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Chapter 2. Isotope-labeling strategies for 
solution NMR studies of macromolecular 

assemblies 
 
 
 
 
 
This chapter is based on: 
Zhang, H. & van Ingen, H. Isotope-labeling strategies for solution 
NMR studies of macromolecular assemblies. Current Opinion in 
Structural Biology. 2016 June; 38:75-82. Doi: 
10.1016/j.sbi.2016.05.008.   
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Abstract 

Proteins come together in macromolecular assemblies, recognizing and 
binding to each other through their structures, and operating on their 
substrates through their motions. Detailed characterization of these 
processes is particularly suited to NMR, a high-resolution technique 
sensitive to structure, dynamics, and interactions. Advances in isotope-
labeling have enabled such studies to an ever-increasing range of 
systems. Here we highlight recent applications and bring to the fore the 
range of options to produce labeled proteins and to control the specific 
placement of isotopes. The increased labeling control and affordability, 
together with the possibility to combine strategies will further deepen 
and extend the range of protein assembly investigations. 
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Introduction 

Proper cellular functioning depends critically on networks of 
biomolecular interactions. Proteins at the nodes of these networks 
interact with and operate on other proteins, nucleic acids, and small-
molecule ligands. Thus, understanding protein function at the 
molecular level is a key goal in life sciences research. Structural 
biologists and biochemists pursue this goal by investigating the 
structures, dynamics, and interactions of proteins. The key 
technologies used include crystallography, nuclear magnetic resonance 
spectroscopy (NMR), electron paramagnetic resonance, cryo-electron 
microscopy, and small-angle scattering. NMR has the unique 
advantages that it allows to study proteins and protein interactions at 
atomic resolution, in solution, and that it is exquisitely sensitive to a 
wide range of protein motions. Such studies require the incorporation 
of NMR-active isotopes of nitrogen (15N) and carbon (13C), sometimes 
in combination with deuterium (2H), to allow residue and atom-specific 
interpretation of the NMR spectrum. 
Here, we review recent developments in isotopic labeling strategies in 
solution-state NMR, focusing on the study of macromolecular 
assemblies (Figure 2.1). The size of such complexes and/or the 
complexity of the protein of interest generally require different 
approaches from the conventional uniform [2H,13C,15N]-labeling, 
briefly reviewed below. These strategies require restricted placement 
of isotopes in order to reduce the number of signals, usually in 
combination with deuteration of unwanted signals to enhance 
sensitivity. Here, we review recent progress in and highlight examples 
of selective labeling of methyl-groups, defined protein segments, or 
specific subunits. These strategies are applied separately or in 
combination to achieve high-quality spectra for demanding systems. 
Finally, we review 19F fluorine labeling and isotopic labeling in cell-
free systems, yeasts and insect cells that enable NMR studies of 
challenging eukaryotic proteins. 
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Figure 2.1. Overview of labeling strategies available for the study of 
macromolecular protein assemblies. Schematic overview of (a) different 
expression hosts available to produce isotope-label proteins with 2H, 13C and 15N, 
and (b) different labeling schemes that can be applied. Blue proteins are NMR-
active, isotope-labeled, gray proteins are unlabeled (or deuterated) and NMR-
inactive. Expression in E. coli is compatible with all labeling methods, cell-free 
expression with uniform, methyl-selective, amino-acid selective and segmental 
labeling, yeast-based expression with uniform and methyl-selective labeling, 
insect-cell-based expression with uniform or amino-acid selective and methyl-
selective labeling. Notably, reconstitution of the complex takes place in vivo after 
expression of subunits in LEGO-NMR labeling, whereas the other cases depicted 
in (b) require reconstitution in vitro. 

 

Conventional uniform labelling  

In the typical uniform labeling strategy, proteins are overexpressed by 
manual induction of a suitable T7-based E. coli strain 1, grown in M9 
minimal medium supplemented with 13C-labeled glucose and 15NH4Cl 
as the sole carbon and nitrogen sources, respectively. Proteins larger 
than 20-25 kDa are typically deuterated by using 2H2O (D2O) in the 
cell growth medium instead of 1H2O, optionally combined with the use 
of fully deuterated and 13C-labeled glucose as the carbon source. 
Combining [2H,13C,15N]-labeling and transverse relaxation optimized 
spectroscopy (TROSY 2), allows structural and dynamical 
characterization of proteins in complexes in the 100 kDa size range, 
for recent examples see 3-4, up to 1 MDa 5-6. Additionally, uniform 
labeling is valuable to study individual subunits in the ‘divide-and-
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conquer’ strategy. For single-chain proteins beyond 50 kDa, however, 
the sheer amount of signals complicates the spectra, and assignment 
becomes increasingly difficult. 
In case of large assemblies, simple uniform labeling can be exploited 
to selectively observe highly flexible regions, as is nicely illustrated in 
a recent study on the nucleosome 7. Its histone H3 subunit has a highly 
flexible N-terminal tail that is effectively decoupled from the slow 
overall molecular tumbling of the nucleosome (~220 kDa). Due to the 
large overall size, signals of the rigid part of uniformly [15N,13C]-
labeled H3 are effectively broadened beyond detection, leaving a 
simplified spectrum of N-terminal tail. Using this approach, Stützer et 
al. were able to show that the H3 tail interacts with linker DNA and 
that this reduces the modifiability of the histone tail. 
As an alternative to manual induction, auto-induction media have been 
developed offering overexpression in an unattended manner, better 
reproducibility, and higher levels of soluble protein expression 8. Auto-
induction media are composed of glucose, lactose and glycerol as 
carbon sources, triggering T7-based expression strains to be 
automatically induced by lactose after consuming all glucose present. 
For uniform 13C or 2H-labeling, such media are prohibitively expensive 
due to the need for labeled lactose. Recently, Guthertz and his 
colleagues showed that only the glucose moiety of lactose needs to be 
isotope-labeled, taking advantage of the inability of E. coli BL21 to 
metabolize the galactose moiety 9. Specifically labeled lactose was 
synthesized from unlabeled galactose and 13C or 2H-labeled glucose, 
and used to produce uniformly 13C or 2H-labeled proteins. 
Interestingly, O’Brien et al. proposed a novel method to produce 
deuterated proteins in H2O medium 10. The uniform 2H, 15N, 13C-
labeling is achieved by adding 2H, 15N, 13C labeled nutrients prior to 
IPTG induction in the H2O M9 medium where the unlabeled nutrients 
are exhausted. This approach was optimized to achieve 80% 
deuteration for 2H, 15N uniform labeling, however is less sufficient for 
triple 2H, 15N, 13C labeling, Nevertheless, this approach provides a 
more cost-effective and feasible uniform as well as methyl-specific 
isotope labeling approach for NMR studies.  
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Methyl-TROSY labelling  

The method of choice for the quantitative study of high molecular 
weight systems (> 100 kDa) is the specific labeling of methyl groups 
in a highly deuterated background 11-12. Methyl groups are ideal 
candidates to be specifically isotopic labeled because they are 
abundant, found both in the core and on the surface of protein 
structures 13; they carry three protons, and their symmetry and rapid 
rotation can be exploited to yield intense and well-resolved NMR 
signals 14-15. Originally developed in the Kay lab for Ile-d1, Leu, Val 
methyl groups, this labeling strategy requires perdeuterated proteins, 
into which specific [1H,13C]-labeled methyl groups are introduced 
using deuterated amino acids precursors that only [1H,13C]-labeled on 
the methyl group of interest 16-17. Methyl-labeling has since been 
extended to Ile-g2, Ala, Met, Thr methyl groups 18-22 and is thoroughly 
reviewed in 23.  
Developments during the last 5-6 years have focused on reducing 
overlap and increasing sensitivity of methyl-TROSY spectra by 
independently labeling Leu and Val methyl groups, and extending this 
capability to the stereo-specific labeling of these prochiral methyl 
groups 24. In the original protocol, these methyl groups cannot be 
separated as they originate from a common precursor. Lichtenecker et 
al. developed protocols to selectively label Val or Leu methyl groups 
using custom synthesized Leu precursors 25-26. Selective and stereo-
specific labeling of Val methyl groups was achieved by Mas et al. 
using specifically labeled 2-acetolactate as Leu/Val precursor together 
with addition of perdeuterated Leu in the culture medium to prevent 
conversion of the precursor to labeled Leu 27. In a third approach, the 
culture medium is supplemented with custom synthesized stereo-
specifically labeled Leu and Val amino acids rather than their 
precursors 28. With this approach fully independent labeling of either 
pro-R or pro-S methyl group of either Leu or Val, e.g. pro-R Leu-d1 
with pro-S Val-g2, is possible by proper choice of amino acid 
supplement. The Boisbouvier lab recently developed a protocol where 
Ala-b, Ile-d1, Leu-proS and Val-proS are simultaneously methyl 
labeled, relying on a custom synthesized Ile-precursor to avoid co-
incorporation incompatibility and isotopic scrambling 29. They 
demonstrate the suitability of this scheme to measure methyl-methyl 
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distances for structural studies of high molecular weight systems. A 
different approach was developed by Miyanoiri et al. using 
auxotrophic E.coli strain of which biosynthesis pathways of Ile, Leu 
and Val are blocked to achieve stereo-specific labeling of 13CH3-Ile, -
Val, and -Leu without any amino acid scrambling 30.  
Survey of recent literature shows many great examples of how this 
labeling strategy can generate exciting insights in the structure-
dynamics-function relationship of protein-protein, protein-DNA, and 
protein-small molecule complexes involved in protein folding 31-33, 
regulation of protein expression 34-38, protein signal-transduction 39-40 
and protein secretion 41-43. We highlight here the work from the 
Kalodimos lab on the interaction of the 50 kDa trigger factor (TF) 
chaperone with a 48 kDa unfolded substrate, alkaline phosphatase 
(PhoA) 44. Taking advantage of the modular nature of the PhoA-TF 
complex, Saio et al. were able to show that three TF molecules are 
required to interact with the entire length of PhoA, resulting in a ~200 
kDa complex in solution. Using methyl-group labeled samples as the 
cornerstone in their NMR data collection and analysis, high-resolution 
NOE-based structures were determined for each TF bound to a PhoA 
segment. The resulting structures show how the same substrate-binding 
region in the chaperone engages different hydrophobic stretches of the 
unfolded PhoA. 

Segmental labelling  

Isotope-labeling of selected segments of a protein can greatly reduce 
the complexity of NMR spectra. Labeled and unlabeled protein 
segments are produced separately, and then fused via a thioester-
intermediate to ultimately form a native peptide bond (Figure 2.2a,b). 
Rooted in native chemical ligation where both parts are produced 
synthetically 45, recombinant protein segments are fused using either 
inteins 46-49 or sortase 50. Both methods require a judicious choice of 
the ligation point, typically in a domain-connecting loop.  
Inspired by protein splicing, the intein-based approaches rely on the 
use of internal protein domains (inteins) that can excise themselves 
from a protein in a traceless manner. In expressed protein ligation (EPL 
51-52), the required thioester intermediate is formed after expression of 
the N-terminal protein fused to an intein, allowing subsequent ligation  
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Figure 2.2. General scheme and example of segmental isotope-labeling. 
Schematic overview of (a) intein-based and (b) sortase based protein ligation. (a) 
In expressed protein ligation (EPL, top), expression of the N-terminal protein (N) 
fused to an intein (I), typically Mxe GyrA, results in formation of a thioester due 
to a N to S-acyl shift. Via an in vitro transthioesterification reaction, a highly 
reactive thioester is formed that is attacked by the N-terminal nucleophile, 
typically the thiol of a cysteine, to result in a thioester of N and C-terminal 
fragments (C). After another N to S-acyl shift, a native peptide bond between the 
two segments is formed. In protein trans-splicing (PTS, bottom), the intein, 
typically based on Ssp or Npu, is split in two halves, each fused to either N- or C-
terminal protein segment. The affinity between the split inteins drives reassembly 
of the full, active intein, which subsequently excises itself, ligating the two 
external sequences. (b) Sortase (S) cleaves the C-terminal Gly of the LPXTG-
motif, forming a thioester with the N-terminal protein fragment. Here, the 
nucleophile is the N-terminal Gly of the C-terminal protein. Attack of this Gly on 
the thioester results in ligation of the two protein fragments, restoring the LPXTG 
motif. (c) asparaginyl endopeptidases (AEP) catalyzed protein ligation with the 
reported recognition sequence. (d) Recent work of Rosenzweig et al. 64 on the 580 
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kDa hexameric ClpB chaperone illustrates the dramatic improvement in spectral 
quality in a segmental methyl-selective labeled complex (right) over the uniformly 
methyl-selective labeled complex (left). Color coding of the assembly cartoon as 
in Figure 2.1. Figure adapted from 64 with permission from the authors. 

 
with the C-terminal part (Figure 2.2a). In protein trans-splicing (PTS), 
both parts of the protein are fused to a split intein, and expressed either 
separately, or sequentially from different promoters, to allow 
differential labeling 48, 53. The split intein-fusions are reassembled in 
vitro or in vivo to an active intein that excises itself, resulting in a 
native, fused target protein 53 (Figure 2.2a). Notably, intein activity in 
PTS may depend critically on the protein context and unwanted “cross-
labeling” may occur when splicing is carried out in vivo 54.  
Development in intein-based segmental protein production has focused 
mainly on the identification of better split inteins for PTS 55-57. 
Recently, a highly active and extremely stable split intein was designed 
promising higher yields and increased robustness in PTS 58. In 
addition, generic gene insert was designed containing a split intein, 
termed PTS cassette, to screen split intein insertion sites for any target 
proteins under the control of T7 promoter 59. 
An attractive alternative to intein-based segmental labeling is the in 
vitro ligation approach based on the transpeptidase Sortase A (SrtA) 50, 
in which protein segments are produced with or without isotopic 
labeling, purified separately and ligated in vitro, without risking cross-
labeling contamination. The sortase enzyme recognizes an LPXTG 
motif on the N-terminal segment and catalyzes the formation of a new 
peptide bond with the C-terminal part (Figure 2.2b). To highlight, 
Bobby lab used this powerful method to study ligand-bromodomain 
interaction at high resolution by strategically labelling on the C-
terminal bromodomain whereas the N-terminal bromodomain 
remained unlabeled 60. Recently, the Sattler lab developed a modified 
ligation protocol, addressing the reversibility of sortase reaction 61. 
Using a centrifugal concentrator to continuously remove the cleaved 
glycine and a clever combination of cleavable and non-cleavable 
purification-tags, ligation efficiency for tested proteins (a 32 kDa dual 
RRM-domain protein and the 57 kDa Hsp90 chaperone) was improved 
up to two-fold. 
While EPL, PTS, and SrtA methods have been successfully applied for 
segmental isotope labeling of multidomain proteins, it is more 
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challenging to apply to single domain globular proteins. This is 
because the split fragments of globular proteins are usually insoluble, 
which requires extra refolding steps. To solve this, a new approach 
using asparaginyl endopeptidases (AEP) was proposed 62-63 (Figure 
2.2c). Compared to sortase, AEP recognizes a shorter motif of NGL on 
the N-terminal segment of the protein and leaves a shorter ligation tag 
in the catalyzed protein ligation, which is less likely to disturb the 
solubility of the split fragments. In the demonstrated case of MAP, the 
two fragments were folded and purified before ligated by AEP in vitro. 
This new strategy, in combination with PTS, provides new possibilities 
for production of more complex protein conjugates with various 
biophysical probes.   
Recent work from Rosenzweig et al. on the substrate recognition of the 
580-kDa hexameric ClpB chaperone demonstrates the dramatic 
spectral improvement segmental labeling can offer 64 (Figure 2.2d). 
The N-terminal domain (NTD, 16 kDa) of the ClpB monomer (97 kDa) 
was expressed as an intein-fusion, with methyl-group specific isotope-
labeling, whereas the remainder of ClpB was fully deuterated. The 
ligated, segmentally labeled ClpB monomer was subsequently 
reassembled into its functional hexameric form. The resulting high-
quality methyl-TROSY spectra were used to determine microscopic 
binding affinities of a client protein to two separate sites on ClpB. 
Together with biochemical assays, these results established the NTD 
as a protein aggregate sensor that binds client protein before they are 
shuttled though the ClpB active channel for unfolding. 

LEGO-NMR subunit labelling 

Protein complexes are typically reconstituted in vitro, permitting the 
selective labeling of one or more subunits. This approach may fail for 
complexes for which the individual subunits have poor solubility. The 
LEGO-NMR strategy was recently introduced to overcome this 
problem 65. In a method akin to in vivo PTS, all subunits are co-
expressed in a single E. coli cell from two plasmids, one inducible by 
arabinose with glycerol as carbon source, and the other by IPTG with 
glucose as carbon source. This setup permits the selective labeling of a 
subset of subunits and the in vivo assembly of labeled and unlabeled 
subunits into a functional complex. Mund et al. demonstrated this 
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technique to label, express and generate oligomers (LEGO) on a ~75 
kDa complex, comprised of 7 subunits, which was selectively 
[2H,15N]-labeled on three or single subunits, allowing precise mapping 
of an RNA binding site. Furthermore, compatibility with selective 
methyl-labeling was neatly demonstrated by preparation of a complex 
with selective methyl-labeling of Met in 3 subunits and of Ile-δ1 in the 
remaining 4 subunits. 

Fluorine-labelling 

As an alternative to 1H/15N/13C isotope-labeling, incorporation of 19F 
isotopes can offer a highly sensitive probe of conformational changes, 
dynamics and interactions because of its high abundance, 
gyromagnetic ratio and chemical shift range (for a recent review see 
66). Uniform labeling with fluorinated amino acids analogs is achieved 
using bacterial strains auxotrophic for the substituted amino acid, or 
using the amber-codon approach to achieve site-specific labeling. 
Alternatively, fluorinated tags, such as 3-bromo-1,1,1-
trifluoroacetone, are attached to cysteine-thiol groups or other labile 
groups. Recently, chemical shift sensitivity of CF3 tags has been 
compared to optimize resolution 67. CF3 tags with distinct chemical 
shifts were also used for differential 19F labeling of proteins to study 
individual behavior of each protein in their mixtures 68. Combination 
of paramagnetic and 19F labeling was recently demonstrated to obtain 
precise long-range distance measurements 69. Furthermore, enzymatic 
19F labeling of glutamine side chain carboxamide group by 
transglutaminase was developed to study the drug-protein and protein-
protein interactions, as demonstrated on the complexes of about 100 
kDa 70. The advantages of 19F labeling are nicely illustrated in recent 
studies where the chemical shift sensitivity of 19F was exploited to 
identify different conformational states of GPCRs 71-72 and substrate-
arrestin complexes 73. 

Isotope-labelling in yeast and insect cells 

Expression in E. coli is widely used due to its high-level of protein 
production and cheap growth media. It may fail, however, to produce 
functional recombinant proteins, especially in case they require 
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eukaryotic folding machineries, glycosylation or other post-
translational modifications. Cells from higher organisms, most 
commonly yeasts and baculovirus infected insect cells 74 are 
necessarily used as expression systems to isotope-label these proteins, 
permitting NMR studies of otherwise intractable protein assemblies. 
Expression in yeast is attractive because of the low-cost minimal 
growth medium and relatively high protein expression yields. 
Recently, selective [1H,13C]-labeling of Ile-d1 methyl groups in 
perdeuterated proteins has been described in glucose-controlled 
Kluyveromyces lactis 75 and methanol-controlled Pichia pastoris 75-76. 
The 42 kDa maltose-binding protein was perdeuterated to high levels 
(≥90%) with Ile-d1 labeling efficiency of 45% and 67% for P. pastoris 
and K. lactis, respectively. For both systems, methyl-selective Leu/Val 
labeling was <5%, although significant improvement is possible 
through co-expression of metabolic enzymes or labeled Leu/Val 
supplementation 75.  
Isotope-labeling in insect cells requires the use of labeled amino acids 
as medium-supplement. The associated high costs are raised even 
further for large proteins requiring deuterated amino acids. Recently, 
protocols for cheaper media have been proposed based on custom-
made isotope-labeled yeast extracts, demonstrating the feasibility of 
uniform 15N-labeling 77, and uniform [2H,13C,15N]-labeling 78. Opitz et 
al. achieved >80% 13C/15N incorporation and ~60% deuteration, 
producing samples suitable for triple resonance experiments and 
detailed structural analysis 78. Sitarska and colleagues optimized a 
protocol based on commercially available isotope-labeled algae 
extracts, resulting in triple-labeled proteins with similar efficiency and 
costs compared to the yeast-based method 79.  
Here, we highlight recent studies of solubilized membrane proteins that 
are expressed and isotope-labeled on specific amino acids in insect 
cells 80-85. Nygaard et al. used specific 13C-labeling of Met methyl 
groups to study the conformational heterogeneity of a detergent-GPCR 
complex in diverse ligand-bound states 80. In a subsequent study, the 
GPCR was embedded in lipid bilayer nanodiscs and deuterated up to 
90% using a combination of 2H-labeled algae extracts and 2H-amino 
acids 81. Recently, the Grzsiek lab studied the b1-adrenergic receptor 
GPCR as a 100 kDa detergent-GPCR complex using specific 15N-
labeling of Val residues, resulting in highly quality TROSY spectra 
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where 21 out of 28 possible Val probes could be resolved and assigned 
82. Ligand binding caused chemical shift changes at the opposite end 
of the GPCR, which correlated linearly to the G-protein activation 
efficiency of each ligand, demonstrating an allosteric coupling between 
the extracellular ligand binding site and the intracellular G-protein 
binding site. 

Cell-free isotope-labelling 

The exemplification of cell-free based isotope-labeling is stereo-array 
isotope-labeling (SAIL) where a cocktail of specifically [2H,13C,15N]-
labeled amino acids is used to produce proteins with optimal NMR 
properties 86. The SAIL method takes full advantage of the lack of 
isotope scrambling in cell-free protein synthesis and the smaller 
amounts of amino acid supplementation required, compared to in vivo 
expression. Other advantages of cell-free expression are that it offers 
possibility to express toxic proteins, to improve protein production by 
adjusting the cell-extract with various factors 87, and to produce 
solubilized membrane-proteins without co-purification of endogenous 
lipids 88. 
Recently, three new strategies have been put forward to optimize 
labeling of large proteins in cell-free expression. First, combination of 
cell-free expression with segmental labeling was proposed to generate 
multi-domain proteins with a specific pattern of amino acid labeling 
restricted to each domain 89. This was demonstrated on a two-domain 
protein, where a 15N-Lys labeled intein-fusion was ligated using EPL 
to a [13C,15N]-Lys labeled domain. Second, the high cost of selective 
methyl-group labeling has been reduced greatly, making use of 
hydrolyzed methyl-labeled inclusion bodies derived from E. coli to 
replace commercial labeled amino acids 90. This approach was 
illustrated on an Ile-d1, Val/Leu-proS methyl-labeled eukaryotic 
membrane protein, toxic to E. coli. While this second method still 
relies partially on the cellular expression, the most recent strategy uses 
additional branched chain aminotransferase IlveE to directly convert 
precursors into L-Val and L-Leu (and potentially L-Ile as well) for the 
synthesis of the target protein in cell-free system 91. 

Conclusion  
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Here, we highlighted the increasing range of options regarding 
expression system and labeling strategy that is available for solution 
NMR studies of protein complexes. The availability of affordable 
deuteration and methyl-labeling protocols for non-E. coli based 
expression, as well as the LEGO-NMR approach, widen the 
application window to otherwise intractable systems. Control over the 
restricted placement of isotopes offers an extremely valuable degree of 
flexibility, in particular when both backbone and methyl-TROSY 
spectra are of good quality. The ‘best’ labeling strategy remains case-
dependent: the size and behavior of complex and its subunits, the 
question at hand, and the spectral quality required versus costs and time 
affordable will dictate the strategy chosen. We anticipate that 
especially the combination of labeling strategies, such as segmental 
methyl-labeling, will prove extraordinarily powerful in the dissection 
of the inner workings of Nature’s molecular machines. 
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