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Appendix A

Supplementary Results

A large number of experiments was carried out for this thesis, and an even larger
number of result plots was generated for the evaluation of these experiments.
For the sake of readability, only the most relevant plots were shown in the main
part of this thesis. In the following, supplementary plots are provided that also
may be of interest since they provide further insights into the functionality and
performance of the proposed ensemble method.

A.1 N-ary Ensembles on Higher Dimensional Phys-
ical Functions

In Section 4.5 experiments were carried out to compare the ensemble building
method using different adaptations of the ES to each other and all base mod-
els. The results presented were condensed to the relevant information, each time
showing only the results of the best performing base model, to preserve the read-
ability. For the sake of completeness and to prove that no important information
was omitted, in the following, the results for all base models are presented.

Figure A.1 shows the results for the experiments on the otl-circuit function (cf.
Figure A.1a) and on the piston function (cf. Figure A.1b). On these functions,
the ensemble adaptations and the best base model show comparable results and
perform significantly better than the remaining base models, whose performances
are heavily varying.
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(a) Result on the otl-circuit function.

(b) Result on the piston function.

Figure A.1: The plot shows the results of the comparison of the performances,
in terms of RMSE, of the different adaptations of the ensemble building method
and all base models on the otl-circuit function and the piston function. Ensemble
results are colored yellow, the base model result is shown in white. The ensemble
adaptations can compete with the best base model and perform clearly better than
all remaining base models.
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A.1 N-ary Ensembles on Higher Dimensional Physical Functions

(a) Result on the robot function. The ensemble adaptations can compete with
the best base model. Correxp and Corrgauss also show comparable performances,
only slightly weaker than the best base model and the ensemble adaptations. All
remaining base models perform significantly worse.

(b) Result on the wing weight function. The ensemble adaptations belong to the
better performing models.

Figure A.2: The plot shows the results of the comparison of the performances,
in terms of RMSE, of the different adaptations of the ensemble building method
and all base models on the robot function and the wing weight function. Ensemble
results are colored yellow, the base model result is shown in white.
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Remarkable is that despite the large variance in the performances of the base
models, the ensembles show a steady performance with a standard deviation
comparable to or even slightly better than the one of the best base model.

Figure A.2 shows the results for the experiments on the robot function (cf. Fig-
ure A.2a) and on the wing weight function (cf. Figure A.2b).
On the robot function, the ensembles and the best base model again show com-
parable performance. The base models ranked second and third, corrgauss and
correxp, already perform slightly worse and all remaining base models perform
significantly worse than the ensemble adaptations. Like on the otl-circuit func-
tion and the piston function this variance in the performances of the base models
does not influence the good performance of the ensemble.
On the wing weight function, the results are more close; only one base model
performs significantly worse than all ensemble adaptations. Still, the ensembles
are among the best performing models.

In the following, a closer look is taken at the behavior of the different ensemble
approaches. Exemplary plots are shown for the optimization of the weights to find
the best model on the otl-circuit function (cf. Figures A.3 and A.4). The plots
document the development of the weights for each step of the search. Each line
represents a single individual considered during the search, and its color marks
the related search step when the individual was found.

In all of these plots can be seen, that the base models RFMlegp, Esvm, neuralnet
and Tgp did not receive any weight throughout the whole search. This is owed to
the fact that these models failed during the preceding cross-evaluation in at least
one, but rather most or even all of the evaluations. To obtain a reliable ensemble,
models that failed in at least one of the evaluation steps are excluded from the
search for the best weights.

Figure A.3 shows the development of the weights during the optimization using
the additive approaches. The characteristics of these approaches can be easily
read from the plots. The additive approach, which stops after the search stagnates
(cf. Figure A.3a), ends the search after the addition of MLP. Previously added
base models at least gained small weight during the search, but no improvement
could be made with the addition of MLP. As a result, the search stopped.
The additive approach that does not stop on stagnation considered all base mod-
els. The course of the optimization can be read from the plot (cf. Figure A.3b).
The three base models Gauss, Exp and Earth that were part of the search space
from the start on, show nearly the complete range of colors.
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A.1 N-ary Ensembles on Higher Dimensional Physical Functions

(a) Sequential addition with stop on stagnation. After the search stagnates with
the addition of MLP the search is stopped. Therefore, the base models LM, Qrnn
and tree that are ranked lower than MLP are not considered in this search.

(b) Sequential addition without stop on stagnation. All base models are considered.

Figure A.3: The plots document the development of the weights during the op-
timization for the otl-circuit function using the additive approaches. Each line
represents a single individual considered during the search, and its color marks
the related search step when the individual was found, the white line marks the
best weights combination. Though, through the course of the optimization both
approaches consider different individuals, in the end, they agree on similar weight
combinations.
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(a) Restriction of the mutation.

(b) Preselection of models. During the automatized preselection of the base models,
the search space is restricted to the three best-ranked base models.

Figure A.4: The plots document the development of the weights during the op-
timization for the otl-circuit function using the approaches that restrict the search
space and the mutation respectively. Each line represents a single individual con-
sidered during the search, and its color marks the related search step when the
individual was found, the white line marks the best weights combination.
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A.2 The Performance of Dynamical Adapted CCM in SPO

The base models that were added later in the course of the optimization show
only a limited range of colors.
In the end, both approaches agree on similar best weights for the best ensemble
combination.

Figure A.4 shows the development of the weights during the optimization using
the approaches that restrict the considered base models or the mutation respec-
tively. Again, the characteristics of these approaches can be easily read from the
plots.
The approach that restricts the mutation searches the complete search space
throughout the course of the optimization. No structure in the search can be
read from the plot; the course of the search seems random. The final search
result visibly differs from the weight combinations preferred by the additive ap-
proaches although most weight is given to the same base models.
The approach that initially selects a subset of the available base models for opti-
mization using a rule based on the comparison to the mean predictor as described
in Section 4.4.4. Applying this rule, the search is restricted to the base models
Gauss, Exp, and Earth. The search on these base models again leads to similar
weights as already preferred by the additive approaches.

A.2 The Performance of Dynamical Adapted CCM
in SPO

In Section 5.2.5 the CCMs using τ = 1, λ = 10 and τ = 20, λ = 20 respec-
tively were compared to two strong ensemble competitors and all base models.
The results presented were condensed to the relevant information to preserve the
readability. For the sake of completeness, in the following, the complete results
for all base models are given and discussed.

Table A.1 presents these results. Given are the mean and standard deviation for
the results of the optimization processes, best results are marked bold. To allow
for a comparison of the models over the different functions, the mean results are
function-wise ranked, and the average ranking, as well as the final rank for each
model, is given in the two last rows.
Some of the entries show a red ‘N/A’. These entries refer to experimental setups
where the optimization process using the stated model did not succeed in at least
one repetition. Therefore, the related rankings in the two last rows are given in
brackets.
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τ = 1, λ = 10 correxp corrgauss corrspline Earth Lm
ackley2D 2.4957 (±1.931) 7.6620 (±1.465) 2.1552 (±3.055) 3.2729 (±3.189) 5.8966 (±1.853) 3.1309 (±1.741)
ackley4D 6.8503 (±3.179) 11.588 (±1.275) 5.3801 (±3.576) 7.8778 (±4.558) 8.1570 (±1.870) 5.2055 (±1.074)
GLG4D 22.430 (±12.00) 33.021 (±5.766) 21.101 (±13.17) 26.344 (±10.49) 29.465 (±10.19) 32.479 (±9.483)
GLG8D 29.616 (±9.420) 57.321 (±7.660) 28.702 (±11.39) 42.634 (±20.82) 60.226 (±4.488) 56.429 (±6.917)
otl-circuit 2.6055 (±0.002) 2.6542 (±0.034) 2.6553 (±0.070) 2.7007 (±0.070) 2.6039 (±0.000) N/A
piston 0.1667 (±0.003) 0.1708 (±0.002) 0.1709 (±0.005) 0.1750 (±0.011) 0.1670 (±0.001) 0.1761 (±0.011)
robot 0.0132 (±0.020) 0.0552 (±0.027) 0.0309 (±0.015) 0.0756 (±0.044) 0.0253 (±0.022) 0.0169 (±0.036)
rosenbrock4D 2.4138 (±1.522) 288.78 (±300.4) 3.5536 (±2.490) 60.989 (±138.8) 727.23 (±610.5) 70.933 (±63.79)
rosenbrock8D 4127.1 (±2989) 3188.6 (±1474) 6819.3 (±2799) 18887 (±12949) 23688 (±12099) 696.83 (±582.0)
wingweight 182.50 (±13.11) 174.83 (±14.12) 178.91 (±14.44) 181.05 (±6.350) 175.94 (±6.323) 185.10 (±12.82)
AVG RANK 3.6 7.2 4.2 6.95 7.05 (5.7)
RANK 2 11 3 7 10 (5)

τ = 20, λ = 20 MLP Neuralnet RandomForest Tgp tree
ackley2D 1.9344 (±2.041) 0.3425 (±0.694) 7.8315 (±2.263) 2.5598 (±1.198) 1.1200 (±0.522) 5.6125 (±1.443)
ackley4D 6.0215 (±3.242) 9.7943 (±3.098) 15.330 (±2.523) 8.9207 (±1.946) 5.8991 (±1.028) 15.540 (±0.936)
GLG4D 23.576 (±13.02) 25.799 (±10.63) 33.676 (±9.031) 30.801 (±7.160) 21.690 (±12.28) 32.181 (±8.249)
GLG8D 30.335 (±7.166) 48.353 (±7.637) 56.281 (±1.467) 53.407 (±6.857) 59.229 (±6.998) 58.156 (±6.744)
otl-circuit 2.6103 (±0.012) 2.6039 (±0.000) 2.8980 (±0.191) 2.7849 (±0.116) 2.7580 (±0.045) 3.0001 (±0.092)
piston 0.1704 (±0.008) 0.1669 (±0.001) 0.2107 (±0.014) 0.1706 (±0.003) 0.1770 (±0.002) 0.2027 (±0.016)
robot 0.0181 (±0.018) 0.0000 (±0.000) 0.000 (±0.000) 0.0239 (±0.033) 0.06681 (±0.032) 0.0876 (±0.056)
rosenbrock4D 4.1977 (±2.088) 815.76 (±560.3) N/A 253.76 (±212.2) 306.48 (±222.6) 732.86 (±689.9)
rosenbrock8D 3224.2 (±2041) 17994 (±12828) N/A 4705.0 (±2657) 6633.4 (±3569) 23605 (±15191)
wingweight 173.0 (±10.35) 181.99 (±11.02) N/A 184.59 (±12.15) 182.94 (±9.371) 181.05 (±12.88)
AVG RANK 3.4 5.2 (6.65) 7 7 10
RANK 1 4 (6) 8.5 8.5 12

Table A.1: The table displays the results for the main experiment setup. Given
are mean optimization result with standard deviation for the CCMs in comparison
to all base models.

The most important result here is that the two CCMs are ranked first and second,
unlike before, where the CCMs were ranked second and third only. This is owed
to the fact, that in the previous representation for each function only the best
performing base model was considered, and this best base model, though changing
for each function, ranked as one in the overall ranking.
Noteworthy are also the results for the rosenbrock functions. The optimization
results obtained from the different base models and the two ensembles range
between 2.4 and 816 for rosenbrock4D and between 697 and 23688 for rosenbrock
8D. Though the variance in the performances of the different base models is
large, the ensembles showed good performances on both functions; the CCM
using τ = 1, λ = 10 even performed best on the rosenbrock4D function.
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