
Optimally weighted ensembles of surrogate models for sequential
parameter optimization
Echtenbruck, M.M.

Citation
Echtenbruck, M. M. (2020, July 2). Optimally weighted ensembles of surrogate models for
sequential parameter optimization. Retrieved from https://hdl.handle.net/1887/123184

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/123184

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/123184

Cover Page

The handle http://hdl.handle.net/1887/123184 holds various files of this Leiden
University dissertation.

Author: Echtenbruck, M.M.
Title: Optimally weighted ensembles of surrogate models for sequential parameter
optimization
Issue Date: 2020-07-02

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/123184
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 2

Preliminaries

In the following, all tools and basics are introduced that build the fundamentals
of this thesis. This chapter is structured as follows: In Section 2.1 the general
concept of a surrogate model is introduced as well as the concrete models used
in this thesis. In Section 2.2 SPO in general is introduced as well as the SPO
framework that was specially developed for the experiments carried out in this
work. Finally, in Section 2.3 an overview of the different objective functions is
given.

2.1 Surrogate Modeling

The term surrogate model denotes a function ŷ : Rd → R which is an approxi-
mation of the true objective function1 y : Rd → R, learned from a finite set of
evaluations of the objective function. Surrogate models are used, when the ob-
jective function is not known, and a complete evaluation is not feasible since they
approximate the behavior of the objective function and are therefore cheaper and
faster respectively to evaluate.

For the experiments carried out in this thesis a large set of heterogeneous sur-
rogate models is used. To facilitate the choice while at the same time ensuring
that the resulting set of surrogate models is most diverse, all models that are
available as part of the SPOT package [21] are included. Since this work also

1Typically continuous functions are considered, but there are exceptions. [19, 20]

9

2. PRELIMINARIES

aims at handling unknown models, all models, except for the Kriging based mod-
els, are plugged into the system using default settings as provided by the SPOT
interfaces. For the Kriging models, the correlation function is specified via the
settings. Models that would not run on default settings or fail during experiments
are discarded. The surrogate models that are used for the experiments are briefly
introduced in the following sections.

2.1.1 Linear Regression Based Models

Linear regression models are the simplest approach to modeling data. A thorough
introduction to linear regression models and related topics is given in [22, 23],
which the following introduction is also based on.
For a start, we consider an easy example, where the relationship between two
variables is to be modeled, i.e., income and years of education. Assuming that
the relationship between those variables is of a linear nature, a model of the
form

y = β0 + β1x+ ε

can be used to model the data. Predictions based on this model will be denoted
as ŷ = β0 +β1x. Here, y is the response variable, for a given x value, or predictor
variable. β0 and β1 are model coefficients that represent the intercept and slope of
the linear model, and ε denotes the model error. In order to gain the model, these
parameters have to be estimated. This can, for example, be done by minimizing
the least squares criterion. To do this, we consider the prediction errors ri =
yi − ŷi, or residuals, between the observed response and the predicted response
from the model. Figure 2.1 shows an example fit of a linear regression model and
the resulting prediction errors.

Using the least squares criterion, the sum of squared prediction errors has to be
minimized:

min
β0,β1

n∑
i=1

(ri)
2 = min

β0,β1

n∑
i=1

(β0 + β1xi − yi)2 .

This can be calculated as a simple mathematical optimization problem [22, p. 62].
Given that more than one predictor variable has to be considered, the linear
regression model would take the form

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε ,

where n is the number of predictor variables and βi refers to the i-th predictor
variable.

10

2.1 Surrogate Modeling

Figure 2.1: Example for a fit of a linear model. The blue line represents the linear
model, the red dots the known data and the red lines between them depict the
residuals or error made by the prediction for each known point. The model tries to
find a linear relationship between the data that minimizes the sum of squared errors
and thus obtains a straight line that models the data best under the assumption
that the underlying relationship is linear.

However, this model, as specified so far, is based on the strict assumption that
the relation between the predictor variables and the response variable is additive
and linear [22].

Extensions to the linear model enable a relaxation of these assumptions by al-
lowing interaction terms, i.e.

y = β0 + β1x1 + β2x2 + β3x1x2 + ε

or quadratic terms, i.e.

y = β0 + β1x1 + β2x
2
1 + ε,

also.

The experiments carried out in this thesis also use a linear model (‘LM’) with a
response-surface component, based on the rsm package [24], which again is an ex-
tension to the R core functionality stats::LM. This model allows for interaction
terms and quadratic terms also, if the number of predictor variables is sufficient.

11

2. PRELIMINARIES

2.1.2 Tree Based Models

Classification and Regression trees were first introduced by Breiman et al. [25].
James et al. also give a thorough and comprehensible introduction to both types
of trees [22]. Later, Breiman et al. introduced a method to combine a large
number of trees into one more accurate prediction model, known as random for-
est [26].

Tree-based models, as many other models also, can be used for classification as
well as for regression. In the case of classification, a binary tree is learned, where
nodes and adjoint labeled branches represent decisions while their terminal nodes,
which will be referred to as leaves, represent the class that the data is assigned
to. Figure 2.2 shows an intuitive example for such a classification tree, given by

Is the minimum systolic blood pressure
over the initial 24 hour period > 91?

Is age > 62.5?

Is sinus tachy-
cardia present?

A

B

A B

ye
s no

ye
s no

ye
s no

Figure 2.2: Classification tree for the identification of high-risk heart attack pa-
tients. Based on [25]. Each internal node marks a split based on the decision to be
made for that node, here the related label shows this decision. The terminal nodes,
or leaves, represent the class of the observations that fall here. In this example ‘A’
denotes low-risk patients whereas ‘B’ represents high-risk patients.

Breiman et al. [25]. The tree shown here was created during a study that analyzed
data of a medical study on heart attacks to identify high-risk patients. During
this study, 19 variables were measured in the first 24 hours after admission to the
medical center. The tree uses only three of the variables to effectively classify
low-risk patients ‘A’ and high-risk patients ‘B’.
To generate such a classification tree, for each set of data the one variable is

12

2.1 Surrogate Modeling

searched for, that separates the two classes best. In general, the process is re-
peated for each branch until the part of data on this path is separated or when
splitting no longer improves the splitting result and with such, the prediction.
However, other rules also may be applied.

In the case of regression also a binary tree is learned, but the tree does not
classify the data in that sense but instead partitions the parameter space of the
data such, that every partition, represented by a leaf, contains data that is similar
or somehow close to each other, and the prediction error is minimized. Here, the
nodes and adjoint labeled branches define the partitions of the data.

(a) Depicted are the partitions generated
by a regression tree on a mostly flat, two-
dimensional function. The colors indicate
the underlying function.

S1

S2 S3

S4 S5P1

P2 P3 P4 P5

P6

x2
<
0.3

5 x
2 <

0.35
x
1
<

0
.6

x
1
>

0
.6 x

2
<

0
.5
5 x

2
>

0
.5
5

x
2
<

0.
13

x
2
>

0.13 x
1
<

0.
21

x
1
>

0.21

(b) An exemplary regression tree that cor-
responds to the partitions shown in (a).
The colors of the leaves indicate the class
that the observed data is classified to.

Figure 2.3: The figures show an example of a regression process on a two-
dimensional function. Figure (a) shows the partitions constructed by the regression
tree, while Figure (b) depicts the related tree.

Figure 2.3 gives an example of how such a regression using a regression tree may
work. Given a two-dimensional function that mainly defines two plane areas
separated by a diagonal. Figure 2.3a shows the regarded function, indicated by
the colors. The regression tree may partition the parameter space by splitting at
S1 : x2 = 0.35 first. The predictions for the upper partition may have improved,
while the prediction quality for the lower part may not have changed or got even
worse. So in the next step, the related partition is split S2 : x1 = 0.6, and so on.

13

2. PRELIMINARIES

A few steps later the regression tree may have partitioned the parameter space
as shown in Figure 2.3a. The regression tree that was constructed, and relates to
the partitions created during this process looks like depicted in Figure 2.3b. Each
internal node with adjoint labeled branches represents the Splits S1 - S5 specified
during the partitioning of the data. The leaves specify the prediction that will
be made for observations in the related partition Pi, i ∈ {1, 2, · · · 6}.

In order to build a random forest, the available data is bootstrapped so that a set
of distinct training data sets is generated. On each of the training data sets gener-
ated this way, a single tree is learned. However, this alone does not ensure a high
variance in the trees generated. Assumed that in the available parameters one
turns out to be a very strong predictor while several others only are moderately
strong, the trees would always tend to use this very strong predictor. To counter-
act on this behavior, another tweak is added to the tree generating process, that
enables the tree to choose from a randomly selected subset of predictors only, to
generate the next junction in the tree. These subsets are generated randomly for
each junction.
To gain a single prediction from the set of trees generated this way, the predic-
tions of all trees are aggregated using majority voting, in the case of classification,
and averaging, in the case of regression, respectively.

For the experiments carried out for this thesis two different kinds of tree-based
models are used. These are for one a single tree model (‘Tree’), that is based
on the rpart package [27] and in most details follows Breiman et. al [25] quite
closely.
And for another, a random forest model (‘RandomForest’), which is based on
the randomForest package [28], and implements the random forest algorithm by
Breiman et al. [29] for regression.

2.1.3 Artificial Neural Networks

Artificial neural networks, also referred to as neural networks, describe informa-
tion processing systems that are composed of units or nodes respectively, that
communicate their information over directed connections between each other.
Zell [30] and Anderson et al. [31] give an exhaustive overview of artificial neural
networks and its history.
The general idea is derived from the cerebral structure of mammals, rigorously
simplified. Different types of bipolar and multipolar cells of mammals are de-
picted in Figure 2.4. All of them feature the same components of cell body, axon,

14

2.1 Surrogate Modeling

Figure 2.4: The illustration shows examples for different types of neurons (based
on [32, 33])

and dendrites. The cell body ensures the energy supply of the cell and has the
ability to process and transmit nerve impulses. With the dendrites, incoming
impulses are received, with the axon the impulses are transmitted to other cells
in the target area.

In order to build an artificial neural network, the neurons are vigorously ab-
stracted. Figure 2.5 shows a schematic representation of two cells of a neural
network. The cells i and j both have a network ini and inj of incoming connec-

i

ini outi

j
wij

inj
outj

Figure 2.5: Depicted is a schematic representation of two simplified cells of a neu-
ral network (based on [30]). The incoming connections in represent the dendrites,
the outgoing connections out the axons. The connection strength between the two
cells is specified by a weight w.

tions representing the Dendrites, and a network of outgoing connections outi and
outj representing the Axons. A weight wij specifies the transmission strength of
the connection from the cell i to the cell j. With such cells, a network is built

15

2. PRELIMINARIES

that in many cases is arranged in layers with connections heading in the direction
of the output neurons only, also referred to as feed-forward networks. Figure 2.6
shows an example of such a network.
This network has three layers of trainable connections, in this particular case
every cell of one layer is connected to every cell of the next layer, and four layers
of cells with the cells in the lower layer being the input cells and the cells in the
upper layer the output cells. The inner layers are referred to as hidden layers.

output layer

0− n hidden layers

input layer

Figure 2.6: Depicted is a schematic feed-forward network with three connection
layers and four neuron layers (based on [30]). The four cells in the bottom row
represent the input layer; the four neurons in the topmost row the output layer.
The inner layers are so-called hidden layers, and their number may strongly vary.
Here, every cell of one layer is connected to every cell of the next layer.

For the experiments carried out in this thesis from the neural network type of
models three different neural networks are used. These are a neural network
(‘neuralnet’) based on the neuralnet package [34]. It is trained using resilient
backpropagation without weight backtracking. The model is instantiated with
two hidden neurons in each layer and a threshold of 0.001 that corresponds to
the defaults that are set by the SPOT interface and thus slightly differs from the
default provided by the neuralnet package.

Additionally, an ensemble of twenty multi-layer perceptron neural network mod-
els (‘MLP’) based on the monmlp package [35] is used. Each is using two hidden-
layers. The implementation applies early stopping together with bootstrap ag-
gregation to control overfitting. The SPOT interface invokes the neural net using
two hidden neurons in the first and one in the second layer.

16

2.1 Surrogate Modeling

And lastly, a censored quantile regression neural network model (‘Qrnn’) based
on the qrnn package [36]. The model is instantiated with a single layer of hidden
nodes.

2.1.4 Support Vector Machines for Regression

Support Vector Machines (SVM) implement concepts for regression as well as
for classification. They were introduced by Boser et al. in 1992 [37]. A detailed
introduction to SVMs can be found in [38], a comprehensive introduction to SVMs
for Regression is given in [39, 40].

Here, data points are regarded as vectors in space. In the case of classification,
the algorithm constructs a hyperplane that is separating the known vectors op-
timally. In this case, optimally means, that the distance ε of the input vectors
that are closest to this separating hyperplane, also referred to as support vec-
tors, is maximized. Figure 2.7a depicts such a situation where a set of vectors
representing two different classes have to be separated. The vectors are directly
linearly separable. Two possible separating lines are shown, the line with the
broader separation space allows for the largest possible separation distance ε and
therefore is the best choice for this example.

(a) If the data is lin-
early separable, the SVM
fits a hyperplane through
the data that separates
the two classes with the
largest possible distance ε
to the nearest points.

(b) The data that has to be classified is not always lin-
early separable. In such cases, a kernel transformation
is applied to the data that maps the data into a higher
dimensional feature space, where the data is linearly sepa-
rable. The points that are marked yellow are the support
vectors that lie closest to the separating hyperplane.

Figure 2.7: Classification of two types of data points using a SVM.

17

2. PRELIMINARIES

However, the input vectors x are not always linearly separable. If this is the
case, they are mapped into a high dimensional feature space Z. This is achieved
by using some nonlinear mapping ϕ, that has been chosen beforehand. In this
space, an optimal separating hyperplane is constructed. Figure 2.7b shows such
a situation.

In the case of SVMs for regression, a function f(x) is searched for, which approx-
imates the known vectors with the smallest maximum deviation ε for all training
vectors from the function f(x) while also being as flat as possible. Here, too,
the points that lie on the ε-deviation border are referred to as support vectors.
Figure 2.8a illustrates such a function that approximates a set of training vectors
with an accepted error of ε.

(a) SVMs for regression aim
to find a function that approx-
imates the training data, while
minimizing the maximum devi-
ation ε between training data
and the function.

(b) Error handling using a soft margin penalty.
Points with a deviation smaller than ε don’t add
to the cost of the function. Points with a larger
deviation than ε are penalized linearly with its dis-
tance ζ to the ε-border.

Figure 2.8: Modelling data using Support Vector Machines for Regression

But this procedure is not strict, SVMs also allow for larger deviations in a few
points using a soft margin penalty. For that purpose, the trade-off between the
flatness of the function and number or cost of errors respectively that is accepted
may be adjusted to allow for a few outliers. The outliers are then penalized with
a linear cost function that assigns the cost ζ to an outlier that has a deviation
of ξ with ζ = |ξ| − ε. Figure 2.8b displays an example for such a soft margin
penalty.

For the experiments carried out in this thesis a regression model based on the R

18

2.1 Surrogate Modeling

package e1071 [41], that builds a support vector machine for regression is also
used (‘Esvm’). The model is based on the works of Chang et al. [42].

2.1.5 Multivariate Adaptive Regression Spline Models

Multivariate Adaptive Regression Splines (MARS) can be understood as a gen-
eralization of the recursive partitioning strategy used by regression trees [43].

(a) The figure shows an example for poly-
nomial regression on salary data using a
single polynomial

(b) Depicted is an example of piecewise
polynomial regression on salary data using
three independent polynomials. The ver-
tical lines mark the so-called ‘knots’ that
define the borders of the partitions.

Figure 2.9: The Figures show two approaches to approximating a function that
describes best the relation between age and salary. The red points mark the ob-
served points, and the blue line represents the approximated function.

Supposed that a function is to be learned that estimates the salary of a person
with respect to the age of this person best. A simple method would be to fit
a polynomial to the data using least squares regression. Figure 2.9a depicts an
example of this approach. The red points mark the observed data concerning this
relation.

In many cases, this may lead to good solutions, but there will also be cases where
the data cannot be adequately approximated using a single polynomial. Then,
it may be beneficial to divide the parameter range into disjoint subsets and fit
an independent polynomial for each of the ranges. To obtain K ranges, K − 1
so-called ‘knots’ have to be specified, that define these ranges. Furthermore, it

19

2. PRELIMINARIES

has to be ensured, that the resulting piecewise approximation function obtained
is continuous or even smooth. For this purpose, additional constraints are intro-
duced for each knot. Figure 2.9b shows an example of such a piecewise regression.
The obtained function is continuous at the knots, but not smooth.

In opposition to polynomial regression, which must use polynomials of a higher
degree to fit functions of higher complexity, regression splines allow keeping the
degree of the polynomials fixed and induce higher flexibility through a higher
number of knots. An exhaustive introduction to Multivariate Adaptive Regression
Splines is given by Friedman et al. [43].

For the experiments carried out in this thesis also a regression model (‘Earth’)
that uses the model building techniques of Friedman et al. for Multivariate
Adaptive Regression Splines [44] and ’Fast MARS’ [45] based on the R package
earth [46] is added to the set of base models.

2.1.6 Kriging Based Models

The Kriging method (also known as Gaussian processes [47]) was first introduced
by D.G. Krige [48] to improve mine valuation methods and with it the estimation
of the concentration of gold in ore bodies. In 1963 Matheron extended the theory
and formalized the technique [49]. Sacks et al. later applied the method to
the approximation of computer experiments [50]. Forrester et al. give a very
comprehensive introduction to optimization using the Kriging method [40]. The
following remarks and equations are also based on these works.
The Kriging method uses a model of the form

ŷ(x∗) = µ̂+ kTK−1(y − 1µ̂). (2.1)

as predictor. If µ is an a priori given constant, the Kriging variant is called ‘sim-
ple’ Kriging. If µ is estimated from the data, but then used as a constant, the
variant is called ‘ordinary’ Kriging. Moreover, if µ is estimated from the data
and depends on x then the variant is called ‘universal’ Kriging. In the following
‘ordinary’ Kriging is used since it has an excellent prediction quality and not too
many parameters.
To derive this model it has to be started from a set of known data, X =
{x1,x2, · · ·xn}T , with related known function values y = {y1,y2, · · ·yn}T and
it is searched for an expression to predict a value at an unknown point x. Krig-
ing views the known function values y as if they are realizations of a stochastic
process, with errors ε spatially correlated. Between two points that are close

20

2.1 Surrogate Modeling

to one another the errors are considered positively correlated. With increasing
distance between these points the correlation converges to zero. This correlation
between the distance of the points and their errors are modeled using a correla-
tion function, also referred to as kernel. An example for such a kernel is given by
Equation (2.2).

k(x,x′) = exp

(
−

m∑
i=1

θi|xi − x′i|pi
)

(2.2)

Here, two points x and x′ are considered, with xi ∈ R denoting the i-th element
of the vector x. This kernel meets the requirements to yield a function value
of one if x = x′, converges to zero for larger distances and is positive semi-
definite. Some examples of different kernel functions are shown in Figure 2.10.
The kernel function is utilized to create a correlation matrix K containing all
pairwise correlations between errors of all known function values y at locations
X.

K =

 k(x1,x1) · · · k(x1,xn)
...

k(xn,x1) · · · k(xn,xn)


These correlations depend on the absolute distance between the known points
|x− x′| and the parameters θi and pi. These parameters, θ and p, are in general
estimated using Maximum Likelihood Estimation [40, 51], such that for the given
model, the known data points have the largest likelihood. The likelihood function
of the Kriging model is based on the probability density function of a multivariate
normal distribution,

f(x) =
1

(2π)n/2|C|1/2
exp

(
−1

2
(y − 1µ)TC−1(y − 1µ)

)
with 1 being the identity vector and C the stationary covariance matrix. The
covariance matrix C is related to the correlation matrix K by C = σ2K. With
this the Kriging likelihood function can be expressed as

f(ε(X)|µ, σ, θ, p) =
1

(2πσ2)n/2|K|1/2
exp

(
−(y − 1µ)TK−1(y − 1µ)

2σ2

)
(2.3)

This equation has to be simplified by taking the natural logarithm. The partial
derivatives of this function then have to be set to zero in order to obtain the
Maximum Likelihood Estimates for µ and σ2:

µ̂ =
1TK−1y

1TK−11

21

2. PRELIMINARIES

and

σ̂2 =
(y − 1µ̂)TK−1(y − 1µ̂)

n
.

These terms for µ̂ and σ̂2 can now be substituted back into the logarithmized
form of Equation 2.3. Removing constant terms yields the so-called concentrated
ln-likelihood function:

con(ln(L)) = −n
2
ln(σ̂2)− 1

2
ln(|K|). (2.4)

Here, the parameter θ and p are still unknown. In order to find values for these
parameters that maximize the function, numerical optimization has to be applied,
since the function cannot be differentiated. However, as the function is quick
to compute, as long as the search space does not get too large, the function
can be searched directly, so that a classical global optimization method can be
applied.

Introductory it was said that it is searched for an expression to predict a value ŷ
at an unknown point x. The main idea to do so is to augment the known data y
with the new prediction ŷ, which yields the vector yaug = yT , ŷ

T . Treating ŷ as
a model parameter, the likelihood function is to be maximized with respect to ŷ,
given the already known correlation parameters.
Defining the vector of correlations between the set of known data X and the
new data point x∗ as k = (k(x1, x∗), · · · , k(xn, x∗))

T , this vector can be substi-
tuted into the prediction function (2.1) together with the already known model
parameters to make a prediction.

For a next iteration, the augmented correlation matrix can be defined as Kaug =(
K k
kT 1

)
. Together with the already known model parameters, Kaug and yaug

are substituted into the likelihood function (2.3). Maximizing the resulting term
with respect to ŷ yields the predictor (2.1).

In the experiments carried out in this thesis, three Kriging models with different
correlation functions are used. These are Kriging with exponential correlation
function (‘correxp’), gaussian correlation function (‘corrgauss’), and spline corre-
lation function (‘corrspline’). Figure 2.10 depicts the kernels used. The Kriging
implementation is part of the SPOT package and follows the implementation of
Lophaven et al. as described in [52].

Following the definitions from Lophaven et al., the correlation models can be de-
scribed as follows. We consider stationary correlations of the form R(θ, x, x′) =∏n

j=1R(θj, xj − x′j). The first model uses the exponential kernel R(θ, xj, x
′
j) =

22

2.1 Surrogate Modeling

Figure 2.10: The figure shows an example of different correlation functions. The
functions ‘exponential’ and ‘gaussian’ implement the correlation function specified
in Equation 2.2 with p = 1 for ‘exponential’ and p = 2 for ‘gaussian’. The ‘spline’
function follows the definitions from [52] and only takes the θ-parameter. The
function values then specify the assumed correlation of two known points, based on
their distance.

exp(−θj|xj−x′j|) the second model uses a gaussian kernel R(θ, xj, x
′
j) = exp(−θj|xj−

x′j|2), whereas the third model is based on the spline correlation function R(θ, xj, x
′
j) =

ζ(θj|xj − x′j]) with

ζ(εj) =

{ 1− 15ε2j + 30ε3j for 0 ≤ εj ≤ 0.2
1.25(1− εj)3 for 0.2 < εj < 1
0 for εj ≥ 1.

Here, ε and θ are hyperparameters estimated by likelihood maximization.

Additionally, a treed Gaussian process model with jumps to the limiting lin-
ear model (‘tgp’) that is based on the tgp package [53] is used in the experi-
ments.

Finally, a simple ensemble model (‘Rfmlegp’) is also used for the experiments.
The ensemble internally builds a random forest model using the randomForest
package [28] and a Gaussian process model using the mlegp package [54]. The
mean of these models’ predictions is returned as the ensemble prediction.

23

2. PRELIMINARIES

2.2 Surrogate Model-Based Optimization

In most real-world optimization problems, the number of function evaluations
that can be carried out is massively limited by time or cost. At the same time,
not seldom the objective function is expensive to evaluate. Direct search methods,
in general, require more function evaluations than the number that can actually
be spent, which makes such real-world problems a special challenge for global
optimization.

Evaluate
initial design

Train model on
data

Optimize on
model

Evaluate new
point

Budget exhausted /
Optimization goal
reachedyes

no

Figure 2.11: Shown is a schematic representation of a surrogate model based
optimization process. Initially, a first set of data points is evaluated on the function;
in general, these points are chosen using a design of experiment. Then, a surrogate
model is fitted to the data. On the fitted model, a separate optimization process is
started, and the best points found are evaluated on the function. The process ends
when the predefined stopping criterium is reached.

24

2.2 Surrogate Model-Based Optimization

Jones et al. [17] and others [14, 55, 56] addressed this challenge by using surrogate
models as a fast and cheap approximation of the real objective function. Instead
of performing a direct search on the objective function, in every step a model
is trained to the available data, and an optimization process is carried out on
this model. The best n solutions found during this intermediate optimization
step are then evaluated on the real objective function. Figure 2.11 depicts the
general procedure of such an SBO process. Evolutionary surrogate model based
optimization was introduced by Emmerich et al. [57].

Like in any optimization process, if initially no information about the function is
available, some data points have to be evaluated to gain some base knowledge D
about the function. Usually, a design of experiment (DOE) is used to obtain this
knowledge.

Then, the main optimization loop is started by fitting the model to the observed
data D. On the fitted model that is now approximating the objective function a
separate optimization step is carried out.

From the set of points that were evaluated on the model during this optimization,
a choice of n points is selected to be evaluated on the objective function. This
choice is not limited to merely choosing the point that has the best-predicted
value on the model, but can also be based on other criteria like the expected
improvement1 if the model provides confidence intervals for its predictions. The
main optimization loop is stopped if the budget of available function evaluations
is exhausted or a predefined optimization goal is reached.

Software packages like SPOT provide a complete optimization framework fea-
turing heaps of statistical tweaks to optimize this process even more, as well as
parameters for additional fine-tuning [59].

Nonetheless, for the experiments carried out in this work a very basic SPO frame-
work is developed to allow for complete control over the behavior of the sequential
optimization process and to gain more insight and interpretable results. Algo-
rithm 1 depicts the main steps of this framework which, up to some minor details,
corresponds to standard SPO processes.

In a first step the initial design is evaluated (cf. Algorithm 1 line 2). To allow
for reproducible results and equal experimental preconditions across several ex-
perimental setups, the framework takes predefined experimental designs so that

1Expected improvement is a criterion that helps to balance between exploitation and explo-
ration. It was introduced by Mockus et al. in 1978 [58]. Jones et al. [17] give a comprehensive
introduction to the topic.

25

2. PRELIMINARIES

Algorithm 1: The SPO Framework that was used for the experiments carried
out in this thesis
Data: objective function f : Rd → R

initial design {x1, · · · , xn} , x ∈ Rd,
surrogate model m
sequential step size neval

Result: Resultset containing all evaluated points
1: begin
2: D ← Evaluate initial design on objective function f ;
3: while function evaluations available do
4: m∗ ← Fit model m to known datapoints D ;
5: Evaluate sequential design on model m∗;
6: Choose d1

2
nevale points x∗ according to exploitation;

7: Choose b1
2
nevalc points x∗∗ according to exploration;

8: Evaluate chosen points x∗ and x∗∗ on objective function f ;
9: Add new information to known data D ;

all experiments use the same initial configuration (cf. Algorithm 1, data input).
The resulting dataset D = {(x1, y(x1)), . . . , (xn, y(xn))} builds the foundation for
the subsequent optimization process.

The main optimization steps are carried out in a loop that ends when the number
of allowed function evaluations has been reached (cf. Algorithm 1 line 3).

First, the model M is fitted to the observed data D (cf. Algorithm 1 line 4).
On the fitted model M∗ a sequential design is evaluated (cf. Algorithm 1 line 5).
Based on the resulting set of model predictions, points are selected for evaluation
on the objective function. For this choice, the available budget of function evalu-
ations per sequential step neval is shared equally on points x∗ that correspond to
the criteria of exploitation1 and on points x∗∗ that correspond to the criteria of
exploration2.

1Exploitation refers to the strategy of searching a restricted search space in the area of the
best-known solution in order to improve this solution. This can also be referred to as local
search.

2Exploration refers to a strategy of searching the entire region of interest in the search space
in order to find new promising solutions. This strategy helps to diversify the search and to

26

2.3 Objective Functions

The selection of these points is carried out as follows:
For exploitation from the predictions of the model on the large sequential design,
the k best performing points are chosen and added to the candidate set C∗. A
typical value of k is 20. Since these points are restricted to points from the design,
from each of these points a local search is initiated on the model. The points that
are obtained with this search are also added to the candidate set C∗. If these
points violate constraints of the search space, they are repaired by setting those
violated parameters to the allowed limit. From this set of candidates C∗ the
d1
2
nevale points x∗ that perform best on the model are chosen for evaluation on

the objective function (cf. Algorithm 1 line 6).
For exploration, those k points from the sequential design are chosen and added
to the candidate set C∗∗, that have the largest distance to their nearest neighbors.
From these candidates those b1

2
nevalc points x∗∗ that perform best on the model

are chosen to be evaluated on the objective function (cf. Algorithm 1 line 7).

The points x∗ and x∗∗ chosen before are evaluated on the objective function. And
the new information gained in this step is added to the datasetD (cf. Algorithm 1
line 8-9).

After finishing the main loop, the dataset D is returned as the result.

The default settings for the experiments performed in this study were chosen as
follows: for the sequential design, a size of 200 points and a sequential step size
of festep = 2 was chosen.

This optimization is intentionally kept simple to allow for better insight into the
performance of the models used for optimization.

2.3 Objective Functions

The experiments carried out for this work are run on a set of objective functions.
These objective functions can be roughly divided into three groups.

1. Generic objective functions generated to fit the requirements,

2. standard optimization test problems,

3. and test functions based on physical models.

prevent it from getting trapped in a local optimum. This can also be referred to as global
search.

27

2. PRELIMINARIES

Since most of the black-box real-world problems considered to be difficult are
multimodal, the focus for this work is also on multimodal function approxima-
tion (cf. [60, 61, 62]). In the following, these functions are introduced in more
detail.

2.3.1 Gaussian Landscape Generator

To allow for the flexible generation of test functions that meet the requirements
in certain features the Max-Set of Gaussian Landscape Generator (GLG) is ap-
plied. It computes the upper envelope of m weighted Gaussian process realiza-
tions and can be used to generate continuous, bound-constrained optimization
problems [63].

Thus, a GLG objective function is defined as

G(x) = max
i∈1,2,...,m

(wig(x)),

where g : Rn → R denotes an n-dimensional Gaussian function

g(x) =

(
exp

(
−1

2
(x− µ)Σ−1(x− µ)T

)
(2π)n/2|Σ|1/2

)1/n

,

µ is an n-dimensional vector of means, and Σ is an (n × n) covariance matrix.
Implementation details are presented in [64]. For the generation of the objective
functions the spotGlgCreate method of the SPOT package is used.

The options used for our experiments are shown in Table 2.1. With the parameter
d the dimension of the objective function is specified. The lower and upper
bounds (l and u, respectively) specify the region where the peaks are generated.
The value max specifies the function value of the global optimum, while the
maximum function value of all other peaks is limited by t, the ratio between the
global and the local optima.

2.3.2 Optimization Test Problems

Two classical mathematical test problems are chosen. Both, the Ackley func-
tion [65] as well as the Rosenbrock function [66] are widely used for testing opti-
mization algorithms.

28

2.3 Objective Functions

Table 2.1: Gaussian landscape generator options

Param. Description Value
d Dimension 1− 8

m Number of peaks 10− 320

l Lower bounds of the area, where peaks are generated {01, . . . , 0d}
u Upper bounds of the area, where peaks are generated {51, . . . , 5d}

max Max function value 100

t Ratio between global and local optima 0.8

The Ackley function
was proposed by David Ackley in 1987 [65]. Later, in 1993 the function was gen-
eralized by Bäck and Schwefel [67]. In its generalized form it is defined by

f(x) = −a exp

−b
√√√√1

d

d∑
i=1

x2i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1)

with a = 20, b = 0.2 and c = 2π.

It is a non-convex function featuring many local optima. In its two-dimensional
form the function is almost flat in its outer regions with the global minimum
(f(x∗) = 0, at x∗ = (0, . . . , 0)) being a large peak at the center. With its highly
multi-modal characteristics, it poses a risk to optimization algorithms to get stuck
in local minima.

As region of interest we regarded the hypercube xi ∈ [−32.768, 32.768], ∀x ∈ [1, d].

The Rosenbrock function
is also known as Valley- or Banana function and has been introduced by Howard
H. Rosenbrock in 1960 [66]. It is defined by

f(x) =
d−1∑
i=1

[
100(xi+1 − x2i)2 + (xi − 1)2

]
The function is non-convex, but in contrast to the Ackley function, the Rosen-
brock function is unimodal. Its global minimum (f(x∗) = 0), lies at x∗ =
(1, . . . , 1). In its two dimensional form it is located in a narrow, parabolic val-
ley that is following the parabola x2 = x21. Though the valley is easy to find,
convergence to the minimum is difficult.

29

2. PRELIMINARIES

As region of interest we regarded the hypercube xi ∈ [−2.048, 2.048], ∀x ∈ [1, d].

2.3.3 Physical Functions

In order to gain a set of test functions that also contains functions with relation to
real-world optimization problems, four test functions that model a physical model
are added to the set. As a source of these test functions, the ‘Virtual Library of
Simulation Experiments’ [68] is used. The website provides a collection of well-
structured test problems. From the choice of emulation/prediction test problems
based on physical models, all functions, that are not stochastic and given in the
form of a function instead of a dataset, are added to the system. Under this
premise we get a set of four real-world objective functions as follows.

The OTL Circuit Function models an output transformerless push-pull cir-
cuit [69]. The response variable of the function is Vm, the midpoint voltage, that
is affected by six parameters. The parameters, with its units and ranges, are
specified in Table 2.2.

Parameter Description Value range
Rb1 resistance b1 (K-Ohms) [50, 150]

Rb2 resistance b2 (K-Ohms) [25, 70]

Rf resistance f (K-Ohms) [0.5, 3]

Rc1 resistance c1 (K-Ohms) [1.2, 2.5]

Rc2 resistance c2 (K-Ohms) [0.25, 1.2]

β current gain (Amperes) [50, 300]

Table 2.2: Search Parameters of the otl-circuit function

The midpoint voltage Vm can be derived from the parameters as follows:

Vm(x) =
(Vb1 + 0.74)β(Rc2 + 9)

β(Rc2 + 9) +Rf

+
11.35Rf

β(Rc2 + 9) +Rf

+
0.74Rfβ(Rc2 + 9)

(β(Rc2 + 9) +Rf)Rc1

where

Vb1 =
12Rb2

Rb1 +Rb2

and x = (Rb1, Rb2, Rf , Rc1, Rc2, β)

30

2.3 Objective Functions

The Piston Function is a simulator, that models the movement of a piston
within a cylinder. The piston consists of a linear rod that is connected to a disk.
By this connection, the linear movement of the rod is transformed into a circular
motion. The faster the piston moves within the cylinder the faster rotates also
the disk. The performance of the piston is measured by its cycle time, the time
it takes to perform one rotation of the disk, in seconds.

The performance of the piston is affected by a set of parameters, given in Ta-
ble 2.3. These parameters affect the cycle time Tc via a chain of nonlinear equa-
tions [69]:

Tc(x) = 2π

√
M

k + S2 P0V0
T0

T0
V 2

where

V =
S

2k

(√
A2 + 4k

P0V0
T0

Ta − A

)
, A = P0S + 19.62M − kV0

S

and
x = (M,S, V0, k, P0, Ta, T0).

The function was developed by Kenett and Zacks in 1998 [70].

Parameter Description Value range
M piston weight (kg) [30, 60],
S piston surface area (m2) [0.005, 0.020]

V0 initial gas volume (m3) [0.002, 0.010]

k spring coefficient (N/m) [1000, 5000]

P0 atmospheric pressure (N/m2) [90000, 110000]

Ta ambient temperature (K) [290, 296]

T0 filling gas temperature (K) [340, 360]

Table 2.3: Search Parameters of the Piston Function

The Robot Arm Function is commonly used in neural network literature.
It models a four-segment robot arm with the shoulder of the arm fixed at the
origin in the (u, v)-plane [71]. Each segment of the arm has a specific length
Li and an angle θi, i = 1, . . . , 4. The angle of the first segment, with respect to
the horizontal coordinate axis of the plane, is given by θ1. The angles θ2, θ3, θ4

31

2. PRELIMINARIES

describe the rotation of the corresponding arm segment in relation to the previous
arm segment.

The response variable of the function D, models the distance of the end of the
robot arm to the origin, on the (u, v)-plane. This distance can be directly derived
from the eight parameters by:

D(x) =
√
u2 + v2

where

u =
4∑
i=1

Licos

(
i∑

j=1

θj

)
, v =

4∑
i=1

Lisin

(
i∑

j=1

θj

)
and x = (L1, L2, L3, L4, θ1, θ2, θ3, θ4).

The input parameters, with its ranges, are specified in Table 2.4

Parameter Description Value range
Li, i = 1, . . . , 4 length of the i-th arm segment [0, 1]

θi, i = 1, . . . , 4 angle of the i-th arm segment [0, 2π]

Table 2.4: Search Parameters of the Robot Arm Function

The Wing Weight Function models the weight W of the wing of a light
aircraft [40]. The analytical expression is adapted from the work of Raymer
(2006) on conceptual aircraft design [72]:

W = 0.036 S0.758
W W 0.0035

fw

(
A

cos2Λ

)0.6

q0.006λ0.04
(

100tc

cosΛ

)−0.3
(NZWdg)

0.49+SWWP

The ten parameters, that affect the weight W are given in Table 2.5, along with
its baseline and range.

While the baseline values roughly represent the values of a Cessna C172 Skyhawk
aircraft, the given ranges where specified by Forrester et al. [40].

32

2.3 Objective Functions

Parameter Description Baseline Value range
Sw wing area (ft2) 174 [150, 200]

Wfw weight of fuel in the wing (lb) 252 [220, 300]

A aspect ratio 7.52 [6, 10]

Λ quarter-chord sweep (degrees) 0 [−10, 10]

q dynamic pressure at cruise (lb/ft2) 34 [16, 45]

λ taper ratio 0.672 [0.5, 1]

tc aerofoil thickness to chord ratio 0.12 [0.08, 0.18]

Nz ultimate load factor 3.8 [2.5, 6]

Wdg flight design gross weight (lb) 2000 [1700, 2500]

Wp paint weight (lb/ft2) 0.064 [0.025, 0.08]

Table 2.5: Search Parameters of the Wing Weight Function

Some passages in this chapter are based on descriptions that were already published
in [73, 74, 75].
The composition of base models and the set of objective functions used for the
experiments carried out in this thesis were already described in [75]. The specification
of the Kriging kernels was already given in [73]. Occasionally, text elements have
been adopted verbatim from these publications. However, the text was significantly
extended, and adapted to fit the notation of this thesis.
The SPO Framework introduced in this Chapter has already been described in [74,
75]. Some of these descriptions, as well as Algorithm 1, are adopted verbatim or
with minor changes to adapt them to the notation and structure of this thesis.

33

2. PRELIMINARIES

34

