
Generalized strictly periodic scheduling analysis, resource optimization,
and implementation of adaptive streaming applications
Niknam, S.

Citation
Niknam, S. (2020, August 25). Generalized strictly periodic scheduling analysis, resource
optimization, and implementation of adaptive streaming applications. Retrieved from
https://hdl.handle.net/1887/135946

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/135946

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/135946

Cover Page

The handle http://hdl.handle.net/1887/135946 holds various files of this Leiden University
dissertation.

Author: Niknam, S.
Title: Generalized strictly periodic scheduling analysis, resource optimization, and
implementation of adaptive streaming applications
Issue Date: 2020-08-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/135946
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 1

Introduction

IN the last few decades, tremendous developments in the field of electronics
have made a significant impact on human lives. Nowadays, electronic

systems have become an inevitable part of our modern-day life. They are
prevalent and exist almost everywhere around us, even sometimes without
noticing their presence, from our smartwatch, cell-phones, tablets to our cars
and home appliances, improving the quality of our life from almost every
aspect. For instance, thanks to the electronics technology, the patients’ health
status, e.g., vital signals such as ECG, EEG, and skin temperature, can be
remotely monitored on a daily basis and accessed by hospital physicians
using wearable health-care monitoring devices to diagnose medical symptoms like
epilepsy or sleep disorders, e.g., e-Glass [77] for detection of epileptic seizures,
while the patients can do their normal activities with no need of staying at
a hospital or using a conventional clinical setting. As another example, we
can refer to advanced driver-assistance systems, supporting vehicle drivers on
the road and improving their safety and comfort. Examples of such systems
include the active cruise control, which autonomously adjusts the distance to
the front car, the collision avoidance, which warns and prompts the driver to
prevent a collision with incoming unexpected obstacles, e.g., a pedestrian, and
if needed autonomously brakes shortly before the collision when the driver is
not responsive to the given warning, the rearview system, which increases the
field of view for the driver, and many others.

In all of the above cases, each electronic system is enclosed into a larger en-
tity like a device, product, or another system for which it provides a dedicated
functionality. These electronic systems are known as embedded systems. Em-
bedded systems are widespread in the world and use 98% of all processors
according to recent studies [36, 48]. The global market for embedded systems

2 Chapter 1. Introduction

was valued over $165 billion in 2015 and it is anticipated to be nearly $260
billion by 2023 [1]. In this market, automotive and health-care embedded
systems have gained the first- and second-largest share due to the increasing
demand for smart vehicles and portable medical devices, respectively [1].

Different from general-purpose systems such as Personal Computers (PC),
embedded systems are application-domain specific because they perform
specific functions tightly coupled with the environment where they operate.
They collect environmental information using sensors, process it, and perform
an action accordingly using actuators. An important class of embedded sys-
tems is embedded streaming systems. Typically, these systems run software
programs, called streaming applications, that process a continuous infinite,
stream of data items coming from the environment. In these applications, data
items in the stream are processed in-order using the same set of operations.
Processing each data item takes a limited time and there is a little control
flow between the operations. As a result, a continuous infinite, stream of data
items are produced and fed into the environment. Examples of streaming
applications include a wide range of applications from different application
domains such as image processing, video/audio processing, network protocol
processing, computer vision, navigation, digital signal processing, and many
others. For instance, a popular streaming application, widely used in our daily
life, on mobile phones, is watching a movie from YouTube. In such applica-
tion, a video stream is continuously being received over the internet using a
software defined radio protocol like WLAN, 3G, or 4G. Simultaneously, video
and audio decoding like MPEG-4 and MP3 are performed on the received
data stream and the decoded video and audio streams are continuously being
played on the screen and speaker, respectively.

1.1 Design Requirements for Embedded Streaming
Systems

In general, embedded systems are subjected to a wide range of strict design
requirements compared to general-purpose systems. Some of these design
requirements are common among all classes of embedded systems, including
embedded streaming systems, while others are dependent on the environment
where the embedded systems are deployed. In this section, we introduce
explicitly the non-functional design requirements, i.e., timing, cost, and energy
efficiency, that are considered in this thesis. Functional requirements, such as
deadlock-free execution, etc., are implicitly considered as well.

For many embedded systems, the timing is a critical design requirement. In

1.1. Design Requirements for Embedded Streaming Systems 3

such systems, the correct behavior depends not only on producing the correct
output but also on whether the output is produced before a deadline. This
timing requirement for the correct behavior of embedded systems is called
a real-time requirement and a system with real-time requirements is called
a real-time system. Regarding the criticality of a failure to satisfy the real-
time requirements, the real-time systems can be classified into the following
categories:

∙ Soft Real-Time (SRT) Systems: not always satisfying the real-time re-
quirements does not lead to a system failure but only degrades the
system performance provided that the deadline misses are within a
certain threshold which the system can tolerate.

∙ Hard Real-Time (HRT) Systems: not always satisfying the real-time
requirements leads to a system failure, which can have catastrophic
consequences in safety- or life-critical systems.

For instance, in a video system which is an example of a SRT system, to watch
a video smoothly through YouTube, a huge amount of data should be received
regularly over the internet and processed in a short period of time. Otherwise,
the video is played slow-motion, blurry, and jerky which greatly degrades the
user experience. In contrast, in a HRT system such as the collision avoidance
system found in a smart car, the collected data from camera and laser sensors
mounted on the car must be processed always within a pre-defined and fixed
time interval, such that the car can detect an incoming obstacle and react in
time to avoid a collision. Otherwise, catastrophic consequences can happen,
e.g., loss of human life. In the case of embedded streaming systems, timing
requirements that are typically considered and guaranteed are throughput
and/or latency. The throughput represents the rate at which the output
is produced by a streaming application, whereas the latency represents the
elapsed time between the arrival of a data item to the application and the
output of the processed data item by the application.

For high-volume embedded systems, especially in consumer electronics,
keeping the cost of a system competitive in mass markets is extremely impor-
tant for survival [57]. Therefore, embedded system designers should make
efficient use of hardware resources (i.e., processors, memories, etc.), either
by reducing the amount of resources needed to implement a required func-
tionality or by utilizing the available resources on a single hardware platform
efficiently by running as many required applications as possible. In the lat-
ter case, different applications may share resources. Such resource sharing,
however, should not affect the timing requirements and guarantees for the
different applications. This property is known as temporal isolation, that is, the

4 Chapter 1. Introduction

ability to start or stop applications at run-time without violating the timing
requirements of other concurrently running applications on a shared hardware
platform.

Usually, embedded systems operate using stand-alone power supply such
as batteries. As frequently replacing/recharging the batteries is not desirable/-
possible for many embedded systems, the energy efficiency is another important
design requirement in order to prolong the operational time of such systems
on a single battery charge.

1.2 Trends in Embedded Streaming Systems Design

At the beginning of this chapter, we have introduced the embedded systems
and explained their importance in our daily life. We have also pointed out,
in Section 1.1, the set of non-functional design requirements for embedded
streaming systems, considered in this thesis. In this section, therefore, we
discuss the current trends in designing embedded streaming systems to satisfy
the aforementioned design requirements.

1.2.1 Multi-Processor System-on-Chip (MPSoC)

Traditionally, embedded (streaming) systems were implemented on top of
uniprocessors for a long period of time. Following the same trend as in
general-purpose systems, the embedded (streaming) systems designers relied
on enhancing the computational power of uniprocessors by scaling up their op-
erational clock frequency as well as employing advanced micro-architectural
innovations, such as pipelining, branch prediction, out-of-order execution,
cache memory hierarchy and others, to satisfy the tight timing requirements,
i.e., high throughput and/or low latency, in streaming applications [41]. This
enhancement of the computational power had been driven by the fast devel-
opment of the technology node which had enabled chip manufacturers to
produce thinner and faster transistors, the fundamental elements in digital
electronic circuits, and made it possible to integrate more and more transis-
tors on a chip, as the result of the Moore’s Law1 coupled with the Dennard
scaling2 [68]. However, by reaching a technology node below 100 nanometers,

1Moore’s Law refers to Moore’s prediction in 1965 that the number of transistors on a chip
doubles every 18 months.

2In 1974, Dennard et al. [30] postulated that the power density in a chip remains roughly
constant by scaling the transistor size from one technology node to another, widely known as
"Dennard Scaling", i.e., the power consumption of transistors scales down as long as their size is
reduced.

1.2. Trends in Embedded Streaming Systems Design 5

the Dennard’s Scaling fails due to the extremely increased leakage power con-
sumption of transistors, i.e., the consumed power caused by currents that leak
through transistors when transistors are idle. In addition, when the size of
transistors decreases, their density increases on a chip resulting in increased
on-chip power density which leads to overheating issues and makes on-chip
thermal hotspots [73]. To avoid the overheating issues, the power consump-
tion of chips is constrained severely with a safe power level, called thermal
design power (TDP), provided by chip manufacturers [59]. To keep the power
consumption within the TDP budget, uniprocessors have to operate at a lower
operational clock frequency instead of the maximum possible frequency [59].
Moreover, the usage of many micro-architectural innovations in uniprocessors
quickly reached the point of diminishing return in performance and increased
design complexity. As a consequence, chip manufacturers were forced to look
for an alternative to the uniprocessor paradigm.

As a solution to enhance the system performance even further while cop-
ing with the aforementioned high power consumption, chip manufacturers
have shifted their design scheme towards multi-processor platforms in order
to effectively utilize the growing number of transistors on a chip. In such
platforms, the issue of increased power consumption has been partially re-
solved by replacing a complex processor running at a high operational voltage
and clock frequency with multiple relatively simpler processors running at
a lower operational voltage and clock frequency. In this way, the system
performance can be enhanced through parallel processing while keeping the
power and complexity under control. Nowadays, due to the advances in
the chip fabrication technology, embedded system designers can integrate
all components, including multiple processors, memories, interconnections,
and other hardware peripherals, necessary for an application into a single
chip, the so-called Multi-Processor System-On-Chip (MPSoC) [44]. Indeed,
MPSoCs are a suitable way of implementing embedded streaming systems as
they can provide high-performance, timing guaranteed, low-cost, compact,
light, and low power/energy products. To further reduce the power/energy
consumption, MPSoC platforms are usually armed with a Voltage and Fre-
quency Scaling (VFS) mechanism [71]. In general, a VFS mechanism trades
performance for power/energy consumption by adjusting the voltage and
operating frequency of processors.

An example of an MPSoC is the Samsung Exynos 5 Octa (5422) [70], shown
in Figure 1.1, which can be found in the Samsung Galaxy S5 mobile phones.
This MPSoC is based on the big.LITTLE architecture [40] and has one cluster
of four performance-efficient ARM Cortex-A15 cores and one cluster of four

6 Chapter 1. Introduction

Cortex-A15 cluster

core0

2GB DRAM

On-chip bus interconnect

core1

core2 core3

2MB L2-Cache

Cortex-A7 cluster

core0 core1

core2 core3

512KB L2-Cache

GPU

ARM
MALI-T628

128KB
L2-Cache

Figure 1.1: Samsung Exynos 5422 MPSoC [70].

energy-efficient Cortex-A7 cores. Additionally, it has the ARM Mali-T628 GPU
containing 6 cores for graphical processing and 2GB DRAM on-chip memory.
All the processors are connected through an on-chip bus interconnect. For
the Cortex-A15 cluster, the frequency can be varied between 200 MHz to
2000 MHz whereas for the Cortex-A7 cluster, it can be varied between 200
MHz to 1400 MHz, with a step of 100 MHz in both clusters. Note that the
voltage is adjusted by the firmware automatically according to pre-set pairs of
voltage-frequency values.

1.2.2 Model-based Design

To satisfy the tight timing requirements of streaming applications (introduced
in Section 1.1), the computational capacity of MPSoC platforms (introduced
in Section 1.2.1) must be efficiently exploited. To facilitate this, streaming
applications must be expressed primarily in a parallel fashion. The common
practice for expressing the parallelism in an application is to use parallel
Models of Computation (MoCs) in which the application is specified, at a
high level of abstraction, as a set of parallel or concurrent tasks with specific
communication and synchronization semantics. In particular, a parallel MoC
defines, in a formal way, the rules by which the tasks of an application compute,
communicate, and synchronize among each other. As a consequence, adopting
MoCs during a design process enables system designers to reason about both
functional and non-functional properties of an application. A design process
which exploits MoCs is called Model-based Design.

In the past three decades, a variety of parallel MoCs have been pro-
posed [43, 53]. This variety enables designers to choose the most suitable

1.2. Trends in Embedded Streaming Systems Design 7

parallel MoCs for the considered application domain. For streaming applica-
tions, that are the main focus of this thesis, dataflow MoCs have been identified
as the most suitable parallel MoCs [88]. Within a dataflow MoC, a streaming
application is modeled as a directed graph, where the graph nodes repre-
sent the application tasks and the graph edges represent data dependencies
among the tasks. Thus, the parallelism is explicitly specified in the model.
In general, dataflow MoCs differ among each other by their expressiveness,
analyzability, and implementation efficiency [86]. The expressiveness of a model
indicates what type of applications the model is capable of modeling and
how compact the model is. The analyzability of a model is determined by the
availability of design-time analysis techniques for checking (non-)functional
requirements of the modeled application, e.g., liveness3, boundedness4, and
throughput/latency, as well as by the computational complexity of the analy-
sis techniques. Finally, the implementation efficiency of a model is influenced
by the complexity of the scheduling problem and the code size of the resulting
schedules. Basically, the expressiveness and analyzability are inversely related,
meaning that, MoCs with high expressiveness exhibit low analyzability, and
vice versa. Similarly, MoCs with high expressiveness generally have lower
implementation efficiency. Therefore, there is no a single MoC which performs
superior among all existing MoCs in all of the three aforementioned criteria.
Consequently, designers have to choose a suitable MoC depending on their
needs. A detailed and complete comparison of different dataflow MoCs is
provided in [86, 93].

In this thesis, we use two well-known dataflow MoCs to specify streaming
applications, namely, Synchronous Data Flow (SDF) [52] and its generaliza-
tion Cyclo-Static Data Flow (CSDF) [16], due to their high analyzability. For
these MoCs, various powerful analysis methods have been developed over the
past two decades to evaluate liveness/boundedness [34], to compute through-
put/latency [9,10,19,35,56,78,82], buffer sizes [9,10,78,85,91], and so on. These
MoCs are mainly suitable and used to specify streaming applications with
static behavior. But, modern streaming applications may exhibit adaptive/dy-
namic behavior at run-time. For example, a computer vision system processes
different parts of an image continuously to obtain information from several
regions of interest depending on the actions taken by the external environ-
ment [94]. To model such adaptive behavior while having a certain degree of

3An application is live if each task of the application can execute infinitely, i.e., no deadlock
occurs.

4An application is bounded if the application can execute infinitely with a bounded amount of
memory needed for communication/synchronization among its tasks, i.e., no buffer overflow
occurs.

8 Chapter 1. Introduction

analyzability, in this thesis, we use a more expressive dataflow MoC, namely,
Mode-Aware Data Flow (MADF) [94], which is proposed and deployed as
an extension of the CSDF MoC, as well. MADF can capture the behavior of
an adaptive streaming application as a collection of different static behaviors,
called modes, which are individually analyzable at design-time. The formal
definitions of the aforementioned dataflow MoCs are given in Chapter 2.

1.3 Two Important Design Challenges

Although dataflow MoCs resolve the problem of explicitly exposing the avail-
able parallelism in an application, two challenges remain, namely, how to
execute the tasks of a dataflow-modeled application spatially, i.e., task map-
ping5, and temporally, i.e., task scheduling, on an MPSoC platform such that all
timing requirements are satisfied while making efficient utilization of avail-
able resources (e.g, processors, memory, energy, etc.) on the platform. More
precisely, the task mapping determines how tasks are distributed among the
processors whereas the task scheduling determines the time periods in which
each task is executed on a processor. These two challenges have been iden-
tified as two of the most urgent design challenges needed to be solved for
implementing embedded systems [58,75]. To address these challenges, several
scheduling policies have been proposed for streaming applications, specified
using dataflow MoCs and executed on MPSoC platforms. For a long period of
time, self-timed scheduling was considered as the most appropriate scheduling
policy for streaming applications [51]. Under self-timed scheduling, a task
executes as soon as possible when its input data is ready. This scheduling policy,
however, has two significant drawbacks: 1) it does not provide temporal iso-
lation (introduced in Section 1.1) among applications concurrently running
on a shared MPSoC platform; 2) it needs a complex design space exploration
(DSE) to determine the minimum number of required processors and the map-
ping of tasks to these processors in an MPSoC platform such that all timing
requirements are satisfied.

In contrast, many scheduling algorithms from the classical hard real-time
scheduling theory for multiprocessors [21, 29] have the following attractive
properties: 1) the minimum number of processors needed to schedule a certain
set of tasks and their mapping on processors can be calculated in a fast, yet
accurate analytical way; 2) temporal isolation among different applications
is guaranteed; 3) fast admission and scheduling decisions for new incoming
applications can be performed at run-time. In these scheduling algorithms,

5Also referred as tasks allocation in the literature. Both are used interchangeably in this thesis.

1.4. Research Questions 9

the tasks of an application are specified using a real-time task model. The most
influential example of such a task model is the periodic real-time task model [54]
in which a task is invoked in a strictly periodic way, with a constant interval
between invocations. Each task invocation has a constant execution time which
must be completed before a certain deadline. These scheduling algorithms,
however, typically assume sets of independent periodic or sporadic tasks. Thus,
such a simple task model is not directly applicable to streaming applications
that have data-dependent tasks.

In recent years, several approaches [8–10, 78, 79] have been proposed to
bridge the gap between the dataflow MoCs that support data-dependent tasks
and the classical hard real-time scheduling theory which mainly considers
independent periodic/sporadic tasks. Using these approaches, the dependent
tasks of an application, specified by an acyclic CSDF graph, can be converted
to a set of real-time periodic tasks. Therefore, this conversion enables the
utilization of many scheduling algorithms from the classical hard real-time
scheduling theory that offer properties such as temporal isolation and fast
calculation of the number of processors needed to guarantee the required per-
formance. Motivated by the above discussion, we use the approach proposed
in [8] as a basis and research driver in this thesis.

1.4 Research Questions

After introducing some important requirements, trends, and challenges in
the design of embedded streaming systems in Section 1.1, Section 1.2, and
Section 1.3, respectively, in this section, we formulate the specific research
questions addressed in this thesis concerning the design of embedded stream-
ing systems. Recall that we consider the scheduling framework proposed
in [8], namely the so-called strictly periodic scheduling (SPS) framework, as
the basis and research driver in this thesis. To easily introduce the research
questions, addressed in this thesis, and the logical connection between them,
a design flow which incorporates the SPS framework, as the main component,
is illustrated in Figure 1.2. The design flow involves three phases, namely,
analysis, resource optimization, and implementation, each of them highlighted
with a different color. The rectangular boxes represent the input(s)/output(s)
to/from each phase of the design flow, whereas the ellipsoid boxes represent
the operations performed in the phases. The dashed lines and boxes denote
the research questions and contributions of this thesis, respectively. In the
following subsections, we shortly explain each phase of the design flow and
introduce the research question belonging to each phase.

10 Chapter 1. Introduction

Acyclic (C)SDF

Cyclic (C)SDF

Analysis Model: MADF MADF HRT Scheduling Analysis

Sets of periodic tasks

Task Scheduling (Ch. 5)

Using FreeRTOS on FPGA in [7]

Using LITMUSRT on Odroid XU4 platform (Ch. 6)

New sets of periodic tasks and
no. processors/memory needs

R
es

ou
rc

e
O

pt
im

iz
at

io
n

An
al

ys
is

Im
pl

em
en

ta
tio

n

 Task Replication (Ch. 4)

 The SPS framework [8]

User Input
(e.g., scheduler, platform,
 throughput requirment)

The GSPS framework
 (Ch. 3)

2
3

4

RQ1?

RQ3?

RQ2(A)?
RQ2(B)?

1

Energy [25,55,80]
No. Processors [23]

Figure 1.2: Overview of the research questions and contributions in this thesis using a design
flow.

1.4.1 Phase 1: Analysis

The input to the first phase of the design flow is an adaptive streaming applica-
tion specified using the MADF MoC [94]. Note that if the application has static
behavior, its MADF specification has only one mode which is specified by a
(C)SDF graph. Then, a HRT scheduling analysis is performed on the (C)SDF
specification of each mode of the application using the SPS framework [8]. The
result of this analysis is a derived set of periodic tasks for each mode of the
application. To verify whether the timing requirements of the application are
satisfied, a HRT analysis for the application execution during mode transitions,
when the application’s behavior is switching from one mode to another one,
is provided in [94].

The SPS framework, however, as mentioned in Section 1.3, only accepts,
as input, streaming applications specified as acyclic CSDF graphs, thereby
enabling the utilization of many scheduling algorithms from classical hard
real-time scheduling theory only for acyclic CSDF graphs. Consequently, these
well-developed hard real-time scheduling algorithms cannot be applied to
many streaming applications that are specified as cyclic CSDF graphs, i.e.,
graphs where the tasks have cyclic data dependencies. Thus, we formulate

1.4. Research Questions 11

the first research question addressed in this thesis as follows.
RQ1: How to apply the hard real-time scheduling theory to streaming

applications, specified as CSDF graphs, with cyclic dependencies?

1.4.2 Phase 2: Resource Optimization

The inputs to the second phase of the design flow are sets of periodic tasks,
derived in the first phase, and some user inputs such as the platform on
which the tasks will execute, the (hard) real-time scheduling algorithm used to
schedule the tasks on the platform, and timing requirements (e.g., throughput).
Then, in this phase, the number of required processors on the platform and
the task mapping for each mode of the application are analytically computed
using the scheduling algorithm, selected by the user, such that all timing
requirements are satisfied. The outputs of this phase are a new derived
sets of periodic tasks along with their task mapping, number of processors
required to satisfy the timing requirements, and the memory needed for data
communication/synchronization among the tasks.

Regarding the design requirements, mentioned in Section 1.1, in this phase,
further improvements can be performed on the tasks mapping and scheduling
to more efficiently utilize the limited resources, i.e., the number of proces-
sors and energy budget, available on the platform. To this end, several task
mapping and scheduling approaches using the SPS framework have been
proposed in [23, 25, 55, 80]. As the computational capacity of the processors is
underutilized under partitioned scheduling algorithms6 due to the capacity
fragmentation issue, i.e., no single processor has sufficient remaining capacity
to schedule any other task in spite of the existence of a total large amount
of unused capacity on the platform, a mapping and scheduling approach
is proposed in [23] to more efficiently exploit the computational capacity of
the processors by allowing only certain tasks to migrate between multiple
processors while the rest of the tasks are statically allocated on the processors.
Although this approach can result in better processor utilization, it increases
the memory needs and latency of the application significantly. Thus, we
formulate the second research question addressed in this thesis as follows.

RQ2(A): How to alleviate the capacity fragmentation issue introduced
by partitioned scheduling algorithms and reduce the number of processors
required for an application with a given throughput requirement while im-
posing less overhead on the memory needs and latency of the application?

6Where periodic tasks of an application are statically mapped on the processors, as intro-
duced in Section 2.2.3 on page 24.

12 Chapter 1. Introduction

To achieve energy efficiency, [25, 55, 80] propose energy-efficient task map-
ping and scheduling approaches using the VFS mechanism mentioned in
Section 1.2.1. The general idea behind these approaches is to efficiently exploit
available idle (i.e., slack) times in the schedule of an application in order to
slow down the execution of running tasks of the application by using the VFS
mechanism to reduce the energy consumption while satisfying the through-
put requirement of the application. By using the SPS framework, however,
only a set of application throughputs can be guaranteed for the application.
Therefore, given a required application throughput that is not in the set of
guaranteed throughputs by the SPS framework, the mapping and schedule
that provide the closest higher throughput to the required one must be selected
from the set. This, however, reduces the amount of slack time in the schedule
of the application that can be potentially exploited using the VFS mechanism
to reduce the energy consumption. Thus, we formulate the third research
question addressed in this thesis as follows.

RQ2(B): How to exploit more slack times in the schedule of an appli-
cation with a given throughput requirement using the VFS mechanism to
achieve more energy efficiency?

1.4.3 Phase 3: Implementation

Finally, the third phase of the design flow, shown in Figure 1.2, is to im-
plement and execute the analyzed application on an MPSoC platform. The
inputs to this phase are the MADF-modeled application, the selected MP-
SoC platform, scheduling algorithm, and timing requirements by the user,
and the sets of periodic tasks derived in the second phase along with their
task mapping, number of required processors, and memory needs for data
communication/synchronization among the tasks. Note that since the SPS
framework converts an application into a set of real-time periodic tasks, the
implementation and execution of the application must be performed on top of
a real-time operating system (RTOS) which provides real-time multiprocessor
scheduling algorithms (e.g., Earliest Deadline First (EDF) or Rate Monotonic
(RM)) needed to schedule the periodic tasks on the MPSoC platform. In this
regard, [7] adopts the FreeRTOS [72], which is an open-source RTOS, and
proposes an implementation and execution approach for static streaming ap-
plications, specified as acyclic (C)SDF graphs, running on a Xilinx FPGA board.
Concerning adaptive streaming applications, modeled and analyzed with the
MADF MoC, however, no attention has been paid so far at this implementa-
tion phase. Thus, we formulate the fourth research question addressed in this
thesis as follows.

1.5. Research Contributions 13

RQ3: How to implement and execute an adaptive streaming application,
modeled and analyzed with the MADF MoC, on an MPSoC platform, such
that the properties of the analyzed model are preserved?

1.5 Research Contributions

To address the research questions, outlined in Section 1.4, this thesis provides
four research contributions represented as the dashed boxes in Figure 1.2. We
summarize these research contributions in the following sub-sections.

1.5.1 Generalized Strictly Periodic Scheduling Framework

To address research question RQ1, we propose a novel scheduling framework,
called Generalized Strictly Periodic Scheduling (GSPS), published in [64]
and presented in Chapter 3, that can handle cyclic (C)SDF graphs. To this
end, we first propose a sufficient test to check for the existence of a strictly
periodic schedule for a streaming application modeled as a cyclic (C)SDF
graph. If a strictly periodic schedule exists for the application, the tasks of the
application are converted to a set of periodic tasks by computing their periods,
deadlines, and earliest start times. As a consequence, this conversion enables
the utilization of many well-developed HRT scheduling algorithms [21, 29] on
streaming applications modeled as cyclic (C)SDF graphs to benefit from the
properties of these algorithms such as HRT guarantees, fast admission control,
temporal isolation, and fast calculation of the number of required processors.
The experimental results, on a set of real-life benchmarks, demonstrate that our
approach can schedule the tasks in an application, modeled as a cyclic CSDF
graph, with guaranteed throughput equal or comparable to the throughput
obtained by existing scheduling approaches while providing HRT guarantees
for every task in the application thereby enabling temporal isolation among
concurrently running tasks/applications on a multi-processor platform.

1.5.2 Algorithm to Find an Alternative Application Task Graph
for Efficient Utilization of Processors

To address research question RQ2(A), we propose a novel algorithm, pub-
lished in [63] and presented in Chapter 4, to find an alternative application
task graph that exposes more parallelism, particularly in the form of data-level
parallelism, while preserving the same application behavior and throughput.
This is needed due to the fact that a given initial application task graph is not

14 Chapter 1. Introduction

the most suitable one for a given MPSoC platform because the application
developers, providing the initial graph, typically focus on realizing certain
application behavior while neglecting the efficient utilization of the avail-
able resources on MPSoC platforms. Therefore, the main innovation in our
proposed algorithm is that by using the unfolding graph transformation, intro-
duced in Section 4.4.1, we propose a method to determine a replication factor
for each task of an application, specified as an acyclic SDF graph, such that
the distribution of the workloads among more parallel tasks, in the obtained
graph after the transformation, results in a better resource utilization, which
can alleviate the capacity fragmentation introduced by partitioned scheduling
algorithms, hence reducing the number of required processors. The experi-
mental results, on a set of real-life streaming applications, demonstrate that
our approach can reduce the minimum number of processors required to
schedule an application while imposing considerably less overhead, i.e., an
average of up to 31.43% and 44.09% less overhead in terms of memory needs
and application latency, respectively, compared to related approaches while
satisfying the same throughput requirement.

1.5.3 Energy-Efficient Periodic Scheduling Approach

To address research question RQ2(B), we propose a novel energy-efficient
periodic scheduling approach, published in [62] and presented in Chapter 5.
In this approach, the execution of an application, specified as a CSDF graph, is
periodically switched at run-time between a few off-line determined energy-
efficient schedules in order to satisfy the application throughput requirement
in a long run. As a result, this approach can reduce the energy consumption
significantly by exploiting slack times in the schedules of the application more
efficiently using a Dynamic VFS (DVFS) mechanism, where multiple voltage
and operating frequencies are selected at design-time for the processors to
be periodically switched at run-time. The experimental results, on a set of
real-life streaming applications, show that our novel scheduling approach can
achieve up to 68% energy reduction depending on the application and the
throughput requirement compared to related approaches.

1.5.4 MADF Implementation and Execution Approach

To address research question RQ3, we propose a generic parallel implementa-
tion and execution approach, published in [65] and presented in Chapter 6,
for adaptive streaming applications, specified and analyzed using the MADF
MoC. Our implementation and execution approach conforms to the analysis

1.6. Thesis Outline 15

model and its operational semantics. We demonstrate our approach using
LITMUSRT [22] which is one of the existing real-time extensions of the Linux
kernel. To show the practical applicability of our parallel implementation and
execution approach and its conformity to the analysis model, we present a
case study where we implement and execute a real-life adaptive streaming
application on the Odroid XU4 platform [66] with LITMUSRT. Odroid XU4
features the MPSoC shown in Figure 1.1.

1.6 Thesis Outline

Below, we give an outline of this thesis, summarizing the contents of the
following chapters.

Chapter 2 presents an overview of the dataflow MoCs considered in
this thesis, some relevant analysis techniques from the hard real-time (HRT)
scheduling theory, and the HRT scheduling analysis of (C)SDF and MADF
graphs. All of these concepts and techniques are necessary to understand the
contributions of this thesis.

Chapter 3 to Chapter 6 contain the main contributions of this thesis. Each
chapter is organized in a self-contained way, meaning that each chapter con-
tains a more specific introduction to the addressed problem, a related work,
the proposed solution approach, an experimental evaluation, and a concluding
discussion.

Chapter 3 presents our novel HRT scheduling framework, called GSPS,
for streaming applications modeled as cyclic (C)SDF graphs. This chapter is
based on our publication [64].

Chapter 4 presents our novel algorithm to optimize the number of pro-
cessors needed for executing streaming applications modeled as acyclic SDF
graphs under partitioned scheduling algorithms. This chapter is based on our
publication [63].

Chapter 5 presents our energy-efficient periodic scheduling approach for
streaming applications modeled as (C)SDF graphs. This chapter is based on
our publication [62].

Chapter 6 presents the final contribution of this thesis, which is our parallel
implementation and execution approach for adaptive streaming applications
modeled as MADF graphs. This chapter is based on our publication [65].

Finally, Chapter 7 ends this thesis by providing a summary of the research
works done in this thesis along with some conclusions.

16 Chapter 1. Introduction

