
Optimally weighted ensembles of surrogate models for sequential
parameter optimization
Echtenbruck, M.M.

Citation
Echtenbruck, M. M. (2020, July 2). Optimally weighted ensembles of surrogate models for
sequential parameter optimization. Retrieved from https://hdl.handle.net/1887/123184

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/123184

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/123184

Cover Page

The handle http://hdl.handle.net/1887/123184 holds various files of this Leiden
University dissertation.

Author: Echtenbruck, M.M.
Title: Optimally weighted ensembles of surrogate models for sequential parameter
optimization
Issue Date: 2020-07-02

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/123184
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 5

Automated Model Selection in
SPO

In Chapter 4 a method was developed that automatically builds an ensemble
from a large set of heterogeneous models by computing an optimally weighted
convex linear combination. It was shown that regarding regression tasks, none
of the possible ensembles could perform worse than the weakest of the available
base models. Moreover, it is possible that an ensemble combination exists that
performs even better, in terms of RMSE, when fitting the regarded data, than
any of the base models. Additionally, a method was supplied to automatically
determine the best performing model from the possible ensemble combinations.
In this chapter, the CCM building method is adapted for the use in SPO. Since
the overarching goal of this thesis is to release the user from the burden to select
the right surrogate model, also and especially in time-consuming optimization
tasks, the driving questions are:

• Can the CCM building method adapted such that it works reliably and
accurately in SPO?

• Can optimized (and dynamically adapted) CCM compete with fixed base
models in SPO?

• How does the CCM approach compete with approaches that dynamically
update the surrogate model selection or apply the same ensemble through-
out the entire optimization process?

• Is it possible to adapt the method such that it performs feasible, in terms

85

5. AUTOMATED MODEL SELECTION IN SPO

of calculation time, despite a large number of models involved?

The CCM already showed good results on regression tasks. A central focus of
this chapter lies on the characteristics of the SPO that come with the sequential
step. Some of these characteristics may be taken advantage of to improve the
algorithm further. Other characteristics make it harder for the CCM to perform
reliably. Possible solutions to approach these difficulties are introduced, analyzed
and incorporated into the ensemble building method. Additionally, the algorithm
is further adjusted such that it functions reliably even if one or more models of
the set fails during the optimization process.

This chapter is structured as follows. In Section 5.1 the CCM method is in-
troduced in detail, and further adaptations needed for the application in SPO
are discussed and implemented. In Section 5.2 the dynamically adapted CCM
method is then thoroughly tested for its performance during sequential parameter
optimization on a large set of diverse objective functions. Also, it is compared to
the base models and two strong ensemble competitors. Finally, the results of the
experiments are presented and discussed.

5.1 Adapting to the Sequential Step

The experiments carried out in Chapter 4 were all regression tasks of a static
nature. A given objective function had to be fitted via a given set of points
generated by a space-filling design. For the evaluation of the fit of the model
to the function, the RMSE was calculated. For a reliable result, the experiment
has been repeated several times without any changes in the experiment setup
besides the positioning of the points of the design that are to a given extent
chosen randomly.

With the step from this static experiment to a sequential experimental setup,
some alterations of the method have to be done to make it work and to ensure it
functions efficiently and reliably.

The most noticeable change that has to be addressed is the fact that in each se-
quential step only one set of data is available for evaluating the models and finding
the best ensemble combination. So instead of running repetitions, the evaluation
is now done in a single 10-fold cross-validation step. The single fitness value
resulting from this evaluation is crucial for the choice of the best ensemble.

The main steps of our proposed CCM building method are presented in Algo-

86

5.1 Adapting to the Sequential Step

rithm 2 which, up to this degree of detail, is self-explanatory. The approach takes
a set of n points that have been evaluated with an expensive black box evaluation
function; they are denoted with (x1, y(x1)), . . . , (xn, y(xn)). Then, it minimizes
the cross-validation error over the set of CCM, thereby performing a parameter
optimization of the model weights over the simplex {α ∈ R|

∑n
i=1 αi = 1, αi ≥ 0}.

Algorithm 2: CCM Ensemble-building using weighted 10-fold cross-validation
Data: Previously evaluated n data-points (x1, y(x1)), . . . , (xn, y(xn));
Result: CCM function ŷ : Rd → R

1: begin
2: For all base models, compute cross-validation on previously evaluated n

data-points;
3: Search for best weights using box-constrained optimization and data

generated in Step 2;
4: Generate ensemble-predictor function ŷ using best weights;

To apply these models in sequential optimization requires several adaptations,
e.g., to adjust the models continuously in the presence of dynamically changing
and non-uniform data sets. Several adaptations will be applied in order to inte-
grate the CCM approach in sequential parameter optimization. These are:

• Periodically rebuilding of models and temporarily suspending models, to
take dynamical updates into account.

• Local density weighted cross-validation, to deal with non-uniform point
distributions.

• Adaptation of (1+1)-ES used for weight optimization, to deal with large
ensemble sets.

Next, these adaptations will be introduced one-by-one before in the next section
further experimental justification of their usefulness is added.

5.1.1 Building Intervals and Suspension of Models

The characteristic of the SPO that is of highest interest for the adaptation of
the presented approach is the steadily expanding dataset. With each step of the

87

5. AUTOMATED MODEL SELECTION IN SPO

optimization additional points are added to the set of known data points D. With
the growth of the set of known points also the knowledge about the underlying
objective function grows. Characteristics about the function that can be read
from the known points may be changing over time, and the ensemble should
adapt to that change. Therefore, it should be beneficial to update the weight
combination over time to adopt the model to features of the objective function
that were not known before.
An additional parameter τ is introduced to the method specifying a fixed number
of steps, such that the proposed CCM building method updates the ensemble
combination in every τ -th step of the optimization.
This parameter controls the ability of the ensemble to adjust itself, in terms of
giving more weight to a more appropriate model during optimization. We suppose
this ability, in general, to be beneficial for the performance of the ensemble but
the choice of the parameter has to be taken carefully. While choosing too large a
value for the parameter reduces the ensembles ability to adapt to changes, it is
not given that an adaptation of the ensemble in every step of the optimization is
still beneficial. Also, the ensemble building process is rather expensive in terms
of computation time. Though in real-world optimization the objective function is
the expensive part, a reasonable calculation time for the model may still be desired
and thus also might be considered when specifying the rebuilding interval.

The computation time of an SPO process when using a CCM not only depends
on the frequency with that the ensemble is rebuilt but also on the number of
models that are part of the set. While a large set of heterogeneous models is in
general desirable, the evaluation of a large set of base models also takes its time.
Moreover, not all models might make a beneficial contribution to the ensemble
at any time of the optimization. We expect only a smaller subset of the models
to be a beneficial contribution to the ensemble, and with the set of known data
steadily growing, this choice of beneficial models may steadily shift. Based on this
assumption the method is adapted to allow for temporary suspension of models
that do not contribute to the ensemble. A possible suspension of a base model is
checked after every CCM building process, whereas re-inclusion of these models
is done every λ-th step of the optimization.

It is obvious that the model building interval τ has a large influence on the
computation time since the majority of the time is needed for the cross-validation.
However, the influence of the suspension interval λ on the calculation time may
vary since it depends on the number of models that are suspended.

These considerations embed the actual CCM building part described in Algo-
rithm 2. In case of the actual step being a λ’s step, all suspended models are

88

5.1 Adapting to the Sequential Step

added to the set again. The CCM building is then started if this is a τ ’s step of
the optimization and at least two models are not suspended. If all but one model
are suspended, this model is the new CCM response.
Potential suspension of models is considered only after completion of the CCM
building process. Models that do not contribute to the ensemble, and therefore
gained no weight in the CCM building process, are suspended.

5.1.2 Local Density Weighted Cross-Validation

The main step of the CCM building is the cross-evaluation that is carried out on
the previously evaluated n data-points to evaluate the fit of the base models (cf.
Algorithm 2, Line 2). This step runs the risk to be the most time-consuming step
of the CCM building method, but it is also a crucial step of the Algorithm since
the whole CCM building process depends on the evaluation of the models that is
done in this step.

Methods to gain control over the computation time were already introduced in
Section 5.1.1. However, additional precautions to ensure a reliable performance
are also introduced in this step. Since the overall goal is to allow for the in-
corporation of a large set of heterogeneous models with characteristics that may
not be known to the user, these models may also show unreasonable calculation
times or do not perform reliably. To encounter such problems models may be
excluded from the set during the optimization process. Models that exceed a pre-
defined time limit, fail or return defective predictions (i.e., NAN1 values) during
the fitting process are immediately excluded from the system.

However, the more critical aspect is the appropriate evaluation and weighting
of the models since also the performance of the CCM depends on it. For the
experiments carried out in Chapter 4 the use of the RMSE lead to good results.
Nonetheless, it has to be considered that for these experiments the experimental
setup was chosen such, that it enables the best circumstances for evaluating the
fit of the models to the objective function consistently over the entire region of
interest by choosing a space filling design for the automatic generation of the
experimental data.

In general, SPO starts the optimization process by evaluating an initial set of
points which are derived from a space filling design. However, it is expected

1NAN is the abbreviation for ‘Not a Number’ which is, in general, return when division by zero
is attempted.

89

5. AUTOMATED MODEL SELECTION IN SPO

that during the progress of an SPO evaluated points will cluster at local optima.
Without taking this into account during cross-validation, we risk putting too
much emphasis on prediction errors close to those local optima, which leads to
over-fitting in these areas.

A possible solution to this problem would be to exclude points from the data set
before evaluation, to ensure an even distribution of the data for cross-validation.
However, for this approach, it would have to be specified how many and which
points have to be excluded from the data set for cross-validation also risking to
exclude important data from the set.
Instead, to overcome the problem, for the evaluation of the overall fit of the
model, we propose to reduce the importance of points that are located in areas
with a very dense neighborhood by weighting their squared errors. Weights are
depending on the density of the close neighborhood, and therefore on the position
of the regarded point. Hence weighting occurs evenly and without harsh steps in
weights between points that are close to each other since they also share parts of
the same neighborhood.

The resulting weighted Root Mean Square Error (wRMSE), which is implemented
as quality indicator, is calculated as follows:

wRMSE =

√√√√ 1

n

n∑
i=1

βi(yi − ŷi)2

The weights βi ∈ [0, 1] that are applied to the prediction errors (yi − ŷi) at the
points xi ∈ Rd, i = 1, . . . , n, are derived from the density of the point’s direct
neighborhood. For the calculation of this density, the k closest neighbors of each
point are utilized.

The density ρi of a point i is then calculated as the median distance to these
neighbours:

ρi = median


√√√√ d∑

j=1

(xji − xjl)
2 | l = 1, . . . , k


Since only points are to be weighted that are located in areas with a dense neigh-
borhood, density values that are exceeding the overall mean density are truncated
to the mean value. This is done to ensure that all points with a neighbourhood
of mean density, or sparser, get full weights in the cross-validation.

In order to obtain the weights βi ∈ [0, 1], the determined density values ρi are
normalized to the [0, 1] range, by computing βi = ρi/max{ρ0, . . . , ρn}. The lower

90

5.1 Adapting to the Sequential Step

bound has not to be taken in account here, since the density values ρj have to be
positive per definition because of the distances used for calculation and it is not
intended to force zero weight on points with the highest density.

Figure 5.1: The plots show the impact of the weighting procedure on the points
at the beginning and the end of an optimization process on a 2D Ackley function.
Points that are colored black are fully taken into account, and lighter blue points
are weighted. The lower row shows the related distribution of weights used. It can
be seen that points near the cluster are rigorously weighted.

Applying these weights to the squared errors of the RMSE during cross-validation
ensures that all points with a neighborhood not denser than the mean-density are

91

5. AUTOMATED MODEL SELECTION IN SPO

considered with full weight and only points located in denser neighborhoods are
weighted according to the density of their neighborhoods.

At the beginning of the SPO, this approach has only a small impact on the weight-
ing of the predictions during cross-validation since initial designs of experiments
preferably are space-filling and as such avoid clustering of points. Only with the
optimization process proceeding points will eventually cluster at local optima.
The denser this clustering will be the higher gets the impact of the weighting
during cross-validation on points located in or near clusters.

Figure 5.1 shows the effect of the weights applied to data points during an se-
quential optimization on a two dimensional Ackley function. The plots belong
to two different steps of the same optimization process. In the left column, the
situation after the first sequential steps of the optimization is shown, only five
additional points were evaluated. In the right column, the situation after the
optimization process has stopped is shown.
In the upper row, the points are depicted; the color indicates the applied weights.
Here a point colored black means no weighting or a full weight of one respectively,
while a blue colored point means that this point was weighted. In the lower row,
the distribution of the weights is shown.
It can be seen that in the early steps of the SPO the weighting has nearly no
impact, some points are only slightly weighted while the majority of the points
get full weight. The histogram in the lower row also confirms this.
In the last step of the SPO altogether 120 points were evaluated and clustering
has taken place in the center of the regarded area. The points that are densely
clustered also are severely weighted, while points that are not located near a
cluster get full recognition for the evaluation. Again, this can be read from the
histogram, which shows that the majority of the points gets full weight, but a
smaller subset of the points is rigorously weighted.

5.1.3 Optimization of the Ensemble Weights

After finishing the cross-validation of the base models, we use a (1+1)-Evolutionary
Strategy (ES) with 1/5th success probability rule for step size adaptation to find
the best ensemble weights (cf. Algorithm 2, Line 3).

In Section 4.4 several adaptations of the algorithm were proposed to ensure that
the method functions properly on large sets of base models. From these adap-
tations, the additional approaches were at an advantage in some cases. The
experiments also proved that a model can make a beneficial contribution to an

92

5.1 Adapting to the Sequential Step

ensemble although a better-ranked model is not able to do. Therefore, in the
experiments carried out in this chapter the adaptation introduced as ‘Additive
ES without stop on stagnation’ (cf. Section 4.4.6) is used. Algorithm 3 depicts
the main steps of the modified (1 + 1)-ES method which are introduced in more
detail in the following.

Algorithm 3: Adapted (1+1)-evolution strategy (ES) with 1/5th success prob-
ability rule for step size adaptation and
Data: Initial population P ⊂ [0, 1]s

Available models av = (av1, · · · , avs) ∈ {0, 1}
Result: Complete population P

1: begin
2: Choose the best individual as the first parent individual ;
3: Specify initial search space (active models) act = (act1, · · · , acts) ∈ {0, 1};
4: Initialize ES max step count Cmax ← 5|act|2 ;
5: Initialize ES step size adaption interval φ← 5|act| ;
6: Initialize ES initial step size σ ← σinit;
7: while Stop criteria not met do
8: if Steps for this level exhausted then
9: Adjust search space;

10: Reset ES step size σ ← σinit ;
11: Adjust ES max step count Cmax ← Cmax + 5s2 ;

12: Generate offspring by perturbation of all active αi with a normal
distribution with standard deviation σ (step size);

13: Evaluate offspring;
14: Select new parent individual by choosing the offspring or the current

parent depending on the objective function value;
15: if Step count is multiple of φ then
16: Adjust step size σ using 1/5th success rule;

The search starts with an initial population P , e.g., the corners of the search
space, representing the active base models and a vector av ∈ {0, 1}s of flags,
where s corresponds to the number of base models in the set, stating which
models are currently suspended (avi = 0) and which models are to be used for

93

5. AUTOMATED MODEL SELECTION IN SPO

this optimization process (avi = 1), and thus defining the search space. For each
base model, all predictions made during cross-validation, as well as each model’s
wRMSE value is known. From these data, any CCM given by a specific weights
combination can be derived.

Due to the incremental data update that is characteristic for sequential optimiza-
tion, the position of the optimal weight combination in the current iteration is
likely to not deviate much from the one obtained in the previous optimization.
Therefore, the previously obtained solution is also added to the initial population
P .

The individual that is used as a starting point for the search is chosen by its fitness
value (Algorithm 3, Line 2). However, the search favors a combination of models
over a single model only if its overall fit in terms of wRMSE is strictly better.
Therefore, the ensemble from the previous optimization step is also chosen only
if strictly better.

To enable the search to handle large sets of base models, the search starts on a
smaller subset of the available models (Algorithm 3, Line 3) and then stage-wise
extends or adjusts the search space throughout the search. Which models are
currently active is specified in an additional vector act ∈ {0, 1}s of flags.
For the initial subset, the base models that are part of the individual chosen as
the starting point are automatically added. If needed, additional base models are
chosen by their fitness values to ensure, that at least three base models are part
of the initial search space.

Then, the remaining parameters for the ES are initialized (Algorithm 3, Line 4-
6). Finally, the main optimization loop is started. This loop is terminated solely
when all available models (avi = 1) were part of the search space, at least for
the length of the stage that they were added in. As mentioned before, the actual
search is performed stagewise, doing restarts with different subsets of models.
With each stage the search space is adjusted, the parameters of the ES are reset
and if needed adjusted to the new search space. For this, the last model added
to the search space is removed again if its addition did not lead to a better solu-
tion. However, the initial three models are never removed from the search space.
Then the best performing model that has not yet been part of the search space is
added. The number of search steps granted for this stage depends on the number
of models that are part of the search space at this stage (|act|). (cf. Algorithm 3,
Lines 9-11).

One offspring is then generated per mutation from the best individual of the

94

5.2 Sequential Optimization Using Dynamic Ensembles

actual population P (cf. Algorithm 3, Line 12). This is done by a random
mutation of the active models’ weights. We assume that the benefit of a model
with a contribution to the ensemble of less than two percent is negligible. Thus
the mutation step of the ES is adopted such that single weights are at least two
percent or zero. This correction is done randomly, so that also when the step size
of the search algorithm is rather small, the weight has a chance to surpass this
barrier.

Next the offspring is evaluated for its fitness (cf. Algorithm 3, Line 13). For this
the prediction of the model is to be evaluated, that is a mixture of the predictions
of the base models. These base model predictions have been previously deter-
mined (cf. Algorithm 2, Line 2) so that the mixture now can be easily calculated.
The offspring individual is chosen as the new parent individual if its fitness value
is better than the parent’s fitness value.

The search is finished when all stages are completed, which means, that all models
that are currently available were part of the search space at least for the duration
of one complete stage.

5.1.4 Building the Ensemble Function

With the completion of the search, the best weights combination for the ensemble
is known. Models that do not contribute to the ensemble (βi = 0) are suspended
for the remainder of the actual suspension interval (avi := 0). All models that
contribute to the ensemble are fitted to the complete data set. With the weights
and the fitted base models an ensemble function, that represents the CCM, is
built and returned (cf. Algorithm 2, Line 4).

5.2 Sequential Optimization Using Dynamic En-
sembles

The necessary adaptations to apply the CCMs, developed in Chapter 4, to se-
quential optimizations were made in Section 5.1.

In this section, the dynamically adapted CCM method is thoroughly tested to
obtain further experimental justification of the usefulness of these adaptations.

95

5. AUTOMATED MODEL SELECTION IN SPO

Furthermore, the questions posed at the introduction of this chapter are to be
addressed as follows:

• To investigate the performance and reliability of the proposed dynamically
adapted CCM method, it is tested in sequential optimization processes on
a large set of diverse objective functions.

• The performance of the CCM is compared to the performance of the base
models to evaluate if the CCM can still compete with the base models in a
sequential optimization process.

• Additionally, the performance of the CCM method is compared to the per-
formance of two strong ensemble approaches that both hold only some of
the features of the CCM method.

• Finally, the CCM method is analyzed for its performance in terms of cal-
culation time.

On each of the functions, several independent complete optimization processes
are carried out using the SPO Framework as introduced in Section 2.2. The
experimental setup for these experiments and the functions used is given in Sec-
tion 5.2.1 and the general setup for the CCM is presented in Section 5.2.2. In
Section 5.2.3, the competitors that the CCM is also compared to is introduced.
Experiments using different settings for the rebuild interval τ and the suspen-
sion interval λ are carried out in Section 5.2.4. The results are discussed with a
special focus on the impact of the settings of these intervals on the performance
and the computation time of the CCM. Finally, the performances of two CCMs
using different settings for τ and λ are compared to the performances of the base
models and the two competitors presented in Section 5.2.3.

5.2.1 Experimental Setup and Objective Functions

To obtain meaningful insights about the performance of the proposed dynami-
cally adapted CCM method it is aimed for a set of functions as diverse as pos-
sible. Therefore, a set of 10 objective functions is chosen, all showing different
characteristics. Part of the set are two Gaussian landscape generator functions
(GLG4D, GLG8D), four instances of two classical test problems for optimiza-
tion algorithms (Ackley2D, Ackley4D, Rosenbrock4D, Rosenbrock8D), and four
test functions based on physical models (piston function, robot arm function,
otl-circuit function, wing weight function) (cf. Section 2.3). The Gaussian land-
scape generator functions are instantiated with 80 Gaussian process realizations

96

5.2 Sequential Optimization Using Dynamic Ensembles

for the four-dimensional GLG function and 320 Gaussian process realizations for
the eight-dimensional GLG function respectively.

Function Dimension Initial Design Size Number Sequential Steps

GLG4D 4 60 100
GLG8D 8 100 220

Ackley2D 2 20 100
Ackley4D 4 60 100
Rosenbrock4D 4 60 100
Rosenbrock8D 8 160 100

Otl-circuit function 6 30 50
Piston function 7 110 50
Robot function 8 110 50
Wing weight function 10 280 100

Table 5.1: Settings used for the experimental setups per function.

Table 5.1 gives an overview of the different experimental setups. The initial
design size used for each function is determined in a preliminary experiment and
depends on the difficulty of the function. As before, the defining criterion is the
share of base models that perform better than the mean predictor.
For all functions, distinct initial designs are generated in advance to ensure that all
experiments have the same precondition. For the GLG functions as well as for the
classical optimization problems 20 repetitions of the experiment are performed,
for the functions based on physical models, ten repetitions are carried out. Each
of the repetitions starts from one of the predefined initial designs.

The initial designs for the Ackley function as well as for the otl-circuit function
contain a smaller number of points since previous experiments showed that the
optimum is reached quite early with few points already. However, for the wing
weight function, the initial design contains 280 data points since the function is
rather hard.

97

5. AUTOMATED MODEL SELECTION IN SPO

5.2.2 Setup of the CCM Building Method

The CCM building algorithm as described in Section 5.1 has a few settings which
have to be considered. Some of these settings are easy to be set to reasonable
values; some of them allow for several options to be negotiable. Table 5.2 gives an
overview of all of these settings and the values chosen for the experiments.

Description Variable Value

Ensemble building interval τ {1, 5, 10, 20}
Base model suspension interval λ {1, 5, 10, 20}
Exclusion time limit - 300s
Number of neighbours considered for den-
sity calculation

k 20

Model-accept weight 2%

Table 5.2: Settings of the CCM building method used in the experiments

The variables τ and λ are crucial for the CCM building method. As stated
before (cf. Section 5.1) these values have a significant influence on the overall
computation time of the CCM method but may also influence the performance
of the CCM. With too large values chosen for τ and λ, the CCM may not be able
to adapt fast enough to changes in the underlying data while too small values
will unnecessarily increase the computation time. The experiments presented
consider a range of different settings for these values.

The algorithm allows setting a fixed time limit for fitting a single predictor during
cross-validation. Models that exceed the preset time limit are excluded from the
system. This ensures reasonable calculation times by enabling the algorithm to
exclude models that need unreasonable long calculation times. However, this
parameter should be chosen carefully since this exclusion is final; models are
not reincluded after the expiration of the suspension interval. Also, it has to
be taken into account that computation time is no quality indicator; sometimes
longer calculation times might be preferable. In our experiments, the exclusion
time limit is set to 300 seconds. This time limit is considered as safety switch
only, in case that a model takes extraordinary much time for fitting and is not
expected to be reached. With this setting, the use of entirely unknown models
may be encouraged.

The number of nearest neighbors that are considered for the density calculation of
the point’s neighborhood is set to 20 points. This is assumed to be large enough

98

5.2 Sequential Optimization Using Dynamic Ensembles

to obtain a reliable value and yet not too large so that the calculation focuses on
the closer neighborhood.

The model-accept weight specifies the minimum weight that a model should have
to be accepted as part of the model. In the experiments presented here this value
is set to 2% since we do not intend to restrict the algorithm more than needed
but consider a weight of less than 2% as negligible.

Description Variable Value

Designated search steps per stage - 10 · s2act
Maximum search steps without improvement - 2

3
(10 · s2act)

Interval for 1
5
-success rate check - 5 · sact

Initial step size σinit 0.4

Minimum step size σmin 0.1

Learning rate (step size variation factor) η 0.9

Table 5.3: Settings of the (1+1)-ES used for searching the best weights

Additional parameters that are used for the (1+1)-ES are specified in Table 5.3.
The learning rate η is chosen in the recommended range [0.817, 1), but slightly
higher than the recommended value of 0.817 to improve exploration. Also, the
other settings follow the recommended settings in Bäck et al. [110]. As mentioned
before (cf. Section 5.1) the search algorithm is adapted stage wise. Some of the
parameters specified here are reset or adjusted with the beginning of every stage.
The designated number of search steps per stage is one of these variables. It
also depends on the number of base models that are part of the search space
in the considered stage of search (sact). However, the search on one stage may
be finished earlier if no progress is made. In the experiments presented here a
stage is been terminated when no progress is made in 2/3 of the total number
of search steps allowed for this stage. If progress is made the model is supposed
to be valuable to the ensemble and is granted the designated amount of search
steps.

In a fixed interval of search steps, the success rate of the search is calculated,
and the search step width is adapted accordingly. The length of this interval also
depends on the number of models that are part of the search space at that time
(sact). The step width of the ES is reset to its initial value with the start of each
stage.

99

5. AUTOMATED MODEL SELECTION IN SPO

5.2.3 Competitors

To investigate the performance of the proposed dynamically adapted CCMmethod
its performance is compared to the performance of the base models as well as to
two ensemble-like approaches. These approaches will hereafter be referred to as
‘Initial’ and ‘Choose’.

‘Initial’ builds the CCM only in the first iteration of SPO (τ = ∞). In case of
failure of one base models during the prediction, this model is excluded from the
ensemble. For this prediction, the weights of the remaining models are adjusted
to keep their relation and fulfill the requirement to sum up to one, despite the
missing model. Additionally, the malfunctioning model is directly and finally
excluded from the set of model choices. The CCM building process is then newly
started in the next step of the SPO. By using this method, we want to get
some insights into the benefits of adjusting the ensemble during the optimization
process.

‘Choose’ selects a single base model in every λ-th iteration of the SPO. This
method also uses the weighted 10-fold cross-validation like the CCM building
method, since in preliminary experiments it showed better performance using
weighted cross-validation than by using the standard cross-validation. However,
in contrast to the CCM building method Choose is restricted to choosing a single
best model only. Thereby we assess the benefits of using mixtures of models
instead of selecting and updating only single base models.

5.2.4 The Impact of Rebuild- and Suspension Intervals

Before turning to the main experiments, some thought should be given on the set-
tings of the values τ and λ. As stated before, these values have a crucial influence
on the computation time of the CCM building method as well as on its predic-
tion performance during sequential optimization. To get some insights into the
impact of these values on the quality of the optimization result, experiments are
run with all reasonable combinations for τ ∈ {1, 5, 10, 20} and λ ∈ {1, 5, 10, 20}.
Settings, where the model suspension interval λ is shorter than the model rebuild
interval τ , are not considered as reasonable since the reactivation of temporarily
suspended models only comes into account during the next model rebuilding pro-
cess. Experiments are run on the complete set of objective functions as presented
in Section 5.2.1.

Table 5.4 gives an overview of the results of these experiments. The table is ar-

100

5.2 Sequential Optimization Using Dynamic Ensembles

τ = 1 λ = 1 λ = 5 λ = 10 λ = 20
ackley2D 4.736 (±1.8360) 3.082 (±2.1987) 2.421 (±2.2847) 1.954 (±2.0943)
ackley4D 8.453 (±2.6557) 7.728 (±3.4242) 6.932 (±3.1568) 6.163 (±3.5904)
GLG4D 21.96 (±11.6650) 21.92 (±11.9038) 24.21 (±11.3581) 23.77 (±11.4260)
GLG8D 30.45 (±8.9146) 28.11 (±11.1735) 26.05 (±9.9418) 26.67 (±11.3850)
otl-circuit 2.621 (±0.050386) 2.605 (±0.002278) 2.605 (±0.001937) 2.605 (±0.001924)
piston 0.1647 (±0.000499) 0.1655 (±0.002251) 0.1676 (±0.004043) 0.1679 (±0.004456)
robot 0.01078 (±0.014679) 0.01592 (±0.020619) 0.01768 (±0.027308) 0.0227 (±0.026355)
rosenbrock4D 2.673 (±1.599095) 2.236 (±1.728283) 2.412 (±1.649369) 2.988 (±1.545986)
rosenbrock8D 4075 (±2482.58) 3684 (±2353.88) 3119 (±1606.20) 4302 (±3218.83)
wingweight 177.7 (±12.7954) 179.6 (±6.154) 176.2 (±13.9320) 178.2 (±16.4675)
Md RankSums 56 46 27.5 45
Mn RankSums 60 43 33 46
Md Rank 5 3 1 2
Mn Rank 6 2 1 3
τ = 5 λ = 5 λ = 10 λ = 20
ackley2D 3.68 (±2.1033) 2.936 (±2.1041) 2.427 (±1.7135)
ackley4D 7.685 (±2.4899) 7.122 (±2.6919) 6.323 (±3.5570)
GLG4D 20.58 (±12.8548) 24.01 (±11.0480) 20.66 (±14.1705)
GLG8D 30.21 (±8.2603) 30.36 (±10.3108) 29.78 (±9.2280)
otl-circuit 2.645 (±0.066244) 2.606 (±0.003172) 2.611 (±0.017736)
piston 0.1692 (±0.005782) 0.1684 (±0.004193) 0.1709 (±0.007741)
robot 0.01772 (±0.027462) 0.02818 (±0.0283594) 0.02828 (±0.024504)
rosenbrock4D 2.452 (±1.600449) 18.95 (±72.166486) 7.898 (±21.774267)
rosenbrock8D 3812 (±1473.23) 3939 (±1807.51) 3895 (±1645.08)
wingweight 173 (±9.1062) 176.3 (±13.1074) 178.9 (±9.8847)
Md RankSums 60 72 62
Mn RankSums 54 65 63
Md Rank 6 10 7
Mn Rank 5 9 7
τ = 10 λ = 10 λ = 20
ackley2D 3.268 (±2.0659) 2.641 (±2.0901)
ackley4D 7.452 (±3.0298) 6.386 (±3.2157)
GLG4D 26.26 (±7.4316) 25.68 (±9.8755)
GLG8D 30.7 (±12.4646) 28.56 (±12.0462)
otl-circuit 2.632 (±0.056935) 2.624 (±0.052627)
piston 0.1672 (±0.003480) 0.1694 (±0.008199)
robot 0.0191 (±0.021059) 0.02285 (±0.020645)
rosenbrock4D 2.66 (±1.941899) 3.005 (±2.081024)
rosenbrock8D 4429 (±2114.36) 4155 (±1879.44)
wingweight 178.8 (±11.0519) 175.9 (±18.6308)
Md RankSums 68 65
Mn RankSums 74 64.5
Md Rank 9 8
Mn Rank 10 8
τ = 20 λ = 20
ackley2D 2.323 (±2.2779)
ackley4D 6.09 (±2.9370)
GLG4D 18.27 (±12.5356)
GLG8D 27.31 (±11.0315)
otl-circuit 2.61 (±0.012475)
piston 0.1693 (±0.006238)
robot 0.0211 (±0.020513)
rosenbrock4D 25.45 (±96.6529205)
rosenbrock8D 4348 (±3245.30)
wingweight 175.9 (±14.9929)
Md RankSums 48.5
Mn RankSums 47.5
Md Rank 4
Mn Rank 4

Table 5.4: Experiment results for the comparison of different settings for τ and
λ. Given is the mean and standard deviation of the optimization results of the
ensemble for each reasonable combination of τ and λ. The two lowest rows give the
ranking results of these runs in comparison. Best results are marked bold.

101

5. AUTOMATED MODEL SELECTION IN SPO

ranged in four major rows; each row gives the results for one value of the model
rebuild interval τ while each column represents one setting for the model suspen-
sion interval λ. Each entry names the mean optimization result with standard
deviation that has been achieved during the optimization processes using the
corresponding CCM. The best values that were achieved on each function are
marked bold. To allow for an evaluation of the methods over the set of functions
with so strongly differing features function wise rankings are used. Although the
result table only names the mean optimization results the median optimization
results also have been ranked. The sums of these ranks are shown in the rows ‘Md
RankSums’ and ‘Mn Ranksums’ respectively. The last two rows of each major
row ‘Md Rank’ and ‘Mn Rank’ only shows the rankings of ‘Md RankSums’ and
‘Mn Ranksums’ respectively.

It can be seen, that the CCM using τ = 1 and λ = 10 is ranking first place for
mean optimization value as well as for median. Looking at the RankSums one
can say that the result is not even tight. Furthermore, the three best-performing
settings can be found in the first major row (τ = 1). Also noteworthy is the fact,
that the model which is ranked fourth, in both mean and median optimization
result, is the CCM using τ = 20 and λ = 20.

Figure 5.2: Average model fitting times during sequential optimization for the
different settings of τ and λ per sequential step. The solid line marks the mean
time while the opaque area shows the standard deviation of the calculation time.
Most time-consuming is the approach using τ = λ = 1 since it is rebuilding the
ensemble on the complete model set in every step. The least time consuming is the
one using τ = λ = 20, which shows a peak in calculation time only in every 20th
step.

However, as mentioned before, these settings do not only have an impact on the

102

5.2 Sequential Optimization Using Dynamic Ensembles

performance of the models but also on its calculation times. Figure 5.2 gives an
insight into the behavior of the different setups.
Three different situations may be encountered during the model fitting step.
These are model rebuild steps where all models are part of the search space,
model rebuild steps where some models are suspended and steps where the model
is not rebuilt.
As expected the steps where the ensemble has to be rebuilt using the complete
set of base models are the most expensive steps, in terms of calculation time.
Whereas the steps where no new ensemble is built are negligible. This behavior
can be easily seen in Figure 5.2, comparing the lines for τ = 1 and λ = 1 versus
τ = 20 and λ = 20. The calculation times per sequential step for the CCM with
τ = 1 and λ = 1 ranges, slowly increasing, between 200 and 600 seconds. Whereas
the CCM with τ = 20 and λ = 20 has calculation times close to zero in most of
the sequential steps, only every 20-th sequential step the ensemble is rebuilt and
the calculation time shows a peak with calculation times corresponding to the
calculation times of the CCM using τ = 1 and λ = 1.

The calculation time needed in such steps, where some models are suspended
from the system, is strongly depending on the number of models that are not
suspended. The line depicting the times for the setting using τ = 1 and λ = 20
shows this. Although the model is built in every step, the calculation time is
negotiable and steadily decreases step by step, as further models are suspended.
In step 20 and step 40 respectively all models are reincluded to the system, which
has a strong impact on the calculation time of this CCM after step 40.

Table 5.5 shows exemplary running times for the same choice of configurations of
λ and τ summed up for an entire optimization process on two different functions.
The configurations where λ is set to the same value as τ are not affected by
the suspension since it is released in the same step as the model is rebuilt, and
therefore in every model building step the full model set is available.

The results suggest that two choices are best, depending on the priorities set. For
one the CCM with τ = 1 and λ = 10 seems to be the best choice when calculation
time has not to be taken into consideration too much. For another, the CCM
with τ = 20 and λ = 20 seems to be a worthwhile choice.
With a setting of τ = 1 and λ = 10, the CCM is rebuilt in every step and thus can
quickly adapt to changes in the underlying data. The suspension interval is large
enough to reduce the calculation time remarkably and small enough to allow for
an adaptation of the active models throughout the optimization process.
Using a CCM with τ = 20 and λ = 20 results in an ensemble, that shows a good
performance while having the best results in terms of calculation time. Though we

103

5. AUTOMATED MODEL SELECTION IN SPO

λ

1 5 10 20

τ

1 17659 (± 4956) 4717 (± 1435) 3763 (± 720) 3068 (± 943)
5 3765 (± 1011) 2464 (± 452) 1782 (± 422)
10 2096 (± 801) 1772 (± 509)
20 1421 (± 432)

Table 5.5: Average computation times (s) for a complete sequential optimization
process on the GLG4D function depending on the values for τ and λ. On the
diagonal, the results for such settings are shown where λ has no influence since it
matches to the value of τ . In these cases, the full set of available models is used in
the ensemble building process. The same applies for combinations of τ and λ where
λ < τ , therefore these fields are left blank.

aim for problem setups with high-cost objective functions where the calculation
time of the model is neglectable, this still might be an interesting choice in some
cases.

Recapitulating it can be said that the choice of the values for τ and λ should be
well considered. The results show that these values have a heavy impact on the
performance of the model in terms of prediction quality as well as computation
time. A smaller value for the model rebuild interval seems to be preferable though
the results show that also larger values can lead to good results (cf. Table 5.4,
τ = 20, λ = 20). However, a smaller value for the suspension interval must not
necessarily lead to better results (cf. Table 5.4, τ = 1, λ = 1). We assume that a
large set of base models still makes it harder to build the best fitting model. So
it might indeed be beneficial to suspend models that are not contributing to the
system for some time. Of course, these values also should be chosen considering
the number of sequential steps that are to be performed.

5.2.5 The Performance of Dynamical Adapted CCM in SPO

In the following, the performance of the CCM in sequential optimization processes
is closer investigated. For these experiments the CCM with τ = 1 and λ = 10
is chosen as well as the CCM using τ = 20 and λ = 20. The ensembles are
compared to the base models as well as to the competitors ‘Choose’ and ‘Initial’
as introduced in Section 5.2.3. Again, experiments are run on the complete set

104

5.2 Sequential Optimization Using Dynamic Ensembles

of objective functions as presented in Section 5.2.1.

Table 5.6 gives an overview of the Results of the experiments. The structure
of the table resembles the structure of Table 5.4 in the previous section. Main
difference is the columns ‘Best Base Model’. Since for the main experiment setup
the chosen CCM methods are compared against ‘Choose’ and ‘Initial’ as well as
all base models that are part of the set, the complete result is condensed to the
relevant information to preserve the readability.

FUN τ = 1, λ = 10 τ = 20, λ = 20 Choose Initial Best Base Model
ackley2D 2.496 (±1.931) 1.934 (±2.041) 5.250 (±2.604) 0.869 (±1.392) 0.343 (±0.694) MLP
ackley4D 6.850 (±3.179) 6.022 (±3.242) 9.189 (±3.182) 4.403 (±3.101) 5.206 (±1.074) Lm
GLG4D 22.43 (±12.00) 23.58 (±13.02) 14.31 (±14.47) 25.07 (±7.83) 21.10 (±13.17) corrgauss
GLG8D 29.62 (±9.42) 30.34 (±7.17) 40.02 (±13.39) 35.31 (±10.42) 28.70 (±11.39) corrgauss
otl-circuit 2.605 (±0.002) 2.610 (±0.0123) 2.695 (±0.080) 2.619 (±0.046) 2.604 (±0.0002) Earth, MLP
piston 0.167 (±0.003) 0.170 (±0.008) 0.172 (±0.004) 0.168 (±0.001) 0.167 (±0.001) MLP
robot 0.013 (±0.020) 0.018 (±0.018) 0.040 (±0.031) 0.021 (±0.022) 0 (±0) MLP, Neuralnet
rosenbrock4D 2.414 (±1.522) 4.198 (±2.088) 2.665 (±1.331) 160.4 (±208.2) 3.554 (±2.490) corrgauss
rosenbrock8D 4127 (±2989) 3224 (±2042) 5755 (±4100) 3171 (±1758) 697 (±582) Lm
wingweight 182.5 (±13.11) 173.0 (±10.35) 180.4 (±15.10) 174.0 (±15.65) 174.8 (±14.12) correxp
Md RankSums 29 27.5 41 32 20.5
Mn RankSums 28 31 42 31 18
Md Rank 3 2 5 4 1
Mn Rank 2 3 5 4 1

Table 5.6: Results for the main experiment setup. Depicted are mean optimization
result with standard deviation. The presentation of the results for the base models
is consolidated to only depict the performance of the best model for each function.

Thus, the column ‘Best Base Model’ names the mean optimization result with
standard deviation and the name of the corresponding base model which per-
formed best on this function. In case that two base models showed the same
performance in terms of mean optimization result, both base models are named
here. For differing performances in terms of standard deviation only, the smaller
standard deviation value is shown. Additionally, the complete results for the com-
parison of the two CCMs to all base models is given in the Appendix A.2.

Inspecting the overall rankings of the models depicted, it can not be denied that
the base model is ranked best. However, it has also to be taken into account,
that the best base model is changing, depending on the objective function. Given
that the most appropriate base model is not known to the user, the next best
choice is the CCM. We assume the better choice to be the CCM with τ = 1 and
λ = 10, but the differences in performance seem to be negligible, at least for these
experiments.

105

5. AUTOMATED MODEL SELECTION IN SPO

(a) Initial

(b) Choose

(c) CCM (τ = 20, λ = 20)

(d) CCM (τ = 1, λ = 10)

Figure 5.3: Distribution of weights during one exemplary sequential optimiza-
tion process on the GLG4D function. ‘Initial’ is forced to use the same ensemble
throughout the whole optimization process, while ‘Choose’ switches to the best
choice in every fifth step. The ensemble (τ = 1, λ = 10) starts with a setup that
resembles the setup of ‘Initial’, but adjusts its weights in the next steps, often giving
large parts of the weight also, but not exclusively, to the model also preferred by
‘Choose’.

106

5.2 Sequential Optimization Using Dynamic Ensembles

Figure 5.3 gives further insights into the behavior of the different types of models.
As introduced in Section 5.2.3, ‘Initial’ builds its ensemble only in the very first
step and then sticks to it. Whereas ‘Choose’ selects the best performing model
every fifth step. Here it can be seen, that the preferred base model chosen by
‘Choose’ switches several times. The two CCM models start with a similar en-
semble as ‘Initial’, but while the CCM with τ = 20 and λ = 20 keeps its setup for
20 steps without changes the CCM with τ = 1 and λ = 10 slightly modifies its
setup in every step. This improved ability to adapt to changes may also explain
the fact, that the distribution of weights resembles more to the choice of ‘Choose’
than the weights distribution of the CCM using τ = 20 and λ = 20.

Figure 5.4: Shown is a boxplot of the calculation times that are needed by the
different models during a complete sequential optimization process on the wing
weight function. Noteworthy is, that on this function ‘Choose’ needs significantly
more time than both ensembles. Also, the calculation times of ‘Initial’ are surpris-
ingly long with an also rather large variance. Therefore, also ‘Initial’ takes more
calculation time than both ensembles, in most cases.

Figures 5.4 and 5.5 give another insight into the calculation times of the differ-
ent models. The times depicted here each represent the calculation times of a
complete optimization process carried out on the wing weight function, the most
expensive function in terms of model calculation time, and on the GLG4D func-
tion respectively. Although the calculation time on this wing weight function
builds an exception, the relation of the calculation times between the different
models is similar on all considered functions.

Remarkable in these results is, that the computational cost needed for the two
competitors ‘Choose’ and ‘Initial’ is not necessarily less than for the two CCM

107

5. AUTOMATED MODEL SELECTION IN SPO

Figure 5.5: Shown is a boxplot of the calculation times that are needed by the
different models during a complete sequential optimization process on the GLG4D
function. Noteworthy is, that ‘Choose’ takes significantly more time than the CCM
using τ = 20 and λ = 20. ‘Initial’ has a large variance in its calculation times but
in most cases performs faster than both ensembles.

instances. On the wing weight function, the computation times for ‘Choose’ are
significantly longer than for both ensembles, while on the GLG4D function it still
performs slower than the CCM using τ = 20 and λ = 20. This may be based on
the fact, that ‘Choose’ performs a cross-validation on the full set of base models
in every fifth step whereas the ensembles use the full set of base models only every
tenth and twentieth step respectively.
The calculation times for ‘Initial’ are surprisingly long, taking into account, that
the cross-validation of the full set of base models is done only in the very first
step of the SPO process. A possible explanation for this might be an unfortunate
choice of base models in the first step. I.e., in most of the twenty repetitions
carried out on the GLG4D function ‘Initial’ chose at least one, sometimes even
more of the slower performing base models. However, this is only an assumption
and requires further investigation.

5.3 Conclusion

The primary goal of this chapter was to adapt the CCM method developed in
Chapter 4 such that it can be applied to SPO and thereby release the user from the
burden to select the right surrogate model, especially in sequential optimization

108

5.3 Conclusion

tasks. As before, it was aimed for a method that in any situation can compete
with the best performing base model. To achieve this, in Section 5.1 several
adjustments were made to the basic CCM method to improve its accuracy, relia-
bility and computation time in sequential optimization processes. In Section 5.2
the dynamically adapted CCM method was thoroughly tested for these virtues
in different setups and compared to the base models as well as to two strong
ensemble competitors.

The results showed that the dynamically adapted CCM performs reliably and, in
terms of accuracy, can compete with the base models as well as the competitors.
It was shown that in most cases a base model showed the best optimization result.
However, in these cases, a CCM was placed second in general. Moreover, though
the ‘BestBaseModel’ was ranked first in the overall evaluation, it has to be taken
into account that the concrete best base model was differing for each function.
Therefore, in comparison to the base models the CCM would be the best choice,
given that the best base model is not known beforehand.
Concerning the ensemble competitors, it could be shown that the CCM method
has a clear advantage over approaches like ‘Choose’ that only select a single best
base model in fixed intervals. The difference to ‘Initial’, a CCM instance using
τ = ∞, is a bit smaller; still the CCM instances that updated their ensemble
setup throughout the optimization process showed better results.
The comparison of CCM instances using different values for τ and λ gave fur-
ther evidence for the advantageousness of regular updates of the ensemble setup.
Though it was visible that an update on the full set of available models is neither
needed nor useful, the results showed that a regular update on a reduced set of
base models is beneficial.

Concerning the calculation time, the CCM method and the parameter τ and λ

showed the envisioned behavior. As expected, in terms of calculation time, the
CCM cannot compete to a single base model. However, the difference between
the ensemble competitors and the CCM instances was not that clear. As expected
‘Choose’ performed slower than the CCM using τ = 20 and λ = 20 but depending
on the function it even performed slower than the CCM using τ = 1 and λ =
10. ‘Initial’ showed a surprisingly large variance in its computation times and
therefore was, other than expected, not always performing faster than the CCM
instances.

However, as emphasized in Section 3.6, it was aimed for a strategy that works
reliably and as accurately as possible on arbitrary objective functions knowingly
accepting that this is probably going to happen at the expense of the ensembles
computation time. Still, the computation time of the CCM depends on the choice

109

5. AUTOMATED MODEL SELECTION IN SPO

of the values of τ and λ and can, within bounds, be adapted to the needs of the
user and with a focus on expensive real-world applications is expected to be
neglectable.

To a great extent, this chapter is based on the articles ‘Weighted Ensembles in Model-
based Global Optimization’ by Friese et al. [74] and “Optimally Weighted Ensembles
of Surrogate Models for Sequential Parameter Optimization” by Friese et al. [75].
Major parts from the original articles were adopted verbatim. Of course, the text
was adapted to fit the structure and notation of this thesis.

110

