
Generalized strictly periodic scheduling analysis, resource optimization,
and implementation of adaptive streaming applications
Niknam, S.

Citation
Niknam, S. (2020, August 25). Generalized strictly periodic scheduling analysis, resource
optimization, and implementation of adaptive streaming applications. Retrieved from
https://hdl.handle.net/1887/135946

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/135946

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/135946

Cover Page

The handle http://hdl.handle.net/1887/135946 holds various files of this Leiden University
dissertation.

Author: Niknam, S.
Title: Generalized strictly periodic scheduling analysis, resource optimization, and
implementation of adaptive streaming applications
Issue Date: 2020-08-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/135946
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 2

Background

THIS chapter is dedicated to an overview of the background material
needed to understand the novel research contributions of this thesis

presented in the following chapters. We first provide a summary of some
mathematical notations used throughout this thesis in Table 2.1.

Symbol Meaning
N The set of natural numbers excluding zero
N0 N∪ {0}
Z The set of integers
|x| The cardinality of a set x
⌈x⌉ The smallest integer that is greater than or equal to x
⌊x⌋ The greatest integer that is smaller than or equal to x

x̂ The maximum value of x
x̌ The minimum value of x
~x The vector x

lcm The least common multiple operator
mod The integer modulo operator

xV An x-partition of a set V (see Definition 2.2.1)

Table 2.1: Summary of mathematical notations.

Then, in Section 2.1, we present the dataflow MoCs that are used in this
thesis. In Section 2.2, we present some results and definitions from the hard
real-time (HRT) scheduling theory relevant to the context of this thesis. Finally,
in Section 2.3 and 2.4, we describe the HRT analysis for the adopted dataflow
MoCs.

18 Chapter 2. Background

2.1 Dataflow Models of Computation

As mentioned in Section 1.2.2, dataflow MoCs have been identified as the
most suitable parallel MoCs to express the available parallelism in streaming
applications. In this section, we present the dataflow MoCs considered in
this thesis, that is, the CSDF and SDF MoCs are given in Section 2.1.1 and the
MADF MoC is given in Section 2.1.2.

2.1.1 Cyclo-Static/Synchronous Data Flow (CSDF/SDF)

An application modeled as a CSDF [16] is defined as a directed graph G =
(𝒜, ℰ). G consists of a set of actors 𝒜, which corresponds to the graph nodes,
that communicate with each other through a set of communication channels
ℰ ⊆ 𝒜×𝒜, which corresponds to the graph edges. Actors represent compu-
tations while communication channels represent data dependencies among
actors. A communication channel Eu ∈ ℰ is a first-in first-out (FIFO) buffer
and it is defined by a tuple Eu = (Ai, Aj), which implies a directed connection
from actor Ai (called source) to actor Aj (called destination) to transfer data,
which is divided in atomic data objects called tokens. An actor receiving an
input data stream of the application from the environment is called input
actor and an actor producing an output data stream of the application to the
environment is called output actor.

An actor fires (executes) when there are enough tokens on all of its input
channels. Every actor Ai ∈ 𝒜 has an execution sequence [fi(1), fi(2), · · · , fi(φi)]
of length φi, i.e., it has φi phases. This means that the execution of each
phase 1 ≤ φ ≤ φi ∈ N of actor Ai is associated with a certain function
fi(φ). As a consequence, the execution time of actor Ai is also a sequence
[Ci(1), Ci(2), · · · , Ci(φi)] consisting of the worst-case execution time (WCET)
values for each phase. Every output channel Eu of actor Ai has a predefined
token production sequence [xu

i (1), xu
i (2), · · · , xu

i (φi)] of length φi. Analogously,
token consumption from every input channel Eu of actor Ai is a predefined
sequence [yu

i (1), yu
i (2), · · · , yu

i (φi)], called consumption sequence. Therefore, the
k−th time that actor Ai is fired, it executes function fi(((k− 1) mod φi) + 1),
produces xu

i (((k− 1) mod φi) + 1) tokens on each output channel Eu, and
consumes yu

i (((k− 1) mod φi) + 1) tokens from each input channel Eu. The
total number of produced tokens by actor Ai on channel Eu during its first n
invocations and the total number of consumed tokens from the same channel
by Aj during its first n invocations are Xu

i (n) = ∑n
l=1 xu

i (((l− 1) mod φi)+ 1)
and Yu

j (n) = ∑n
l=1 yu

j (((l − 1) mod φj) + 1), respectively.
An important property of the CSDF model is the ability to derive a schedule

2.1. Dataflow Models of Computation 19

for the actors at design-time. In order to derive a valid static schedule for a
CSDF graph at design-time, it has to be consistent and live.

Theorem 2.1.1 (From [16]). In a CSDF graph G, a repetition vector~q = [q1, q2, · · · ,
q|𝒜|]T is given by

~q = Θ ·~r with Θik =

{
φi i f i = k
0 otherwise

(2.1)

where~r = [r1, r2, · · · , r|𝒜|]T is a positive integer solution of the balance equation

Γ ·~r =~0 (2.2)

and where the topology matrix Γ ∈ Z|ℰ |×|𝒜| is defined by

Γui =

Xu

i (φi) i f actor Ai produces on channel Eu

−Yu
i (φi) i f actor Ai consumes f rom channel Eu

0 otherwise.

(2.3)

Theorem 2.1.1 shows that a repetition vector and hence a valid static sched-
ule can only exist if the balance equation, given as Equation (2.2), has a non-
trivial solution [16]. A graph G that meets this requirement is said to be
consistent. An entry qi ∈ ~q = [q1, q2, · · · , q|𝒜|]T ∈ N|𝒜| denotes how many
times an actor Ai ∈ 𝒜 executes in every graph iteration of G. If a deadlock-free
schedule can be found, G is said to be live. When every actor Ai ∈ 𝒜 in G has
a single phase, i.e., φi = 1, the graph G is a Synchronous Data Flow (SDF) [52]
graph, meaning that the SDF MoC is a subset of the CSDF MoC.

For example, Figure 2.2(b) shows a CSDF graph. The graph has a set
𝒜 = {A1, A2, A3, A4, A5} of five actors and a set ℰ = {E1, E2, E3, E4, E5} of
five FIFO channels that represent the data dependencies between the actors.
In this graph, there is one input actor (i.e., A1) and one output actor (i.e., A5).
Each actor has different number of phases, an execution time sequence, and
production/consumption sequences on different channels. For instance, actor
A1 has two phases, i.e., φ1 = 2, its execution time sequence (in time units)
is [C1(1), C1(2)] = [1, 1] and its token production sequence on channel E4 is
[0, 1]. Then, according to Equations (2.1), (2.2), and (2.3) in Theorem 2.1.1, we
can derive the repetition vectors~q as follows:

Γ =

1 −1 0 0 0
0 1 −1 0 0
0 0 1 0 −1
1 0 0 −1 0
0 0 0 1 −1

 ,~r =

1
1
1
1
1

 , Θ =

2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2

 , and~q =

2
1
1
1
2

20 Chapter 2. Background

A1 A2 A3 A5
[1[1], 1[0]] [p2[1]]

A4
[1[0], 1[p6]]

[1[p5], 1[0]]

[1[0], 1[p1]]

Ac

[p2[1]]
E1

[1[p4]] [1[p4]]

[1[1]][1[1]]

IC

E22

E2 E3

E4 E5

E44 E11

E55
E33

Figure 2.1: Example of an MADF graph (G1).

A1
1 A2

1 A3
1 A5

1

[1,1] [4,4] [1]E1 E2 E3

[1,0] [1,1] [1,1] [1] [1] [2,0]

[1,1]

(a) CSDF graph G1
1 of mode SI1.

A1
2 A2

2 A3
2 A5

2

A4
2

[1,1] [8] [1]

[3]

E1 E2 E3

E4 E5
[1][1]

[0,1]
[1,0] [1] [1] [1] [1] [1,0]

[0,1]

[1,1]

(b) CSDF graph G2
1 of mode SI2.

Figure 2.2: Two modes of the MADF graph in Figure 2.1.

2.1.2 Mode-Aware Data Flow (MADF)

MADF [94] is an adaptive MoC which can capture multiple application modes
associated with an adaptive streaming application, where each individual
mode is represented as a CSDF graph [16]. Formally, an MADF is a multigraph
defined by a tuple (𝒜, Ac, ℰ , P), where 𝒜 is a set of dataflow actors, Ac is the
control actor to determine modes and their transitions, ℰ is the set of edges
for data/parameter transfer, and P = {~p1,~p2, · · · ,~p|𝒜|} is the set of parameter
vectors, where each ~pi ∈ P is associated with a dataflow actor Ai ∈ 𝒜. The
detailed formal definitions of all components of the MADF MoC can be found
in [94].

Here, we explain the MADF intuitively by an example. The MADF graph
G1 of an adaptive streaming application with two different modes is shown in
Figure 2.1. This graph consists of a set of five actors A1 to A5 that communicate
data over FIFO channels, i.e., the edges E1 to E5. Also, there is an extra
actor Ac which controls the switching between modes through control FIFO
channels, i.e., the edges E11, E22, E33 E44, and E55, at run-time. Each data
FIFO channel contains a production and a consumption pattern, and some
of these production and consumption patterns are parameterized. Having
different values of parameters and WCET of the actors determine different

2.1. Dataflow Models of Computation 21

modes. For example, to specify the consumption pattern with variable length
on a data FIFO channel in graph G1, the parameterized notation [a[b]] is used
to represent a sequence of a elements with integer value b, e.g., [2[1]] = [1, 1]
and [1[2]] = [2]. For the MADF example in Figure 2.1, P = {~p1 = [p1],~p2 =
[p2],~p3 = [],~p4 = [p4],~p5 = [p5, p6]}. Now let assume that the parameter
vector [p1, p2, p4, p5, p6] can take only two values [0, 2, 0, 2, 0] and [1, 1, 1, 1, 1].
Then, Ac can switch the application between two corresponding modes SI1

and SI2 by setting the parameter vector to the first value and the second
value, respectively, at run-time. Figure 2.2(a) and Figure 2.2(b) show the
corresponding CSDF graphs of modes SI1 and SI2.

While the operational semantics of an MADF graph [94] in steady-state,
i.e., when the graph is executed in each individual mode, are the same as
that of a CSDF graph [16], the transition of MADF graph from one mode to
another is the crucial part that makes MADF fundamentally different from
CSDF. The protocol for mode transitions has a strong impact on the design-
time analyzability and implementation efficiency, discussed in Section 1.2.2.
In the existing adaptive MoCs like FSM-SADF [32], a protocol, referred as
self-timed transition protocol, has been adopted which specifies that tasks
are scheduled as soon as possible during mode transitions. This protocol,
however, introduces timing interference of one mode execution with another
one that can significantly affect and fluctuate the latency of an adaptive stream-
ing application across a long sequence of mode transitions. To avoid such
undesirable behavior caused by the self-timed transition protocol, MADF em-
ploys a simple, yet effective transition protocol, namely the maximum-overlap
offset (MOO) transition protocol [94] when switching an application’s mode
by receiving a mode change request (MCR) from the external environment via
the IC port of actor Ac (see the black dot in Figure 2.1). The MOO protocol
can resolve the timing interference between modes upon mode transitions by
properly offsetting the starting time of the new mode by xo→n computed as
follows:

xo→n =

{
maxAi∈𝒜o∩𝒜n(So

i − Sn
i) if maxAi∈𝒜o∩𝒜n(So

i − Sn
i) > 0

0 otherwise,
(2.4)

where So
i and Sn

i are the start times of actor Ai in mode SIo and SIn, i.e., the
current and the new mode, respectively.

For instance, consider the valid schedules of modes SI1 and SI2 shown in
Figure 2.3(a) and (b), respectively. In these figures, H is the iteration period,
also called hyper period, that represents the duration needed by the graph to
complete one iteration and L is the iteration latency that represents the time

22 Chapter 2. Background

Actors

5 10 15

SI1

L1

H1

S21

S31

S51 Time

A11

A21

A31

A41

A51

20

H1

H1

H1

0

(a)

Actors

5 10 15

SI2

L2

S22

S32

S42

S52 Time

A22

A12

A32

A42

A52

20

H2

H2

H2

H2

H2

0

(b)

Figure 2.3: Execution of two iterations of both modes SI1 and SI2. (a) Mode SI1 in Fig-
ure 2.2(a). (b) Mode SI2 in Figure 2.2(b).

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30

x2→1=4

35 Time

L1 L2

Start of mode SI1

H2 H1

Start of mode SI2

x1→2=0

0

Δ2→1 Δ1→2

tMCR1 tMCR2

Figure 2.4: Execution of graph G1 with two mode transitions under the MOO protocol.

distance between the starting times of the input actor and the output actor.
Then, the offset x1→2 for the mode transition from SI1 to SI2 is computed by
the following equations: S1

1 − S2
1 = 0− 0 = 0, S1

2 − S2
2 = 1− 1 = 0, S1

3 − S2
3 =

5− 9 = −4, S1
5 − S2

5 = 10− 10 = 0, and is max(0, 0,−4, 0) = 0. Similarly,
the offset x2→1 for the mode transition from SI2 to SI1, using the equations
S2

1 − S1
1 = 0, S2

2 − S1
2 = 0, S2

3 − S1
3 = 4, S2

5 − S1
5 = 0, is max(0, 0, 4, 0) = 4. An

execution of G1 with the two mode transitions and the computed offsets is
illustrated in Figure 2.4, in which, the iteration latency L of the schedule of the
modes, in Figure 2.3(a) and (b), are preserved during mode transitions.

To quantify the responsiveness of a transition protocol, a metric, called
transition delay and denoted by ∆o→n, is also introduced in [94] and calculated
as

∆o→n = σo→n
out − tMCR (2.5)

where σo→n
out is the earliest start time of the output actor in the new mode

2.2. Real-Time Scheduling Theory 23

SIn and tMCR is the time when the mode change request MCR occurred. In
Figure 2.4, we can compute the transition delay for MCR1 occurred at time
tMCR1 = 1 as ∆2→1 = 22− 1 = 21 time units.

2.2 Real-Time Scheduling Theory

In this section, we introduce the real-time periodic task model [29] and some
important real-time scheduling concepts and algorithms [29] which are instru-
mental to the contributions we present in this thesis.

2.2.1 System Model

To present the important results from the real-time scheduling theory relevant
to this thesis, we consider a homogeneous multiprocessor system composed of
a set Π = {π1, π2, · · · , πm} of m identical processors. However, the results
of our research contributions, presented in this thesis, are applicable to het-
erogeneous multiprocessor systems as well. This is because the processor
heterogeneity can be captured within the WCET of real-time periodic tasks,
which will be explained in Chapter 4.

2.2.2 Real-Time Periodic Task Model

Under the real-time periodic task model, applications running on a system
are modeled as a set Γ = {τ1, τ2, · · · , τn} of n periodic tasks, that can be
preempted at any time. Every periodic task τi ∈ Γ is represented by a tuple
τi = (Ci, Ti, Si, Di), where Ci is the WCET of the task, Ti is the period of the
task in relative time units, Si is the start time of the task in absolute time
units, and Di is the deadline of the task in relative time units. The task τi is
said to be a constrained-deadline periodic (CDP) task if Di ≤ Ti. When Di = Ti,
the task τi is said to be an implicit-deadline periodic (IDP) task. Each task τi
executes periodically in a sequence of task invocations. Each task invocation
releases a job. The k−th job of task τi, denoted as τi,k, is released at time instant
si,k = Si + kTi, ∀k ∈N0 and executed for at most Ci time units before reaching
its deadline at time instant di,k = Si + kTi + Di.

The utilization of task τi, denoted as ui, is defined as ui = Ci/Ti, where
ui ∈ (0, 1]. For a task set Γ, uΓ is the total utilization of Γ given by uΓ = ∑τi∈Γ ui.
Similarly, the density of task τi is δi = Ci/Di and the total density of Γ is
δΓ = ∑τi∈Γ δi.

24 Chapter 2. Background

2.2.3 Real-Time Scheduling Algorithms

When a multiprocessor system Π and a set of real-time period tasks Γ are
given, a real-time scheduling algorithm is needed to execute the tasks on the
system such that all task deadlines are always met. According to [29], real-time
scheduling algorithms for multiprocessor systems try to solve the following
two problems:

∙ The allocation problem, that is, on which processor(s) jobs of tasks should
execute.

∙ The priority assignment problem, that is, when and in what order each job
of a task with respect to jobs of other tasks should execute.

Depending on how the scheduling algorithms solve the allocation problem,
they can be classified as follows [29]:

∙ No migration: each task is statically allocated on a processor and no
migration is allowed.

∙ Task-level migration: jobs of a task can execute on different processors.
However, each job can only execute on one processor.

∙ Job-level migration: jobs of a task can migrate and execute on different pro-
cessors. However, each job cannot execute on more than one processor
at the same time.

A scheduling algorithm that allows migration, either at task-level or job-level,
among all processors is called a global scheduling algorithm, while an algo-
rithm that does not allow migration at all is called a partitioned scheduling
algorithm. Finally, an algorithm that allows migration, either at task-level or
job-level, only for a subset of tasks among a subset of processors is called a
hybrid scheduling algorithm.

Depending on how the scheduling algorithms solve the priority assign-
ment problem, they can be classified as follows [29]:

∙ Fixed task priority: each task has a single fixed priority that is used for all
its jobs.

∙ Fixed job priority: jobs of a task may have different priorities. However,
each job has only a single fixed priority.

∙ Dynamic priority: a single job of a task may have different priorities at
different times during its execution.

The scheduling algorithms can be further classified into [29]:

∙ Preemptive: tasks can be preempted by a higher priority task at any time.
∙ Non-preemptive: once a task starts executing, it will not be preempted

and it will execute until completion.

2.2. Real-Time Scheduling Theory 25

A task set Γ is said to be feasible with respect to a given system Π if there
exists a scheduling algorithm that can construct a schedule in which all task
deadlines are always met. A scheduling algorithm is said to be optimal with
respect to a task model and a system, if it can schedule all task sets that comply
with the task model and are feasible on the system. A task set is said to be
schedulable on a system under a given scheduling algorithm, if all tasks can
execute under the scheduling algorithm on the system without violating any
deadline. To check whether a task set is schedulable on a system under a
given scheduling algorithm, the real-time scheduling theory provides various
analytical schedulability tests. Generally, schedulability tests can be classified
as follows [29]:
∙ Sufficient: if all task sets that are deemed schedulable by a schedulability

test are in fact schedulable.
∙ Necessary: if all task sets that are deemed unschedulable by a schedula-

bility test are in fact unschedulable.
∙ Exact: if a schedulability test is both sufficient and necessary.

Uniprocessor Schedulability Analysis

In this thesis, we use the preemptive earliest deadline first (EDF) scheduling
algorithm [54], which is the most studied and popular dynamic-priority schedul-
ing algorithm on uniprocessor systems, as the basis scheduling algorithm. The
EDF algorithm schedules jobs of tasks according to their absolute deadlines.
More specifically, jobs of tasks with earlier deadlines will be executed at higher
priorities [21]. The EDF algorithm has been proven to be the optimal schedul-
ing algorithm for periodic tasks on uniprocessor systems [21, 54]. An exact
schedulability test for an implicit-deadline periodic task set on a uniprocessor
system under EDF is given in the following theorem.

Theorem 2.2.1 (From [54]). Under EDF, an implicit-deadline periodic task set Γ is
schedulable on a uniprocessor system if and only if:

uΓ = ∑
τi∈Γ

uτi ≤ 1. (2.6)

For a constrained-deadline periodic task set, however, Equation (2.6) serves
as a necessary test. An exact schedulability test for a constrained-deadline
periodic task set on a uniprocessor under EDF is given in the following lemma.

Lemma 2.2.1 (From [13]). Under EDF, a periodic task set Γ is schedulable on a
uniprocessor system if and only if uΓ ≤ 1 and db f (Γ, t1, t2) ≤ (t2 − t1) for all

26 Chapter 2. Background

0 ≤ t1 < t2 < Ŝ + 2H, where db f (Γ, t1, t2), termed as processor demand bound
function, denotes the total execution time that all tasks of Γ demand within time
interval [t1, t2] and is given by

db f (Γ, t1, t2) = ∑
τi∈Γ

max{0,
⌊

t2 − Si − Di

Ti

⌋
−max{0,

⌈
t1 − Si

Ti

⌉
}+ 1} · Ci,

Ŝ = max{S1, S2, · · · , S|Γ|}, and H = lcm{T1, T2, · · · , T|Γ|}.
However, this schedulability test is computationally expensive because it

needs to check all absolute deadlines, which can be a large number, within the
time interval. To improve the efficiency of the EDF exact test, a new exact test
for the EDF scheduling is proposed in [95] which checks a smaller number of
time points within the time interval.

Multiprocessor Schedulability Analysis

On multiprocessor systems, there are several optimal global scheduling algo-
rithms for implicit-deadline periodic tasks, such as Pfair [12] and LLREF [27],
which exploit job-level migrations and dynamic priority. Under these schedul-
ing algorithms, an exact schedulability test for an implicit-deadline periodic
task set Γ on m processors is:

uΓ = ∑
τi∈Γ

uτi ≤ m. (2.7)

Based on the above equation, the absolute minimum number of processors,
denoted as m̌OPT, needed by an optimal scheduling algorithm to schedule an
implicit-deadline periodic task set Γ is:

m̌OPT = ⌈uΓ⌉. (2.8)

In the case of constrained-deadline periodic tasks, however, no optimal al-
gorithm for global scheduling exists [29]. Under global dynamic priority
schedulings, a sufficient schedulability test for a constrained-deadline periodic
task set Γ on m processors is [6, 31]:

δΓ = ∑
τi∈Γ

δτi ≤ m. (2.9)

According to this test, the minimum number of processors needed by a global
dynamic priority scheduling to schedule a constrained-deadline periodic task
set Γ is:

m̌ = ⌈δΓ⌉. (2.10)

2.2. Real-Time Scheduling Theory 27

The other class of multiprocessor scheduling algorithms for periodic task
sets are partitioned scheduling algorithms [29] that do not allow task migra-
tion. Under partitioned scheduling algorithms, a task set is first partitioned
into subsets (according to Definition 2.2.1) that will be executed statically on
individual processors. Then, the tasks on each processor are scheduled using
a given uniprocessor scheduling algorithm.

Definition 2.2.1. (Partition of a set). Let V be a set. An x-partition of V is a set,
denoted by xV, where

xV = {xV1, xV2, · · · , xVx},

such that each subset xVi ⊆ V, and

x⋂
i=1

xVi = ∅ and
x⋃

i=1

xVi = V.

In this regard, the minimum number of processors needed to schedule a
task set Γ by a partitioned scheduling algorithm is:

m̌PAR = min{x ∈N | ∃x-partition of Γ∧∀i ∈ [1, x] : xΓi is schedulable on πi}.
(2.11)

The derived x-partition of a task set, using Equation (2.11), is optimal because
of requiring the least amount of processors to allocate all tasks while guaran-
teeing schedulability on all processors. Deriving such optimal partitioning
is inherently equivalent to the well-known bin packing problem [45]. In the
bin packing problem, items of different sizes must be packed into bins with
fixed capacity such that the number of needed bins is minimized. However,
finding an optimal solution for the bin packing problem is known to be NP-
hard [46]. Therefore, several heuristic algorithms have been developed to solve
the bin packing problem and obtain approximate solutions in a reasonable
time interval. Below, we introduce the most commonly used heuristics [28,46].
∙ First-Fit (FF) algorithm: places an item to the first (i.e., lowest index)

bin that can accommodate the item. If no such bin exists, a new bin is
opened and the item is placed on it.

∙ Best-Fit (BF) algorithm: places an item to a bin that can accommodate
the item and has the minimal remaining capacity after placing the item.
If no such bin exists, a new bin is opened and the item is placed on it.

∙ Worst-Fit (WF) algorithm: places an item to a bin that can accommodate
the item and has the maximal remaining capacity after placing the item.
If no such bin exists, a new bin is opened and the item is placed on it.

28 Chapter 2. Background

The performance of these heuristic algorithms can be improved by sorting
the items according to a certain criteria, such as their size. Then, we obtain
the First-Fit Decreasing (FFD), Best-Fit Decreasing (BFD), and Worst-Fit De-
creasing (WFD) heuristics.

2.3 HRT Scheduling of Acyclic CSDF Graphs

As mentioned in Section 1.3, recently, a scheduling framework, namely, the
Strictly Periodic Scheduling (SPS) framework, has been proposed in [8] which
enables the utilization of many scheduling algorithms from the classical hard
real-time scheduling theory (briefly introduced in Section 2.2) to applications
modeled as acyclic CSDF graphs. The main advantages of these schedul-
ing algorithms are that they provide: 1) temporal isolation and 2) fast, yet
accurate calculation of the minimum number of processors that guarantee
the required performance of an application and mapping of the application’s
tasks on processors. The basic idea behind the SPS framework is to con-
vert a set 𝒜 = {A1, A2, · · · , An} of n actors of a given CSDF graph to a set
Γ = {τ1, τ2, · · · , τn} of n real-time implicit-deadline periodic tasks1. In partic-
ular, for each actor Aj ∈ 𝒜 of the CSDF graph, the SPS framework derives
the parameters, i.e., the period (Tj) and start time (Sj), of the corresponding
real-time periodic task τj = (Cj, Tj, Sj, Dj = Tj) ∈ Γ. The period Ti of task τj
corresponding to actor Aj under the SPS framework can be computed as:

Tj =
lcm(~q)

qj
· s, (2.12)

s ≥ š =
⌈

Ŵ
lcm(~q)

⌉
∈N, (2.13)

where lcm(~q) is the least common multiple of all repetition entries in ~q (ex-
plained in Section 2.1.1), Ŵ = maxAj∈𝒜{Cj · qj} is the maximum actor work-
load of the CSDF graph, and Cj = max1≤φ≤φj{Cj(φ)}, where Cj(φ) includes
both the worst-case computation time and worst-case data communication
time required by a phase φ of actor Aj. Note that Cj(φ) includes the worst-case
data communication time in order to ensure the feasibility of the derived schedule
regardless of the variance of different task allocations. In general, the derived period
vector ~T satisfies the condition:

q1T1 = q2T2 = · · · = qnTn = H (2.14)

1Throughout this thesis, we may use the terms task and actor interchangeably.

2.3. HRT Scheduling of Acyclic CSDF Graphs 29

where H is the iteration period. Once the period of each task has been com-
puted, the throughputℛ of the graph can be computed as:

ℛ =
1

Tout
(2.15)

where Tout is the period of the task corresponding to output actor Aout. Note
that when the scaling factor s = š = ⌈Ŵ/ lcm(~q)⌉, the minimum period (Ťj) is
derived using Equation (2.12) which determines the maximum throughput achievable
by the SPS framework.

Then, to sustain the strictly periodic execution of the tasks corresponding
to actors of the CSDF graph with the periods derived by Equation (2.12), the
earliest start time Sj of each task τj corresponding to actor Aj, such that τj is
never blocked on reading data tokens from any input FIFO channel connected
to it during its periodic execution, is calculated using the following expression:

Sj =

{
0 i f prec(Aj) = ∅
maxAi∈prec(Aj)(Si→j) otherwise,

(2.16)

where prec(Aj) represents the set of predecessor actors of Aj and Si→j is given
by:

Si→j = min
t∈[0,Si+H]

{
t : Prd

[Si ,max{Si ,t}+k)
(Ai, Eu)

≥ Cns
[t,max{Si ,t}+k]

(Aj, Eu), ∀k ∈ [0, H], k ∈N
} (2.17)

where Prd[ts,te)(Ai, Eu) is the total number of tokens produced by a predecessor
actor Ai to channel Eu during the time interval [ts, te) with the assumption that
token production happens as late as possible at the deadline of each invocation
of actor Ai, Cns[ts,te](Aj, Eu) is the total number of tokens consumed by actor
Aj from channel Eu during the time interval [ts, te] with the assumption that
token consumption happens as early as possible at the release time of each
invocation of actor Aj, and Si is the earliest start time of actor Ai.

The authors in [8] also provide a method to calculate the minimum buffer
size needed for each FIFO communication channel and the latency of the
CSDF graph scheduled in a strictly periodic fashion. In this framework, once
the start time of each task has been calculated, the minimum buffer size of
each FIFO communication channel Eu = (Ai, Aj) ∈ ℰ , denoted with bu, is
calculated as follows:

bu = max
k∈[0,H]

{
Prd

[Si ,max(Si ,Sj)+k)
(Ai, Eu)− Cns

[Sj,max(Si ,Sj)+k)
(Aj, Eu)

}
(2.18)

30 Chapter 2. Background

with the assumption that token production happens as early as possible at the
release time of each invocation of actor Ai and token consumption happens
as late as possible at the deadline of each invocation of actor Aj. Indeed, bu is
the maximum number of unconsumed data tokens in channel Eu during the
execution of Ai and Aj in one graph iteration period. Finally, the latency ℒ of
the graph can be calculated as follows:

ℒ = max
w∈W

(Sout + gC
outTout + Dout − (Sin + gP

inTin)) (2.19)

where w is one path of set W which includes all paths in the CSDF graph from
the input actor to the output actor, Sin and Sout are the earliest start times of
the tasks corresponding to the input and output actors, respectively, Tin and
Tout are the periods of the tasks corresponding to the input and output actors,
respectively, Dout is the deadline of the task corresponding to the output actor,
and gC

out and gP
in are two constants which denote the number of invocations the

actor waits for the non-zero production/consumption on/from a path w ∈W.

2.4 HRT Scheduling of MADF Graphs

Based on the proposed MOO protocol for mode transitions, briefly described
in Section 2.1.2, a hard real-time analysis and scheduling framework for the
MADF MoC is proposed in [94] which is an extension of the SPS framework,
briefly described in Section 2.3, developed for CSDF graphs. As explained in
Section 2.3, the key concept of the SPS framework is to derive a periodic task
set representation for a CSDF graph. Since an MADF graph in steady-state
can be considered as a CSDF graph, it is thus straightforward to represent
the steady-state of an MADF graph as a periodic task set (see Section 2.3)
and schedule the resulting task set using any well-known hard real-time
scheduling algorithm.

Using the SPS framework, we can derive the two main parameters for each
task τo

i corresponding to an MADF actor Ai in mode SIo, namely the period
(To

i using Equation (2.12)) and the earliest start time (So
i using Equation (2.16)).

Then, the offset xo→n for mode transition of the MADF graph from mode SIo

to mode SIn can be simply computed using Equation (2.4). For instance, by
applying the SPS framework for graphs G1

1 and G2
1 , shown in Figure 2.2(a) and

2.2(b), corresponding to modes SI1 and SI2 of graph G1 shown in Figure 2.1,
the task set Γ1

1 = {τ1
1 = (C1

1 = 1, T1
1 = 2, S1

1 = 0, D1
1 = T1

1 = 2), τ1
2 =

(4, 4, 2, 4), τ1
3 = (1, 4, 6, 4), τ1

5 = (1, 4, 14, 4)} of four IDP tasks and the task set
Γ2

1 = {τ2
1 = (C2

1 = 1, T2
1 = 4, S2

1 = 0, D2
1 = T2

1 = 4), τ2
2 = (8, 8, 4, 8), τ2

3 =

2.4. HRT Scheduling of MADF Graphs 31

Tasks

τ1

SI1SI2

5 10 15 20 25 30 Time

tMCR

S51

S31

S21

τ2

τ3

τ4

x2→1=6

0
τ5

Figure 2.5: Execution of graph G1 with a mode transition from mode SI2 to mode SI1 under
the MOO protocol and the SPS framework.

(1, 8, 12, 8), τ2
4 = (3, 8, 8, 8), τ2

5 = (1, 4, 20, 4)} of five IDP tasks can be derived,
respectively. An execution of graph G1 with a mode transition from mode SI2

to mode SI1, using the derived task sets Γ1
1 and Γ2

1, is shown in Figure 2.5, where
the offset x2→1 is computed by the following equations (see Equation (2.4)):
S2

1 − S1
1 = 0− 0 = 0, S2

2 − S1
2 = 4− 2 = 2, S2

3 − S1
3 = 12− 6 = 6, S2

5 − S1
5 =

20− 14 = 6, and is max(0, 2, 6, 6) = 6. However, this offset is only the lower
bound because the task allocation on processors is not yet taken into account.
This means, the execution of tasks using the schedule, shown in Figure 2.5, is
valid when each task is allocated on a separate processor.

In a system where multiple tasks are allocated on the same processor, the
processor may be potentially overloaded during mode transitions due to the
presence of executing tasks in both modes. To avoid overloading of processors,
a larger offset may be needed to delay the start time of tasks in the new mode.
In [94], this offset, referred as δo→n, is calculated as follows:

δo→n = min
t∈[xo→n,So

out]
{t : uπj(k) ≤ UB, ∀k ∈ [t, So

out] ∧ ∀πj ∈ Π}. (2.20)

This equation simply tests all time instants when tasks in both modes SIo

and SIn are present in the system and checks whether the processors are
consequently overloaded or not. If yes, the starting time of the new mode SIn,
which already was delayed by xo→n, is further delayed to δo→n. Thus, δo→n of
interest for the mode transition from mode SIo to mode SIn is the minimum
time t in the bounded interval [xo→n, So

out] such that the total utilization does
not exceed the utilization bound (UB), e.g., 1 for EDF, for all remaining time
instants in the interval. To compute the total utilization of all tasks allocated

32 Chapter 2. Background

on processor πj in any time instant k, the following equation is used in [94].

uπj(k) = ∑
τo

i ∈xΓj

(
uo

i − h(k− So
i) · uo

i

)
︸ ︷︷ ︸

uo
πj (k)

+ ∑
τn

i ∈xΓj

(
h(k− Sn

i − t) · un
i

)
︸ ︷︷ ︸

un
πj (k)

(2.21)

In this equation, the terms denoted by uo
πj
(k) and un

πj
(k) refers to the total

utilization of tasks that are allocated on processor πj and are executing in the
current mode SIo and the new mode SIn, respectively, at time instant k. h(t) is
the Heaviside step function.

For instance, consider the execution of the tasks in the schedule, shown
in Figure 2.5, on platform Π = {π1, π2} with two processors and the tasks
allocation 2Γ = {2Γ1 = {τ1, τ3, τ4, τ5}, 2Γ2 = {τ2}}. In this schedule, the
earliest start time of the new mode SI1 is at time instant 14 corresponding to
δ2→1 = x2→1 = 6. Then, the total utilization of processor π1 demanded by the
tasks in the old mode SI2 at time instant 14, i.e., u2

π1
(6), can be computed as

follows using Equation (2.21):

u2
π1
(6) = ∑

τ2
i ∈2Γ1

u2
i − h(6− S2

i) · u2
i , i ∈ {1, 3, 4, 5}

= u2
1 − h(6) · u2

1 + u2
3 − h(−6) · u2

3 + u2
4 − h(−2) · u2

4 + u2
5 − h(−14) · u2

5

= 0 + u2
3 + u2

4 + u2
5 =

1
8
+

3
8
+

1
4
=

3
4

.

Now, releasing task τ1
1 in the new mode SI1 at time 14 would yield

uπ1(6) = u2
π1
(6) + u1

1 =
3
4
+

1
2
> UB = 1,

thereby leading to being unschedulable on processor π1. In this case, the
earliest start times of the new mode SI1 must be delayed by δ2→1 = 8 time
units to time instant 16 as shown in Figure 2.6. At time instant 16, the total
utilization of processor π1 demanded by the tasks in the old mode SI2 is

u2
π1
(8) = ∑

τ2
i ∈2Γ1

u2
i − h(8− S2

i) · u2
i , i ∈ {1, 3, 4, 5}

= u2
1 − h(8) · u2

1 + u2
3 − h(−4) · u2

3 + u2
4 − h(0) · u2

4 + u2
5 − h(−12) · u2

5

= 0 + u2
3 + 0 + u2

5 =
1
8
+

1
4
=

3
8

.

2.4. HRT Scheduling of MADF Graphs 33

Tasks

τ1

SI1SI2

5 10 15 20 25 30 Time

tMCR

S51

S31

S21

τ2

τ3

τ4

x2→1=6

0
τ5

δ2→1=8

35

Figure 2.6: Execution of graph G1 with a mode transition from mode SI2 to mode SI1 under
the MOO protocol and the SPS framework with task allocation on two processors.

Now, releasing task τ1
1 in the new mode SI1 at time instant 16 results in the

total utilization of processor π1 as

uπ1(8) = u2
π1
(8) + u1

1 =
3
8
+

1
2
< 1.

Next, assuming that the new mode SI1 starts at time instant 16, the above proce-
dure should be repeated for the remaining tasks in the new mode SI1, namely
τ1

3 and τ1
5 , to ensure that they can start execution with S1

3 and S1
5, respectively,

without overloading processor π1. Then, if processor π1 is overloaded again,
a larger offset δ2→1 is needed that can be calculated using Equation (2.20).

34 Chapter 2. Background

