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Abstract—This research investigates the potential of using
meta-modeling techniques in the context of robust optimization
namely optimization under uncertainty/noise. A systematic em-
pirical comparison is performed for evaluating and comparing
different meta-modeling techniques for robust optimization. The
experimental setup includes three noise levels, six meta-modeling
algorithms, and six benchmark problems from the continuous
optimization domain, each for three different dimensionalities.
Two robustness definitions: robust regularization and robust
composition, are used in the experiments. The meta-modeling
techniques are evaluated and compared with respect to the model-
ing accuracy and the optimal function values. The results clearly
show that Kriging, Support Vector Machine and Polynomial
regression perform excellently as they achieve high accuracy and
the optimal point on the model landscape is close to the true
optimum of test functions in most cases.

Keywords—meta-modeling, surrogate-assisted optimization, ro-
bust optimization, quality engineering, machine learning

I. INTRODUCTION

U ncertainty is an imperative motif in design optimization.
The classical view on black-box optimization does not

account for these uncertainties. It is important to state that
throughout this paper uncertainty and noise refer to the same
concept, (i.e., unexpected drifts in the optimization setup).
These unexpected drifts can be found in the design and envi-
ronmental parameters, e.g., temperature, stiffness, structural
rigidity etc. as well as in the constraints and objectives.
Accounting for these uncertainties leads to the concept of
robust design optimization aka quality engineering [1]. Re-
cently, many methodologies have been investigated for robust
optimization. Most of these approaches for robust optimization
focus on using direct search methods, in particular evolution
strategies and surrogate-assisted (aka meta-model based) opti-
mization. We believe that while the former has been discussed
at length in the context of robust optimization [2]–[7], the latter
still needs further consideration. In particular, the practical ar-
eas of interest regarding the computational tractability, fidelity
and flexibility of meta-model based optimization need to be
investigated [8]–[10].

Uncertainties and noise comprise one of the most chal-
lenging areas in optimization literature. They are encoun-
tered frequently in real-world optimization problems. These
notions are significant in engineering optimization such as

automobile manufacturing, building construction and steel
production due to the potentially serious impact in case of a
failure. As such, achieving robustness in design optimization
is important. Despite the significance, achieving robustness in
design optimization is challenging. We believe this is due to
the veracity of optimization landscapes, high dimensionality
and the intrinsic complexity of product life cycle. On the
other hand, computational statistics based supervised learning
methods have been successfully employed in Artificial In-
telligence applications in health-care, transportation, banking
and finance, signal processing, multimedia and entertainment.
As such, it is desirable to investigate the suitability of these
methods to help designing robust systems.

For many reasons, incorporating robustness in design opti-
mization is challenging. Firstly, uncertainty has many shapes
and forms [7], [11]. The nature and structure of uncertainty
is often unknown in advance. Secondly, uncertainty has many
sources [7], [11] such as environmental and design parameters,
objectives and constraints. Thus, accounting for all sources of
uncertainty in an accurate fashion is often impossible. Thirdly,
uncertainty modeling and representation is itself quite tedious
and exhaustive. Finally, there is lack of cohesive literature to
minimize the effects of all types of uncertainty and design a
robust system. As such, it is desirable to obtain practically
useful insights to be adopted by engineers to account for the
unexpected changes during optimization.

Early approaches for robust design optimization are based
on Taguchi methods [1], [12] to assess the quality of an
engineering design. In particular, Taguchi postulated a three-
stage robust design optimization which includes system de-
sign, parameter design and tolerance design. Taguchi used
signal to noise ratio (SNR) and mean squared deviation (MSD)
to formulate the objective of quality engineering and while
this work is an important milestone in itself, it comes with
an array of quibbles targeting the efficiency of the mechanism
and the philosophical understanding of SNR and MSD [13]–
[15]. Later theories for robust optimization hinge upon the
so called robust-counterpart approach [16] which incorporates
the robustness in the formulation of the optimization problem.
Robust-counterpart approaches have been employed regularly
in the literature with combinations of mathematical program-
ming techniques and direct search methods. The limitations of



mathematical programming techniques are discernible [11] as
they are not naturally associated with simulation which forms
an important part of the optimization pipeline in engineering
[17]. Also, this family of techniques are hardly flexible and
analytically tractable in most real-world design optimization
tasks. The combination of the robust-counterpart approach
with direct search methods is usually focusing on evolutionary
algorithms only. As such, we believe there is a dire need for
combining the robust-counterpart approach with intelligent,
experience based optimization schemes such as meta-model
based optimization which are easy to model, appraise and
practice.

In this paper, we study sensitivity robustness [18], [19],
i.e., robustness related to the sensitivity w.r.t. noise on the
design parameters. We use six optimization problems. We then
construe three levels of additive noise characterizing small,
medium and big uncertainty during optimization. Furthermore,
to incorporate robustness for the corresponding noisy func-
tions, we choose two robust-counterpart approaches, namely
the robust regularization based on the worst case scenario
and the robust composition, i.e., robustness achieved through
combining the expectation and dispersion of a noisy function.
As a result, we have thirty-six noisy optimization cases due to
three levels of noise and two robust-counterpart approaches.
We study six meta-modeling techniques: Kriging, Support
Vector Machines (SVM), Radial Basis Function Network
(RBFN), Random Forest (RF), K Nearest Neighbors (KNN)
and Elastic net with second order polynomial regression func-
tion (ELN). We perform hyper-parameter optimization of
the corresponding hyper-parameters for all meta-modeling
algorithms, to obtain the best results for each scenario.
Conclusively, we evaluate and compare these meta-modeling
techniques on these test cases and discuss their generality,
reliability, and computational tractability.

The rest of the paper is organized as follows. We present the
idea of robustness in design optimization in section II. This
includes robust counter-part approaches namely the robust
regularization and robust composition discussed in section
II-A and section II-B respectively. Section III provides a brief
introduction to meta-modeling. In section IV, we present the
experimental design for this work. This is followed by results
in section V. Finally, we discuss the logical conclusion of the
paper along-side the future research line in section VI.

II. ROBUSTNESS IN BLACK-BOX OPTIMIZATION

In this work, we consider real-valued black-box optimiza-
tion problems f : S → R, with S ⊆ Rd, where the so-
called feasible region S is specified by inequality constraints
gj(x) ≤ 0 (j ∈ {1, . . . , J}) and equality ones hk(x) = 0
(k ∈ {1, . . . ,K}), x ∈ S . Without loss of generality, the
objective function f is subject to minimization. In most real-
world design optimization tasks, the objective and constraint
functions are non-linear.

One of the key problems in solving the optimization is to
handle the uncertainty, since in practice, the evaluation of
inputs can introduce noises and even the objective function

could be dynamic in time. As an example, environmental
parameters such as pressure, humidity etc. vary unexpectedly
at times. Likewise, design parameters can fluctuate because
of floating point arithmetic, division by zero and quality
compromises which are associated with high precision costs
in manufacturing [11]. Furthermore, the systematic errors are
unavoidable in the modeling of physical processes.

An example of an optimization problem with various
sources of uncertainty is illustrated in figure 1. Uncertainties
in parameters are related with sensitivity robustness [18], [19]
whereas uncertainty in objectives and constraints is strongly
linked with reliability [20], [21] and feasibility robustness
[22]. Parameters in a design optimization problem can be
classified into two types, namely design and environmental
ones. Incorporating robustness in design optimization with
respect to these parameters leads to the concept of sensitivity
robustness. The effect of additive noise δx ∈ Rd in design
parameters of an objective function is formulated in Eq. (1)
where f̃(x) is the noisy counter-part of an arbitrary objective
function f(x).

f̃(x) = f(x + δx) (1)

Additionally, the operational or environmental conditions
fluctuate or are known only to a certain extent. This means
that our existing knowledge about the system is limited. In
the classical optimization setting, environmental conditions
are treated as constants. However, considering the different
phases of the product life cycle that is hardly the case in a
practical application. We thus extend the output dependency
to the environmental variables set C where α ∈ C represents an
individual environmental variable. The effect of such additive
noise δα ∈ R on the output of an objective function is
represented in Eq. (2).

f̃(x;α) = f(x;α+ δα) (2)

In this work, we employ the robust counter-part approach
[16] to achieve robustness. The idea behind the robust counter-
part approach is to reformulate the optimization problem in a
way so as to minimize the effect of parametric uncertainties
δx and δα in Eqs. (1) and (2). Hence, it is important to model
δx and δα to design a robust system. The robust counter-part
approach also requires to reformulate the optimization goal,
i.e., whether to optimize the expected or worst case behavior
of the objective function. Further, the constraint functions are
revised to design a robust counter-part which by definition
includes the robustness w.r.t. parametric imprecision. Finally,
the resulting robust counter-part is substituted in place of the
original problem and solved using any optimization methodol-
ogy of interest. We study two robust counter-part approaches,
namely the robust regularization and robust composition.

A. Robust Regularization

It can be stated without loss of generality that robust
regularization works on the “minimax” principle [23] as
it minimizes the worst output of the noisy function f̃(x).
Given an objective function f(x) to be minimized, this robust
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Fig. 1. An example of a constrained, single-objective design optimization
problem with four common sources of uncertainty (i.e., design and environ-
mental parameters in orange shade rectangles, objective and constraints in
orchid shade rectangles).

counter-part approach first defines a neighbourhood Nε(x)
of design x whose size is determined by the parameter ε
[13]. Then, an upper-bound of f(x) is defined by taking into
account the worst value of design x including neighborhood
Nε(x). Finally, the optimization goal is characterized so as to
minimize this upper bound. The minimum returned by using
this strategy is called “least upper-bound”. Formally, the robust
counter-part R(x) based on robust regularization is defined in
Eq. (3).

R(x) = sup
ξ∈Nε(x)

f(ξ) (3)

The optimization goal then becomes to solve Eq. (3). This
approach is called robust regularization because ε in Eq. (3)
acts as a regularization parameter (i.e., defines the size of the
neighbourhood).

B. Robust Composition

Robust regularization is a theoretically stable strategy to
design systems with sensitivity robustness and has been dis-
cussed in operations research [16]. Different from robust
regularization, engineers can also optimize the expected output
of a noisy function E[f̃(x)] while minimizing the dispersion
(V [f̃(x)])0.5 simultaneously. We refer to it as robust composi-
tion similar to [8]. Robust composition requires the uncertainty
δx be specified in the form of a probability distribution. The
expectation E[f̃(x)] and dispersion (i.e., standard deviation)
(V [f̃(x)])0.5 of the noisy function are combined at each point
x in S to produce a robust scalar output. The optimization
goal thus becomes to find a point x∗ in S which minimizes
this scalar. The robust counter-part with robust composition is
defined in Eq. (4). In this paper, we assume δx ∼ N (0, σ2)
where σ2 depends on the range of parameters and noise level.

minimize R(x) = E[f̃(x)] +
√
V [f̃(x)]

f̃(x) = f(x + δx) (4)

δx ∼ N (0, σ2)

III. META-MODELING IN OPTIMIZATION

The idea of using a simple empirical approximation to
substitute a complex model was proposed as early as 1974

[24]. This line of research was particularly used in structural
optimization [25]–[29] with the name of Response Surface Ap-
proximation. The first attempt to classify such methodologies
based on their accuracy in the context of structural engineering
was made in 1993 [30]. On the other hand, the first significant
attempt to replace a deterministic computer simulation with a
meta-model was presented in [31]. Meta-modeling for robust
design optimization has been investigated in [8], [9], [32]–[35].
For a detailed review of meta-modeling and its applications in
structural engineering, the reader is directed to [8].

The idea behind meta-modeling is to build an empirical
approximation model f̂(x) of an objective function f(x).
The approximation f̂(x) then acts as the meta-model (aka
surrogate-model) of f(x). This abstraction is useful in a variety
of situations. Firstly, it simplifies the task to a great extent
in simulation based modeling and optimization. Secondly, it
provides the engineer with an opportunity to evaluate f(x)
indirectly if the exact computation of f(x) is too costly or
complex. Additionally, it provides the engineer with practically
useful insights. Meta-modeling first evaluates f(x) at several
points of interest (x1, x2, . . . , xN ), e.g., using Latin hyper-cube
sampling, Plackett-Burman [36], Box-Behnken [37] design
etc., and generates the data set of input {x1, x2, . . . , xN} and
output {f(x1), f(x2), . . . , f(xN )} pairs, i.e., sample points
and resulting function values. The data generated can then be
used to build a nonlinear regression model for approximating
the objective function f(x). In principle, any regression based
machine learning methodology (e.g., Kriging, neural networks,
polynomials etc.) may be used. Since no regression model can
perfectly approximate the original function f(x) by means of a
limited number of evaluations, the resulting meta-model f̂(x)
will be relatively inaccurate.

Although meta-modeling is relatively easy to use compared
to classical optimization, it must be carefully designed. Firstly,
selecting the set of points {x1, x2, . . . , xN} to evaluate f(x)
is not straightforward and requires some experience. To this
end, the engineer can take help from design of experiment
methodologies such as Latin hyper-cube sampling, factorial
designs etc. Secondly, the sample size N to evaluate f(x) is
important as well. This is since the engineer is interested to
find a meta-model f̂(x) as good as the original function f(x)
with minimum data i.e., function evaluations. Consequently, in
most applications, the designer must come to a compromise
on the accuracy of meta-model and computational budget.
Additionally, evaluating the accuracy of a meta-model might
have many aspects such as modeling accuracy and quality of
an optimal solution of the problem etc. As such, choosing the
proper criteria to evaluate the meta-model is important.

IV. EXPERIMENTAL SETUP

In this section, we first report the optimization problems
studied for this work. We then move forward to outline
three levels of noise and their effect on the robust counter-
part approach. This refers to the integration of each noise
level with robustness schemes (i.e., robust regularization and
robust composition). Lastly, we describe the meta-modeling



TABLE I
ALL SIX OPTIMIZATION PROBLEMS WITH TEST FUNCTIONS, KEY

LANDSCAPE CHARACTERISTICS, DIMENSIONS, AND BOX CONSTRAINTS.

Function Landscape Dim. Bounds
Ackley Multi-Modal 2 xi ∈ [−32.768, 32.768]
Branin Multi-Global 2 x1 ∈ [−5, 10], x2 ∈ [0, 15]
Ackley Multi-Modal 5 xi ∈ [−32.768, 32.768]
Sphere Isotropic 5 xi ∈ [−5, 5]
Ackley Multi-Modal 10 xi ∈ [−32.768, 32.768]

Rastrigin Multi-Modal 10 xi ∈ [−5.12, 5.12]

techniques and the evaluation criteria to compare the meta-
models.

We choose six optimization problems. Each problem is
uniquely identified based on the choice of test function and
dimensionality D ∈ {2, 5, 10}. We select the test functions
known as Ackley, Branin, Sphere and Rastrigin. Among the
test functions, Branin is only defined for 2D, Sphere for 5D,
Rastrigin for 10D and Ackley is tested for all of these dimen-
sions. This results in six optimization problems. Additionally,
each one of these problems is investigated on three levels of
additive noise (i.e., 5, 10 and 20% noise perturbation) and
two robustness strategies (i.e., robust regularization according
to Eq. (3) and robust composition according to Eq. (4)). All
six optimization problems are presented in Table I, including
the box constraints and key landscape characteristics.

We employ three levels of additive noise δx. The effect
of additive noise in design and environmental parameters has
already been presented in Eq. (1) and Eq. (2) respectively. Let
R = |u− l| be the absolute range of parameters where u and
l serve as the upper and lower limits of design parameters.
Further, let Z be the additive noise level. In the case of
robust regularization, this means having a neighbourhood of
design x whose scale ε is defined by the parameters range
R and noise level Z. As an example, the Ackley function
is defined from l = −32.768 to u = 32.768, having an
absolute range of R = 65.536. Considering the first noise
level, i.e., Z = 5% in Eq. (3), this means the regularization
parameter ε = ZR = 0.05 · 65.536 = 3.2768. Throughout
this paper, we assume the noise is symmetric1, hence a
neighbourhood [−3.2768, 3.2768] of design x is constructed
and Eq. (3) can be solved. In this work, we classify all
parameters as design, however, it is important to note that real-
world engineering applications have additional environmental
parameters which can be modeled in exactly the same way
since Eqs. (1) and (2) prescribe the similar additive noise.

For robust composition in this paper, we employ a normal
distribution N (0, σ2) where the standard deviation σ2 =
ZR/6 and Z and R serve as the noise level and absolute range
of parameters, same as above. Once the noise is specified in
the form of a probability distribution, the robust composition
in Eq. (4) can be solved. Robust composition can be labelled
as probabilistic treatment of uncertainty as opposed to robust

1This assumption is not always realistic and would be focused upon in the
future research with asymmetric noise cases.

regularization which is classified as deterministic treatment of
uncertainty.

We evaluate and compare six machine learning based
meta-modeling techniques: Kriging, Support Vector Machines
(SVM), Radial Basis Function Network (RBFN), Random
Forest (RF), K-Nearest Neighbors (KNN) and Elastic-net with
second order polynomial regression function (ELN) to build a
meta-model of R(x) in Eqs. (3) and (4) for each optimization
problem with three levels of noise. We evaluate the meta-
models on the basis of modeling accuracy and optimal values
of R(x), taking the so-called relative mean absolute error:

RMAE =
1

M

M∑
i=1

100 ·
(
|yi − ŷi|
|yi|

)
(5)

More specifically, in all cases, we train these meta-
modeling techniques on ten different training sample sizes
N ∈ {5D, 10D, 15D, 20D, 25D, 30D, 35D, 40D, 45D, 50D}
and evaluate the resulting meta-model each time on a test
data set with size M = 75D. Here, D are the dimensions
of the problem and N and M serve as the training and test
sample sizes respectively. The sample points {x1, x2, . . . , xN}
and {x1, x2, . . . , xM} to train and test the meta-model are
generated using Latin hyper-cube sampling. Additionally, to
achieve the best results in model training, we perform a
detailed hyper-parameter optimization with cross validation.
Finally, to evaluate the meta-models for accuracy, we choose
% relative mean absolute error (RMAE) as presented in
Eq. (5). In Eq. (5), y and ŷ are arbitrary target and predicted
values respectively whereas M denotes the size of the test
data set. This criterion helps us understand the accuracy and
computational tractability (i.e., modeling accuracy vs compu-
tational budget) of meta-modeling techniques.

The second criterion to evaluate the meta-models is based
on the optimal values of R(x) in Eqs. (3) and (4) found by each
meta-model. To find the optimal values on the meta-models
R̂(x) and the original model R(x), a benchmark optimization
algorithm is run. To this end, the Sequential Least Square
Programming (SLSQP) [38] is chosen as benchmark. This
criterion helps us understand the reliability of meta-models in
practical situations. To evaluate the meta-models on this cri-
terion, each meta-model is first trained using hyper-parameter
optimization on a training sample of N = 50D where D
denotes the dimensions of the problem. An optimization run
with SLSQP is then performed on the trained meta-models to
find the optimal values of R(x). This process is repeated for
100 times, and the mode of the group is chosen as the final
optimal value of the R(x) using the meta-model.

We now move on to discuss the results obtained from this
experimental design.

V. RESULTS

Graphs showing the accuracy of meta-models by varying the
training size, evaluated on the basis of RMAE are presented in
figures 2-7. Standard error (SE) for each RMAE computation
is also presented in the graphs. In particular, figure 2 shows the
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Fig. 2. Modeling accuracy of meta-model techniques on Ackley 2D with three noise levels, two robustness strategies and ten training sample sizes.
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Fig. 3. Modeling accuracy of meta-model techniques on Branin 2D with three noise levels, two robustness strategies and ten training sample sizes.
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Fig. 4. Modeling accuracy of meta-model techniques on Ackley 5D with three noise levels, two robustness strategies and ten training sample sizes.
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Fig. 5. Modeling accuracy of meta-model techniques on Sphere 5D with three noise levels, two robustness strategies and ten training sample sizes.
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Fig. 6. Modeling accuracy of meta-model techniques on Ackley 10D with three noise levels, two robustness strategies and ten training sample sizes.
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Fig. 7. Modeling accuracy of meta-model techniques on Rastrigin 10D with three noise levels, two robustness strategies and ten training sample sizes.



TABLE II
ALL 36 TEST CASES RESULTED FROM THE COMBINATION OF TWO
META-MODELS, THREE LEVELS (NL), TWO ROBUST DEFINITIONS

(ROBUST) AND FOUR FUNCTIONS. IN EACH TEST CASE, WE PICK THE
BEST TWO META-MODELS IN TERMS OF AVERAGE RMAE. GIVEN THE

ALTERNATIVE HYPOTHESIS (Ha), THE MANN WHITNEY U TEST IS
PERFORMED TO CHECK IF THE META-MODEL WITH HIGHEST AVERAGE
ACCURACY IS SIGNIFICANTLY BETTER THAN THE SECOND BEST USING

α = 0.05. THE RESULTING p-VALUES ARE PRESENTED.

Problem Robust NL Ha p-value
Ackley2D RR 5% KNN<SVM 0.425
Ackley2D RR 10% KNN<SVM 0.192
Ackley2D RR 20% KNN<SVM 0.012
Ackley2D RC 5% SVM<KNN 0.153
Ackley2D RC 10% SVM<KNN 0.136
Ackley2D RC 20% SVM<KNN 0.285
Branin2D RR 5% SVM<Kriging 0.395
Branin2D RR 10% Kriging<SVM 0.425
Branin2D RR 20% Kriging<SVM 0.153
Branin2D RC 5% Kriging<SVM 0.425
Branin2D RC 10% Kriging<SVM 0.425
Branin2D RC 20% Kriging<KNN 0.037
Ackley5D RR 5% SVM<ELN 0.010
Ackley5D RR 10% SVM<ELN 0.010
Ackley5D RR 20% SVM<KNN 0.010
Ackley5D RC 5% SVM<ELN 0.0001
Ackley5D RC 10% SVM<ELN 0.0001
Ackley5D RC 20% SVM<ELN 0.0001
Sphere5D RR 5% Kriging<ELN 0.0001
Sphere5D RR 10% Kriging<ELN 0.0001
Sphere5D RR 20% Kriging<ELN 0.0001
Sphere5D RC 5% Kriging<ELN 0.0001
Sphere5D RC 10% Kriging<RBFN 0.0001
Sphere5D RC 20% Kriging<ELN 0.002

Ackley10D RR 5% SVM<ELN 0.012
Ackley10D RR 10% SVM<ELN 0.008
Ackley10D RR 20% SVM<ELN 0.015
Ackley10D RC 5% ELN<SVM 0.285
Ackley10D RC 10% ELN<SVM 0.260
Ackley10D RC 20% ELN<SVM 0.120

Rastrigin10D RR 5% ELN<SVM 0.060
Rastrigin10D RR 10% ELN<SVM 0.060
Rastrigin10D RR 20% ELN<SVM 0.236
Rastrigin10D RC 5% ELN<SVM 0.037
Rastrigin10D RC 10% ELN<SVM 0.192
Rastrigin10D RC 20% ELN<SVM 0.052

results on Ackley 2D. Similarly, figure 3 shows the accuracy
on Branin 2D, figure 4 shows the accuracy on Ackley 5D,
figure 5 presents the results for Sphere 5D, figure 6 presents
the results concerning Ackley 10D and lastly, figure 7 shows
the results on Rastrigin 10D. It is important to state, that for
each optimization case, we select the two best meta-models
based on the measure of lowest RMAE, which is averaged
over all values of training size N . We further perform Mann-
Whitney U test to find if the meta-model with the lowest aver-
age RMAE is significantly better than the other. The resulting
p-values are presented in Table II. In that table, the first col-
umn reads the optimization problem under consideration, the
second column presents the robustness strategies (i.e., RR for
robust regularization and RC for robust composition), the third
column reports the noise-level, the fourth column describes
the two best meta-modeling techniques based on the lowest

TABLE III
THE FREQUENCY OF META-MODELING TECHNIQUES ACHIEVING HIGHEST

ACCURACY (I.E., BASED ON THE VALUE OF LOWEST AVERAGE RMAE)
FOR ALL SIX OPTIMIZATION PROBLEMS IS PRESENTED.

Opt.Problem Kriging SVM RBFN KNN RF ELN
Ackley2D 0/6 4/6 0/6 2/6 0/6 0/6
Branin2D 5/6 1/6 0/6 0/6 0/6 0/6
Ackley5D 0/6 6/6 0/6 0/6 0/6 0/6
Sphere5D 6/6 0/6 0/6 0/6 0/6 0/6

Ackley10D 0/6 3/6 0/6 0/6 0/6 3/6
Rastrigin10D 0/6 0/6 0/6 0/6 0/6 6/6

RMAE (i.e., alternative hypothesis) while the last column
shows the p-value resulting from the Mann-Whitney U test.
The frequencies of meta-modeling techniques achieving the
highest accuracy for all optimization problems are presented
in Table III. This Table follows the similar evaluation criteria
i.e., lowest average RMAE.

The results concerning the optimality of R(x) for all thirty
six cases are presented in Table IV. In this table, the first
column reports the optimization problem, the second column
reads the robustness scheme (i.e., RR for robust regularization
and RC for robust composition), the third column presents
the noise level, the fourth column shows the optimal value of
R(x), and all the next columns depict the optimal values of
R(x) proposed by all the meta-models.

Results from figures 2-7 suggest that robustness schemes
and noise levels do not have much effect on the accu-
racy of meta-models as we mostly observe similar patterns
(i.e., RMAE curves) across rows and columns. Additionally,
these figures depict that the Radial Basis Function Network
(RBFN) has a lot of variance in prediction in all cases.
Furthermore, these figures characterize that setting training
size N = KD generally results in good modeling accuracy.
Here K ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50} is a scalar and
D denotes the dimensions of the test problem. Hence, it can
be observed that computational complexity of meta-models
in this paper is a linear function of D. Table II shows that
Kriging, Support Vector Machines (SVM) and Polynomial
regression (ELN) achieve high accuracy in most test cases.
In particular, Kriging performs well on Branin 2D and Sphere
5D. Polynomial regression (ELN) performs well on all 5D and
10D cases whereas SVM performs excellently in most cases
for all of these dimensions. Table III shows that K-Nearest
Neighbors (KNN) and Random Forest (RF) generally do not
achieve high accuracy compared to other meta-models. Finally,
Table IV shows that meta-models were able to find an optimal
or near optimal solution in most cases except Rastrigin10D.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we evaluate and compare the meta-modeling
techniques for the scenario of robust optimization on a variety
of test cases. The findings suggest the usefulness of meta-
models for robust design optimization. This is because in 8/36
cases reported in Table IV, at least one meta-model technique
achieves the optimal function value i.e., based on mode and



TABLE IV
FINAL OPTIMAL FUNCTION VALUES FOR ALL THIRTY SIX CASES BY THE ORIGINAL MODEL AND ALL THE META-MODELS IS PRESENTED. FOR

OPTIMIZATION, SLSQP [38] IS EMPLOYED ON THE ORIGINAL MODEL AND ALL THE META-MODELS. THE FUNCTION VALUES IN THE TABLE REPRESENT
THE MODE OF 100 RUNS ALONGSIDE THE STANDARD DEVIATION, BOTH ROUNDED OFF TO THE INTEGER REPRESENTATION. THE STARTING VALUE FOR
SLSQP IS RANDOMLY SELECTED FROM LATIN HYPER-CUBE SAMPLING FOR EACH SINGLE RUN. IN EACH CASE, META-MODELS WITH MOST OPTIMAL

FUNCTION VALUES (I.E., BASED ON MODE AND IF TIED, BASED ON STANDARD DEVIATION) ARE HIGHLIGHTED.

Opt.Problem Robustness Noise Level Original-Model Kriging SVM RBFN KNN RF ELN
Ackley2D RR 5% 11± 3 14± 2 22± 3 13± 2 12± 3 14± 2 12± 3
Ackley2D RR 10% 16± 1 17± 1 22± 1 18± 1 17± 1 17± 1 16± 0
Ackley2D RR 20% 20± 0 21± 0 22± 0 21± 0 21± 0 21± 0 21± 0
Ackley2D RC 5% 5± 7 10± 2 22± 7 10± 2 6± 4 10± 2 5± 5
Ackley2D RC 10% 7± 6 10± 2 22± 7 11± 2 7± 4 11± 2 7± 0
Ackley2D RC 20% 10± 5 12± 2 22± 5 12± 2 11± 3 12± 2 10± 0
Branin2D RR 5% 3± 3 6± 64 9± 3 6± 64 6± 52 6± 64 17± 0
Branin2D RR 10% 9± 4 13± 83 16± 3 13± 83 13± 56 13± 83 25± 0
Branin2D RR 20% 20± 0 20± 129 20± 0 20± 146 20± 103 20± 146 106± 0
Branin2D RC 5% 1± 0 1± 52 3± 7 1± 51 2± 43 2± 52 12± 0
Branin2D RC 10% 1± 1 2± 54 4± 6 2± 54 2± 45 2± 54 13± 0
Branin2D RC 20% 3± 3 4± 59 6± 4 4± 45 3± 48 4± 59 15± 0
Ackley5D RR 5% 16± 1 16± 1 12± 1 17± 1 12± 2 17± 1 22± 0
Ackley5D RR 10% 14± 1 16± 1 20± 0 16± 1 14± 1 16± 1 22± 0
Ackley5D RR 20% 16± 1 18± 1 21± 0 18± 1 14± 1 18± 1 22± 0
Ackley5D RC 5% 5± 5 19± 1 12± 2 18± 1 14± 2 19± 1 22± 0
Ackley5D RC 10% 7± 5 19± 1 9± 2 18± 1 14± 2 19± 1 22± 0
Ackley5D RC 20% 10± 4 19± 1 16± 1 22± 3 15± 2 19± 1 22± 0
Sphere5D RR 5% 0± 0 0± 7 0± 0 1± 8 0± 12 7± 19 0± 0
Sphere5D RR 10% 0± 0 0± 8 0± 0 0± 7 1± 12 5± 22 0± 0
Sphere5D RR 20% 0± 0 0± 9 0± 0 1± 16 1± 12 8± 31 0± 0
Sphere5D RC 5% 0± 0 5± 16 0± 0 9± 15 1± 7 9± 18 0± 0
Sphere5D RC 10% 0± 0 9± 16 0± 0 7± 17 1± 8 10± 18 0± 0
Sphere5D RC 20% 1± 0 10± 18 1± 0 10± 17 2± 11 11± 18 1± 0

Ackley10D RR 5% 18± 0 19± 0 8± 0 19± 0 19± 0 19± 0 8± 0
Ackley10D RR 10% 18± 0 20± 0 8± 0 19± 0 15± 1 20± 0 7± 0
Ackley10D RR 20% 19± 0 20± 0 12± 0 19± 0 17± 1 20± 0 22± 0
Ackley10D RC 5% 5± 5 20± 0 8± 0 20± 0 20± 0 20± 0 5± 0
Ackley10D RC 10% 7± 5 20± 0 9± 0 20± 0 20± 0 20± 0 7± 0
Ackley10D RC 20% 10± 5 20± 0 11± 0 21± 0 21± 0 21± 0 10± 0

Rastrigin10D RR 5% 918± 27 1021± 33 1013± 0 1154± 28 975± 41 1020± 34 993± 0
Rastrigin10D RR 10% 923± 28 1024± 40 987± 0 1083± 29 985± 31 1024± 38 996± 0
Rastrigin10D RR 20% 919± 40 1038± 54 952± 0 1033± 50 975± 31 1047± 53 1032± 0
Rastrigin10D RC 5% 946± 23 1020± 29 1034± 0 1164± 14 988± 31 1020± 29 961± 0
Rastrigin10D RC 10% 995± 9 1042± 26 1005± 0 1134± 27 1013± 20 1041± 27 996± 0
Rastrigin10D RC 20% 1003± 12 1058± 24 1045± 0 1041± 23 1023± 25 1064± 25 1055± 0

if tied, based on standard deviation when compared with the
original model. Additionally, in 12/36 cases, at least one meta-
model achieves a better optimal value of the function than
the original model following the similar evaluation criteria. In
most of the remaining cases, at least one technique achieves
near optimal function value when compared with the original
model. From the results, in particular Tables II, III and figures
2-7, the authors conclude that Kriging, SVM and ELN provide
a high modeling accuracy with limited training data in most
cases. Additionally, these techniques find optimal or near
optimal function values compared with the original model in
most cases as presented in Table IV. The findings are a further
validation of Kriging and Polynomial regression (i.e., in re-
sponse surface approximation in structural engineering) as two
of the most accurate meta-modeling techniques. The study also
suggests SVM as a promising and competitive meta-model
technique since it provides the highest modeling accuracy in
most cases i.e., lowest average RMAE in 14/36 as presented
in Table III and proposes near optimal solutions in most 5D

and 10D cases in as shown in Table IV.
Future investigations are necessary to validate these tech-

niques on more complex problems, i.e., multi-objective cases,
higher dimensions, asymmetric noise and real-world engi-
neering case studies etc. Further, it is important to model
multiplicative noise and define other robustness strategies char-
acterizing the practical nature of robust design optimization.
Finally, there is a dire need to produce tutorial based cohesive
work for engineers to adopt the meta-models in practical cases.
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