actors in a cyclic CSDF graph to provide temporal isolation between
concurrently running applications, fast admission control of new incoming
applications, and to compute the minimum number of required processors,
using fast schedulability tests.

Ali et al. [3] propose an algorithm to convert the tasks in an application
to a set of constrained-deadline periodic tasks by extracting the tasks’ offset,
arbitrary deadline, and period. Similar to our approach, this algorithm can
deal with cyclic data dependencies in the application. However, this approach
considers streaming applications modeled as Homogeneous SDF (HSDF)
graphs derived by applying a certain transformation on initial (C)SDF graphs.
Transforming a graph from (C)SDF to HSDF is a crucial step in which the
number of tasks in the streaming application can exponentially grow, e.g.,
the HSDF graph of the application Echo [18], derived from a cyclic CSDF
graph with 38 actors, has over 42000 actors. Such exponential growth of
the application in terms of number of tasks can lead to a time-consuming
analysis. Moreover, such exponential growth results in a significant memory
overhead for storing the tasks’ code and significant scheduling overhead due
to excessive task preemptions at runtime. In addition, the derived schedule, of
a transformed (C)SDF graph to a HSDF graph, is valid if all multi-rate actors
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in the (C)SDF graph are transformed to functionally equivalent single-rate
actors in the HSDF graph which requires modification of the actors’ code.
In contrast, our approach can be directly applied to streaming applications
modeled with a more expressive MoC, i.e., (C)SDF graph, which avoids the
significant memory and scheduling overheads introduced by large HSDF
graphs as well as modification of the actors’ code is not required. In addition,
our approach is faster because it avoids the exponentially complex conversion
of (C)SDF to HSDF.

In [18], the authors propose a framework to derive the maximum through-
put of a CSDF graph under a periodic schedule and to calculate the mini-
mum buffer sizes under a given throughput constraint. These are formulated
as linear programming (LP) problems and solved approximately. In [85], a
scheduling framework for exploration of the trade-off between throughput
and minimum buffer sizes of (C)SDF graphs under self-timed scheduling
is proposed. In [18], however, the calculation of the minimum number of
processors required for the derived schedule is not taken into consideration.
Moreover, the approaches in [18] and [85] do not provide hard real-time guar-
antees for every task in an application. Therefore, they do not ensure temporal
isolation among tasks/applications. As a consequence, the schedule of already
running applications has to be recalculated when a new application comes
in the system. In contrast, our approach converts the tasks in applications to
constrained-deadline periodic tasks. This conversion enables the utilization of
many hard real-time scheduling algorithms [29] to provide temporal isolation
and fast calculation of the minimum number of processors needed to schedule
the tasks under certain throughput constraint. Moreover, we propose a simple
analytical approach to test for the existence of a strictly periodic schedule and
derive the maximum throughput of a CSDF graph under the strictly periodic
schedule instead of approximately solving LP problems as done in [18].

3.4 Motivational Example

The goal of this section is to show how the actors in the cyclic CSDF graph
G, shown in Figure 3.1, can be scheduled in strictly periodic fashion using
our GSPS framework proposed in Section 3.5. First, assume that G has no
backward edge E5. Then, G has no cycles and the SPS framework [8] (described
in Section 2.3) can convert the actors in G to IDP tasks represented by the
following tuples: τ1 = (C1 = 2, Ť1 = 2, S1 = 0, D1 = Ť1 = 2), τ2 = (2, 3, 3, 3),
τ3 = (3, 6, 4, 6), and τ4 = (3, 3, 9, 3). The schedule for this periodic task set
is shown in Figure 3.2. Considering E5, however, this schedule is not valid
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Figure 3.1: A cyclic CSDF graph G. The backward edge E5 in G has 2 initial tokens that are
represented with black dots.
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Figure 3.2: The SPS of the CSDF graph G in Figure 3.1 without considering the backward
edge E5. Up arrows are job releases and down arrows job deadlines.

because there is no data token available on E5 for task τ1 (corresponding to
actor A1) to consume at time 8 and therefore the strict periodicity of tasks’
execution is no longer guaranteed. To solve this problem, we must ensure
that task τ4 (corresponding to actor A4) can produce a data token before the
fifth firing of task τ1, as shown by the dashed line in Figure 3.2. Therefore,
E5 introduces a latency constraint between tasks τ1 and τ4. Please note that
the derived periods of the tasks, for the schedule shown in Figure 3.2, are the
minimum periods (Ťi) by using the scaling factor s = š = ⌈Ŵ/lcm(~q)⌉ = 1
in Equation (2.12). But, there exist other longer valid periods for a task by
using any integer s > š = ⌈Ŵ/lcm(~q)⌉ = 1 in Equation (2.12). By taking
s = 3, a new schedule can be derived that can respect the latency constraint
introduced by backward edge E5 to guarantee strict periodicity of the tasks’
execution, as shown in Figure 3.3. In this schedule, the tasks are CDP tasks
that are represented by the following tuples in task set Γ ={τ1 = (C1 = 2, T1 =
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Figure 3.3: The GSPS of the CSDF graph G in Figure 3.1.

6, S1 = 0, D1 = 3), τ2 = (2, 9, 6, 3), τ3 = (3, 18, 9, 18), τ4 = (3, 9, 18, 3)}. Please
note that the deadline of each task is derived with the goal of minimizing
the number of required processors to schedule the tasks. The above example
shows that the actors in the cyclic CSDF graph G can be converted to a set
of CDP tasks, thus, a variety of hard real-time scheduling algorithms [29]
can be applied to the cyclic CSDF graph G in order to provide temporal
isolation, fast admission control, and easy calculation of the minimum required
processors. For instance, for the set Γ of CDP tasks in Figure 3.3, δΓ = 2.5
and the minimum number of processors for global and partitioned First-Fit
Increasing Deadlines EDF (FFID-EDF) [29] schedulers are m̌ = 3 and m̌PAR = 3
according to Equation (2.10) and Equation (2.11), respectively. Therefore, the
goal of our GSPS framework proposed in Section 3.5 is to test for the existence
and to derive such strictly periodic schedule for an application modeled as a
cyclic CSDF graph which implies that the actors in the graph can be converted
to a set of CDP tasks.

3.5 Our Proposed Framework

In this section, we present our analytical GSPS framework for scheduling and
converting the actors in a cyclic CSDF graph to a set of CDP tasks. First, we
test for the existence of a strictly periodic schedule for a cyclic (C)SDF graph
in Section 3.5.1. Then, if a strictly periodic schedule exists, each actor Ai of
the graph is converted to a CDP task τi by deriving the period (Ti), deadline
(Di), and earliest start time (Si) of the task, in Section 3.5.2, such that all data
dependencies between the tasks are satisfied with the goal of minimizing the
number of required processors to schedule the CDP tasks.
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Figure 3.4: Production and consumption curves on edge Eu = (Ai, Aj).

3.5.1 Existence of a Strictly Periodic Schedule

As explained in Section 3.4, to find a strictly periodic schedule for a cyclic
(C)SDF graph, an appropriate scaling factor s ≥ š has to be determined
such that all latency constraints introduced by backward edges are satisfied.
Therefore, to test for the existence of a strictly periodic schedule, the existence
of such scaling factor s must be tested. To do so, we need to analyze the start
times of the tasks corresponding to the actors belonging to each cycle in the
(C)SDF graph. Using Equation (2.17) and the minimum periods of the tasks
(Ťi), we can define interval Λ̌i→j for each edge Eu = (Ai, Aj) ∈ ℰ as follows:

Λ̌i→j = Si→j − Si − Di (3.1)

that is the minimum distance between the deadline (Di) of task τi correspond-
ing to actor Ai and the earliest start time (Si→j) of task τj corresponding to
actor Aj due to edge Eu. This means that task τj cannot start execution earlier
than Λ̌i→j time units after the deadline of task τi, i.e.,

Si + Di + Λ̌i→j ≤ Sj. (3.2)

Otherwise, task τj cannot find enough data tokens on edge Eu to read in
order to execute in strictly periodic fashion. The data token production and
consumption curves on edge Eu along with the Λ̌i→j interval are illustrated
in Figure 3.4, when Di = Ci. To execute task τj in strictly periodic fashion,
the cumulative data token production of task τi on channel Eu must always
be greater than or equal to the cumulative data token consumption of task τj

from Eu. This is ensured by shifting the consumption curve by Λ̌i→j time units
to the right after the deadline of task τi, as shown in Figure 3.4. In Figure 3.4,
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point Φ is a critical point determining that the consumption curve cannot be
shifted to the left because the consumption curve will be above the production
curve. Thus task τj cannot start execution earlier than Si→j.

To compute Si→j using Equation (2.17) for edge Eu, Si must be known.
Therefore, to use Equation (2.17) for each edge independently, we assume

Si =

(⌊
γ

Yu
j (qj)

⌋
+ 1
)

H, (3.3)

where γ is the number of initial tokens on channel Eu, Yu
j (qj) = ∑

qj
l=1 yu

j (((l −
1) mod φj) + 1) is the amount of tokens that task τj corresponding to actor Aj
consumes from Eu during one graph iteration, ⌊γ/Yu

j (qj)⌋ is the maximum
number of graph iterations where task τj can execute before starting task τi, H
is the iteration period. This Si is sufficiently large to ensure that actual Λ̌i→j
can be computed. For example, using Equation (3.1), Equation (2.17), and
Equation (3.3) for G in Figure 3.1, we have Λ̌1→2 = 1, Λ̌1→3 = 2, Λ̌2→4 = 3,
Λ̌3→4 = −3, and Λ̌4→1 = −7.

The Λ̌i→j interval is the key component in our analysis to find a strictly
periodic schedule for the actors in a cyclic (C)SDF graph. Since the Λ̌i→j
interval is calculated using the minimum period computed by Equation (2.12)
with scaling factor s = š, we need to find how interval Λ̌i→j changes by taking
scaling factor s > š. This is provided by the following lemma.

Lemma 3.5.1. The Λi→j interval changes proportionally to the scaling factor s as
follows:

Λi→j =
Λ̌i→j

š
· s (3.4)

where š is the minimum scaling factor computed by Equation (2.13) and Λ̌i→j is the
minimum interval computed by Equation (3.1).

Proof. Consider an arbitrary edge Eu = (Ai, Aj) ∈ ℰ where the data token
production and consumption curves can be visualized similarly to Figure 3.4.
For the minimum periods (Ťi and Ťj) of tasks τi and τj corresponding to actors
Ai and Aj computed using Equation (2.12) with s = š, we assume that the
critical point Φ happens after x and y executions of tasks τi and τj, respectively,
e.g., 3 executions of task τi and 2 executions of task τj in Figure 3.4, that implies

Si + Di + x · Ťi = Si→j + y · Ťj
(3.1)⇐⇒ x · Ťi = y · Ťj + Λ̌i→j (3.5)

(2.12)⇐=⇒ (x · lcm(~q)
qi

− y · lcm(~q)
qj

) =
Λ̌i→j

š
. (3.6)
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Now, we assume that after taking scaling factor s > š, a new critical point Φ′

exists after x′ and y′ executions of tasks τi and τj, respectively. Therefore, we
have

x′ · Ti = y′ · Tj + Λi→j
(2.12)⇐=⇒ (x′ · lcm(~q)

qi
− y′ · lcm(~q)

qj
) =

Λi→j

s
. (3.7)

Moreover, for the previous critical point Φ, we know that y executions of task τj
cannot finish before finishing x executions of task τi because the consumption
curve cannot be above the production curve. Therefore, after taking scaling
factor s > š, we still have

x · Ti ≤ y · Tj + Λi→j
(2.12)⇐=⇒ (x · lcm(~q)

qi
− y · lcm(~q)

qj
) ≤ Λi→j

s
. (3.8)

Then, by substituting Equation (3.6) and Equation (3.7) in Equation (3.8), we
have

Λ̌i→j

š
≤ (x′ · lcm(~q)

qi
− y′ · lcm(~q)

qj
)

(2.12)⇐=⇒ y′ · Ťj + Λ̌i→j ≤ x′ · Ťi. (3.9)

However, y′ · Ťj + Λ̌i→j < x′ · Ťi is not possible due to the fact that y′ executions
of task τj cannot finish before finishing x′ executions of task τi for the critical
point Φ′ because the consumption curve cannot be above the production curve.
Therefore, from Equation (3.9), we can only have

y′ · Ťj + Λ̌i→j = x′ · Ťi
(3.5)⇐⇒ x′ · Ťi − y′ · Ťj = x · Ťi − y · Ťj

(2.12)⇐=⇒ (x′ · lcm(~q)
qi

− y′ · lcm(~q)
qj

) = (x · lcm(~q)
qi

− y · lcm(~q)
qj

). (3.10)

From Equation (3.6), Equation (3.7), and Equation (3.10) we can conclude that

Λi→j

s
=

Λ̌i→j

š
⇔ Λi→j =

Λ̌i→j

š
· s.

�

Now, we propose a sufficient test for the existence of a strictly periodic
schedule for a cyclic (C)SDF graph by formulating a theorem and prove it by
using Lemma 3.5.1.
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Theorem 3.5.1. For the tasks corresponding to actors in a cyclic (C)SDF graph G,
a strictly periodic schedule exists if for every cyclic path ϑ = {Aϑ1 ↔ Aϑ2 ↔ · · · ↔
Aϑx ↔ Aϑ1} ∈ 𝒱 in G:

x

∑
i=1

Λ̌ϑi→ϑ((i mod x)+1) < 0. (3.11)

where 𝒱 is a set of all cyclic paths in G and Λ̌ϑi→ϑ((i mod x)+1) is computed using
Equation (3.1).

Proof. In a cyclic path ϑ = {Aϑ1 ↔ Aϑ2 ↔ · · · ↔ Aϑx ↔ Aϑ1} ∈ 𝒱 and
assuming an arbitrary scaling factor sϑ ≥ š, the earliest start time Sϑx of task
τϑx corresponding to actor Aϑx, when Di = Ci, ∀τi ∈ Γ, can be computed by
considering task τϑ(x−1) corresponding to actor Aϑ(x−1), that is a predecessor
actor of actor Aϑx, using Equation (3.2) as follows:

Sϑx = Sϑ(x−1) + Cϑ(x−1) + Λϑ(x−1)→ϑx.

Now, by recursively computing Sϑ(x−1) and substituting it in the above equa-
tion, the earliest start time Sϑx of actor Aϑx is:

Sϑx = Sϑ1 +
x−1

∑
i=1

Cϑi +
x−1

∑
i=1

Λϑi→ϑ(i+1). (3.12)

Due to the edge from actor Aϑx to actor Aϑ1, the start time Sϑ1 of task τϑ1
corresponding to actor Aϑ1 is constrained by Equation (3.2) as follows:

Sϑx + Cϑx + Λϑx→ϑ1 ≤ Sϑ1. (3.13)

By using Equation (3.4) (Lemma 3.5.1) and Equation (3.12) in Equation (3.13),
we have

Sϑ1 +
x

∑
i=1

Cϑi +
sϑ

š
·

x

∑
i=1

Λ̌ϑi→ϑ((i mod x)+1) ≤ Sϑ1

⇔
x

∑
i=1

Cϑi +
sϑ

š
·

x

∑
i=1

Λ̌ϑi→ϑ((i mod x)+1) ≤ 0. (3.14)

Equation (3.14) holds only if ∑x
i=1 Λ̌ϑi→ϑ((i mod x)+1) < 0, because ∑x

i=1 Cϑi, š,
and sϑ are positive numbers by definition and we can always select sufficiently
large scaling factor sϑ ≥ š. �
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3.5.2 Deriving Period, Earliest Start Time, and Deadline of Tasks

Recall that under our GSPS framework, every actor Ai in a cyclic CSDF is
converted to a CDP task τi = (Ci, Ti, Si, Di). Therefore, in this section, we
derive the period, deadline, and earliest start time of each task τi corresponding
to an actor Ai in a cyclic (C)SDF graph scheduled in strictly periodic fashion,
if such schedule exists according to Theorem 3.5.1.

(a) Period: Considering Equation (3.14), the minimum scaling factor sϑ

that satisfies Equation (3.14) is:

sϑ = š · ∑x
i=1 Cϑi

−∑x
i=1 Λ̌ϑi→ϑ((i mod x)+1)

.

Since there may exist several cyclic paths in the graph, the minimum scaling
factor s for the graph that guarantees strictly periodic execution of all tasks
corresponding to actors is:

s =
⌈

š ·max(max
∀ ϑ∈𝒱

(
∑x

i=1 Cϑi

−∑x
i=1 Λ̌ϑi→ϑ((i mod x)+1)

), 1)
⌉

.

Then, using Equation (2.12) and the above computed scaling factor s, the
periods of the tasks corresponding to actors can be derived.

(b) Deadline: Since the number of processors needed to schedule CDP
tasks depends on the total density δΓ of the task set Γ [29], our objective to
derive the deadline of the tasks corresponding to actors is to minimize δΓ in
order to minimize the number of processors. Therefore, we formulate our
optimization problem as follows:

Minimize δΓ = ∑
τi∈Γ

Ci

Di
(3.15a)

subject to: Si + Di − Sj ≤ −Λi→j ∀Eu = (Ai, Aj) ∈ ℰ (3.15b)

− Di ≤ −Ci, Di ≤ Ti ∀τi ∈ Γ (3.15c)

where Equation (3.15a) is the objective function and Di is an optimization vari-
able. In addition, Equations (3.15b) are the constraints given by Equation (3.2),
and Equations (3.15c) bound all optimization variables in the objective func-
tion by the WCET Ci and period Ti derived in Section 3.5.2(a). Si and Sj are
implicit variables which are not in the objective function Equation (3.15a), but
still need to be considered in the optimization procedure.

(c) Earliest Start Time: To derive the earliest start times of the tasks corre-
sponding to actors, we use the derived deadline of the tasks corresponding to
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actors in Section 3.5.2(b) in the following optimization problem:

Minimize ∑
τi∈Γ

Si (3.16a)

subject to: Si − Sj ≤ −Λi→j − Di ∀Eu = (Ai, Aj) ∈ ℰ (3.16b)

− Si ≤ 0 ∀τi ∈ Γ (3.16c)

where Equation (3.16a) is the objective function and Si is an optimization vari-
able. In addition, Equations (3.16b) are the constraints given by Equation (3.2),
and Equations (3.16c) bound all optimization variables in the objective func-
tion to be greater or equal to zero. Given that all variables in both problems
Equations (3.15) and (3.16) are integers and both the objective functions and
the constraints are convex, the problems are integer convex programming
problems [56]. To solve the problems in Equations (3.15) and (3.16), we used
CVX [38, 39], a package for specifying and solving convex programs.

3.6 Experimental Evaluation

In this section, we present experiments to evaluate our GSPS framework pro-
posed in Section 3.5. As explained earlier, our GSPS framework enables the
application of many hard real-time scheduling algorithms [29], which offer
properties such as hard real-time guarantees, temporal isolation, fast admission
control and scheduling decisions for new incoming applications, and easy and fast
calculation of the number of processors needed for scheduling the tasks, on stream-
ing applications modeled as cyclic (C)SDF graphs. However, having these
properties is not for free. Thus, the goal of these experiments is to show what
the cost is for having these properties using our GSPS framework in terms
of the maximum achievable application throughput, the application latency,
and the buffer sizes of the communication channels compared to scheduling
frameworks, such as periodic scheduling (PS) [18] and self-timed scheduling
(STS) [85], which also can be applied directly on cyclic (C)SDF graphs but do
not provide such properties. The experiments have been performed on a set
of ten real-life streaming applications, modeled as cyclic (C)SDF graphs, taken
from different sources. These applications are listed in Table 3.1. In this table,
|𝒜| and |ℰ | denote the number of actors and communication channels in a
(C)SDF graph, respectively.

The results of the evaluation for throughput ℛ (one token/time units),
latency ℒ (time units), and buffer sizes of the communication channelsℳ
(number of data tokens) of the applications under our GSPS, PS, and STS are
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Table 3.1: Benchmarks used for evaluation.

Application |𝒜| |ℰ | Source
Modem 16 35

[2]
MP3 playback 4 4
MP3 Decoder 15 21

[87]
MPEG-4 Advanced Video Coding (AVC) Decoder 4 6
MPEG-4 Simple Profile (SP) Decoder 5 10
Channel Equalizer 10 22
WLAN 802.11p transceiver 8 9 [49]
TDS-CDMA receiver 16 25 [60]
Long Term Evolution (LTE) 10 15 [76]
Echo 38 82 [18]

given in Table 3.2. The throughput, latency, and buffer sizes of the applications
under our GSPS, denoted byℛGSPS, ℒGSPS, andℳGSPS, are computed using
Equations (2.15), (2.19), and (2.18) and given in columns 2, 3, and 4 in Table 3.2,
respectively. Columns 7 and 10 show the ratio between the throughput of
our GSPS and PS and STS, respectively. Looking at column 7, we can see
that our GSPS can achieve the same throughput obtained by PS for 8 out of
10 applications. Looking at column 10, we can also see that the throughput
under our GSPS is equal or very close to the throughput under STS, that is the
optimal scheduling in terms of throughput, for the majority of the applications.
In both comparisons, the largest difference is in the case of Echo. This is mainly
because, our GSPS schedules all the phases of an actor in a CSDF graph as jobs
of a periodic task, where different job release of the task corresponds to one
of the phases of the actor. Therefore, in contrast to PS and STS, the starting
time of the execution phases of the task is delayed under our GSPS. As a
consequence, if a multi-phase actor exists in a cycle, a larger scaling factor
may be required by our GSPS to find a strictly periodic schedule that results
in a lower throughput compared to PS and STS. From these comparisons,
we can conclude that although our GSPS results in a lower throughput for
a few applications compared to PS and STS, achieving the properties of the
hard real-time scheduling algorithms is for free in terms of the maximum
achievable throughput for the majority of the applications under our GSPS.

For processor requirements under our GSPS, we compute the minimum
number of processors under global and partitioned First-Fit Increasing Dead-
lines EDF (FFID-EDF) [29] schedulers by using Equation (2.10) and Equa-
tion (2.11), denoted with m̌ and m̌PAR in Table 3.2, respectively. However, for
PS, the calculation of the number of processors was not considered in [18],
and for STS, finding the minimum number of processors requires complex
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design space exploration to find the best allocation which delivers the max-
imum achievable throughput [83]. This fact shows one advantage of using
our GSPS compared to using PS and STS when our GSPS gives the same
throughput as PS and STS.

Let us now analyze the latency and the buffer sizes of the applications.
Columns 8 and 11 give the ratio of the maximum latency of the applications un-
der our GSPS to the latency of the applications under PS and STS, respectively.
As we can see, the average latency of the applications under our GSPS is 3.8
and 2.5 times larger than the latency under PS and STS, respectively. Similarly,
the ratio of the buffer sizes of the applications under our GSPS to the buffer
sizes under PS and STS is given in columns 9 and 12, respectively. From these
columns, we can see that the buffer sizes in our GSPS are on average 1.4 and
1.21 times larger than the buffer sizes under PS and STS. Obviously, the larger
latency and buffer sizes of the channels for the applications are the main costs
in our GSPS framework to enable the utilization of hard real-time schedul-
ing algorithms on streaming applications modeled as cyclic (C)SDF graphs.
Please note that, our GSPS causes larger latency and buffer sizes because of the
minimization of the number of processors we perform using Equations (3.15),
while PS and STS cause lower latency and buffer sizes because they do not
perform such minimization. Therefore, if we also do not perform the processor
minimization and only perform minimization of the start times of the tasks us-
ing Equations (3.16) with Di = Ci, ∀τi ∈ Γ, our GSPS can achieve latency and
buffer sizes closer or equal to the latency and buffer sizes of the applications
under PS and STS.

3.7 Conclusions

In this chapter, we have presented our GSPS framework to test for the existence
of strictly periodic schedule for streaming applications modeled as cyclic CSDF
graphs. Then, if such schedule exists, our GSPS converts each task in the graph
to a constrained-deadline periodic task. This conversion enables the utilization
of many hard real-time scheduling algorithms which offer properties such as
temporal isolation and fast calculation of the required number of processors.
Finally, we show, on a set of real-life streaming applications, that strictly
periodic scheduling is capable of delivering equal or comparable throughput
to existing approaches for the majority of the applications we experimented
with.
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