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Chapter 1

Introduction

A common method to perform an optimization on a function that can not be op-
timized analytically is to perform a search on this function by evaluating points
on the function at strategically chosen positions. However, in real-world opti-
mization tasks, the search is often constrained by time or cost for the function
evaluations.

1.1 Optimization of Industrial Problems

A typical example of such optimization problems is a cyclone dust separator [1, 2].
As Slack et al. state, “the cyclone dust separator is perhaps the most widely used
separation device to be found in industry. It owes its popularity to the low manu-
facturing and maintenance costs brought about by its simple design. There are no
moving parts in the device itself, which can be constructed from a wide range of
materials including refractories for high-temperature operation. Combined with
moderate pressure drop and a range of throughputs and efficiencies, these advan-
tages have made the cyclone the most attractive solution to separation in both
gas-solid and liquid-solid systems” [3].

Cyclone dust separators exist in a large variety of shapes, but the most common
design is the reverse-flow cyclone as depicted in Figure 1.1.
The fluid is induced into the cyclone through the inlet on the upper end of the
cyclone. By the position of the inlet and the shape of the cyclone body, the fluid
is forced on a circular path. The emerging centrifugal forces, caused through
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1. INTRODUCTION

Figure 1.1: Depicted is a schematic representation of a cyclone dust separator
with an illustration of the internal flow. The fluid enters the system through a
lateral inlet at the upper end of the cyclone and moves then in a downward swirl
along the outer areas of the cyclone. When reaching the lower end, the flow changes
the direction and turns upward again, in a more narrow swirl, before it leaves the
system through the gas outlet at the upper end of the cyclone. The dust particles
are separated from the fluid through centrifugal forces, they are moved against the
outer wall of the cyclone and then fall through the dust outlet at the lower end of
the system.

the circular swirl of the fluid, separate the dust particles from the fluid and fall
through the dust outlet at the lower end of the cyclone. However, the fluid, which
is now separated from the dust particles, leaves the cyclone through the gas outlet
on the upper end of the cyclone.

Main quality indicators for cyclone dust separators are collection efficiency and
pressure drop. The collection efficiency, defined as the fraction of dust particles
filtered from the fluid, reflects how well the cyclone dust separator performs its
primary task. However, the pressure drop has the main impact on operational
cost. This is aggravated by the fact, that these two criteria are conflicting, i.e.,
the settings allowing for the best collection efficiency may not correspond to the
setting that enables the lowest pressure drop.

The quality indicators are heavily influenced by the geometry of the cyclone,

2



1.1 Optimization of Industrial Problems

Figure 1.2: Depicted is a schematic representation of a cyclone dust separator
(from [1]). Shown is the front view as well as the top view with all critical parameters
indicated. These are height H and diameter Da of the cyclone, diameter Dt and
immersion Ht of the outlet pipe and width Be and height He of the inlet.

which is determined by several design parameters, like the height or diameter of
the cyclone. All critical parameters are depicted in Figure 1.2. The performance
of a newly designed cyclone can be evaluated with Computational Fluid Dynamics
(CFD) simulations. Such simulations are, depending on the required accuracy,
extremely time-consuming.

All in all, this problem definition specifies an expensive, in terms of calculation
time, black-box function whose function values, collection efficiency, and pres-
sure drop, are determined by a set of parameters as depicted in Figure 1.2. In
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1. INTRODUCTION

modern computer-aided design environments, simulation-based optimization is a
standard tool for finding optimal parameter settings [4, 5, 6, 7]. However, the
performance of such automated-design optimization tools is often challenged by
the high demand in terms of computational effort. For instance, physics simula-
tions including fluid dynamics or detailed energy flow computations in real-world
structures easily entail several minutes or even hours of runtime for a single de-
sign [8]. Optimization requires the repeated execution of such time-consuming
simulations, and this requires optimal use of the information gained from each
simulation.

Further well-known engineering problems are, for example, the optimization of
an airfoil shape for an aircraft wing [9, 10] or aerodynamic shape optimization in
the automotive industry [11, 12]. For such problems, a CFD simulation has to be
carried out in order to evaluate a specific shape with respect to the different design
objectives and other constraints. Jameson et al. (2018) [13] state, that some
of these simulations take up to 3 days, what makes a design optimization task
impossible since in general lots of simulation evaluations would be needed.

1.2 Motivation and Aim

In global optimization of expensive black-box functions, it is a common tech-
nique to learn a surrogate-model, e.g., regression model, of the response function
from available evaluations and to use this model to decide on the location of
future evaluations. Sequential parameter optimization (SPO) is a well-known
approach for solving black-box optimization problems with expensive function
evaluations [14, 15]. It combines a sequential experimental design approach and
tools for reducing expensive function evaluations on the original model by replac-
ing them partly with fast approximate evaluations on surrogate models. SPO
resembles Bayesian Global Optimization [16, 17], but it is less specific in the
particular regression model as it does not necessarily make use of uncertainty
quantification. SPO packages, such as the SPO Toolbox (SPOT), come with a
large variety of surrogate models (base models) from which the user can choose.

Still, the choice of the surrogate model can have a significant influence on the so-
lution quality and performance of the optimizer. Burnham et al. even state that
the choice of the right surrogate model is the most critical question in making sta-
tistical inferences [18]. However, in order to make meaningful decisions on which
surrogate model to select for a given problem, often expert knowledge is needed.
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1.2 Motivation and Aim

This includes knowledge about the objective function and the characteristics of
the surrogate model likewise.

In many situations, preliminary knowledge about the function, or all available
models, is not available. To overcome this problem, it would be beneficial if the
algorithm could learn all by itself which surrogate model type suits the problem
best, based on the given data. This can be done by evaluating different models on
available training data and using a statistical model selection approach to select
the most promising surrogate model.

But how to handle the situation when there is more than one strong model in the
set? In such circumstances, it might be beneficial to combine inference output
across several models. Such methods will be referred to as ensemble models.
Different approaches to achieve this are known to literature. In Chapter 3 a short
overview of previous work regarding ensemble models is given, and a taxonomy
of ensemble models is defined. However, so far, only few work has been done on
adopting ensemble methods specifically for sequential optimization, which holds
its challenges for efficient ensemble modeling.

The overarching goal is to release the user from the burden to select the right
surrogate model from a set of heterogeneous surrogate models. From this aim,
the main research question of this thesis can be derived:

• Is it possible to create an ensemble building strategy that selects or com-
bines heterogeneous surrogate models to achieve the best possible result and
works reliably and as accurately as possible on arbitrary objective functions?

Since many real-world problems are constrained to a comparatively small number
of function evaluations, the main focus is laid on regression models and SPO pro-
cesses that are able to work with smaller numbers of function evaluations.

Black-box optimization refers to a problem definition where an optimum of a
function is searched for that cannot be optimized analytically. Since this is,
in general, the case for real-world problems, the focus is also laid on black-box
optimization. In this thesis, without loss of generality, all optimization tasks are
considered as minimization tasks.
Optimization processes that rely on the assistance of surrogate models are referred
to as surrogate-based optimization (SBO). The process of training a surrogate
model (also referred to as model) on available data is denoted as fitting the model
to the data. After the model has been fitted to the data, the model provides
an approximation of the underlying function, which is based on the inherent
assumptions of the model and the available data. Determining an approximation
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1. INTRODUCTION

of unknown function value with the help of a model is denoted as a prediction.

1.3 Overview of this Thesis

This thesis is structured as follows:

Chapter 2 gives an introduction to all preliminary information needed for the
understanding of this work. It starts by introducing the models that are used in
this thesis. Then, a brief introduction to SPO as well as to the SPO framework
which is used in this thesis is given. Moreover, the objective functions used for
the experiments are introduced.

Chapter 3 gives an overview of previous developments in this area, different
ensembles approaches and applications, and defines a taxonomy of ensembles.
The advantages and disadvantages of the diverse approaches are considered with
regard to the general goal of this work. The taxonomy of ensembles of surrogates
that is specified in this chapter is an original work of this thesis and has not yet
been published.

Chapter 4 regards the findings of Chapter 3 within the premises of the overall
goal of this work and draws appropriate conclusions. A new ensemble building
approach is then derived from these conclusions, implemented and thoroughly
analyzed.

Chapter 5 performs the step from static modeling to SPO. The designed ap-
proach is adapted for and applied to SPO. Experiments are carried out, and
results are analyzed to allow for further insights into the functioning of the
method.

Chapter 6 summarizes the works of this thesis and discusses the methods
presented and the results obtained. Also, possible future work and additional
open questions in this research area are shown up and discussed.

6
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1.4 Overview of Publications

Substantial parts of this thesis rely on works that have previously been published
or are in the process of being published during the writing of this thesis. Some
of these works are incorporated only contentwise, and others are in large parts
adopted verbatim. For the sake of clarity, the way how each publication has
been included in this thesis is outlined at the end of the respective chapters.
Of concern are primarily the following publications ordered by the chapter of
appearance.

Chapter 4
Martina Friese and Martin Zaefferer. Two challenges in surrogate-modeling:
Merging surrogate-models into ensembles and dealing with structured or com-
binatorial search spaces. Contributed Talk at Surrogate-Assisted Multi-Criteria
Optimization (SAMCO) Workshop, Lorentz Center, Leiden, NL, (2016)

Martina Friese, Thomas Bartz-Beielstein, Michael Emmerich, Building ensem-
bles of surrogates by optimal convex combination. In Proceedings of Bioinspired
Optimization Methods and their Applications , BIOMA 2016, Gregor Papa and
Marjan Mernik (editors), Joz̆ef Stefan Insitute, Ljubljana, Slovenia, pg.131-143
(2016)

Chapter 5
Martina Friese, Thomas Bartz-Beielstein, Thomas Bäck, Michael Emmerich, Weighted
Ensembles in Model-based Global Optimization. In AIP Conference Proceedings
of LeGO 2018 - Int. Workshop on Global Optimization, Leiden, The Netherlands,
September 18-21, 2018. AIP Web of Science,pg.020003 (2019)

Martina Friese, Thomas Bartz-Beielstein, Thomas Bäck, Michael Emmerich, Op-
timally Weighted Ensembles of Surrogate Models for Sequential Parameter Op-
timization, Journal of Global Optimization, Special Issue LeGO Workshop 2019,
(submitted for)

Chapter 6
Jörg Stork, Martina Friese, Martin Zaefferer, Thomas Bartz-Beielstein, Andreas
Fischbach, Beate Breiderhoff, Tea Tušar, and Boris Naujoks. Open issues in
surrogate-assisted optimization. In High-Performance Simulation-Based Opti-
mization, Bookchapter, Thomas Bartz-Beielstein, Bogdan Filipič, Peter Korošec,
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El-Ghazali Talbi (editors), pg.225-244, Springer (2020)
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Chapter 2

Preliminaries

In the following, all tools and basics are introduced that build the fundamentals
of this thesis. This chapter is structured as follows: In Section 2.1 the general
concept of a surrogate model is introduced as well as the concrete models used
in this thesis. In Section 2.2 SPO in general is introduced as well as the SPO
framework that was specially developed for the experiments carried out in this
work. Finally, in Section 2.3 an overview of the different objective functions is
given.

2.1 Surrogate Modeling

The term surrogate model denotes a function ŷ : Rd → R which is an approxi-
mation of the true objective function1 y : Rd → R, learned from a finite set of
evaluations of the objective function. Surrogate models are used, when the ob-
jective function is not known, and a complete evaluation is not feasible since they
approximate the behavior of the objective function and are therefore cheaper and
faster respectively to evaluate.

For the experiments carried out in this thesis a large set of heterogeneous sur-
rogate models is used. To facilitate the choice while at the same time ensuring
that the resulting set of surrogate models is most diverse, all models that are
available as part of the SPOT package [21] are included. Since this work also

1Typically continuous functions are considered, but there are exceptions. [19, 20]
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2. PRELIMINARIES

aims at handling unknown models, all models, except for the Kriging based mod-
els, are plugged into the system using default settings as provided by the SPOT
interfaces. For the Kriging models, the correlation function is specified via the
settings. Models that would not run on default settings or fail during experiments
are discarded. The surrogate models that are used for the experiments are briefly
introduced in the following sections.

2.1.1 Linear Regression Based Models

Linear regression models are the simplest approach to modeling data. A thorough
introduction to linear regression models and related topics is given in [22, 23],
which the following introduction is also based on.
For a start, we consider an easy example, where the relationship between two
variables is to be modeled, i.e., income and years of education. Assuming that
the relationship between those variables is of a linear nature, a model of the
form

y = β0 + β1x+ ε

can be used to model the data. Predictions based on this model will be denoted
as ŷ = β0 +β1x. Here, y is the response variable, for a given x value, or predictor
variable. β0 and β1 are model coefficients that represent the intercept and slope of
the linear model, and ε denotes the model error. In order to gain the model, these
parameters have to be estimated. This can, for example, be done by minimizing
the least squares criterion. To do this, we consider the prediction errors ri =
yi − ŷi, or residuals, between the observed response and the predicted response
from the model. Figure 2.1 shows an example fit of a linear regression model and
the resulting prediction errors.

Using the least squares criterion, the sum of squared prediction errors has to be
minimized:

min
β0,β1

n∑
i=1

(ri)
2 = min

β0,β1

n∑
i=1

(β0 + β1xi − yi)2 .

This can be calculated as a simple mathematical optimization problem [22, p. 62].
Given that more than one predictor variable has to be considered, the linear
regression model would take the form

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε ,

where n is the number of predictor variables and βi refers to the i-th predictor
variable.

10



2.1 Surrogate Modeling

Figure 2.1: Example for a fit of a linear model. The blue line represents the linear
model, the red dots the known data and the red lines between them depict the
residuals or error made by the prediction for each known point. The model tries to
find a linear relationship between the data that minimizes the sum of squared errors
and thus obtains a straight line that models the data best under the assumption
that the underlying relationship is linear.

However, this model, as specified so far, is based on the strict assumption that
the relation between the predictor variables and the response variable is additive
and linear [22].

Extensions to the linear model enable a relaxation of these assumptions by al-
lowing interaction terms, i.e.

y = β0 + β1x1 + β2x2 + β3x1x2 + ε

or quadratic terms, i.e.

y = β0 + β1x1 + β2x
2
1 + ε,

also.

The experiments carried out in this thesis also use a linear model (‘LM’) with a
response-surface component, based on the rsm package [24], which again is an ex-
tension to the R core functionality stats::LM. This model allows for interaction
terms and quadratic terms also, if the number of predictor variables is sufficient.

11



2. PRELIMINARIES

2.1.2 Tree Based Models

Classification and Regression trees were first introduced by Breiman et al. [25].
James et al. also give a thorough and comprehensible introduction to both types
of trees [22]. Later, Breiman et al. introduced a method to combine a large
number of trees into one more accurate prediction model, known as random for-
est [26].

Tree-based models, as many other models also, can be used for classification as
well as for regression. In the case of classification, a binary tree is learned, where
nodes and adjoint labeled branches represent decisions while their terminal nodes,
which will be referred to as leaves, represent the class that the data is assigned
to. Figure 2.2 shows an intuitive example for such a classification tree, given by

Is the minimum systolic blood pressure
over the initial 24 hour period > 91?

Is age > 62.5?

Is sinus tachy-
cardia present?

A

B

A B

ye
s no

ye
s no

ye
s no

Figure 2.2: Classification tree for the identification of high-risk heart attack pa-
tients. Based on [25]. Each internal node marks a split based on the decision to be
made for that node, here the related label shows this decision. The terminal nodes,
or leaves, represent the class of the observations that fall here. In this example ‘A’
denotes low-risk patients whereas ‘B’ represents high-risk patients.

Breiman et al. [25]. The tree shown here was created during a study that analyzed
data of a medical study on heart attacks to identify high-risk patients. During
this study, 19 variables were measured in the first 24 hours after admission to the
medical center. The tree uses only three of the variables to effectively classify
low-risk patients ‘A’ and high-risk patients ‘B’.
To generate such a classification tree, for each set of data the one variable is

12



2.1 Surrogate Modeling

searched for, that separates the two classes best. In general, the process is re-
peated for each branch until the part of data on this path is separated or when
splitting no longer improves the splitting result and with such, the prediction.
However, other rules also may be applied.

In the case of regression also a binary tree is learned, but the tree does not
classify the data in that sense but instead partitions the parameter space of the
data such, that every partition, represented by a leaf, contains data that is similar
or somehow close to each other, and the prediction error is minimized. Here, the
nodes and adjoint labeled branches define the partitions of the data.

(a) Depicted are the partitions generated
by a regression tree on a mostly flat, two-
dimensional function. The colors indicate
the underlying function.

S1

S2 S3

S4 S5P1

P2 P3 P4 P5

P6

x2
<
0.3

5 x
2 <

0.35
x
1
<

0
.6

x
1
>

0
.6 x

2
<

0
.5
5 x

2
>

0
.5
5

x
2
<

0.
13

x
2
>

0.13 x
1
<

0.
21

x
1
>

0.21

(b) An exemplary regression tree that cor-
responds to the partitions shown in (a).
The colors of the leaves indicate the class
that the observed data is classified to.

Figure 2.3: The figures show an example of a regression process on a two-
dimensional function. Figure (a) shows the partitions constructed by the regression
tree, while Figure (b) depicts the related tree.

Figure 2.3 gives an example of how such a regression using a regression tree may
work. Given a two-dimensional function that mainly defines two plane areas
separated by a diagonal. Figure 2.3a shows the regarded function, indicated by
the colors. The regression tree may partition the parameter space by splitting at
S1 : x2 = 0.35 first. The predictions for the upper partition may have improved,
while the prediction quality for the lower part may not have changed or got even
worse. So in the next step, the related partition is split S2 : x1 = 0.6, and so on.
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2. PRELIMINARIES

A few steps later the regression tree may have partitioned the parameter space
as shown in Figure 2.3a. The regression tree that was constructed, and relates to
the partitions created during this process looks like depicted in Figure 2.3b. Each
internal node with adjoint labeled branches represents the Splits S1 - S5 specified
during the partitioning of the data. The leaves specify the prediction that will
be made for observations in the related partition Pi, i ∈ {1, 2, · · · 6}.

In order to build a random forest, the available data is bootstrapped so that a set
of distinct training data sets is generated. On each of the training data sets gener-
ated this way, a single tree is learned. However, this alone does not ensure a high
variance in the trees generated. Assumed that in the available parameters one
turns out to be a very strong predictor while several others only are moderately
strong, the trees would always tend to use this very strong predictor. To counter-
act on this behavior, another tweak is added to the tree generating process, that
enables the tree to choose from a randomly selected subset of predictors only, to
generate the next junction in the tree. These subsets are generated randomly for
each junction.
To gain a single prediction from the set of trees generated this way, the predic-
tions of all trees are aggregated using majority voting, in the case of classification,
and averaging, in the case of regression, respectively.

For the experiments carried out for this thesis two different kinds of tree-based
models are used. These are for one a single tree model (‘Tree’), that is based
on the rpart package [27] and in most details follows Breiman et. al [25] quite
closely.
And for another, a random forest model (‘RandomForest’), which is based on
the randomForest package [28], and implements the random forest algorithm by
Breiman et al. [29] for regression.

2.1.3 Artificial Neural Networks

Artificial neural networks, also referred to as neural networks, describe informa-
tion processing systems that are composed of units or nodes respectively, that
communicate their information over directed connections between each other.
Zell [30] and Anderson et al. [31] give an exhaustive overview of artificial neural
networks and its history.
The general idea is derived from the cerebral structure of mammals, rigorously
simplified. Different types of bipolar and multipolar cells of mammals are de-
picted in Figure 2.4. All of them feature the same components of cell body, axon,
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2.1 Surrogate Modeling

Figure 2.4: The illustration shows examples for different types of neurons (based
on [32, 33])

and dendrites. The cell body ensures the energy supply of the cell and has the
ability to process and transmit nerve impulses. With the dendrites, incoming
impulses are received, with the axon the impulses are transmitted to other cells
in the target area.

In order to build an artificial neural network, the neurons are vigorously ab-
stracted. Figure 2.5 shows a schematic representation of two cells of a neural
network. The cells i and j both have a network ini and inj of incoming connec-

i

ini outi

j
wij

inj
outj

Figure 2.5: Depicted is a schematic representation of two simplified cells of a neu-
ral network (based on [30]). The incoming connections in represent the dendrites,
the outgoing connections out the axons. The connection strength between the two
cells is specified by a weight w.

tions representing the Dendrites, and a network of outgoing connections outi and
outj representing the Axons. A weight wij specifies the transmission strength of
the connection from the cell i to the cell j. With such cells, a network is built
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that in many cases is arranged in layers with connections heading in the direction
of the output neurons only, also referred to as feed-forward networks. Figure 2.6
shows an example of such a network.
This network has three layers of trainable connections, in this particular case
every cell of one layer is connected to every cell of the next layer, and four layers
of cells with the cells in the lower layer being the input cells and the cells in the
upper layer the output cells. The inner layers are referred to as hidden layers.

output layer

0− n hidden layers

input layer

Figure 2.6: Depicted is a schematic feed-forward network with three connection
layers and four neuron layers (based on [30]). The four cells in the bottom row
represent the input layer; the four neurons in the topmost row the output layer.
The inner layers are so-called hidden layers, and their number may strongly vary.
Here, every cell of one layer is connected to every cell of the next layer.

For the experiments carried out in this thesis from the neural network type of
models three different neural networks are used. These are a neural network
(‘neuralnet’) based on the neuralnet package [34]. It is trained using resilient
backpropagation without weight backtracking. The model is instantiated with
two hidden neurons in each layer and a threshold of 0.001 that corresponds to
the defaults that are set by the SPOT interface and thus slightly differs from the
default provided by the neuralnet package.

Additionally, an ensemble of twenty multi-layer perceptron neural network mod-
els (‘MLP’) based on the monmlp package [35] is used. Each is using two hidden-
layers. The implementation applies early stopping together with bootstrap ag-
gregation to control overfitting. The SPOT interface invokes the neural net using
two hidden neurons in the first and one in the second layer.
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And lastly, a censored quantile regression neural network model (‘Qrnn’) based
on the qrnn package [36]. The model is instantiated with a single layer of hidden
nodes.

2.1.4 Support Vector Machines for Regression

Support Vector Machines (SVM) implement concepts for regression as well as
for classification. They were introduced by Boser et al. in 1992 [37]. A detailed
introduction to SVMs can be found in [38], a comprehensive introduction to SVMs
for Regression is given in [39, 40].

Here, data points are regarded as vectors in space. In the case of classification,
the algorithm constructs a hyperplane that is separating the known vectors op-
timally. In this case, optimally means, that the distance ε of the input vectors
that are closest to this separating hyperplane, also referred to as support vec-
tors, is maximized. Figure 2.7a depicts such a situation where a set of vectors
representing two different classes have to be separated. The vectors are directly
linearly separable. Two possible separating lines are shown, the line with the
broader separation space allows for the largest possible separation distance ε and
therefore is the best choice for this example.

(a) If the data is lin-
early separable, the SVM
fits a hyperplane through
the data that separates
the two classes with the
largest possible distance ε
to the nearest points.

(b) The data that has to be classified is not always lin-
early separable. In such cases, a kernel transformation
is applied to the data that maps the data into a higher
dimensional feature space, where the data is linearly sepa-
rable. The points that are marked yellow are the support
vectors that lie closest to the separating hyperplane.

Figure 2.7: Classification of two types of data points using a SVM.
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However, the input vectors x are not always linearly separable. If this is the
case, they are mapped into a high dimensional feature space Z. This is achieved
by using some nonlinear mapping ϕ, that has been chosen beforehand. In this
space, an optimal separating hyperplane is constructed. Figure 2.7b shows such
a situation.

In the case of SVMs for regression, a function f(x) is searched for, which approx-
imates the known vectors with the smallest maximum deviation ε for all training
vectors from the function f(x) while also being as flat as possible. Here, too,
the points that lie on the ε-deviation border are referred to as support vectors.
Figure 2.8a illustrates such a function that approximates a set of training vectors
with an accepted error of ε.

(a) SVMs for regression aim
to find a function that approx-
imates the training data, while
minimizing the maximum devi-
ation ε between training data
and the function.

(b) Error handling using a soft margin penalty.
Points with a deviation smaller than ε don’t add
to the cost of the function. Points with a larger
deviation than ε are penalized linearly with its dis-
tance ζ to the ε-border.

Figure 2.8: Modelling data using Support Vector Machines for Regression

But this procedure is not strict, SVMs also allow for larger deviations in a few
points using a soft margin penalty. For that purpose, the trade-off between the
flatness of the function and number or cost of errors respectively that is accepted
may be adjusted to allow for a few outliers. The outliers are then penalized with
a linear cost function that assigns the cost ζ to an outlier that has a deviation
of ξ with ζ = |ξ| − ε. Figure 2.8b displays an example for such a soft margin
penalty.

For the experiments carried out in this thesis a regression model based on the R
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package e1071 [41], that builds a support vector machine for regression is also
used (‘Esvm’). The model is based on the works of Chang et al. [42].

2.1.5 Multivariate Adaptive Regression Spline Models

Multivariate Adaptive Regression Splines (MARS) can be understood as a gen-
eralization of the recursive partitioning strategy used by regression trees [43].

(a) The figure shows an example for poly-
nomial regression on salary data using a
single polynomial

(b) Depicted is an example of piecewise
polynomial regression on salary data using
three independent polynomials. The ver-
tical lines mark the so-called ‘knots’ that
define the borders of the partitions.

Figure 2.9: The Figures show two approaches to approximating a function that
describes best the relation between age and salary. The red points mark the ob-
served points, and the blue line represents the approximated function.

Supposed that a function is to be learned that estimates the salary of a person
with respect to the age of this person best. A simple method would be to fit
a polynomial to the data using least squares regression. Figure 2.9a depicts an
example of this approach. The red points mark the observed data concerning this
relation.

In many cases, this may lead to good solutions, but there will also be cases where
the data cannot be adequately approximated using a single polynomial. Then,
it may be beneficial to divide the parameter range into disjoint subsets and fit
an independent polynomial for each of the ranges. To obtain K ranges, K − 1
so-called ‘knots’ have to be specified, that define these ranges. Furthermore, it
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has to be ensured, that the resulting piecewise approximation function obtained
is continuous or even smooth. For this purpose, additional constraints are intro-
duced for each knot. Figure 2.9b shows an example of such a piecewise regression.
The obtained function is continuous at the knots, but not smooth.

In opposition to polynomial regression, which must use polynomials of a higher
degree to fit functions of higher complexity, regression splines allow keeping the
degree of the polynomials fixed and induce higher flexibility through a higher
number of knots. An exhaustive introduction to Multivariate Adaptive Regression
Splines is given by Friedman et al. [43].

For the experiments carried out in this thesis also a regression model (‘Earth’)
that uses the model building techniques of Friedman et al. for Multivariate
Adaptive Regression Splines [44] and ’Fast MARS’ [45] based on the R package
earth [46] is added to the set of base models.

2.1.6 Kriging Based Models

The Kriging method (also known as Gaussian processes [47]) was first introduced
by D.G. Krige [48] to improve mine valuation methods and with it the estimation
of the concentration of gold in ore bodies. In 1963 Matheron extended the theory
and formalized the technique [49]. Sacks et al. later applied the method to
the approximation of computer experiments [50]. Forrester et al. give a very
comprehensive introduction to optimization using the Kriging method [40]. The
following remarks and equations are also based on these works.
The Kriging method uses a model of the form

ŷ(x∗) = µ̂+ kTK−1(y − 1µ̂). (2.1)

as predictor. If µ is an a priori given constant, the Kriging variant is called ‘sim-
ple’ Kriging. If µ is estimated from the data, but then used as a constant, the
variant is called ‘ordinary’ Kriging. Moreover, if µ is estimated from the data
and depends on x then the variant is called ‘universal’ Kriging. In the following
‘ordinary’ Kriging is used since it has an excellent prediction quality and not too
many parameters.
To derive this model it has to be started from a set of known data, X =
{x1,x2, · · ·xn}T , with related known function values y = {y1,y2, · · ·yn}T and
it is searched for an expression to predict a value at an unknown point x. Krig-
ing views the known function values y as if they are realizations of a stochastic
process, with errors ε spatially correlated. Between two points that are close
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to one another the errors are considered positively correlated. With increasing
distance between these points the correlation converges to zero. This correlation
between the distance of the points and their errors are modeled using a correla-
tion function, also referred to as kernel. An example for such a kernel is given by
Equation (2.2).

k(x,x′) = exp

(
−

m∑
i=1

θi|xi − x′i|pi
)

(2.2)

Here, two points x and x′ are considered, with xi ∈ R denoting the i-th element
of the vector x. This kernel meets the requirements to yield a function value
of one if x = x′, converges to zero for larger distances and is positive semi-
definite. Some examples of different kernel functions are shown in Figure 2.10.
The kernel function is utilized to create a correlation matrix K containing all
pairwise correlations between errors of all known function values y at locations
X.

K =

 k(x1,x1) · · · k(x1,xn)
... . . . ...

k(xn,x1) · · · k(xn,xn)


These correlations depend on the absolute distance between the known points
|x− x′| and the parameters θi and pi. These parameters, θ and p, are in general
estimated using Maximum Likelihood Estimation [40, 51], such that for the given
model, the known data points have the largest likelihood. The likelihood function
of the Kriging model is based on the probability density function of a multivariate
normal distribution,

f(x) =
1

(2π)n/2|C|1/2
exp

(
−1

2
(y − 1µ)TC−1(y − 1µ)

)
with 1 being the identity vector and C the stationary covariance matrix. The
covariance matrix C is related to the correlation matrix K by C = σ2K. With
this the Kriging likelihood function can be expressed as

f(ε(X)|µ, σ, θ, p) =
1

(2πσ2)n/2|K|1/2
exp

(
−(y − 1µ)TK−1(y − 1µ)

2σ2

)
(2.3)

This equation has to be simplified by taking the natural logarithm. The partial
derivatives of this function then have to be set to zero in order to obtain the
Maximum Likelihood Estimates for µ and σ2:

µ̂ =
1TK−1y

1TK−11
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and

σ̂2 =
(y − 1µ̂)TK−1(y − 1µ̂)

n
.

These terms for µ̂ and σ̂2 can now be substituted back into the logarithmized
form of Equation 2.3. Removing constant terms yields the so-called concentrated
ln-likelihood function:

con(ln(L)) = −n
2
ln(σ̂2)− 1

2
ln(|K|). (2.4)

Here, the parameter θ and p are still unknown. In order to find values for these
parameters that maximize the function, numerical optimization has to be applied,
since the function cannot be differentiated. However, as the function is quick
to compute, as long as the search space does not get too large, the function
can be searched directly, so that a classical global optimization method can be
applied.

Introductory it was said that it is searched for an expression to predict a value ŷ
at an unknown point x. The main idea to do so is to augment the known data y
with the new prediction ŷ, which yields the vector yaug = yT , ŷ

T . Treating ŷ as
a model parameter, the likelihood function is to be maximized with respect to ŷ,
given the already known correlation parameters.
Defining the vector of correlations between the set of known data X and the
new data point x∗ as k = (k(x1, x∗), · · · , k(xn, x∗))

T , this vector can be substi-
tuted into the prediction function (2.1) together with the already known model
parameters to make a prediction.

For a next iteration, the augmented correlation matrix can be defined as Kaug =(
K k
kT 1

)
. Together with the already known model parameters, Kaug and yaug

are substituted into the likelihood function (2.3). Maximizing the resulting term
with respect to ŷ yields the predictor (2.1).

In the experiments carried out in this thesis, three Kriging models with different
correlation functions are used. These are Kriging with exponential correlation
function (‘correxp’), gaussian correlation function (‘corrgauss’), and spline corre-
lation function (‘corrspline’). Figure 2.10 depicts the kernels used. The Kriging
implementation is part of the SPOT package and follows the implementation of
Lophaven et al. as described in [52].

Following the definitions from Lophaven et al., the correlation models can be de-
scribed as follows. We consider stationary correlations of the form R(θ, x, x′) =∏n

j=1R(θj, xj − x′j). The first model uses the exponential kernel R(θ, xj, x
′
j) =
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Figure 2.10: The figure shows an example of different correlation functions. The
functions ‘exponential’ and ‘gaussian’ implement the correlation function specified
in Equation 2.2 with p = 1 for ‘exponential’ and p = 2 for ‘gaussian’. The ‘spline’
function follows the definitions from [52] and only takes the θ-parameter. The
function values then specify the assumed correlation of two known points, based on
their distance.

exp(−θj|xj−x′j|) the second model uses a gaussian kernel R(θ, xj, x
′
j) = exp(−θj|xj−

x′j|2), whereas the third model is based on the spline correlation function R(θ, xj, x
′
j) =

ζ(θj|xj − x′j]) with

ζ(εj) =

{ 1− 15ε2j + 30ε3j for 0 ≤ εj ≤ 0.2
1.25(1− εj)3 for 0.2 < εj < 1
0 for εj ≥ 1.

Here, ε and θ are hyperparameters estimated by likelihood maximization.

Additionally, a treed Gaussian process model with jumps to the limiting lin-
ear model (‘tgp’) that is based on the tgp package [53] is used in the experi-
ments.

Finally, a simple ensemble model (‘Rfmlegp’) is also used for the experiments.
The ensemble internally builds a random forest model using the randomForest
package [28] and a Gaussian process model using the mlegp package [54]. The
mean of these models’ predictions is returned as the ensemble prediction.
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2. PRELIMINARIES

2.2 Surrogate Model-Based Optimization

In most real-world optimization problems, the number of function evaluations
that can be carried out is massively limited by time or cost. At the same time,
not seldom the objective function is expensive to evaluate. Direct search methods,
in general, require more function evaluations than the number that can actually
be spent, which makes such real-world problems a special challenge for global
optimization.

Evaluate
initial design

Train model on
data

Optimize on
model

Evaluate new
point

Budget exhausted /
Optimization goal
reachedyes

no

Figure 2.11: Shown is a schematic representation of a surrogate model based
optimization process. Initially, a first set of data points is evaluated on the function;
in general, these points are chosen using a design of experiment. Then, a surrogate
model is fitted to the data. On the fitted model, a separate optimization process is
started, and the best points found are evaluated on the function. The process ends
when the predefined stopping criterium is reached.
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Jones et al. [17] and others [14, 55, 56] addressed this challenge by using surrogate
models as a fast and cheap approximation of the real objective function. Instead
of performing a direct search on the objective function, in every step a model
is trained to the available data, and an optimization process is carried out on
this model. The best n solutions found during this intermediate optimization
step are then evaluated on the real objective function. Figure 2.11 depicts the
general procedure of such an SBO process. Evolutionary surrogate model based
optimization was introduced by Emmerich et al. [57].

Like in any optimization process, if initially no information about the function is
available, some data points have to be evaluated to gain some base knowledge D
about the function. Usually, a design of experiment (DOE) is used to obtain this
knowledge.

Then, the main optimization loop is started by fitting the model to the observed
data D. On the fitted model that is now approximating the objective function a
separate optimization step is carried out.

From the set of points that were evaluated on the model during this optimization,
a choice of n points is selected to be evaluated on the objective function. This
choice is not limited to merely choosing the point that has the best-predicted
value on the model, but can also be based on other criteria like the expected
improvement1 if the model provides confidence intervals for its predictions. The
main optimization loop is stopped if the budget of available function evaluations
is exhausted or a predefined optimization goal is reached.

Software packages like SPOT provide a complete optimization framework fea-
turing heaps of statistical tweaks to optimize this process even more, as well as
parameters for additional fine-tuning [59].

Nonetheless, for the experiments carried out in this work a very basic SPO frame-
work is developed to allow for complete control over the behavior of the sequential
optimization process and to gain more insight and interpretable results. Algo-
rithm 1 depicts the main steps of this framework which, up to some minor details,
corresponds to standard SPO processes.

In a first step the initial design is evaluated (cf. Algorithm 1 line 2). To allow
for reproducible results and equal experimental preconditions across several ex-
perimental setups, the framework takes predefined experimental designs so that

1Expected improvement is a criterion that helps to balance between exploitation and explo-
ration. It was introduced by Mockus et al. in 1978 [58]. Jones et al. [17] give a comprehensive
introduction to the topic.
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Algorithm 1: The SPO Framework that was used for the experiments carried
out in this thesis
Data: objective function f : Rd → R

initial design {x1, · · · , xn} , x ∈ Rd,
surrogate model m
sequential step size neval

Result: Resultset containing all evaluated points
1: begin
2: D ← Evaluate initial design on objective function f ;
3: while function evaluations available do
4: m∗ ← Fit model m to known datapoints D ;
5: Evaluate sequential design on model m∗;
6: Choose d1

2
nevale points x∗ according to exploitation;

7: Choose b1
2
nevalc points x∗∗ according to exploration;

8: Evaluate chosen points x∗ and x∗∗ on objective function f ;
9: Add new information to known data D ;

all experiments use the same initial configuration (cf. Algorithm 1, data input).
The resulting dataset D = {(x1, y(x1)), . . . , (xn, y(xn))} builds the foundation for
the subsequent optimization process.

The main optimization steps are carried out in a loop that ends when the number
of allowed function evaluations has been reached (cf. Algorithm 1 line 3).

First, the model M is fitted to the observed data D (cf. Algorithm 1 line 4).
On the fitted model M∗ a sequential design is evaluated (cf. Algorithm 1 line 5).
Based on the resulting set of model predictions, points are selected for evaluation
on the objective function. For this choice, the available budget of function evalu-
ations per sequential step neval is shared equally on points x∗ that correspond to
the criteria of exploitation1 and on points x∗∗ that correspond to the criteria of
exploration2.

1Exploitation refers to the strategy of searching a restricted search space in the area of the
best-known solution in order to improve this solution. This can also be referred to as local
search.

2Exploration refers to a strategy of searching the entire region of interest in the search space
in order to find new promising solutions. This strategy helps to diversify the search and to
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The selection of these points is carried out as follows:
For exploitation from the predictions of the model on the large sequential design,
the k best performing points are chosen and added to the candidate set C∗. A
typical value of k is 20. Since these points are restricted to points from the design,
from each of these points a local search is initiated on the model. The points that
are obtained with this search are also added to the candidate set C∗. If these
points violate constraints of the search space, they are repaired by setting those
violated parameters to the allowed limit. From this set of candidates C∗ the
d1
2
nevale points x∗ that perform best on the model are chosen for evaluation on

the objective function (cf. Algorithm 1 line 6).
For exploration, those k points from the sequential design are chosen and added
to the candidate set C∗∗, that have the largest distance to their nearest neighbors.
From these candidates those b1

2
nevalc points x∗∗ that perform best on the model

are chosen to be evaluated on the objective function (cf. Algorithm 1 line 7).

The points x∗ and x∗∗ chosen before are evaluated on the objective function. And
the new information gained in this step is added to the datasetD (cf. Algorithm 1
line 8-9).

After finishing the main loop, the dataset D is returned as the result.

The default settings for the experiments performed in this study were chosen as
follows: for the sequential design, a size of 200 points and a sequential step size
of festep = 2 was chosen.

This optimization is intentionally kept simple to allow for better insight into the
performance of the models used for optimization.

2.3 Objective Functions

The experiments carried out for this work are run on a set of objective functions.
These objective functions can be roughly divided into three groups.

1. Generic objective functions generated to fit the requirements,

2. standard optimization test problems,

3. and test functions based on physical models.

prevent it from getting trapped in a local optimum. This can also be referred to as global
search.
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Since most of the black-box real-world problems considered to be difficult are
multimodal, the focus for this work is also on multimodal function approxima-
tion (cf. [60, 61, 62]). In the following, these functions are introduced in more
detail.

2.3.1 Gaussian Landscape Generator

To allow for the flexible generation of test functions that meet the requirements
in certain features the Max-Set of Gaussian Landscape Generator (GLG) is ap-
plied. It computes the upper envelope of m weighted Gaussian process realiza-
tions and can be used to generate continuous, bound-constrained optimization
problems [63].

Thus, a GLG objective function is defined as

G(x) = max
i∈1,2,...,m

(wig(x)),

where g : Rn → R denotes an n-dimensional Gaussian function

g(x) =

(
exp

(
−1

2
(x− µ)Σ−1(x− µ)T

)
(2π)n/2|Σ|1/2

)1/n

,

µ is an n-dimensional vector of means, and Σ is an (n × n) covariance matrix.
Implementation details are presented in [64]. For the generation of the objective
functions the spotGlgCreate method of the SPOT package is used.

The options used for our experiments are shown in Table 2.1. With the parameter
d the dimension of the objective function is specified. The lower and upper
bounds (l and u, respectively) specify the region where the peaks are generated.
The value max specifies the function value of the global optimum, while the
maximum function value of all other peaks is limited by t, the ratio between the
global and the local optima.

2.3.2 Optimization Test Problems

Two classical mathematical test problems are chosen. Both, the Ackley func-
tion [65] as well as the Rosenbrock function [66] are widely used for testing opti-
mization algorithms.
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Table 2.1: Gaussian landscape generator options

Param. Description Value
d Dimension 1− 8

m Number of peaks 10− 320

l Lower bounds of the area, where peaks are generated {01, . . . , 0d}
u Upper bounds of the area, where peaks are generated {51, . . . , 5d}

max Max function value 100

t Ratio between global and local optima 0.8

The Ackley function
was proposed by David Ackley in 1987 [65]. Later, in 1993 the function was gen-
eralized by Bäck and Schwefel [67]. In its generalized form it is defined by

f(x) = −a exp

−b
√√√√1

d

d∑
i=1

x2i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1)

with a = 20, b = 0.2 and c = 2π.

It is a non-convex function featuring many local optima. In its two-dimensional
form the function is almost flat in its outer regions with the global minimum
(f(x∗) = 0, at x∗ = (0, . . . , 0)) being a large peak at the center. With its highly
multi-modal characteristics, it poses a risk to optimization algorithms to get stuck
in local minima.

As region of interest we regarded the hypercube xi ∈ [−32.768, 32.768], ∀x ∈ [1, d].

The Rosenbrock function
is also known as Valley- or Banana function and has been introduced by Howard
H. Rosenbrock in 1960 [66]. It is defined by

f(x) =
d−1∑
i=1

[
100(xi+1 − x2i )2 + (xi − 1)2

]
The function is non-convex, but in contrast to the Ackley function, the Rosen-
brock function is unimodal. Its global minimum (f(x∗) = 0), lies at x∗ =
(1, . . . , 1). In its two dimensional form it is located in a narrow, parabolic val-
ley that is following the parabola x2 = x21. Though the valley is easy to find,
convergence to the minimum is difficult.
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As region of interest we regarded the hypercube xi ∈ [−2.048, 2.048], ∀x ∈ [1, d].

2.3.3 Physical Functions

In order to gain a set of test functions that also contains functions with relation to
real-world optimization problems, four test functions that model a physical model
are added to the set. As a source of these test functions, the ‘Virtual Library of
Simulation Experiments’ [68] is used. The website provides a collection of well-
structured test problems. From the choice of emulation/prediction test problems
based on physical models, all functions, that are not stochastic and given in the
form of a function instead of a dataset, are added to the system. Under this
premise we get a set of four real-world objective functions as follows.

The OTL Circuit Function models an output transformerless push-pull cir-
cuit [69]. The response variable of the function is Vm, the midpoint voltage, that
is affected by six parameters. The parameters, with its units and ranges, are
specified in Table 2.2.

Parameter Description Value range
Rb1 resistance b1 (K-Ohms) [50, 150]

Rb2 resistance b2 (K-Ohms) [25, 70]

Rf resistance f (K-Ohms) [0.5, 3]

Rc1 resistance c1 (K-Ohms) [1.2, 2.5]

Rc2 resistance c2 (K-Ohms) [0.25, 1.2]

β current gain (Amperes) [50, 300]

Table 2.2: Search Parameters of the otl-circuit function

The midpoint voltage Vm can be derived from the parameters as follows:

Vm(x) =
(Vb1 + 0.74)β(Rc2 + 9)

β(Rc2 + 9) +Rf

+
11.35Rf

β(Rc2 + 9) +Rf

+
0.74Rfβ(Rc2 + 9)

(β(Rc2 + 9) +Rf )Rc1

where

Vb1 =
12Rb2

Rb1 +Rb2

and x = (Rb1, Rb2, Rf , Rc1, Rc2, β)
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The Piston Function is a simulator, that models the movement of a piston
within a cylinder. The piston consists of a linear rod that is connected to a disk.
By this connection, the linear movement of the rod is transformed into a circular
motion. The faster the piston moves within the cylinder the faster rotates also
the disk. The performance of the piston is measured by its cycle time, the time
it takes to perform one rotation of the disk, in seconds.

The performance of the piston is affected by a set of parameters, given in Ta-
ble 2.3. These parameters affect the cycle time Tc via a chain of nonlinear equa-
tions [69]:

Tc(x) = 2π

√
M

k + S2 P0V0
T0

T0
V 2

where

V =
S

2k

(√
A2 + 4k

P0V0
T0

Ta − A

)
, A = P0S + 19.62M − kV0

S

and
x = (M,S, V0, k, P0, Ta, T0).

The function was developed by Kenett and Zacks in 1998 [70].

Parameter Description Value range
M piston weight (kg) [30, 60],
S piston surface area (m2) [0.005, 0.020]

V0 initial gas volume (m3) [0.002, 0.010]

k spring coefficient (N/m) [1000, 5000]

P0 atmospheric pressure (N/m2) [90000, 110000]

Ta ambient temperature (K) [290, 296]

T0 filling gas temperature (K) [340, 360]

Table 2.3: Search Parameters of the Piston Function

The Robot Arm Function is commonly used in neural network literature.
It models a four-segment robot arm with the shoulder of the arm fixed at the
origin in the (u, v)-plane [71]. Each segment of the arm has a specific length
Li and an angle θi, i = 1, . . . , 4. The angle of the first segment, with respect to
the horizontal coordinate axis of the plane, is given by θ1. The angles θ2, θ3, θ4
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2. PRELIMINARIES

describe the rotation of the corresponding arm segment in relation to the previous
arm segment.

The response variable of the function D, models the distance of the end of the
robot arm to the origin, on the (u, v)-plane. This distance can be directly derived
from the eight parameters by:

D(x) =
√
u2 + v2

where

u =
4∑
i=1

Licos

(
i∑

j=1

θj

)
, v =

4∑
i=1

Lisin

(
i∑

j=1

θj

)
and x = (L1, L2, L3, L4, θ1, θ2, θ3, θ4).

The input parameters, with its ranges, are specified in Table 2.4

Parameter Description Value range
Li, i = 1, . . . , 4 length of the i-th arm segment [0, 1]

θi, i = 1, . . . , 4 angle of the i-th arm segment [0, 2π]

Table 2.4: Search Parameters of the Robot Arm Function

The Wing Weight Function models the weight W of the wing of a light
aircraft [40]. The analytical expression is adapted from the work of Raymer
(2006) on conceptual aircraft design [72]:

W = 0.036 S0.758
W W 0.0035

fw

(
A

cos2Λ

)0.6

q0.006λ0.04
(

100tc

cosΛ

)−0.3
(NZWdg)

0.49+SWWP

The ten parameters, that affect the weight W are given in Table 2.5, along with
its baseline and range.

While the baseline values roughly represent the values of a Cessna C172 Skyhawk
aircraft, the given ranges where specified by Forrester et al. [40].
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Parameter Description Baseline Value range
Sw wing area (ft2) 174 [150, 200]

Wfw weight of fuel in the wing (lb) 252 [220, 300]

A aspect ratio 7.52 [6, 10]

Λ quarter-chord sweep (degrees) 0 [−10, 10]

q dynamic pressure at cruise (lb/ft2) 34 [16, 45]

λ taper ratio 0.672 [0.5, 1]

tc aerofoil thickness to chord ratio 0.12 [0.08, 0.18]

Nz ultimate load factor 3.8 [2.5, 6]

Wdg flight design gross weight (lb) 2000 [1700, 2500]

Wp paint weight (lb/ft2) 0.064 [0.025, 0.08]

Table 2.5: Search Parameters of the Wing Weight Function

Some passages in this chapter are based on descriptions that were already published
in [73, 74, 75].
The composition of base models and the set of objective functions used for the
experiments carried out in this thesis were already described in [75]. The specification
of the Kriging kernels was already given in [73]. Occasionally, text elements have
been adopted verbatim from these publications. However, the text was significantly
extended, and adapted to fit the notation of this thesis.
The SPO Framework introduced in this Chapter has already been described in [74,
75]. Some of these descriptions, as well as Algorithm 1, are adopted verbatim or
with minor changes to adapt them to the notation and structure of this thesis.
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Chapter 3

Taxonomy

In this Chapter, an introduction to the development in the field of surrogate
modeling towards ensembles and a more detailed overview of ensemble methods
is given. The functionality of the different approaches is analyzed, and a taxon-
omy of ensemble methods is derived from the observations made. The variety
of existing approaches is large and more than a few are specifically designed for
one problem or one class of problems. The main focus of this overview is laid
on methods that conform to the goal of this work. These are mainly regression
models, that can also be applied to Designs of Experiment (DOE) of a smaller
size. Additional approaches that do not fit this specification are introduced af-
terward. Finally, the insights are discussed, and a conclusion is drawn specifying
the primary necessities for the envisioned ensemble method.

Models are used when the direct evaluation of the actual fitness function would
be too expensive. However, the performance of the available models on differ-
ent objective functions is strongly varying. All models have their strengths and
weaknesses which enable them to model some features better than others. Thus,
whenever a model is to be applied, the result is strongly depending on the choice
of the model. To choose the right model, not only knowledge about the ob-
jective function is needed, but also about the strengths and weaknesses of the
available models. This knowledge is not always available, which led to different
approaches to facilitate this choice by providing tools and criteria to evaluate or
choose a model, methods to automatically select the most appropriate models
or even to combine several models into one stronger model. But the different
approaches are so diverse that it is not easy to obtain a broad overview.

In the following the different approaches are examined closer, differences and
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3. TAXONOMY

similarities between the approaches are pointed out, and possible advantages and
disadvantages are discussed.

The general question is: Given, that more than only one model is available, how
to obtain one prediction from n models.
There are two criteria that allow for the first classification of these approaches. We
can differentiate between Model Selection and Model Mixtures or Model combina-
tion. Also, we can distinguish by regarding the number of model fitting processes,
since there are solutions that only fit a single model to the data and solutions
that fit all models to the data.

3.1 Overview of Previous Developments and the
State of the Art

As stated before, the choice of the surrogate model can have a significant influence
on the solution quality and performance of a surrogate model based optimization
process. Burnham et al. even stated that the choice of the right surrogate model
is the most crucial question in making statistical inferences [18]. But in order to
make meaningful decisions on which surrogate model to select for a given problem,
often expert knowledge is needed. This includes knowledge about the objective
function and the characteristics of the surrogate model likewise.

However, if there is no preliminary knowledge about the objective function or
the available surrogate models, the choice has to be taken nonetheless. This
may be done by just choosing the surrogate model that performed well on past
optimization tasks. It would even be possible to switch between surrogate models
during the optimization process randomly or applying a round robin method to
give all available surrogate models their fair share if more predictions are needed
sequentially [76]. Other more sophisticated methods might interpret the problem
as a multi-armed bandit problem [77]. A well-known strategy is SoftMax, which
uses a probability vector where each element represents the probability for a
corresponding model to be chosen. The probability vector is updated depending
on the reward received for the chosen models [78]. However, these ad hoc rules
do not rely on the data to help select the best model and therefore ignore the
principle of parsimony1. The principle of parsimony [80], also known as Ockham’s

1Newton wrote in one of his books: “We are to admit no more causes of natural things than
such as are both true and sufficient to explain their appearances.” [79, p.731]
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3.2 Single Evaluation Model Selection

razor, describes the idea that, when multiple hypotheses are available to explain
a thing, one should select the one with the fewest possible assumptions.

To overcome this problem, it would be beneficial if the algorithm could learn all
by itself which surrogate model type suits the problem best, based on the given
data. This can be done by evaluating different models on available training data
and using a statistical model selection approach to select the most promising
surrogate model [76].

But how to handle the situation when there is more than one strong model
in the set? In such circumstances, it might be beneficial to combine inference
output across several models. In statistics and machine learning an ensemble is
a prediction model from several models, aiming for better accuracy.
Different approaches for building ensembles of surrogates are known. Bagging
[29] combines results from randomly generated training data partitions whereas
Boosting [81] combines several weak learners to a strong one in a stochastic
setting. Weighted averaging approaches combine model predictions by calculating
the mean or the median of different predictions [26]. But also operations like
calculating the minimum or the maximum over these predictions may be thinkable
for some applications [82].

Since imprecise models should not deteriorate the overall result, a weighting
scheme is introduced. In [83, 84, 85] every model’s result for a single design point
is weighted using some criterion, i.e., Akaike’s Information Criterion (AIC). The
sum over all models yields the final value assigned to the design point. A sim-
ilar approach is blending or stacking [86], where the weights are chosen in an
additional training step. Polikar [87] named further ensemble methods.

3.2 Single Evaluation Model Selection

The first class of solutions to handle a large set of models for generating one
prediction only evaluates the single models that have been selected. The diagram
in Figure 3.1 displays the general flow of this approach. Whenever a single model
comes to action, it has to be selected from the set of available models using some
criterion. If the user selects the model by hand, this may be done by guessing
(if there is no a priori knowledge available) or the model may be selected by
preference (which for instance could be based on good experiences made during
previous applications) and so on.

However, also automated model selection methods were proposed as an efficient
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n-Models

Selection

1 Model

Fit & Predict

1 Prediction

Criterion

Random/
Preference/
Schedule

Gain

Figure 3.1: The Figure illustrates the general procedure in the case of Single
Evaluation Model Selection. Given, that more than one model is available, one
model has to be chosen with respect to some criterion. This model can then be
fitted to the data and used for prediction. Knowledge gained in this step may be
used in future decisions.

solution to the model selection problem in SPO as well as to the cold start problem
in online modeling applications when there is not yet enough data available [88].
In the latter case, learning the choice of the right model when there is no data
available yet corresponds to problems in the context of multi-armed bandits [77].
Methods proposed to approach the model selection problem, in this case, are
often based on known solutions to the multi-armed bandit problem or use simple
schedules.
The ‘model scheduling’ approaches provide a schedule that specifies the order in
which to select a model. The most straightforward solution is to use a random
order or to apply a round-robin strategy [76]. More advanced solutions to the
multi-armed bandit problem also consider results from previous evaluations. ε-
Greedy strategies choose the model that provided the best reward so far with
a probability of ε [76]. Soft-Max approaches keep probabilities for every model
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available, starting with an even distribution of probabilities. After every step,
all probabilities are then adjusted according to the success of the last model [76].
To allow for a better distribution of the initial probabilities, an initialization step
can be carried out when enough data is available [89]. The Bayesian Learning
Automaton keeps track of a variable for each model that affects the probability
for the corresponding model to be chosen, but unlike the Soft-Max approach,
these variables are adjusted independently. Also, many other statistical criteria
are used for model selection; an overview of some of them is given in [90].

All of these approaches benefit from the fact that in every step only a single
model has to be fitted to the data. However, these ad hoc rules ignore the rules of
parsimony and do not, or only marginally, rely on the data to help select the best
model. The use of a schedule, or to chose even randomly, gives the same chance
to adequate models and inadequate models likewise. The approaches that utilize
the reward of the last model struggle with the same problem. The algorithm
may settle down to a single model or a small subset of better performing models
after some time. But the chances are that due to unfortunate choices for the
reward evaluation and during the first steps, better performing models are put
at a disadvantage.

3.3 Multi Evaluation Model Selection

A simple way to approach the drawbacks that come with the model selection
methods presented in Section 3.2 is to evaluate all models on the data. This
way the decision can be made based upon the models’ predictions or their per-
formances. Figure 3.2 displays the flow of such approaches. ε-Greedy approaches
choose the model that performed best in the previous step, in terms of prediction
error, with a probability of ε, with ε ∈ [0, 1]. With the complementary probability
of (1− ε) one of the remaining models is chosen randomly [76].

This choice must not be taken based on knowledge from the last step but can
also be based on the predictions itself. For such approaches, all models have to
be fit to the data in an initial step. Baxter [91] proposed to choose between the
predictions of two neural networks that were trained for different objectives by
comparing their predictions to a predefined threshold.

Jacobs et al. [92] proposed to combine a set of neural networks by using one of
the networks as a gating network that learns which model is the best choice for
a given input.
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Figure 3.2: The Figure illustrates one approach to Multi Evaluation Model Selec-
tion, where the choice of the model is based on its prediction. For this purpose, all
available models are fitted to the data. The model whose prediction satisfies the
predefined criterion is chosen. Knowledge gained in this step may be used in future
decisions.

Still, these approaches have limited insight into the performances of the models.
Introducing an additional step to evaluate the models on the data allows for a
deeper insight into the performances of the models on the data. By applying
methods such as cross-validation, the prediction errors of the models can be
estimated directly. Figure 3.3 displays the flow of such processes.

Friese et al. [76] proposed a method that does a leave-one-out cross-validation
and an additional fitting step on the full data set to gain information about
the models underlying uncertainty. This information is then combined with the
models’ error from the last prediction to obtain an indicator for the selection of
the model.

An obvious drawback of such approaches is the number of fitting processes that
have to be carried out to evaluate all models the one or the other way. For an
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Figure 3.3: The Figure illustrates an approach to Multi Evaluation Model Se-
lection, where the choice of the model is based on the general fit of the model
on already known data. For this purpose, all available models are evaluated on
the available data. The model that scores best during this evaluation is chosen.
Knowledge gained in this step may be used in future decisions.

online or sequential process with constraints on the calculation time for the models
this step might not be feasible. However, in real-world applications, the actual
expenses originate from the evaluation of the objective function. The calculation
times may be of small concern.
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3.4 Model Combination

Model selection strategies, as introduced before, assign scores to the candidate
models to allow for evaluation. In the case of single evaluation model selection,
as introduced in Section 3.2, this score is based on performance values of previous
steps, whereas in multi evaluation model selection, as introduced in Section 3.3,
this score was obtained by a preliminary evaluation of the available models. Such
evaluations might yield a clear winner, but they might also lead to the insight
that several candidate models perform comparably well. Claeskens et al. [93]
state, that in such circumstances, it may be beneficial combining the predictions
of these strong models to obtain a more accurate or even better prediction. A
straightforward approach to achieve this would be to fit all models to the data
and then apply some rule that defines how to combine the various predictions to
one.

Figure 3.4 displays the process flow of such methods.

With Bagging [29] multiple versions of a model are generated by fitting them
to different partitions of the training data (further referred to as multi-data).
Breiman et al. showed, that by averaging the predictions of these models a
prediction of higher accuracy can be achieved. Random Forests [26] are another
example of this approach where Bagging is used with trees. Their output is
combined by majority voting, in the case of classification, or by averaging, in the
case of regression.

Boosting [81, 94] is like an add-on to bagging that performs the fitting of the
model on the multi-data sequentially. This way data that has not been learned
adequately can be considered for the next fitting process with a higher probability.
Models generated are combined by weighted averaging, with the weights derived
from their prediction errors on the remaining data of the training set.

Bishop [95] combined a set of artificial neural networks to one committee of net-
works by calculating the weighted sum of their predictions. His method uses the
error that the models make at the training points to define the models’ weights.
The only restriction on the weights is that they have to sum up to one.

Van Stein et al. [96] clustered the training data and learned an independent
Kriging model on each data cluster. They introduced a variety of methods to
cluster the data and proposed several approaches to retrieve a single prediction
from this cluster. The original method [97] considers the Kriging models to be
independent, and given this assumption computes an optimally weighted average.
One of these approaches is to learn a decision tree on the data with its leaves
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n-Models
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Figure 3.4: The Figure illustrates an approach to Multi Evaluation Model Com-
bination, where the predictions of multiple models are combined using a predefined
rule. For this purpose, all available models are fitted to the data, or partitions of
the data. Knowledge gained from the prediction, or the single predicitons, may be
used in future decisions.

being Kriging models. The probability for a data point to be assigned to one leaf
of the tree is also used as the weight for the calculation of a weighted sum of the
predictions.

Given a set of heterogeneous models is to be used, the models can be fitted
to the complete data, variance in their predictions is already given through the
heterogeneity of the models, and then be combined by averaging their predictions.
However, working with heterogeneous models, this approach may run the risk that
one model in the set performs considerably worse, which would bias the outcome
of the averaged prediction. Using information (i.e., prediction error) from the
last step would minimize this risk [76].

Zerpa et al. [98] proposed to combine heterogeneous models, that are able to
provide information about their variance, by calculating a weighted sum of their
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predictions. The information about the models’ variance is used for the calcula-
tion of the models’ weights.

n-Models

Evaluation

Fitness

Fit & Predict

n Predictions

Combination

1 Prediction

Data
i.e. Jackknife/
Bootstrap/
Cross-Validation

Rule

Figure 3.5: The Figure illustrates the most elaborate approach to Multi Evalu-
ation Model Combination where the predictions of multiple models are combined
according to their fitness on the available data. For this purpose, all available mod-
els are evaluated on the data. Each model’s score directly affects how the models
are combined.

Like with the Model Selection strategies here also an additional step to evaluate
the models fit can be introduced (cf. Figure 3.5). Perrone et al. [99] combined a
set of ten neural networks by computing a weighted average of the models’ predic-
tions. They performed a cross-validation step on the training data to determine
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the prediction errors and calculated the optimal weights, in terms of minimal
mean squared error1 (MSE) based on these errors.

Goel et al. [100] combined three heterogeneous models by calculating the weighted
sum of the models’ predictions. To determine the weights, they used a formula
that is based on the generalized mean square cross-validation error of the models.
The formula uses two parameters α and β that have to be specified, and control if
more trust is laid on the general average of all models predictions (larger α values
and smaller negative β values) or if more weight is laid on the single model.

Acar et al. [101], proposed some adaptations of previously defined approaches of
weighted sum ensembles for better generalizability and performance. Like in pre-
vious works they also required the weights to sum up to one as the only constraint
on the weights. Building on the approach of Bishop et al. [95], they proposed
to use k-fold cross-validation to allow for an evaluation of models that have per
definition no error at the training points. For the works of Goel et al. [100] they
suggested to select the parameters α and β to minimize the generalized mean
squared error2(GMSE) of the ensemble. Another approach they propose is a
weighted sum ensemble that is evaluated by its root mean squared error3 (RMSE)
with respect to a predefined number NV of evaluation points (NV = 2, 3 or 5).
They optimize the weights using a gradient-based search algorithm starting from
the center point, annotating that the search space is not necessarily convex so
that the solution possibly only presents a local minimum.

As mentioned before, an obvious drawback of these approaches is the number of
fitting processes that have to be carried out. But, unlike in model selection pro-
cesses, the additional information that might be retrieved from the other models
is not necessarily discarded. Previous works show that further enhancement in
accuracy can be achieved by combining several models of similar accuracy. How-
ever, also with weaker models being part of the set, the combination of models
can be beneficial if the strengths and weaknesses are carefully considered.

1The MSE calculates the average of the squares of the errors between the observed value and
its estimation. It is defined as MSE = 1

n

∑n
i=1 (yi − ŷi)2.

2The GMSE refers to the MSE applied in a leave-one-out cross-validation process.
3The RMSE calculates the root of the MSE. It is defined as RMSE =

√
1
n

∑n
i=1 (yi − ŷi)2.
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3.5 Further Ensemble Generating Strategies

The ideas regarded so far give an overview of the main strategies and ideas on the
topic of ensemble building. Of course, this roundup does not claim to be complete.
As said in the beginning, the main focus for this overview is laid on methods that
conform with the goal of this work. However, there remain approaches to combine
models and areas of application that have not been mentioned so far.

Torgo et al. [102] presented a method that uses a regression tree with several
alternative independent models in the tree leaves and this way outperformed
standard regression tree methods that only average the function value represented
by a single leaf.

Dasarathy et al. [103] partitioned the feature space to use two or more classifiers
in a pattern recognition system.

Van Stein et al. [104] proposed to improve the performance of Kriging on functions
of higher complexity, in terms of dimension or number of known points, by parti-
tioning the data set into smaller disjoint clusters of data, distinguishing between
randomly generated clusters and location-based clustering with randomly chosen
center points. Their approach trains individual Kriging models on each data clus-
ter. For the prediction, a weighted average of the different models’ predictions
is calculated using the variance information for each cluster. They showed that
using location-based clustering leads to better results than random clustering.
The so-called Cluster Kriging generated this way outperforms Ordinary Kriging
in terms of computation time as well as in terms of accuracy.

Ginsbourger et al. [105] proposed to use multiple kernels within Kriging. In this
case, a mixture of the kernels is defined using a weighted sum. Friese et al. [106]
applied the idea of ensemble modeling to time series analysis and forecasting. By
adjusting the seasonality of the input data in a preprocessing step they enabled
a larger set of models to be used on the data. For each forecasting step, they
learned all available models and then used the AIC for the selection of the most
promising model.

The possibilities of defining ensembles considering only the different options of
combining and evaluating base models, as well as ensembles, seem vast. For
evaluation, different methods (i.e., Bootstrapping, Cross-Validation) as also dif-
ferent quality measures or criteria are available (i.e., RMSE, MSE or AIC). Most
approaches apply some form of weighted sum for the combination of multiple
models. However, for different applications also different combination schemes
may be beneficial. Kittler et al. [82] compared the operators product, sum, min,
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max, median and majority voting to combine multiple models in a pattern recog-
nition system.

policy =base policy

| policy + policy

| policy× policy

| policy− policy

| mean(policy, policy)

| min(policy, policy)

| decision(point, index, threshold, policy, policy)

base policy =base model(point)

| constant scalar ∈ R

base model =fast base model | KF | MLP | SVM
fast base model =LM | MARS | RF

point =x | constant vector

index =1 | 2 | · · · | d
threshold =constant scalar ∈ [−1, 1]

Figure 3.6: Grammar given in Extended Backus-Naur Form defining the set of
valid policy expressions. Terminal symbols are shown in a regular typeface, non-
terminal symbols are shown in italics. The start symbol of the grammar is marked
by a box . (based on [107])

Flasch et al. [107] proposed to use genetic programming to automatically build an
ensemble, also allowing for multiple operators in an ensemble. For this purpose,
a grammar of model ensemble expressions is defined and then searched using
genetic programming.

Figure 3.6 shows the grammar that was used for the experiments presented. Using
this grammar enables the method to build complex tree structures by combining
multiple models using different combination schemes within an ensemble.
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3.6 Conclusion

Recapitulating all approaches we considered in this chapter, it can be said that
there are many ways to get from a set of models to a single prediction. Moreover,
all approaches have their strengths and weaknesses, that have to be considered
carefully to choose the most appropriate strategy for a given problem description.

Figure 3.7 combines the approaches considered in the Sections 3.2 through 3.4 in
one diagram and gives an overview over the main decisions that have to be taken
to specify an ensemble approach. The first of these questions is if a preliminary
evaluation of all models on the data should be carried out. This evaluation
is typically done by Jackknife, Bootstrap, Cross-Validation or any variations of
these. The main characteristic that all of these approaches have in common is
that the model is fitted to a part of the data and evaluated on the remaining
data, at least once. The more computation time is spent in this step, the more
information about the models fit can be gained here.

The next decision that has to be taken is if all models should be fitted to the data
or if a single model is chosen for the next prediction. It has to be remembered
that the preliminary evaluation step is optional. Thus if the choice of the model is
taken now without preliminary evaluation of the models on the data the relation
between this choice and the underlying data may be rather sparse or not existing
at all. On the other hand, an exhaustive preliminary evaluation of all models
allows for a reasonable selection of the best model that is well-founded on the
underlying data.

Anyhow, if it is not desired to select a single model at this point, then all models
have to be fitted. This step is also not depending on the preliminary evaluation
step that might have been performed initially since the models in this step in
general only have been trained on parts of the data.

The last decision that has to be taken after training all models to the complete
data is if the prediction of one model is chosen or if the predictions of all models
are combined into one, presumably more accurate prediction. This decision may
depend on whether or not a preliminary fitness evaluation has been carried out or
on particular conditions of the problem that has to be modeled. If the preliminary
evaluation step has been carried out, it would be an utterly unnecessary step to
fit all models to the data and then discard all but the best. Whereas when no
preliminary evaluation has been carried out, it may depend on the task if it is
best to select one prediction or combine all into one.
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D1

Fitness
evaluation

D2

Fit all models

D3

Select single
prediction

Combine predictions
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Figure 3.7: Overview over the decisions that have to be taken to define the way
how to get a single prediction from a set of models.
D1: Do a fitness evaluation (i.e. cross-validation) on available models?
D2: Select single model or fit all available models?
D3: Select prediction of one model or combine available predictions?

The overall goal of this work is to create a strategy that works reliably and as
accurately as possible on arbitrary objective functions well knowingly accepting
that this is probably going to happen at the expense of the ensembles compu-
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tation time. Thus a method is envisioned, that does an exhaustive preliminary
evaluation of all models to gain the best insight into the models’ performances,
then trains all models on the data to enable the use of the complete knowledge
of all models. Still, the method should follow the principle of parsimony and
prefer a combination of predictions over a single prediction only if it is clearly
beneficial for the overall accuracy. The same applies to the number of models
used, it should not be a decision between a single model or a combination of all,
but any number of models that seem to be best.
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Chapter 4

Building Ensembles Using Convex
Linear Combinations

In this chapter, the taxonomy specified in chapter 3 is used to develop a new
ensemble method. This approach is studied fundamentally, by first evaluating
ensembles of only two surrogate models in detail and then proceeding to ensem-
bles with more surrogate models. Last, experiments are carried out on objective
functions based on physical models. The results show to what extent combi-
nations of models can perform better than single surrogate models and provide
insights into the scalability and robustness of the approach.

As concluded from the insights gathered in Chapter 3, the preferred method of
ensemble building for the considered task of optimizing expensive black box func-
tions is supposed to be a combination of the predictions of several strong surro-
gates. It appears to be an interesting idea to linearly combine several models into
more complex models. A convex linear combination of the models’ predictions is
both easy to calculate also for several heterogeneous models and comprehensive
in terms of meaningfulness.

This Chapter is structured as follows. In Section 4.1 the ensemble building
method is defined, thoroughly tested on different settings and analyzed for its
strengths and weaknesses. Also, the influence of the RMSE on the behavior of
the ensemble is regarded.
In Section 4.2 the method is extended for the use of three base models. To fur-
ther extend the method for the use of more than three models, the resulting size
of the search space has to be taken into account. This is done in Section 4.3.
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Additional adjustments have to be made to ensure the functioning of the method
with a larger set of models. This is done in Section 4.4. Lastly, in Section 4.5,
the method is tested on a set of physical functions using different settings for the
previously made adjustments.

4.1 Binary Ensembles

To investigate, whether and why combinations of models by linear convex com-
bination could be beneficial it is reasonable to start with binary combinations of
models, to enable an in-depth analysis and a better understanding of the func-
tioning of such ensembles. The main questions are:

• Can such combinations of models compete with, or even improve on the
performance of single models?

• Given the answer is positive, how can the observed behavior be explained?

In the following, convex combinations of models (CCM) will be referred to as
ensemble model or CCM, while the original models will be referred to as base
models.

We focus on positive weights since we do not want to select models that make
predictions that are anti-correlated with the results. Given a weight α, where
α ∈ {0.0, 0.1, . . . , 1.0}, the ensemble model can be defined as the linear combi-
nation of the models a and b as follows:

ŷ = α× ŷa + (1− α)× ŷb (4.1)

The prediction ŷ of the ensemble model is a weighted sum of the predictions ŷa
and ŷb of the base models a and b. With this definition of the combination, it is
also ensured, that the total weight sums up to one.

To get an impression whether such a combination can be beneficial the two base
models and resulting ensemble models are tested and compared against each other
in a first simple experimental setup.

The experiment is carried out on an instance of a GLG function, which was
introduced in Section 2.3, of dimension=4 featuring 40 Gaussian components (for
additional parameters cf. Section 2.3, Table 2.1). A sample of points (design)
is evaluated on the objective function. For the sampling of the points, a Latin
hypercube design featuring 40 design points is generated.
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The two base models are Kriging with exponential correlation function (referred
to as a) and Gaussian correlation function (referred to as b). The models are
evaluated by calculating the RMSE of the predictions made during a leave-one-
out cross-validation on the 40 design points. Both base models are fitted to
the data and then used to predict the left out point. The predictions ŷ of the
ensemble models are calculated as convex combinations of the predictions of the
base models as specified in (4.1).

Since randomness has been induced into the experiment by using the Latin hy-
percube design, the evaluation process has been repeated 50 times in order to
receive a meaningful result.

To get a first quick insight into the result data, for each repetition the rankings
of the RMSEs have been calculated. The models with α = 0.6, α = 0.8 and
α = 0.9 dominate this comparison, each performing best 8 times out of 50. The
base models, a and b, performed best only in four respectively two cases out of
50. Figure 4.1 shows the distribution of the ranks of each model.

●●●●● ●● ●

●●● ●● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

a (exp)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

b (gauss)

3 6 9
RANK

α

Figure 4.1: Boxplot over the repetition wise ranks of all models. The models are
defined by an α-weighted linear combination of the two base models. The results
of the base models are depicted on the outer rows and colored red (exponential
kernel), and blue (gaussian kernel) respectively. The model combination chosen as
best with α = 0.6 is colored green. The mean value of each result bar is marked by
a dot.

Model a (exponential) performed best in four of the cases but worst in 36. Model
b (gaussian) shows a larger variation in its performance. It has been the best
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performing model in two cases and performed worst in 14. In none of the cases
an ensemble model was performing worst. Overall a parabolic tendency can be
seen in the performance. This indicates that linear combinations of the models
are indeed beneficial.

4.1.1 Detailed Analysis on Transparent Test Cases

It can clearly be stated that for this first experiment setup the combination of
two models is beneficial for the overall prediction. In this section we will have a
closer look at possible explanations for the successful result and will address the
following questions:

• Are there problem features that encourage using ensembles?

• And is this result generalizable?

A larger number of experiments is carried out to analyze the performance and
benefits of the ensembles.

As a consistent method for evaluating the performance and automatically choos-
ing the best model, the following approach is proposed: Model-wise mean-,
median- and 3rd quartile-values are calculated. The resulting values are ranked
and then summed up to one final ranking. The model that achieved the lowest
value is recommended as the best choice. In Figure 4.1 the model recommended
as the best choice by this method is colored green. Applying this method, it
might as well be more than just one model returned as best ensemble choice.
In these cases, a decision has to be made about which model should be favored.
Here, giving more importance to the median or 3rd quantile value means favor-
ing a smaller distribution but taking the risk of larger outliers, while giving more
importance to the mean value means having smaller outliers, but allowing for an
overall wider distribution. Other criteria also might be taken into account.

For a better understanding of the underlying process and the strengths and weak-
nesses of the method, experiments are carried out on one-dimensional objective
functions. The previous experimental setup has been preserved, except for the
change of the objective functions’ dimensionality.

Figure 4.2a shows exemplary results from these experiments. To allow for an
easier visual comparison, the RMSE’s of the models have been repetition-wise
scaled to values from zero to one. The plot on the left hand side depicts these
values. Applying the rule defined in Section 4.1.1 the model obtained by a linear
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(a) Results on a GLG objective function
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(b) Results on a piecewise assembled objective function.
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Figure 4.2: The plots show the results on two different one-dimensional objective
functions. Each plot on the left shows the repetition-wise scaled RMSE’s for each
model. The α value defines the weight for the linear combination, the model that
has been chosen as best is colored green. On the right hand side all predictions done
during the leave-one-out cross validation for the base models and the best model
are plotted against the objective function.
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combination with α = 0.7 is marked as best choice.

The plot on the right-hand side shows the predictions of the models versus the
objective function. In this plot, only the two base models and the best ensemble
are regarded. Each dot marks a single prediction made during the leave-one-out
cross-validation. In every repetition, each model makes one prediction for every
point of the design. This results in a total of 2000 prediction values for each
model (40 design points × 50 repetitions).

As can be seen in the plot, the predictions of the model a (exponential kernel
function), marked by red dots, seem to smooth the objective function: straight
segments are well met while curved segments are smoothed out.

The predictions of the model b (Gaussian kernel function), marked by the blue
dots, show signs of overfitting. Again, straight segments are well met, but
when approaching local extrema, the predictions start to oscillate. So the lin-
ear combination of both predictions averages positive as well as negative outliers
of base models. This seems to provide some benefit to the overall experiment
outcome.

To confirm this assumption two additional experiments are carried out. For these
experiments two objective functions are specified featuring corners that are not
continuous differentiable. For one experiment a triangle objective function is used
while the other features a piecewise assembled objective function. Figure 4.2b
depicts the results on this function. A parabolic graph is joined together with
a straight line graph. Special focus is laid on the joint of both function parts
and on the straight part. Both base models succeed in describing the parabolic
part of the function, but while base model a (red) fails at the borders and at
the junction point, base model b (blue) is not able to describe the straight part
of the function. The ensemble (green) benefits from this difficulties. We again
find a strong parabolic tendency in the boxplot. Both base models have a rather
large variance in their performance. The ensemble model marked as best choice
has a smaller variance and performed better than the base models in nearly all
cases.

The results on the triangle objective function happened to show a clear tendency
towards base model b, which clearly outperformed base model a and thus was
chosen best. This also is a good result, since it is desirable that the method only
chooses an ensemble over a base model if it is actually better.
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4.1.2 Detailed Analysis on Single Predictions

To better understand what is happening, we take a closer look at convex linear
combination itself and how it influences the fitness of the resulting model. The
main questions are:

• In what circumstances can the prediction of a CCM be better than the
prediction of the base models?

• Is it possible that the prediction of a CCM is worse than the predictions of
both base models?

To answer these questions, we consider two base models and related CCMs making
a single prediction. For reasons of simplicity, we assume, that the real function
value is zero and that the base models are making different combinations of
prediction errors.
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Figure 4.3: The upper row plots show the predictions of two base models and its
related CCMs for a single point. The true function value of zero is marked with a
line. In the lower row the related RMSEs are given. The best prediction and the
related smallest prediction error are marked with an additional circle. It can be
seen that in some cases the CCM performs better than both base models, but it
never performs worse than both.

Figure 4.3 displays such a situation. In the upper row, the colored points mark
the predictions of the base models, while the white points mark the predictions
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obtained through convex linear combination. The true function value is set to
zero, displayed by the horizontal line.
The lower row depicts the related resulting RMSEs. The best prediction and its
related error are marked with an additional circle.
Since we are only considering a single prediction, the resulting RMSE equals
the single prediction error. Thus, as assumed before, if the base models make
opposing prediction errors, the prediction of the CCM will be better than the
predictions of the base models (cf. Figure 4.3, Columns 3-7).
Whereas, when both base models make the same kind of prediction error, the
prediction, as well as the prediciton error, of the CCM lies inbetween the predi-
cions and the errors of the base models. (cf. Figure 4.3, Columns 1,2,8 and 9).
All other possible relations between prediction errors and resulting RMSE can
be easily derived from this. So would a change of the distance between the base
models predictions result in a steepened slope, while a larger distance between
the two predictions and the real function value would result in a larger absolute
error. The most important information we can read from these plots is that for
a single prediction the convex linear combination of the predictions cannot be
worse than the prediction of the weaker base model, independent of the weight
chosen for the combination. Moreover, for some values of α the combined predic-
tion can be better than the predictions of both base models given, that one model
overestimates the actual function value while the other model underestimates it.
In the experiment (cf. Section 4.1) this happened in 649 out of 2000 cases.

However, when evaluating the ensemble built by the proposed method of building
convex linear combinations, this is not done based on a single prediction but on a
set of predictions. Also, calculating the RMSE of a single prediction only yields
the simple prediction error. Questions that also have to be considered are:

• Do these findings made for single predictions still apply for multiple predic-
tions?

• How does the RMSE influence the evaluation of the models’ overall perfor-
mance?

To answer these additional questions, the analysis is extended to two predictions.
Figure 4.4 displays several possible combinations of predictions for such a setup.
Figure 4.4a shows a set of predictions where the one model always predicts a larger
value than the other model, while in Figure 4.4b one model always returns a larger
prediction for one point and a smaller prediction for the other point. In both
plots, like before, the upper row shows the predictions, base model predictions
are colored blue or red, and predictions of the linear combinations are colored
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(a) One base model always predicts a smaller value than the other

1 2 3 4 5 6 7 8 9

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
● ●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
● ●

●
●
●
●
●
●
●
●
●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●●

●●

●●

●●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●●

●●

●●

●●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●−10

−5

0

5

10

Base model predictions

D
is

ta
nc

e 
to

 fu
nc

tio
n 

va
lu

e

1 2 3 4 5 6 7 8 9

●●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ●●

●
●

●
●

●
●

●
●

●
●●

●

●

●

●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●●●

●

●

●
●

●
●

●
●

●
●●

●●

●
●

●
●

●
●

●
●●●●

●
●

●
●

●
●

●
●

●●●
●●

●
●

●
●

●
●

●●●●●

●
●

●
●

●
●

●●●●●

●●●●

●
●

●
●●●●●●●●

●
●

●
●

●●●●●●●

●●
●●●●●●●●●●● ●

●●●●●●●●●
●

●●●● ●●●●●●●●
●

●
●

●●●●●●●
●

●
●

●

0.0

2.5

5.0

7.5

10.0

Convex linear combinations

R
M

S
E

(b) Each model predicts larger in one and smaller in the other case
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Figure 4.4: Both plots show a set of combinations of two predictions made by two
base models (red and blue) along with the resulting predictions made generated
through convex linear combining using a fixed step width of 0.1. The second row of
each plot displays the related RMSE values resulting from the combination of the
two predictions.
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white. The lower row displays the relating RMSE values resulting from the two
predictions.

We can see from these plots, that it does not suffice for the ensemble prediction
to be better than the base models, when in one of the two cases the prediction
spans the actual function value, while the combined predictions of one of the base
models are better in terms of RMSE (cf. Fig. 4.4a items 2-5, 4.4b items 6-7).
The combined prediction error, in terms of RMSE, rather benefits from opposing
errors in general (cf. 4.4a items 6-9, 4.4b items 1-5).

As mentioned before, the CCM can make a better prediction on a single point
only if the predictions of the base models span the true function value.
However, regarding more than one prediction, this evaluation is influenced by the
characteristics of the RMSE. The overall fit of the CCM, in terms of RMSE, can
be better than both base models also, when none of the base models predictions
is spanning the true function value. For such an evaluation it is sufficient when
one model returns a larger prediction than the other model for one point, and a
smaller prediction for the other point.

Noticeable is also, that in contrast to the plots shown in Figure 4.3, the points
marking the RMSE values in most of the cases lie on a parabolic curve. This might
indicate that the search space, generated by the RMSE could also be convex.
Interpreting the RMSE as a function describing a form of mean squared distance
would support this claim. However, this assumption is based on observations
only and would require further analysis.

4.1.3 Conclusion

The insights gained so far are promising and seem to make convex linear com-
binations an ideal choice for combining models. So far recognized advantages
are:

• Due to the convex linear combination that is used for combination, the
ensemble cannot perform worse than the weakest base model.

• The ensemble can perform better than the base models when compensating
opposing prediction errors.

• A CCM is favored over a base model only if the overall fit of the ensemble
model is actually better (in terms of RMSE), than the overall fit of both
base models.
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• The nature of the combination is intuitive and interpretable.

• The linear convex combination of predictions for a given set of weights is
easy to compute.

4.2 Ternary Ensembles

Up to this point, the first experiments have been carried out, and the method
showed promising results. However, the question arises if this method is scalable
and generalizable. In this section the experiments are extended to a larger scale:
The dimensionality of the objective functions is increased, and the method is
adapted to enable the combination of three models. As before, Kriging models
with different kernels are used, but now a third model using the spline correlation
function is added.

For the linear combination of three base models also three weights are needed,
that sum up to one as specified in (4.2).

α, β, γ ∈ {0.0, 0.1, . . . , 1.0}, α + β + γ = 1 (4.2)

Retaining the step size of 0.1 for the linear combinations results in 66 ensemble
models.

As a first step towards problems of higher complexity, the dimensionality d of the
objective function is set to 4. However, this change alone is not sufficient to gain
a larger complexity, since without adjusting the number of Gaussian components
used for generating the objective function, it rather gets less complex. Thus the
number of Gaussian process trajectories is adjusted to forty times the dimension.

With increasing the complexity of the objective function also the size of the
design should be adjusted to gain reasonable results. Desirable is a design that
is preferably small yet allows for a proper fit of the models. To achieve this an
experiment with varying design sizes is run beforehand. For each size, the fit of
the base models to the objective function, in terms of RMSE, is compared to a
simple mean predictor. The design size chosen for the experiment is that with
the smallest design size, such that all base models are performing significantly
better than the baseline predictor.
For the experiment presented in this Section, this occurred at a design size of
160.
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Figure 4.5a shows an exemplary experiment result using three base models. The
depiction of the result corresponds to the previously shown boxplots. The ternary
plot also shows parts of these data but allows for a more intuitive interpretation
than a boxplot would do.

(a) The optimal linear combination has
been found by a complete evaluations of
all linear combinations using a fixed step
size of 0.1.

(b) The optimal linear combination has
been searched with a simple (1+1)-
Evolution Strategy with 1/5th success rule
(cf. [108]).

Figure 4.5: The plots show the results of the experiment set up with three base
models. Each circle depicts the performance results for one model. The three
base models are located on the corners of the triangle, models gained by linear
combinations of only two models are located on the outer border. Circles on the
inner region of the area show the results for models that were gained by linear
combinations of all three base models. The size of the circles denotes the mean
RMSE value, the color the standard deviation. The model proposed as best choice
is marked by an additional white circle.

Each circle in the plot displays the performance of a single model. The base
models are positioned on the corners of the triangle, models on the outer border
are built from a linear combination of only two of the three base models. All
circles on the inner area of the triangle are linear combinations of all three base
models; its proximity to the corner relates to the share this model has to the linear
combination. The size of the circle corresponds to the mean RMSE that the model
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has achieved, the color to the standard deviation of the RMSE values. The best
choice model, as defined in Section 4.1.1, is marked by a white circle.

In most of the experiments carried out, the model that is automatically chosen
as the best performing model is located on the inner area of the triangle. For
some of the experiments, the best model is located on the outer border of the
triangle. From these results, it can be deduced that the method not only meets
the demands but also performs better than a single base model only.

4.3 From Exhaustive Search to an Evolutionary
Strategy

The approach proposed so far proved its functionality using a small set of homo-
geneous base models. Still, the underlying goal is to evolve a system that can
handle a large set of heterogeneous base models. In this section, preparations
are taken to enable the method to also handle a considerably larger search space.
To achieve this, the method is adapted to use an evolution strategy instead of
performing an exhaustive search of the complete search space.

When increasing the number of available base models, also the number of possible
discretized convex combinations between these base models grows exponentially.
The number of resulting convex combinations can be calculated using formula 4.3.
The formula recursively counts the possible combinations of weight distributions
under the premise that the available weight units have to be completely dis-
tributed among the available models, but also allowing that a model receives no
weight.

f(s, r) =
r∑
i=0

f(s− 1, r − i), f(s, 0) = 1, f(1, r) = 1 (4.3)

The relation between the number of models, the step size for the discretized
convex combinations and the resulting number of linear combinations can be
expressed as a function of s, the number of models, and r, the reciprocal of the
step size or the number of available weight units respectively. Recursion stops
if either only one model or no distributable weight unit remains. Since weights
have to sum up to one, the remaining model has to take the remaining weight.
Alternatively, if no weight remains, the remaining models receive no weight. In
both cases, only one possible option remains.
Using three base models and a step size of 0.1 as defined in (4.2) results in
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f(3, 10) = 66 linear combinations. Now thinking of combinations of 10 base
models already results in f(10, 10) = 92, 378 linear combinations.

The complexity of the search space, when increasing the number of models,
quickly gets too large to do a complete evaluation of all possible convex com-
binations with a fixed step size of 0.1. Moreover, the restriction to a fixed step
size of 0.1 might be too rough.

Looking at previous findings, the function that describes the performance of the
models built by convex combinations up to this point only showed convex, uni-
modal characteristics. This seems to be expectable due to the nature of convex
combinations and the use of the RMSE as the fitness function. We expect the
function to show this characteristic also when combining a larger number of mod-
els.

Thus, instead of a complete evaluation of all linear combinations, an optimization
step is introduced to find the best combination instead of performing an exhaus-
tive search on a fixed grid. The allowed weights are extended to a precision of two
decimal places, allowing for f(3, 100) = 5, 151 possible ensemble combinations.
Since the area around the optimum tends to build a plateau smaller differences in
the weights distribution seems to be negotiable. This restricts the possible search
space to a reasonable size without losing the possible best solution.

For the optimization step a (1+1)-evolutionary strategy (ES) with 1/5 success
rate for step width adaption is introduced [109, 110]. Building on the assumption
that the regarded search space is supposedly but not surely unimodal and convex
this would be a reliable and robust search algorithm that performs well on a
search landscape as assumed but can also handle more difficult search spaces.
However, other search strategies like Particle Swarm Optimization ( [111]) would
also fulfill these criteria.

Each individual of the population, representing an ensemble, is distinctly defined
by its weights vector v = (α, β, γ)T . For the mutation of the parent individual a
vector of three random samples of a normal distribution function with standard
deviation according to the actual step width σ is added to the related weights
vector. Here, σ is initialized with σinit = 0.16 and adjusted by the factor 0.9
according to the 1/5 success rate rule.

To ensure that the offspring individual still meets the requirements needed for a
valid weight vector, the resulting vector v is adjusted in three steps:

1) If the smallest of the weights is smaller than zero (min(α, β, γ) < 0), this
value is subtracted from the vector v (v← v−min(α, β, γ)) to ensure that
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all weights are positive.

2) In a next step, the vector v is scaled such, that the weights sum up to one
(v← v/(α + β + γ)).

3) Finally, the values α, β, γ are rounded to two decimal places such, that the
premise α + β + γ = 1 is not violated.

The modified ensemble building algorithm is run on the same experimental setup
as already used in Section 4.2, to allow for a comparison of this method to the
previously applied method using exhaustive search. Figure 4.5b displays the
result of the optimization.

For this experiment we allowed a maximum of 100 individuals to be evaluated.
Within these bounds already the 43rd evaluated individual has been the best
individual found in this run, this individual is marked by a white circle. Table 4.1

Model
Ensemble weights

mean RMSE SD
Gauss Exp Spline

Gauss 1 0 0 11.036 0.92
Exp 0 1 0 11.349 0.82
Spline 0 0 1 11.396 1.19
by exhaustive search 0.6 0.4 0 10.95 0.85
by optimization 0.67 0.29 0.04 10.945 0.87

Table 4.1: Comparison of the Model results in more detail. The left column
names the considered models, in the first group the base models alone, in the
second group the ensembles found by exhaustive search versus the ensemble found
by optimization. The second column gives the weights on the base models. Of
course the base models only use one model, marked by a 1, the other models have
no weight. Whereas the ensembles combine two or three models respectively. The
last columns give the mean and standard deviation of the RMSE over all repetitions.
The result achieved by optimzation has the best result.

shows the precise performance values for the ensembles found in comparison to
the base models used. From this, it can be said, that the ensemble found by
optimization is not only able to compete with the result received from exhaustive
search but also is marginally better. Thus, the optimization algorithm not only
can receive comparable results in comparable time but also benefits from the
ability to handle a smaller step size.
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4.4 N-ary Ensembles

With Section 4.3 the basis is provided for setting up a large system of heteroge-
neous models. In the following, the set of base models is extended to the intended
size and experiments are carried out to ensure that the performance of the method
does not suffer from this change. The leading questions are:

• Can the ensemble method handle the heavily extended search space for the
best model combination and still find a beneficial combination?

• Are further adjustments of the ensemble building method needed due to
the extension of the model set?

To answer these questions the set of base models is extended, and the method
is tested. To ensure, that the method can handle the increased number of base
models it is also compared to the performance of the algorithm with only three
models in the set. If the method can handle the higher number of base models,
a solution should be found that is at least as good as the solution found when
using only three models.

4.4.1 Extending the Base Model Set

To obtain a large set of homogeneous base models all models from the SPOT
package are added to the system, using their default options. This results in a
system containing 13 heterogeneous models:

• Gauss, Exp, and Spline refer to the same Kriging models that are already
used in the previous experiments.

• Tree, Earth, LM, RandomForest, Tgp, Esvm, MLP, neuralnet, Qrnn, and
RFMlegp are now newly added to the system (cf. Chapter 2).

The set of models here is rather diverse, chosen without preselecting appropriate
models and the models are not tuned but used with default settings. Thus,
their performances also have considerable variances. Due to these variances in
their performances the design size of the experiment is enlarged to 200 points.
Herewith, the previously formulated demand, that all models should perform
considerably better than the baseline predictor is relaxed such, that at least
about half of the base models fulfill the demand.

Figure 4.6 shows the performances of the models on the objective function, in
comparison to a simple mean predictor. It can be seen, that from the set of
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Figure 4.6: Comparison of the performance of the base models chosen for this
experiment setup. Models are ordered by performance in terms of RMSE. Six base
models perform significantly better than the mean predictor, these are shown in
light yellow. All other models perform comparable (gray) or even worse (light red)
than the mean predictor.

13 base models only six perform significantly better than the mean predictor,
these models are colored light yellow. The remaining models perform comparable
(gray), or even worse than the mean predictor (light red).
However, the size of the base model set and this diversity in the performances
makes it harder for the search algorithm to find a good or even better solution.
This fact makes this experimental setup an even more interesting setup to ensure
that the search algorithm, also for larger model sets, is capable of finding a better
solution if one exists.

4.4.2 Adaptation of the Evaluation Method

With this size of design, especially when evaluating more than three base models,
the use of leave-one-out cross-validation is no longer practicable. Particularly with
regard to problems of higher complexity an evaluation method that requires a
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fixed number of model fitting processes would be preferable. Thus, for evaluation
of the base models 10-fold cross-validation is applied.

Though these changes seem to be petty, they may implicate a change in the
weights of the best ensemble solution. To serve as a reference, the previous
experimental setup (cf. Section 4.2 and 4.3) is repeated using the larger design size
of 200 points per repetition. Experiments are carried out once performing a leave-
one-out cross-validation and once a 10-fold cross-validation for the evaluation of
the base models. In both cases, the same set of designs is used, so that any
differences in the results from the complete evaluation of these experiments solely
originate from the change in the cross-validation.

Figure 4.7: Results of the experiment carried out on a GLG objective function
with a design size of 200. Base Model evaluation is done by leave one out cross-
validation

The results for the experimental setup using leave-one-out cross-validation are
shown in Figure 4.7. This experiment differs to the experiment presented in
Section 4.2 Figure 4.5 only in the increased size of the design. In comparison
to this experiment result, the best ensemble solution moved a little towards the
inner area of the triangle.

Figure 4.8 shows the results for the experimental setup using 10-fold cross-
validation. Here again, the best solution moved a little farther towards the inner
area of the triangle.

From these results, it can be assumed that both, the increased design size as well
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Figure 4.8: Results of the experiment carried out on a GLG objective function
with a design size of 200. Base Model evaluation is done by 10-fold cross-validation

as the adjustment of the evaluation method, has an impact on the result of the
experiments. Still, all experiments agree that indeed an ensemble solution exists
that performs better than the base models solely. The result depicted in Figure
4.8 also serves as a reference for the following experiments using a large set of
base models.

4.4.3 Performance Test Using a Large Base Model Set

With the preliminary experiment, it is already shown, that for the experiment
setup carried out in Section 4.4.2, using the three kriging base models only, an
ensemble combination exists, that performs better than these three models alone
(cf. Figure 4.8).
Thus repeating this same experiment, only extending the set of base models while
knowing that none of the new models performs better than the best of those three
(cf. Figure 4.6), the search algorithm should be capable to at least reproduce a
comparable solution or even find a better one. However, the ensemble algorithm
as presented so far is not able to find neither a comparable, nor any ensemble
solution that uses at least two of the base models. It presents Gauss alone as the
best choice.

Figure 4.9 shows the progression of weight combinations that are evaluated during
the search. Each line represents a single ensemble combination; the color of the
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line corresponds to the optimization step it has been generated in. Each of the
base models has been evaluated preceding the optimization. Therefor thirteen
light red lines are shown, each featuring only one peak giving full weight to this
base model. The remaining lines, representing the progress of the distribution of
the weights during optimization, and therefore the different ensemble combina-
tions tested, are entirely arbitrary. None of the random mutations seems to yield
an improvement to the known best solution. The best solution that was found
during the optimization gives all weight to the Gauss model. The bold white line
presents this solution. The bold black line represents the best combination that
has been found using the three kriging models only (cf. Figure 4.8), suggesting
a mixture of these three base models, which the algorithm was not able to find.

Figure 4.9: Developement of the ensemble weights during optimization. The black
line marks the best ensemble found when only three models were part of the set.
The white line marks the best solution found in this experiment run. The algorithm
is not able to find the already known, better solution.

A possible explanation for this behavior is the number and performance of the
base models added to the system. So far not only was the search space smaller
but also the performance of the base models used was comparably strong. Now 13
heterogeneous base models are part of the system, only six of them are performing
significantly better than the mean predictor.

This is aggravated by the fact that the search strategy performs a mutation of
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the best solution by adding a random vector to the weights vector, which allows
for small changes of all weights in every step (cf. 4.3). But with seven out of
13 models performing comparatively bad, the probability is high that with every
mutation weights are adopted that worsen the overall performance of the new
individual. Hence, the new individual generated has only very slim chances to
perform better than the parent.

Possible solutions to overcome these problems might be:

1 Restrict the number of genes that may be changed in one mutation step. In
a case where many of the base models are not beneficial for the system the
chances of finding a beneficial mutation are getting larger.

2 Minimize the overall search space by preselecting the most promising base
models. Before starting the search for the best weights, the set of models is
reduced to the best performing of the models by a predefined rule.

3 Start with a search space of a smaller dimension and enlarge during the
search. Starting the search, only using a small number of base models and
then adding further base models as the search goes along, does not imply
too much a priori intervention.

In the following subsections, these possible solutions are introduced in more detail
and tested on the previously specified experiment setup. Possible advantages
and disadvantages of the methods are discussed, and finally, all approaches are
compared against each other.

4.4.4 Restriction of the Mutation

Based on the assumption that the method is not able to find a better offspring
because of the rather large number of poorly performing base models in the set,
the mutation is adapted to allow only a smaller number of weights to be changed
in every mutation step. Doing so, it is more probable that less or none weight is
given to the weaker models and with this, the probability of doing a beneficial
mutation is increased.

To achieve this, a weights vector ~v = (v1, v2, . . . , vn)T of n random samples of
a normal distribution function with standard deviation of σ is drawn as before.
However, to meet the demands of only a restricted number of weights to be
changed, the smallest of these values are reset to zero, before being added to the
parents’ weights vector, such that only the required number of genes is changed.
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Figure 4.10: Developement of the ensemble weights during optimization using a
constrained mutation step. Again, the black line marks the ensemble already found
previously with only three base models available. The white line marks the best
solution found during this optimization.

The resulting weights vector is then adjusted to meet the demand, to sum up to
one as before (cf. Section 4.3). The approach is tested allowing three weights to
be changed in each mutation step.

Fig. 4.10 shows the development of the weights distribution during the optimiza-
tion process applying this approach. The lines show much more structure than
before. So can be read from the column for the Gauss model that for this model
a broad range of possible weights (about 20-50%) is tested in the earlier steps
of the optimization and then slowly settled down to weights around 38% in the
later steps of the optimization. Whereas for example for RandomForest a range
of weights is tested, but none of these is an improvement to the known best,
such that this model ends up with no weight. Other than the basic ES used so
far, this method can find combinations that are better than the single best base
model.

4.4.5 Preselection of Models

The main idea of this approach is to reduce the search space by choosing a
reasonable set of base models prior to the actual optimization. Models are selected
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based on their single performance during the initial evaluation of the base models.
With this preselection, the search space, in terms of the number of base models,
may be reduced to a smaller number of base models excluding weaker models
according to a predefined exclusion criterion.

This criterion might heavily depend on the objective function and has to be
chosen carefully. Choosing too restrictive a criterion might a priori exclude models
that would have been beneficial contributors to the ensemble while choosing too
lenient a criterion might hamper the optimization algorithm. Assuming that the
algorithms inability to find a better solution arises from the large number of
models performing worse than the mean predictor leads to the conclusion that
the comparison against the mean predictor might be a good indicator.

Figure 4.11: Developement of the ensemble weights during optimization using a
preselected set of models only. The black line marks the ensemble already found
previously with only three base models available. The white line marks the best
solution found during this optimization.

This adaptation of the original ES is realized such, that models are chosen by their
performance in comparison to the mean-predictor. Models with a third quantile
performance, in terms of RMSE, worse than the mean predictor’s first quantile
performance are excluded. For the experiment setup regarded here, the base
models Gauss, Exp, Spline, RandomForest, Esvm, and RFMlegp are preselected.
Figure 4.11 shows the development of the weights distribution for this method.
The search is restricted to the preselected models only, and the weights of these
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models slowly and steadily settle down on the final solution.

4.4.6 Sequential Addition of Base Models

The previously introduced methods are realizable with small effort but also come
with features that might as well be weaknesses. So is the restriction of the
mutation as introduced entirely determined by the random choice of weights that
is changed in each step. Whereas the preselection of models requires a selection
rule to be specified and hence runs the risk to also exclude models that might
have made a positive contribution to the ensemble otherwise.

This approach tries to combine the strengths of both ideas while doing without
their weaknesses. The idea of this approach is to restrict the mutation to a small
set of preselected models and then extending the set of models as the search
proceeds. Before starting the optimization process, the base models are ranked
by their performance, using the known fitness evaluation method (cf. Section
4.1). The selection of the models is based on this ranking. A small number of
models is selected initially, and the remaining models are then added one by one
following the ranking. Each time when adding another model to the search space,
the search parameters of the (1+1)-ES are reset, and the search is started anew.
In the following, the search steps between two consecutive resets are referred to
as optimization tier.

Still, the question remains when the next model should be added to the system
and how to proceed when the optimization process stagnates. For the experi-
ments carried out in this section two adaptations of this idea are realized. Both
start restricting the search to the three best base models and attribute a fixed
number of minimum search evaluations to each tier. However, they follow dif-
ferent policies for the adaptation of the restriction of models and also for the
handling of stagnation of the optimization process.

Sequential Addition with Stop on Stagnation
This adaptation of the approach adds the next best base model not before it
succeeded in finding an improving distribution of the weights after adding the
last model to the search space. With every addition of a model, the maximum
number of search steps for the search is extended due to the number of active
models. If no improving combination is found during the predefined minimum
search interval, the search is continued until a combination is found or the search
is finished.
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Since the models are added to the system in order of their ranked performance, it
might be more beneficial to extend the search on the actual tier than stepping on
to the next. However, like the model selection approach, this may exclude lower
ranked models, without ensuring if they would contribute to the system. Also,
the problem of finding an improving distribution for the weights again may get
harder with adding more models. But in opposition to the method of preselecting
a set of base models for this optimization step no a priori decisions have to be
made.

Figure 4.12: Developement of the ensemble weights during optimization while
sequentially adding additional models. The black line marks the ensemble already
found previously with only three base models available. The white line marks the
best solution found during this optimization.

Figure 4.12 shows the development of the weights distribution for this method.
The optimization process starts using only three base models: Gauss, Spline
and RFMlegp. During the optimization process Exp, Esvm, RandomForest, LM,
MLP, and Earth are consecutively added to the search space. After gaining no
further improvement with the addition of Earth, the algorithm adds no further
base models to the search space and eventually stops.

An interesting result is the performance of Esvm. The model was added to the
search as the fifth model only, yet gained second most weight during optimization,
while the three models added before gained less weight. Since the models are
added to the system in order of their ranked performances in terms of RMSE,
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this proves that a model ranked lower than another still may make a better
contribution to the ensemble.

Sequential addition without Stop on Stagnation
Based on the idea, that models might be able to contribute to an ensemble though
lower ranked than a model that doesn’t, this method is adopted such, that every
model of the set gets a chance to receive weight during the optimization.

In opposition to only extending the search space after finding an improving muta-
tion, this adaptation of the algorithm drops the last model that was added after
a fixed number of iterations, when the addition was not beneficial. Instead, it
continues with the next best model. The algorithm stops when all models were
at least for some time part of the search space, and after the last addition the
search is stagnating or the maximal iteration count is reached.

Figure 4.13: Development of the ensemble weights during optimization while
sequentially adding additional models, and dropping non-beneficial models again.
The black line marks the ensemble already found previously with only three base
models available. The white line marks the best solution found during this opti-
mization.

As before the algorithm starts only using Gauss, Spline, and RFMlegp. Then
Exp and Esvm are added. RandomForest is added next but dropped again before
adding LM. Next MLP and Earth are added but also dropped again. After that,
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neuralnet is added and kept, then Qrnn but dropped again. At last tree and tgp
are added and kept until the optimization finishes.
During the optimization, all base models were part of the search space for some
time. Figure 4.13 shows the development of the weights during the optimization
It can be seen, that some models were part of the system for some time during
optimization and then dropped again. These models only have peaks in a small
color range (i.e., RandomForest is peaked only by some yellow lines. Yellow is
attributed to the earlier steps in the optimization).
The course of the optimization shows that indeed a model may make a beneficial
contribution to the ensemble although a better-ranked model earlier was not able
to do so.

4.4.7 Comparison of the Different ES-Adaptations

Results so far illustrate the behavior of the different approaches and show that all
are able to overcome the initial inability to find an ensemble combination.

Figure 4.14: Comparison of the results found by the different optimizers with the
base models and the ensemble built when only 3 base models were available.

Figure 4.14 shows a comparison of the performances of the base models (white),
the ensemble model found with only three base models available (gray), and the
ensembles found with the adapted search strategies using 13 heterogeneous mod-
els (yellow). A dashed line marks the mean performance of the baseline predictor.
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The basic ES without any adaptations was not able to find an ensemble combina-
tion; therefore its result corresponds to the result of the Gauss model. It can be

Model
Ensemble weights

mean RMSE SD

G
auss

E
xp

Spline

tree

E
arth

LM R
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Tgp

E
svm

M
LP

neuralnet

Q
rnn

R
F
M
legp

Gauss 1 0 0 - - - - - - - - - - 11.216 0.87
Exp 0 1 0 - - - - - - - - - - 11.621 0.71
Spline 0 0 1 - - - - - - - - - - 11.489 1.06
exhaustive 0.5 0.3 0.2 - - - - - - - - - - 10.449 0.62
optimization 0.53 0.32 0.15 - - - - - - - - - - 10.443 0.62
constr. mut. 0.41 0.12 0.04 0 0.02 0 0 0.02 0.26 0.01 0.01 0.01 0.1 10.369 0.59
preselection 0.55 0.09 0.04 0 0 0 0 0 0.25 0 0 0 0.07 10.334 0.61
additive 0.4 0.14 0.07 0 0 0.01 0.01 0 0.27 0 0 0 0.1 10.355 0.60
keep succ. 0.55 0.03 0.13 0.01 0 0 0 0 0.13 0 0.01 0 0.14 10.376 0.61

Table 4.2: The table compares the results for the best base model and the different
ensemble approaches. The left column names the considered models, in the first
group the best performing base model only, in the second group the ensembles
found by exhaustive search versus the ensemble found by optimization. The third
group gives the results for the ensembles using the different adaptation strategies
for the ES. The second column gives the weights on the base models. Since in the
previous experiment only three base models were available, the others are crossed
out. The last columns give the mean and standard deviation of the RMSE over
all repetitions. The group ensembles using the adaptation strategies show the best
results and the smallest standard deviations.

seen, that the ensembles found by the adapted search strategies can compete with
the previous best solution (gray). All solutions found are performing comparably
good.

The precise results for the ensemble solutions found using the adapted ES in
comparison to the ensemble solution found with only three base models available
(cf. Figure 4.8) and also to the best performing base model are displayed in
Table 4.2.

From these results, it can be said that the different adaptations of the algorithms
can handle the large search space, but it cannot be determined if one of these
solutions is remarkably better than the others.
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4.5 N-ary Ensembles on Higher Dimensional Phys-
ical Functions

So far a reliable method for ensemble building has been introduced and realized in
different adaptations. On the experiment conducted all adaptations show compa-
rable performance. To allow for a better comparison of the different adaptations
of the method, in this section, the performance of the different adaptations are
compared against each other and against the performance of the best performing
base models alone.

Moreover, the initial step size σinit of the (1+1)-ES is reconsidered. It is assumed,
that with an increase of the dimension of the search space also the initial setting
for the step width should be increased.

Therefore, the leading questions of this section are:

• Is one of the adaptations of the ensemble method preferable to the others?

• Moreover, should the initial step size σinit adapted according to the dimen-
sionality of the search space?

To answer these questions, additional experiments are carried out on a set of
physical objective functions of higher dimensions (cf. Section 2.3.3).
For these experiments, the experimental setup has, in general, been left un-
changed. Of course, for each experiment, the initial design size has been adjusted
to 110, due to the higher dimensional functions. For the wing weight function,
the initial design size has been set to 280, to ensure, that at least half of the base
models perform better than the mean predictor.
Additionally, the experiments are used to get some insights into the effect of the
initial step width σinit on the optimization result. Therefore, each experiment
is carried out twice with different values for σinit. Here σinit = 0.16, as used in
earlier experiments is compared to σinit = 0.37.

Figure 4.15 gives an overview of the performances of the different adaptations of
the ensemble building method on the four physical functions. Each of the plots
additionally shows the performance of the best performing base models. Further
plots depicting the full comparison of all base models are also available in the
Appendix (cf. Appendix A, Figures A.1-A.2).
From these plots, it can be read that each of the ensemble method adaptations
can compete with the best performing base model. The Additive methods seem to
have a small advantage over the remaining methods on the otl-circuit function and

79



4. BUILDING ENSEMBLES USING CONVEX LINEAR
COMBINATIONS

Figure 4.15: Comparison of the performances, in terms of RMSE, of the different
adaptations of the ensemble building method and the best base model on the four
physical functions. Ensemble results are colored yellow, the base model result is
shown in white.
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Figure 4.16: Comparison of the performances of the different adaptations of the
ensemble building method and the best base model on the four physical functions.
Results are repetition wise ranked. Ensemble results are colored yellow, the base
model result is shown in white.
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a smaller standard deviation on the piston function. On the robot arm function
and the wing weight function the ensemble adaptations even show slightly better
results, than the best base model.

To allow for a better comparison, Figure 4.16 shows the results of these experi-
ments with the RMSEs achieved repetition wise ranked. From these results, it can
be read, that the additive methods, in terms of ranking, on the otl-circuit function
and the wing weight function perform better than the methods using pre-selection
of the models or a constrained mutation.

FUN
AdditiveESkeepSuccessful AdditiveStopOnStagnation

σinit = 0.16 σinit = 0.37 σinit = 0.16 σinit = 0.37

otl-circuit 0.0051659 (± 0.00142) 0.0051656 (± 0.00144) 0.0051656 (± 0.00144) 0.0051669 (± 0.00146)
piston 0.0086486 (± 0.00323) 0.0086670 (± 0.00319) 0.0086355 (± 0.00326) 0.0086355 (± 0.00326)
robot 0.4007355 (± 0.02708) 0.4009263 (± 0.02558) 0.4009612 (± 0.02580) 0.4011576 (± 0.02687)
wingweight 13492.530 (± 15246.0) 13457.750 (± 15117.3) 13474.070 (± 15180.1) 13505.770 (± 15265.1)
Sum RankMN 13 10.5 11 17.5
Sum RankMD 14 19.5 16 5.5

FUN
ConstrainedMutationES PreSelectionES

σinit = 0.16 σinit = 0.37 σinit = 0.16 σinit = 0.37

otl-circuit 0.0054833 (± 0.00170) 0.0056067 (± 0.00192) 0.0056067 (± 0.00192) 0.0056100 (± 0.00192)
piston 0.0086966 (± 0.00338) 0.0087677 (± 0.00354) 0.0087677 (± 0.00354) 0.0087677 (± 0.00354)
robot 0.4007446 (± 0.02794) 0.4003984 (± 0.02682) 0.4015957 (± 0.02743) 0.4012452 (± 0.02815)
wingweight 14847.550 (± 16888.8) 14398.630 (± 16628.1) 13474.070 (± 15180.1) 13474.070 (± 15180.1)
Sum RankMN 21 22 25 24
Sum RankMD 19 27 22 21

Table 4.3: The Table gives the results of the different adaptations of the ensemble
building method on the four physical functions and for two different settings of
σinit. Shown is the mean RMSE with standard deviation (in brackets). In the two
last rows, the sums over the ranks of mean and median RMSE are given.

Table 4.3 lists all results in more detail. For each combination of ensemble build-
ing method adaptation with a given σinit and a function, the mean RMSE with
standard deviation (in brackets) is given. These mean RMSE values are function-
wise ranked and summed up to obtain the sum of ranks over the mean RMSE
values that are given in the second last row. Median RMSE values are considered
accordingly. The sum of ranks over the median RMSE values is given in the last
row.
For example, AdditiveESkeepSuccessful with an initial step width σinit of 0.37
is ranked first on the Wing weight function (1) and shares the first place on the
otl-circuit function (1.5), while on the Piston and the Robot Arm function it is
ranked fourth place each (4; 4). In total it achieved a sum of ranks value over the
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mean RMSE of 10.5, which is also the best value here.
Best evaluation in terms of sum of ranks over the median RMSE is achieved by
AdditiveStopOnStagnation with an initial step width σinit of 0.37.

The results suggest that an additive approach with an initial step width σinit of
0.37 might be the best choice for experiments of this dimension. However, for
more distinct results further experiments have to be carried out.

Additional plots for the development of the weights during optimization for the
different methods using an initial step width σinit of 0.37 on the otl-circuit function
can be found in the Appendix (cf. Appendix A, Figures A.3 and A.4.

4.6 Conclusion

The primary goal of this chapter was to create an ensemble building strategy that
works reliably and as accurately as possible on arbitrary objective functions. A
method was aimed for, that can compete with the best performing base model for
each considered function. In the Sections 4.1 and 4.2, based on the Chapter 3, a
strategy was developed, which builds ensembles using convex linear combinations
of the models’ predictions. The method was thoroughly analyzed, and convex
linear combinations showed to be an ideal choice for combining models.
The most important insights made and advantages recognized are:

• Due to the convex linear combination that is used for combination, in terms
of RMSE, the ensemble cannot perform worse than the weakest base model.

• The ensemble can perform better than the base models when compensating
opposing prediction errors.

• A CCM is favored over a base model only if the overall fit of the ensemble
model is actually better (in terms of RMSE), than the overall fit of both
base models.

• The nature of the combination is intuitive and interpretable.

• The linear convex combination of predictions for a given set of weights is
easy to compute.

In Section 4.3, with the step from an exhaustive search to optimization using a
(1+1)-ES, the basis was provided for setting up a large system of heterogeneous
models. Then, in Section 4.4, further adaptations are made, and the set of base
models is extended to the intended size. First experiments showed that the
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method was not able to handle the extended search space, which lead to further
adaptations of the ensemble building method. Four different approaches were
introduced and tested, and it was shown that the additional approaches are at
an advantage in some cases. Another insight gained in these experiments is that
indeed a model can make a beneficial contribution to the ensemble although a
better-ranked model was not able to do so earlier.

In Section 4.5 additional experiments on physical functions were performed to
allow for further comparison of the different approaches on functions of a higher
dimension and with relation to real-world applications. Moreover, the question
should be answered if, with an increasement of the search-space, also a larger value
for the initial step width of σinit would be recommendable. Still, the question
which adaptation of the ensemble method is the best and if the initial step width
σinit should be adapted to the dimension of the search-space could not be answered
satisfyingly and would require further analysis.

To a great extent, this chapter (Sections 4.1 through 4.3) is based on the article
“Building Ensembles of Surrogates by Optimal Convex Combination” by Friese et
al. [73]. Major parts from the original article were adopted verbatim. Of course, the
text was adapted to fit the structure and notation of this thesis.
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Chapter 5

Automated Model Selection in
SPO

In Chapter 4 a method was developed that automatically builds an ensemble
from a large set of heterogeneous models by computing an optimally weighted
convex linear combination. It was shown that regarding regression tasks, none
of the possible ensembles could perform worse than the weakest of the available
base models. Moreover, it is possible that an ensemble combination exists that
performs even better, in terms of RMSE, when fitting the regarded data, than
any of the base models. Additionally, a method was supplied to automatically
determine the best performing model from the possible ensemble combinations.
In this chapter, the CCM building method is adapted for the use in SPO. Since
the overarching goal of this thesis is to release the user from the burden to select
the right surrogate model, also and especially in time-consuming optimization
tasks, the driving questions are:

• Can the CCM building method adapted such that it works reliably and
accurately in SPO?

• Can optimized (and dynamically adapted) CCM compete with fixed base
models in SPO?

• How does the CCM approach compete with approaches that dynamically
update the surrogate model selection or apply the same ensemble through-
out the entire optimization process?

• Is it possible to adapt the method such that it performs feasible, in terms
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of calculation time, despite a large number of models involved?

The CCM already showed good results on regression tasks. A central focus of
this chapter lies on the characteristics of the SPO that come with the sequential
step. Some of these characteristics may be taken advantage of to improve the
algorithm further. Other characteristics make it harder for the CCM to perform
reliably. Possible solutions to approach these difficulties are introduced, analyzed
and incorporated into the ensemble building method. Additionally, the algorithm
is further adjusted such that it functions reliably even if one or more models of
the set fails during the optimization process.

This chapter is structured as follows. In Section 5.1 the CCM method is in-
troduced in detail, and further adaptations needed for the application in SPO
are discussed and implemented. In Section 5.2 the dynamically adapted CCM
method is then thoroughly tested for its performance during sequential parameter
optimization on a large set of diverse objective functions. Also, it is compared to
the base models and two strong ensemble competitors. Finally, the results of the
experiments are presented and discussed.

5.1 Adapting to the Sequential Step

The experiments carried out in Chapter 4 were all regression tasks of a static
nature. A given objective function had to be fitted via a given set of points
generated by a space-filling design. For the evaluation of the fit of the model
to the function, the RMSE was calculated. For a reliable result, the experiment
has been repeated several times without any changes in the experiment setup
besides the positioning of the points of the design that are to a given extent
chosen randomly.

With the step from this static experiment to a sequential experimental setup,
some alterations of the method have to be done to make it work and to ensure it
functions efficiently and reliably.

The most noticeable change that has to be addressed is the fact that in each se-
quential step only one set of data is available for evaluating the models and finding
the best ensemble combination. So instead of running repetitions, the evaluation
is now done in a single 10-fold cross-validation step. The single fitness value
resulting from this evaluation is crucial for the choice of the best ensemble.

The main steps of our proposed CCM building method are presented in Algo-
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rithm 2 which, up to this degree of detail, is self-explanatory. The approach takes
a set of n points that have been evaluated with an expensive black box evaluation
function; they are denoted with (x1, y(x1)), . . . , (xn, y(xn)). Then, it minimizes
the cross-validation error over the set of CCM, thereby performing a parameter
optimization of the model weights over the simplex {α ∈ R|

∑n
i=1 αi = 1, αi ≥ 0}.

Algorithm 2: CCM Ensemble-building using weighted 10-fold cross-validation
Data: Previously evaluated n data-points (x1, y(x1)), . . . , (xn, y(xn));
Result: CCM function ŷ : Rd → R

1: begin
2: For all base models, compute cross-validation on previously evaluated n

data-points;
3: Search for best weights using box-constrained optimization and data

generated in Step 2;
4: Generate ensemble-predictor function ŷ using best weights;

To apply these models in sequential optimization requires several adaptations,
e.g., to adjust the models continuously in the presence of dynamically changing
and non-uniform data sets. Several adaptations will be applied in order to inte-
grate the CCM approach in sequential parameter optimization. These are:

• Periodically rebuilding of models and temporarily suspending models, to
take dynamical updates into account.

• Local density weighted cross-validation, to deal with non-uniform point
distributions.

• Adaptation of (1+1)-ES used for weight optimization, to deal with large
ensemble sets.

Next, these adaptations will be introduced one-by-one before in the next section
further experimental justification of their usefulness is added.

5.1.1 Building Intervals and Suspension of Models

The characteristic of the SPO that is of highest interest for the adaptation of
the presented approach is the steadily expanding dataset. With each step of the
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optimization additional points are added to the set of known data points D. With
the growth of the set of known points also the knowledge about the underlying
objective function grows. Characteristics about the function that can be read
from the known points may be changing over time, and the ensemble should
adapt to that change. Therefore, it should be beneficial to update the weight
combination over time to adopt the model to features of the objective function
that were not known before.
An additional parameter τ is introduced to the method specifying a fixed number
of steps, such that the proposed CCM building method updates the ensemble
combination in every τ -th step of the optimization.
This parameter controls the ability of the ensemble to adjust itself, in terms of
giving more weight to a more appropriate model during optimization. We suppose
this ability, in general, to be beneficial for the performance of the ensemble but
the choice of the parameter has to be taken carefully. While choosing too large a
value for the parameter reduces the ensembles ability to adapt to changes, it is
not given that an adaptation of the ensemble in every step of the optimization is
still beneficial. Also, the ensemble building process is rather expensive in terms
of computation time. Though in real-world optimization the objective function is
the expensive part, a reasonable calculation time for the model may still be desired
and thus also might be considered when specifying the rebuilding interval.

The computation time of an SPO process when using a CCM not only depends
on the frequency with that the ensemble is rebuilt but also on the number of
models that are part of the set. While a large set of heterogeneous models is in
general desirable, the evaluation of a large set of base models also takes its time.
Moreover, not all models might make a beneficial contribution to the ensemble
at any time of the optimization. We expect only a smaller subset of the models
to be a beneficial contribution to the ensemble, and with the set of known data
steadily growing, this choice of beneficial models may steadily shift. Based on this
assumption the method is adapted to allow for temporary suspension of models
that do not contribute to the ensemble. A possible suspension of a base model is
checked after every CCM building process, whereas re-inclusion of these models
is done every λ-th step of the optimization.

It is obvious that the model building interval τ has a large influence on the
computation time since the majority of the time is needed for the cross-validation.
However, the influence of the suspension interval λ on the calculation time may
vary since it depends on the number of models that are suspended.

These considerations embed the actual CCM building part described in Algo-
rithm 2. In case of the actual step being a λ’s step, all suspended models are
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added to the set again. The CCM building is then started if this is a τ ’s step of
the optimization and at least two models are not suspended. If all but one model
are suspended, this model is the new CCM response.
Potential suspension of models is considered only after completion of the CCM
building process. Models that do not contribute to the ensemble, and therefore
gained no weight in the CCM building process, are suspended.

5.1.2 Local Density Weighted Cross-Validation

The main step of the CCM building is the cross-evaluation that is carried out on
the previously evaluated n data-points to evaluate the fit of the base models (cf.
Algorithm 2, Line 2). This step runs the risk to be the most time-consuming step
of the CCM building method, but it is also a crucial step of the Algorithm since
the whole CCM building process depends on the evaluation of the models that is
done in this step.

Methods to gain control over the computation time were already introduced in
Section 5.1.1. However, additional precautions to ensure a reliable performance
are also introduced in this step. Since the overall goal is to allow for the in-
corporation of a large set of heterogeneous models with characteristics that may
not be known to the user, these models may also show unreasonable calculation
times or do not perform reliably. To encounter such problems models may be
excluded from the set during the optimization process. Models that exceed a pre-
defined time limit, fail or return defective predictions (i.e., NAN1 values) during
the fitting process are immediately excluded from the system.

However, the more critical aspect is the appropriate evaluation and weighting
of the models since also the performance of the CCM depends on it. For the
experiments carried out in Chapter 4 the use of the RMSE lead to good results.
Nonetheless, it has to be considered that for these experiments the experimental
setup was chosen such, that it enables the best circumstances for evaluating the
fit of the models to the objective function consistently over the entire region of
interest by choosing a space filling design for the automatic generation of the
experimental data.

In general, SPO starts the optimization process by evaluating an initial set of
points which are derived from a space filling design. However, it is expected

1NAN is the abbreviation for ‘Not a Number’ which is, in general, return when division by zero
is attempted.
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that during the progress of an SPO evaluated points will cluster at local optima.
Without taking this into account during cross-validation, we risk putting too
much emphasis on prediction errors close to those local optima, which leads to
over-fitting in these areas.

A possible solution to this problem would be to exclude points from the data set
before evaluation, to ensure an even distribution of the data for cross-validation.
However, for this approach, it would have to be specified how many and which
points have to be excluded from the data set for cross-validation also risking to
exclude important data from the set.
Instead, to overcome the problem, for the evaluation of the overall fit of the
model, we propose to reduce the importance of points that are located in areas
with a very dense neighborhood by weighting their squared errors. Weights are
depending on the density of the close neighborhood, and therefore on the position
of the regarded point. Hence weighting occurs evenly and without harsh steps in
weights between points that are close to each other since they also share parts of
the same neighborhood.

The resulting weighted Root Mean Square Error (wRMSE), which is implemented
as quality indicator, is calculated as follows:

wRMSE =

√√√√ 1

n

n∑
i=1

βi(yi − ŷi)2

The weights βi ∈ [0, 1] that are applied to the prediction errors (yi − ŷi) at the
points xi ∈ Rd, i = 1, . . . , n, are derived from the density of the point’s direct
neighborhood. For the calculation of this density, the k closest neighbors of each
point are utilized.

The density ρi of a point i is then calculated as the median distance to these
neighbours:

ρi = median


√√√√ d∑

j=1

(xji − xjl )
2 | l = 1, . . . , k


Since only points are to be weighted that are located in areas with a dense neigh-
borhood, density values that are exceeding the overall mean density are truncated
to the mean value. This is done to ensure that all points with a neighbourhood
of mean density, or sparser, get full weights in the cross-validation.

In order to obtain the weights βi ∈ [0, 1], the determined density values ρi are
normalized to the [0, 1] range, by computing βi = ρi/max{ρ0, . . . , ρn}. The lower
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bound has not to be taken in account here, since the density values ρj have to be
positive per definition because of the distances used for calculation and it is not
intended to force zero weight on points with the highest density.

Figure 5.1: The plots show the impact of the weighting procedure on the points
at the beginning and the end of an optimization process on a 2D Ackley function.
Points that are colored black are fully taken into account, and lighter blue points
are weighted. The lower row shows the related distribution of weights used. It can
be seen that points near the cluster are rigorously weighted.

Applying these weights to the squared errors of the RMSE during cross-validation
ensures that all points with a neighborhood not denser than the mean-density are
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considered with full weight and only points located in denser neighborhoods are
weighted according to the density of their neighborhoods.

At the beginning of the SPO, this approach has only a small impact on the weight-
ing of the predictions during cross-validation since initial designs of experiments
preferably are space-filling and as such avoid clustering of points. Only with the
optimization process proceeding points will eventually cluster at local optima.
The denser this clustering will be the higher gets the impact of the weighting
during cross-validation on points located in or near clusters.

Figure 5.1 shows the effect of the weights applied to data points during an se-
quential optimization on a two dimensional Ackley function. The plots belong
to two different steps of the same optimization process. In the left column, the
situation after the first sequential steps of the optimization is shown, only five
additional points were evaluated. In the right column, the situation after the
optimization process has stopped is shown.
In the upper row, the points are depicted; the color indicates the applied weights.
Here a point colored black means no weighting or a full weight of one respectively,
while a blue colored point means that this point was weighted. In the lower row,
the distribution of the weights is shown.
It can be seen that in the early steps of the SPO the weighting has nearly no
impact, some points are only slightly weighted while the majority of the points
get full weight. The histogram in the lower row also confirms this.
In the last step of the SPO altogether 120 points were evaluated and clustering
has taken place in the center of the regarded area. The points that are densely
clustered also are severely weighted, while points that are not located near a
cluster get full recognition for the evaluation. Again, this can be read from the
histogram, which shows that the majority of the points gets full weight, but a
smaller subset of the points is rigorously weighted.

5.1.3 Optimization of the Ensemble Weights

After finishing the cross-validation of the base models, we use a (1+1)-Evolutionary
Strategy (ES) with 1/5th success probability rule for step size adaptation to find
the best ensemble weights (cf. Algorithm 2, Line 3).

In Section 4.4 several adaptations of the algorithm were proposed to ensure that
the method functions properly on large sets of base models. From these adap-
tations, the additional approaches were at an advantage in some cases. The
experiments also proved that a model can make a beneficial contribution to an
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ensemble although a better-ranked model is not able to do. Therefore, in the
experiments carried out in this chapter the adaptation introduced as ‘Additive
ES without stop on stagnation’ (cf. Section 4.4.6) is used. Algorithm 3 depicts
the main steps of the modified (1 + 1)-ES method which are introduced in more
detail in the following.

Algorithm 3: Adapted (1+1)-evolution strategy (ES) with 1/5th success prob-
ability rule for step size adaptation and
Data: Initial population P ⊂ [0, 1]s

Available models av = (av1, · · · , avs) ∈ {0, 1}
Result: Complete population P

1: begin
2: Choose the best individual as the first parent individual ;
3: Specify initial search space (active models) act = (act1, · · · , acts) ∈ {0, 1};
4: Initialize ES max step count Cmax ← 5|act|2 ;
5: Initialize ES step size adaption interval φ← 5|act| ;
6: Initialize ES initial step size σ ← σinit;
7: while Stop criteria not met do
8: if Steps for this level exhausted then
9: Adjust search space;

10: Reset ES step size σ ← σinit ;
11: Adjust ES max step count Cmax ← Cmax + 5s2 ;

12: Generate offspring by perturbation of all active αi with a normal
distribution with standard deviation σ (step size);

13: Evaluate offspring;
14: Select new parent individual by choosing the offspring or the current

parent depending on the objective function value;
15: if Step count is multiple of φ then
16: Adjust step size σ using 1/5th success rule;

The search starts with an initial population P , e.g., the corners of the search
space, representing the active base models and a vector av ∈ {0, 1}s of flags,
where s corresponds to the number of base models in the set, stating which
models are currently suspended (avi = 0) and which models are to be used for
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this optimization process (avi = 1), and thus defining the search space. For each
base model, all predictions made during cross-validation, as well as each model’s
wRMSE value is known. From these data, any CCM given by a specific weights
combination can be derived.

Due to the incremental data update that is characteristic for sequential optimiza-
tion, the position of the optimal weight combination in the current iteration is
likely to not deviate much from the one obtained in the previous optimization.
Therefore, the previously obtained solution is also added to the initial population
P .

The individual that is used as a starting point for the search is chosen by its fitness
value (Algorithm 3, Line 2). However, the search favors a combination of models
over a single model only if its overall fit in terms of wRMSE is strictly better.
Therefore, the ensemble from the previous optimization step is also chosen only
if strictly better.

To enable the search to handle large sets of base models, the search starts on a
smaller subset of the available models (Algorithm 3, Line 3) and then stage-wise
extends or adjusts the search space throughout the search. Which models are
currently active is specified in an additional vector act ∈ {0, 1}s of flags.
For the initial subset, the base models that are part of the individual chosen as
the starting point are automatically added. If needed, additional base models are
chosen by their fitness values to ensure, that at least three base models are part
of the initial search space.

Then, the remaining parameters for the ES are initialized (Algorithm 3, Line 4-
6). Finally, the main optimization loop is started. This loop is terminated solely
when all available models (avi = 1) were part of the search space, at least for
the length of the stage that they were added in. As mentioned before, the actual
search is performed stagewise, doing restarts with different subsets of models.
With each stage the search space is adjusted, the parameters of the ES are reset
and if needed adjusted to the new search space. For this, the last model added
to the search space is removed again if its addition did not lead to a better solu-
tion. However, the initial three models are never removed from the search space.
Then the best performing model that has not yet been part of the search space is
added. The number of search steps granted for this stage depends on the number
of models that are part of the search space at this stage (|act|). (cf. Algorithm 3,
Lines 9-11).

One offspring is then generated per mutation from the best individual of the
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actual population P (cf. Algorithm 3, Line 12). This is done by a random
mutation of the active models’ weights. We assume that the benefit of a model
with a contribution to the ensemble of less than two percent is negligible. Thus
the mutation step of the ES is adopted such that single weights are at least two
percent or zero. This correction is done randomly, so that also when the step size
of the search algorithm is rather small, the weight has a chance to surpass this
barrier.

Next the offspring is evaluated for its fitness (cf. Algorithm 3, Line 13). For this
the prediction of the model is to be evaluated, that is a mixture of the predictions
of the base models. These base model predictions have been previously deter-
mined (cf. Algorithm 2, Line 2) so that the mixture now can be easily calculated.
The offspring individual is chosen as the new parent individual if its fitness value
is better than the parent’s fitness value.

The search is finished when all stages are completed, which means, that all models
that are currently available were part of the search space at least for the duration
of one complete stage.

5.1.4 Building the Ensemble Function

With the completion of the search, the best weights combination for the ensemble
is known. Models that do not contribute to the ensemble (βi = 0) are suspended
for the remainder of the actual suspension interval (avi := 0). All models that
contribute to the ensemble are fitted to the complete data set. With the weights
and the fitted base models an ensemble function, that represents the CCM, is
built and returned (cf. Algorithm 2, Line 4).

5.2 Sequential Optimization Using Dynamic En-
sembles

The necessary adaptations to apply the CCMs, developed in Chapter 4, to se-
quential optimizations were made in Section 5.1.

In this section, the dynamically adapted CCM method is thoroughly tested to
obtain further experimental justification of the usefulness of these adaptations.
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Furthermore, the questions posed at the introduction of this chapter are to be
addressed as follows:

• To investigate the performance and reliability of the proposed dynamically
adapted CCM method, it is tested in sequential optimization processes on
a large set of diverse objective functions.

• The performance of the CCM is compared to the performance of the base
models to evaluate if the CCM can still compete with the base models in a
sequential optimization process.

• Additionally, the performance of the CCM method is compared to the per-
formance of two strong ensemble approaches that both hold only some of
the features of the CCM method.

• Finally, the CCM method is analyzed for its performance in terms of cal-
culation time.

On each of the functions, several independent complete optimization processes
are carried out using the SPO Framework as introduced in Section 2.2. The
experimental setup for these experiments and the functions used is given in Sec-
tion 5.2.1 and the general setup for the CCM is presented in Section 5.2.2. In
Section 5.2.3, the competitors that the CCM is also compared to is introduced.
Experiments using different settings for the rebuild interval τ and the suspen-
sion interval λ are carried out in Section 5.2.4. The results are discussed with a
special focus on the impact of the settings of these intervals on the performance
and the computation time of the CCM. Finally, the performances of two CCMs
using different settings for τ and λ are compared to the performances of the base
models and the two competitors presented in Section 5.2.3.

5.2.1 Experimental Setup and Objective Functions

To obtain meaningful insights about the performance of the proposed dynami-
cally adapted CCM method it is aimed for a set of functions as diverse as pos-
sible. Therefore, a set of 10 objective functions is chosen, all showing different
characteristics. Part of the set are two Gaussian landscape generator functions
(GLG4D, GLG8D), four instances of two classical test problems for optimiza-
tion algorithms (Ackley2D, Ackley4D, Rosenbrock4D, Rosenbrock8D), and four
test functions based on physical models (piston function, robot arm function,
otl-circuit function, wing weight function) (cf. Section 2.3). The Gaussian land-
scape generator functions are instantiated with 80 Gaussian process realizations
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for the four-dimensional GLG function and 320 Gaussian process realizations for
the eight-dimensional GLG function respectively.

Function Dimension Initial Design Size Number Sequential Steps

GLG4D 4 60 100
GLG8D 8 100 220

Ackley2D 2 20 100
Ackley4D 4 60 100
Rosenbrock4D 4 60 100
Rosenbrock8D 8 160 100

Otl-circuit function 6 30 50
Piston function 7 110 50
Robot function 8 110 50
Wing weight function 10 280 100

Table 5.1: Settings used for the experimental setups per function.

Table 5.1 gives an overview of the different experimental setups. The initial
design size used for each function is determined in a preliminary experiment and
depends on the difficulty of the function. As before, the defining criterion is the
share of base models that perform better than the mean predictor.
For all functions, distinct initial designs are generated in advance to ensure that all
experiments have the same precondition. For the GLG functions as well as for the
classical optimization problems 20 repetitions of the experiment are performed,
for the functions based on physical models, ten repetitions are carried out. Each
of the repetitions starts from one of the predefined initial designs.

The initial designs for the Ackley function as well as for the otl-circuit function
contain a smaller number of points since previous experiments showed that the
optimum is reached quite early with few points already. However, for the wing
weight function, the initial design contains 280 data points since the function is
rather hard.
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5.2.2 Setup of the CCM Building Method

The CCM building algorithm as described in Section 5.1 has a few settings which
have to be considered. Some of these settings are easy to be set to reasonable
values; some of them allow for several options to be negotiable. Table 5.2 gives an
overview of all of these settings and the values chosen for the experiments.

Description Variable Value

Ensemble building interval τ {1, 5, 10, 20}
Base model suspension interval λ {1, 5, 10, 20}
Exclusion time limit - 300s
Number of neighbours considered for den-
sity calculation

k 20

Model-accept weight 2%

Table 5.2: Settings of the CCM building method used in the experiments

The variables τ and λ are crucial for the CCM building method. As stated
before (cf. Section 5.1) these values have a significant influence on the overall
computation time of the CCM method but may also influence the performance
of the CCM. With too large values chosen for τ and λ, the CCM may not be able
to adapt fast enough to changes in the underlying data while too small values
will unnecessarily increase the computation time. The experiments presented
consider a range of different settings for these values.

The algorithm allows setting a fixed time limit for fitting a single predictor during
cross-validation. Models that exceed the preset time limit are excluded from the
system. This ensures reasonable calculation times by enabling the algorithm to
exclude models that need unreasonable long calculation times. However, this
parameter should be chosen carefully since this exclusion is final; models are
not reincluded after the expiration of the suspension interval. Also, it has to
be taken into account that computation time is no quality indicator; sometimes
longer calculation times might be preferable. In our experiments, the exclusion
time limit is set to 300 seconds. This time limit is considered as safety switch
only, in case that a model takes extraordinary much time for fitting and is not
expected to be reached. With this setting, the use of entirely unknown models
may be encouraged.

The number of nearest neighbors that are considered for the density calculation of
the point’s neighborhood is set to 20 points. This is assumed to be large enough
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to obtain a reliable value and yet not too large so that the calculation focuses on
the closer neighborhood.

The model-accept weight specifies the minimum weight that a model should have
to be accepted as part of the model. In the experiments presented here this value
is set to 2% since we do not intend to restrict the algorithm more than needed
but consider a weight of less than 2% as negligible.

Description Variable Value

Designated search steps per stage - 10 · s2act
Maximum search steps without improvement - 2

3
(10 · s2act)

Interval for 1
5
-success rate check - 5 · sact

Initial step size σinit 0.4

Minimum step size σmin 0.1

Learning rate (step size variation factor) η 0.9

Table 5.3: Settings of the (1+1)-ES used for searching the best weights

Additional parameters that are used for the (1+1)-ES are specified in Table 5.3.
The learning rate η is chosen in the recommended range [0.817, 1), but slightly
higher than the recommended value of 0.817 to improve exploration. Also, the
other settings follow the recommended settings in Bäck et al. [110]. As mentioned
before (cf. Section 5.1) the search algorithm is adapted stage wise. Some of the
parameters specified here are reset or adjusted with the beginning of every stage.
The designated number of search steps per stage is one of these variables. It
also depends on the number of base models that are part of the search space
in the considered stage of search (sact). However, the search on one stage may
be finished earlier if no progress is made. In the experiments presented here a
stage is been terminated when no progress is made in 2/3 of the total number
of search steps allowed for this stage. If progress is made the model is supposed
to be valuable to the ensemble and is granted the designated amount of search
steps.

In a fixed interval of search steps, the success rate of the search is calculated,
and the search step width is adapted accordingly. The length of this interval also
depends on the number of models that are part of the search space at that time
(sact). The step width of the ES is reset to its initial value with the start of each
stage.
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5.2.3 Competitors

To investigate the performance of the proposed dynamically adapted CCMmethod
its performance is compared to the performance of the base models as well as to
two ensemble-like approaches. These approaches will hereafter be referred to as
‘Initial’ and ‘Choose’.

‘Initial’ builds the CCM only in the first iteration of SPO (τ = ∞). In case of
failure of one base models during the prediction, this model is excluded from the
ensemble. For this prediction, the weights of the remaining models are adjusted
to keep their relation and fulfill the requirement to sum up to one, despite the
missing model. Additionally, the malfunctioning model is directly and finally
excluded from the set of model choices. The CCM building process is then newly
started in the next step of the SPO. By using this method, we want to get
some insights into the benefits of adjusting the ensemble during the optimization
process.

‘Choose’ selects a single base model in every λ-th iteration of the SPO. This
method also uses the weighted 10-fold cross-validation like the CCM building
method, since in preliminary experiments it showed better performance using
weighted cross-validation than by using the standard cross-validation. However,
in contrast to the CCM building method Choose is restricted to choosing a single
best model only. Thereby we assess the benefits of using mixtures of models
instead of selecting and updating only single base models.

5.2.4 The Impact of Rebuild- and Suspension Intervals

Before turning to the main experiments, some thought should be given on the set-
tings of the values τ and λ. As stated before, these values have a crucial influence
on the computation time of the CCM building method as well as on its predic-
tion performance during sequential optimization. To get some insights into the
impact of these values on the quality of the optimization result, experiments are
run with all reasonable combinations for τ ∈ {1, 5, 10, 20} and λ ∈ {1, 5, 10, 20}.
Settings, where the model suspension interval λ is shorter than the model rebuild
interval τ , are not considered as reasonable since the reactivation of temporarily
suspended models only comes into account during the next model rebuilding pro-
cess. Experiments are run on the complete set of objective functions as presented
in Section 5.2.1.

Table 5.4 gives an overview of the results of these experiments. The table is ar-
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τ = 1 λ = 1 λ = 5 λ = 10 λ = 20
ackley2D 4.736 (±1.8360) 3.082 (±2.1987) 2.421 (±2.2847) 1.954 (±2.0943)
ackley4D 8.453 (±2.6557) 7.728 (±3.4242) 6.932 (±3.1568) 6.163 (±3.5904)
GLG4D 21.96 (±11.6650) 21.92 (±11.9038) 24.21 (±11.3581) 23.77 (±11.4260)
GLG8D 30.45 (±8.9146) 28.11 (±11.1735) 26.05 (±9.9418) 26.67 (±11.3850)
otl-circuit 2.621 (±0.050386) 2.605 (±0.002278) 2.605 (±0.001937) 2.605 (±0.001924)
piston 0.1647 (±0.000499) 0.1655 (±0.002251) 0.1676 (±0.004043) 0.1679 (±0.004456)
robot 0.01078 (±0.014679) 0.01592 (±0.020619) 0.01768 (±0.027308) 0.0227 (±0.026355)
rosenbrock4D 2.673 (±1.599095) 2.236 (±1.728283) 2.412 (±1.649369) 2.988 (±1.545986)
rosenbrock8D 4075 (±2482.58) 3684 (±2353.88) 3119 (±1606.20) 4302 (±3218.83)
wingweight 177.7 (±12.7954) 179.6 (±6.154) 176.2 (±13.9320) 178.2 (±16.4675)
Md RankSums 56 46 27.5 45
Mn RankSums 60 43 33 46
Md Rank 5 3 1 2
Mn Rank 6 2 1 3
τ = 5 λ = 5 λ = 10 λ = 20
ackley2D 3.68 (±2.1033) 2.936 (±2.1041) 2.427 (±1.7135)
ackley4D 7.685 (±2.4899) 7.122 (±2.6919) 6.323 (±3.5570)
GLG4D 20.58 (±12.8548) 24.01 (±11.0480) 20.66 (±14.1705)
GLG8D 30.21 (±8.2603) 30.36 (±10.3108) 29.78 (±9.2280)
otl-circuit 2.645 (±0.066244) 2.606 (±0.003172) 2.611 (±0.017736)
piston 0.1692 (±0.005782) 0.1684 (±0.004193) 0.1709 (±0.007741)
robot 0.01772 (±0.027462) 0.02818 (±0.0283594) 0.02828 (±0.024504)
rosenbrock4D 2.452 (±1.600449) 18.95 (±72.166486) 7.898 (±21.774267)
rosenbrock8D 3812 (±1473.23) 3939 (±1807.51) 3895 (±1645.08)
wingweight 173 (±9.1062) 176.3 (±13.1074) 178.9 (±9.8847)
Md RankSums 60 72 62
Mn RankSums 54 65 63
Md Rank 6 10 7
Mn Rank 5 9 7
τ = 10 λ = 10 λ = 20
ackley2D 3.268 (±2.0659) 2.641 (±2.0901)
ackley4D 7.452 (±3.0298) 6.386 (±3.2157)
GLG4D 26.26 (±7.4316) 25.68 (±9.8755)
GLG8D 30.7 (±12.4646) 28.56 (±12.0462)
otl-circuit 2.632 (±0.056935) 2.624 (±0.052627)
piston 0.1672 (±0.003480) 0.1694 (±0.008199)
robot 0.0191 (±0.021059) 0.02285 (±0.020645)
rosenbrock4D 2.66 (±1.941899) 3.005 (±2.081024)
rosenbrock8D 4429 (±2114.36) 4155 (±1879.44)
wingweight 178.8 (±11.0519) 175.9 (±18.6308)
Md RankSums 68 65
Mn RankSums 74 64.5
Md Rank 9 8
Mn Rank 10 8
τ = 20 λ = 20
ackley2D 2.323 (±2.2779)
ackley4D 6.09 (±2.9370)
GLG4D 18.27 (±12.5356)
GLG8D 27.31 (±11.0315)
otl-circuit 2.61 (±0.012475)
piston 0.1693 (±0.006238)
robot 0.0211 (±0.020513)
rosenbrock4D 25.45 (±96.6529205)
rosenbrock8D 4348 (±3245.30)
wingweight 175.9 (±14.9929)
Md RankSums 48.5
Mn RankSums 47.5
Md Rank 4
Mn Rank 4

Table 5.4: Experiment results for the comparison of different settings for τ and
λ. Given is the mean and standard deviation of the optimization results of the
ensemble for each reasonable combination of τ and λ. The two lowest rows give the
ranking results of these runs in comparison. Best results are marked bold.
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ranged in four major rows; each row gives the results for one value of the model
rebuild interval τ while each column represents one setting for the model suspen-
sion interval λ. Each entry names the mean optimization result with standard
deviation that has been achieved during the optimization processes using the
corresponding CCM. The best values that were achieved on each function are
marked bold. To allow for an evaluation of the methods over the set of functions
with so strongly differing features function wise rankings are used. Although the
result table only names the mean optimization results the median optimization
results also have been ranked. The sums of these ranks are shown in the rows ‘Md
RankSums’ and ‘Mn Ranksums’ respectively. The last two rows of each major
row ‘Md Rank’ and ‘Mn Rank’ only shows the rankings of ‘Md RankSums’ and
‘Mn Ranksums’ respectively.

It can be seen, that the CCM using τ = 1 and λ = 10 is ranking first place for
mean optimization value as well as for median. Looking at the RankSums one
can say that the result is not even tight. Furthermore, the three best-performing
settings can be found in the first major row (τ = 1). Also noteworthy is the fact,
that the model which is ranked fourth, in both mean and median optimization
result, is the CCM using τ = 20 and λ = 20.

Figure 5.2: Average model fitting times during sequential optimization for the
different settings of τ and λ per sequential step. The solid line marks the mean
time while the opaque area shows the standard deviation of the calculation time.
Most time-consuming is the approach using τ = λ = 1 since it is rebuilding the
ensemble on the complete model set in every step. The least time consuming is the
one using τ = λ = 20, which shows a peak in calculation time only in every 20th
step.

However, as mentioned before, these settings do not only have an impact on the
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performance of the models but also on its calculation times. Figure 5.2 gives an
insight into the behavior of the different setups.
Three different situations may be encountered during the model fitting step.
These are model rebuild steps where all models are part of the search space,
model rebuild steps where some models are suspended and steps where the model
is not rebuilt.
As expected the steps where the ensemble has to be rebuilt using the complete
set of base models are the most expensive steps, in terms of calculation time.
Whereas the steps where no new ensemble is built are negligible. This behavior
can be easily seen in Figure 5.2, comparing the lines for τ = 1 and λ = 1 versus
τ = 20 and λ = 20. The calculation times per sequential step for the CCM with
τ = 1 and λ = 1 ranges, slowly increasing, between 200 and 600 seconds. Whereas
the CCM with τ = 20 and λ = 20 has calculation times close to zero in most of
the sequential steps, only every 20-th sequential step the ensemble is rebuilt and
the calculation time shows a peak with calculation times corresponding to the
calculation times of the CCM using τ = 1 and λ = 1.

The calculation time needed in such steps, where some models are suspended
from the system, is strongly depending on the number of models that are not
suspended. The line depicting the times for the setting using τ = 1 and λ = 20
shows this. Although the model is built in every step, the calculation time is
negotiable and steadily decreases step by step, as further models are suspended.
In step 20 and step 40 respectively all models are reincluded to the system, which
has a strong impact on the calculation time of this CCM after step 40.

Table 5.5 shows exemplary running times for the same choice of configurations of
λ and τ summed up for an entire optimization process on two different functions.
The configurations where λ is set to the same value as τ are not affected by
the suspension since it is released in the same step as the model is rebuilt, and
therefore in every model building step the full model set is available.

The results suggest that two choices are best, depending on the priorities set. For
one the CCM with τ = 1 and λ = 10 seems to be the best choice when calculation
time has not to be taken into consideration too much. For another, the CCM
with τ = 20 and λ = 20 seems to be a worthwhile choice.
With a setting of τ = 1 and λ = 10, the CCM is rebuilt in every step and thus can
quickly adapt to changes in the underlying data. The suspension interval is large
enough to reduce the calculation time remarkably and small enough to allow for
an adaptation of the active models throughout the optimization process.
Using a CCM with τ = 20 and λ = 20 results in an ensemble, that shows a good
performance while having the best results in terms of calculation time. Though we
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λ

1 5 10 20

τ

1 17659 (± 4956) 4717 (± 1435) 3763 (± 720) 3068 (± 943)
5 3765 (± 1011) 2464 (± 452) 1782 (± 422)
10 2096 (± 801) 1772 (± 509)
20 1421 (± 432)

Table 5.5: Average computation times (s) for a complete sequential optimization
process on the GLG4D function depending on the values for τ and λ. On the
diagonal, the results for such settings are shown where λ has no influence since it
matches to the value of τ . In these cases, the full set of available models is used in
the ensemble building process. The same applies for combinations of τ and λ where
λ < τ , therefore these fields are left blank.

aim for problem setups with high-cost objective functions where the calculation
time of the model is neglectable, this still might be an interesting choice in some
cases.

Recapitulating it can be said that the choice of the values for τ and λ should be
well considered. The results show that these values have a heavy impact on the
performance of the model in terms of prediction quality as well as computation
time. A smaller value for the model rebuild interval seems to be preferable though
the results show that also larger values can lead to good results (cf. Table 5.4,
τ = 20, λ = 20). However, a smaller value for the suspension interval must not
necessarily lead to better results (cf. Table 5.4, τ = 1, λ = 1). We assume that a
large set of base models still makes it harder to build the best fitting model. So
it might indeed be beneficial to suspend models that are not contributing to the
system for some time. Of course, these values also should be chosen considering
the number of sequential steps that are to be performed.

5.2.5 The Performance of Dynamical Adapted CCM in SPO

In the following, the performance of the CCM in sequential optimization processes
is closer investigated. For these experiments the CCM with τ = 1 and λ = 10
is chosen as well as the CCM using τ = 20 and λ = 20. The ensembles are
compared to the base models as well as to the competitors ‘Choose’ and ‘Initial’
as introduced in Section 5.2.3. Again, experiments are run on the complete set
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of objective functions as presented in Section 5.2.1.

Table 5.6 gives an overview of the Results of the experiments. The structure
of the table resembles the structure of Table 5.4 in the previous section. Main
difference is the columns ‘Best Base Model’. Since for the main experiment setup
the chosen CCM methods are compared against ‘Choose’ and ‘Initial’ as well as
all base models that are part of the set, the complete result is condensed to the
relevant information to preserve the readability.

FUN τ = 1, λ = 10 τ = 20, λ = 20 Choose Initial Best Base Model
ackley2D 2.496 (±1.931) 1.934 (±2.041) 5.250 (±2.604) 0.869 (±1.392) 0.343 (±0.694) MLP
ackley4D 6.850 (±3.179) 6.022 (±3.242) 9.189 (±3.182) 4.403 (±3.101) 5.206 (±1.074) Lm
GLG4D 22.43 (±12.00) 23.58 (±13.02) 14.31 (±14.47) 25.07 (±7.83) 21.10 (±13.17) corrgauss
GLG8D 29.62 (±9.42) 30.34 (±7.17) 40.02 (±13.39) 35.31 (±10.42) 28.70 (±11.39) corrgauss
otl-circuit 2.605 (±0.002) 2.610 (±0.0123) 2.695 (±0.080) 2.619 (±0.046) 2.604 (±0.0002) Earth, MLP
piston 0.167 (±0.003) 0.170 (±0.008) 0.172 (±0.004) 0.168 (±0.001) 0.167 (±0.001) MLP
robot 0.013 (±0.020) 0.018 (±0.018) 0.040 (±0.031) 0.021 (±0.022) 0 (±0) MLP, Neuralnet
rosenbrock4D 2.414 (±1.522) 4.198 (±2.088) 2.665 (±1.331) 160.4 (±208.2) 3.554 (±2.490) corrgauss
rosenbrock8D 4127 (±2989) 3224 (±2042) 5755 (±4100) 3171 (±1758) 697 (±582) Lm
wingweight 182.5 (±13.11) 173.0 (±10.35) 180.4 (±15.10) 174.0 (±15.65) 174.8 (±14.12) correxp
Md RankSums 29 27.5 41 32 20.5
Mn RankSums 28 31 42 31 18
Md Rank 3 2 5 4 1
Mn Rank 2 3 5 4 1

Table 5.6: Results for the main experiment setup. Depicted are mean optimization
result with standard deviation. The presentation of the results for the base models
is consolidated to only depict the performance of the best model for each function.

Thus, the column ‘Best Base Model’ names the mean optimization result with
standard deviation and the name of the corresponding base model which per-
formed best on this function. In case that two base models showed the same
performance in terms of mean optimization result, both base models are named
here. For differing performances in terms of standard deviation only, the smaller
standard deviation value is shown. Additionally, the complete results for the com-
parison of the two CCMs to all base models is given in the Appendix A.2.

Inspecting the overall rankings of the models depicted, it can not be denied that
the base model is ranked best. However, it has also to be taken into account,
that the best base model is changing, depending on the objective function. Given
that the most appropriate base model is not known to the user, the next best
choice is the CCM. We assume the better choice to be the CCM with τ = 1 and
λ = 10, but the differences in performance seem to be negligible, at least for these
experiments.
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(a) Initial

(b) Choose

(c) CCM (τ = 20, λ = 20)

(d) CCM (τ = 1, λ = 10)

Figure 5.3: Distribution of weights during one exemplary sequential optimiza-
tion process on the GLG4D function. ‘Initial’ is forced to use the same ensemble
throughout the whole optimization process, while ‘Choose’ switches to the best
choice in every fifth step. The ensemble (τ = 1, λ = 10) starts with a setup that
resembles the setup of ‘Initial’, but adjusts its weights in the next steps, often giving
large parts of the weight also, but not exclusively, to the model also preferred by
‘Choose’.
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Figure 5.3 gives further insights into the behavior of the different types of models.
As introduced in Section 5.2.3, ‘Initial’ builds its ensemble only in the very first
step and then sticks to it. Whereas ‘Choose’ selects the best performing model
every fifth step. Here it can be seen, that the preferred base model chosen by
‘Choose’ switches several times. The two CCM models start with a similar en-
semble as ‘Initial’, but while the CCM with τ = 20 and λ = 20 keeps its setup for
20 steps without changes the CCM with τ = 1 and λ = 10 slightly modifies its
setup in every step. This improved ability to adapt to changes may also explain
the fact, that the distribution of weights resembles more to the choice of ‘Choose’
than the weights distribution of the CCM using τ = 20 and λ = 20.

Figure 5.4: Shown is a boxplot of the calculation times that are needed by the
different models during a complete sequential optimization process on the wing
weight function. Noteworthy is, that on this function ‘Choose’ needs significantly
more time than both ensembles. Also, the calculation times of ‘Initial’ are surpris-
ingly long with an also rather large variance. Therefore, also ‘Initial’ takes more
calculation time than both ensembles, in most cases.

Figures 5.4 and 5.5 give another insight into the calculation times of the differ-
ent models. The times depicted here each represent the calculation times of a
complete optimization process carried out on the wing weight function, the most
expensive function in terms of model calculation time, and on the GLG4D func-
tion respectively. Although the calculation time on this wing weight function
builds an exception, the relation of the calculation times between the different
models is similar on all considered functions.

Remarkable in these results is, that the computational cost needed for the two
competitors ‘Choose’ and ‘Initial’ is not necessarily less than for the two CCM
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Figure 5.5: Shown is a boxplot of the calculation times that are needed by the
different models during a complete sequential optimization process on the GLG4D
function. Noteworthy is, that ‘Choose’ takes significantly more time than the CCM
using τ = 20 and λ = 20. ‘Initial’ has a large variance in its calculation times but
in most cases performs faster than both ensembles.

instances. On the wing weight function, the computation times for ‘Choose’ are
significantly longer than for both ensembles, while on the GLG4D function it still
performs slower than the CCM using τ = 20 and λ = 20. This may be based on
the fact, that ‘Choose’ performs a cross-validation on the full set of base models
in every fifth step whereas the ensembles use the full set of base models only every
tenth and twentieth step respectively.
The calculation times for ‘Initial’ are surprisingly long, taking into account, that
the cross-validation of the full set of base models is done only in the very first
step of the SPO process. A possible explanation for this might be an unfortunate
choice of base models in the first step. I.e., in most of the twenty repetitions
carried out on the GLG4D function ‘Initial’ chose at least one, sometimes even
more of the slower performing base models. However, this is only an assumption
and requires further investigation.

5.3 Conclusion

The primary goal of this chapter was to adapt the CCM method developed in
Chapter 4 such that it can be applied to SPO and thereby release the user from the
burden to select the right surrogate model, especially in sequential optimization
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tasks. As before, it was aimed for a method that in any situation can compete
with the best performing base model. To achieve this, in Section 5.1 several
adjustments were made to the basic CCM method to improve its accuracy, relia-
bility and computation time in sequential optimization processes. In Section 5.2
the dynamically adapted CCM method was thoroughly tested for these virtues
in different setups and compared to the base models as well as to two strong
ensemble competitors.

The results showed that the dynamically adapted CCM performs reliably and, in
terms of accuracy, can compete with the base models as well as the competitors.
It was shown that in most cases a base model showed the best optimization result.
However, in these cases, a CCM was placed second in general. Moreover, though
the ‘BestBaseModel’ was ranked first in the overall evaluation, it has to be taken
into account that the concrete best base model was differing for each function.
Therefore, in comparison to the base models the CCM would be the best choice,
given that the best base model is not known beforehand.
Concerning the ensemble competitors, it could be shown that the CCM method
has a clear advantage over approaches like ‘Choose’ that only select a single best
base model in fixed intervals. The difference to ‘Initial’, a CCM instance using
τ = ∞, is a bit smaller; still the CCM instances that updated their ensemble
setup throughout the optimization process showed better results.
The comparison of CCM instances using different values for τ and λ gave fur-
ther evidence for the advantageousness of regular updates of the ensemble setup.
Though it was visible that an update on the full set of available models is neither
needed nor useful, the results showed that a regular update on a reduced set of
base models is beneficial.

Concerning the calculation time, the CCM method and the parameter τ and λ

showed the envisioned behavior. As expected, in terms of calculation time, the
CCM cannot compete to a single base model. However, the difference between
the ensemble competitors and the CCM instances was not that clear. As expected
‘Choose’ performed slower than the CCM using τ = 20 and λ = 20 but depending
on the function it even performed slower than the CCM using τ = 1 and λ =
10. ‘Initial’ showed a surprisingly large variance in its computation times and
therefore was, other than expected, not always performing faster than the CCM
instances.

However, as emphasized in Section 3.6, it was aimed for a strategy that works
reliably and as accurately as possible on arbitrary objective functions knowingly
accepting that this is probably going to happen at the expense of the ensembles
computation time. Still, the computation time of the CCM depends on the choice
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of the values of τ and λ and can, within bounds, be adapted to the needs of the
user and with a focus on expensive real-world applications is expected to be
neglectable.

To a great extent, this chapter is based on the articles ‘Weighted Ensembles in Model-
based Global Optimization’ by Friese et al. [74] and “Optimally Weighted Ensembles
of Surrogate Models for Sequential Parameter Optimization” by Friese et al. [75].
Major parts from the original articles were adopted verbatim. Of course, the text
was adapted to fit the structure and notation of this thesis.
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Chapter 6

Summary and Outlook

In this work, we specified a taxonomy of ensembles and discussed known methods
for its strengths and weaknesses (e.g., restrictions to particular types of models
or applications). The main contribution of this work aims to overcome these
weaknesses and develop an ensemble strategy that works reliably and accurately
on arbitrary objective functions and models and thus releases the user from the
burden to select the right surrogate model. The proposed ensemble strategy
is first developed and analyzed in a small setup of two base models and later
extended for the use of a large heterogeneous set of base models. Finally, the
method is adapted for and applied to SPO on a large set of objective functions
of various characteristics.

Section 6.1 provides a summary of this work and discusses the conclusions drawn
from the performed research. Section 6.2 gives an overview of possible future
work on this topic.

6.1 Summary

A common method to perform an optimization on a function that can not be
optimized analytically is to perform a search on this function by iteratively and
strategically choosing and evaluating points of the function. However, in real-
world optimization tasks, the budget in terms of number of function evaluations
is often constrained by the time or cost for these function evaluations. In such cir-
cumstances, it is a common technique to learn a surrogate model, e.g., regression
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model, of the response function from available evaluations and to use this model
to decide on the location of future evaluations. Sequential Parameter Optimiza-
tion (SPO) is a well-known approach for solving black-box optimization problems
with expensive function evaluations with the help of surrogate models.

For such optimization processes, the choice of the surrogate model can have a
significant influence on the solution quality and performance of the optimizer.
However, to make meaningful decisions on which surrogate model to select for
a given problem, often expert knowledge about the objective function and the
characteristics of the surrogate model likewise is required. However, in many
situations, preliminary knowledge about the function, or all available models, is
not available. Automated methods that learn all by itself which surrogate model
type suits the problem best, could help to overcome this problem.

This thesis introduces new methods on how to manage multiple heterogeneous
surrogate models for regression and optimization of expensive black-box opti-
mization problems. The overarching goal is to release the user from the burden
to select the right surrogate model and to create an ensemble building strategy
that works reliably and accurately on arbitrary objective functions and models.
The primary focus is on regression problems, and optimization processes that
allow only for a comparatively small number of function evaluations since these
are constraints that often come with real-world problems.

In Chapter 3 of this thesis a taxonomy of known methods to do this is introduced
and specified. The model selection methods are classified into two types.
The ‘Single Evaluation Model Selection’ methods, in general, use a predefined
strategy to select the most appropriate model. This strategy may also utilize
data obtained from previous evaluations. However, such ad hoc rules ignore the
rules of parsimony and do not, or only marginally, rely on the data to help select
the best model.
Methods classified as ‘Multi Evaluation Model Selection’ tackle this problem by
evaluating all available types of surrogate models. But under circumstances when
there is more than one strong model in the set, it might be beneficial to combine
inference output across several models.
This is what is done by the ‘Model Combination’ methods. However, the known
strategies, in general, are restricted in one or the other way (e.g., to homogeneous
models or particular applications).

Based on these studies of existing ensemble approaches and their strengths and
weaknesses, a method is envisioned, that overcomes the deficiencies and combines
the advantages of these approaches. To this end, the method should do an ex-
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haustive preliminary evaluation of all models to gain the best insight into the
models’ performances, then trains all models on the data to enable the use of the
complete knowledge of all models. Still, the method should follow the principle of
parsimony and prefer a combination of predictions over a single prediction only if
it is clearly beneficial for the overall accuracy. The same applies to the number of
models used, it should not be a decision between a single model or a combination
of all, but any number of models that seem to be best.

In Chapter 4 the insights from Chapter 3 are used to develop a new ensemble
method. This approach is studied in a fundamental way, by first evaluating
ensembles of only two surrogate models in detail. It is shown that the convex
combination of models is beneficial in many cases since the convex combination of
the predictions of two base models averages positive as well as negative prediction
errors of the base models. The ensemble generated by the convex combination of
models can compete with the base models and in some cases even outperforms
them.

The insights gained in the studies of convex combinations of two base models
make convex linear combinations of models an ideal choice for combining models.
The advantages recognized in this study are:

• Due to the linear convex combination that is used for combination, the
ensemble cannot perform worse than the weakest base model.

• The ensemble can perform better than the base models when compensating
opposing prediction errors.

• A CCM is favored over a base model only if the overall fit of the ensemble
model is actually better (in terms of RMSE) than the overall fit of both
base models.

• The nature of the combination that is given by a weighted sum with a
normalized positive weight space is intuitive and interpretable.

• The linear convex combination of predictions for a given set of weights is
easy to compute.

In preparation for the implementation of the algorithm with a large set of het-
erogeneous models, the algorithm is then specified in a more general way using
three base models. Furthermore, the exhaustive search used to find the optimal
combination weights in a fixed grid is replaced by a more flexible (1+1)-ES. These
adaptations are accompanied by experiments to ensure that the changes have no
adverse influence on the performance of the method.
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On this basis, in the following, the set of base models is extended to the in-
tended size and experiments are carried out to ensure that the performance of
the method does not suffer from this change. First experiments show that the
(1+1)-ES, without further changes, is not able to handle the extended search
space. Therefore, several approaches are discussed and implemented to overcome
this difficulty. Finally, the chapter closes with comparing experiments of all ap-
proaches on a set of test functions based on physical models. It is shown that
the approaches are at an advantage over the base models in some cases. Another
essential insight gained in these experiments is that sometimes a model can make
a beneficial contribution to the ensemble although no single, high-ranked model
is able to do so.

In Chapter 5 the developed ensemble strategy is introduced in more detail and
adapted for the application in SPO. These adaptations are needed, e.g., to adjust
the models continuously in the presence of dynamically changing and non-uniform
data sets. These adaptations are:

• Periodically rebuilding of models and temporarily suspending models, to
take dynamical updates into account.

• Local density weighted cross-validation, to deal with non-uniform point
distributions.

• Adaptation of the (1+1)-ES weight optimization method, to deal with large
ensemble sets.

The dynamically adapting ensemble strategy is then extensively tested for its
performance and computation time in sequential optimization processes on var-
ious objective functions. First, instances of the method using different settings
for the rebuild and the suspension interval are compared and the impact of these
settings on the performance and computation time is analyzed. In both, its per-
formance as well as its computation time, the method is also compared to the
base models and to two strong ensemble competitors that share different parts of
the characteristics of the proposed ensemble method.

The results show that the dynamically adapting ensemble strategy performs reli-
ably and, in terms of accuracy, can compete with the base models as well as the
competitors. It is shown that the proposed ensemble strategy method has a clear
advantage over approaches that are restricted to the selection of a single best
base model in fixed intervals. Given that the best base model is not known be-
forehand, the dynamically adapting ensemble strategy would be the best choice.
The analysis of the impact of the rebuild interval and the suspension interval on
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the performance of the ensemble strategy showed that a regular adaptation of the
ensemble setup is preferable, though this update should be restricted to a smaller
subset of stronger base models that may be updated in a less frequent interval. A
well-considered choice for the length of these intervals also has a distinct impact
on the calculation time of the ensemble strategy.

In summary, and with the main research question in mind, it can be said that
the primary goal to develop a strategy that works as reliably and as accurately as
possible on arbitrary objective functions, and that uses arbitrary types of surro-
gate models is accomplished. The ensemble method proposed in this thesis selects
or combines surrogate models from a set of heterogeneous surrogate models to
achieve prediction results that can compete with or even improve the predictions
of single models. Though it is knowingly accepted that this could happen at the
expense of the ensembles computation time, this drawback can be lessened using
well-considered settings for the rebuild interval and the suspension time. How-
ever, with a focus on expensive real-world applications, the computation times
needed is expected to be negligible.

6.2 Outlook

First and foremost the approach would lend itself to be implemented in other
sequential optimization packages, such as SUMO [55]. Furthermore, it could
be beneficial to use the proposed ensemble method in algorithm configuration
frameworks, such as SMAC [15, 112] and IRACE [56].

Some questions remained unanswered and require further investigation; other
questions were not addressed yet. Questions that were not addressed in this work
concern the ways of combining and evaluating models. We chose to use convex
linear combinations of the models’ predictions since it is both easy to calculate
also for several heterogeneous models and comprehensive in terms of meaningful-
ness. For the evaluation of the models, we used the RMSE, which we adapted to
a weighted variant for the application in SPO. Both, the evaluation method, as
well as the way to combine the models, may be further investigated to determine
the best way to do this. The question of how to evaluate and find the best model
is accompanied by the general questions if better surrogates always result in im-
proved performance.
The first of these questions concerns the characteristics of the search space for the
model weights. Some of the results in Chapter 4 suggest the assumption that the
function that is searched might be convex. If this assumption could be confirmed
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this would allow for more direct search strategies to be applied and thus enhance
the proposed ensemble strategy.
In this work, we chose an (1+1)-ES. Building on the assumption that the regarded
search space is supposedly but not surely unimodal and convex this would be a
reliable and robust search algorithm that performs well on a search landscape as
assumed, but can also handle more difficult search spaces. However, other search
strategies may be tested to improve the overall performance.
The recommendation for the values of τ and λ are based on a comparatively
small number of experiments. Still, these values have a high impact on the over-
all performance and computation time of the proposed ensemble method. Further
investigation may be done to allow for a more precise and reliable recommenda-
tion.
Clustering of the observed data points is an interesting idea and might be a bene-
ficial addition to the proposed method. Though for this work, we did not consider
this since the main focus was on real-world applications which are often restricted
to a smaller number of function evaluations that complicate reasonable clustering
of the data points.

The calculation time of the method may be negotiable for expensive real-world
applications but remains a drawback for less expensive applications. However, the
method has the right prerequisites to be further sped up through parallelization.
First and foremost, the calculation time needed for the cross-validation step,
which makes the majority of the calculation time, could be immensely reduced by
parallelization. Additional calculation time may also be saved by parallelization
of the optimization step by applying parallel optimization methods as introduced
by Mostaghim et al. [113].

Surrogate models are not only used in Sequential Optimization but also in the
selection of Evolutionary Algorithms. Also, for such surrogate-model assisted
evolutionary algorithms the approach could be beneficially implemented. For an
overview, see Chugh et al. [114].

Finally, the method could be applied to multi-objective optimization problems.
First approaches in this direction were presented by Hussein et al. [115, 116].
Since the proposed approach showed good results in single-objective optimization
problems, it is expected to show comparable good results in multi-objective opti-
mization problems. Today, optimization with (much) more than 3 objective func-
tions is often referred to as many objective optimization. Also for these problems
first surrogate model based approaches have been proposed by Chugh et al. [117]
and it could be investigated how these could benefit from mixed models.
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Some of the questions and ideas formulated in Section 6.2 are based on questions
and ideas of the bookchapter ‘Open Issues in Surrogate-Assisted Optimization’ by
Stork et al. [118].

117



6. SUMMARY AND OUTLOOK

118



Appendices

119





Appendix A

Supplementary Results

A large number of experiments was carried out for this thesis, and an even larger
number of result plots was generated for the evaluation of these experiments.
For the sake of readability, only the most relevant plots were shown in the main
part of this thesis. In the following, supplementary plots are provided that also
may be of interest since they provide further insights into the functionality and
performance of the proposed ensemble method.

A.1 N-ary Ensembles on Higher Dimensional Phys-
ical Functions

In Section 4.5 experiments were carried out to compare the ensemble building
method using different adaptations of the ES to each other and all base mod-
els. The results presented were condensed to the relevant information, each time
showing only the results of the best performing base model, to preserve the read-
ability. For the sake of completeness and to prove that no important information
was omitted, in the following, the results for all base models are presented.

Figure A.1 shows the results for the experiments on the otl-circuit function (cf.
Figure A.1a) and on the piston function (cf. Figure A.1b). On these functions,
the ensemble adaptations and the best base model show comparable results and
perform significantly better than the remaining base models, whose performances
are heavily varying.
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(a) Result on the otl-circuit function.

(b) Result on the piston function.

Figure A.1: The plot shows the results of the comparison of the performances,
in terms of RMSE, of the different adaptations of the ensemble building method
and all base models on the otl-circuit function and the piston function. Ensemble
results are colored yellow, the base model result is shown in white. The ensemble
adaptations can compete with the best base model and perform clearly better than
all remaining base models.
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(a) Result on the robot function. The ensemble adaptations can compete with
the best base model. Correxp and Corrgauss also show comparable performances,
only slightly weaker than the best base model and the ensemble adaptations. All
remaining base models perform significantly worse.

(b) Result on the wing weight function. The ensemble adaptations belong to the
better performing models.

Figure A.2: The plot shows the results of the comparison of the performances,
in terms of RMSE, of the different adaptations of the ensemble building method
and all base models on the robot function and the wing weight function. Ensemble
results are colored yellow, the base model result is shown in white.

123



APPENDIX

Remarkable is that despite the large variance in the performances of the base
models, the ensembles show a steady performance with a standard deviation
comparable to or even slightly better than the one of the best base model.

Figure A.2 shows the results for the experiments on the robot function (cf. Fig-
ure A.2a) and on the wing weight function (cf. Figure A.2b).
On the robot function, the ensembles and the best base model again show com-
parable performance. The base models ranked second and third, corrgauss and
correxp, already perform slightly worse and all remaining base models perform
significantly worse than the ensemble adaptations. Like on the otl-circuit func-
tion and the piston function this variance in the performances of the base models
does not influence the good performance of the ensemble.
On the wing weight function, the results are more close; only one base model
performs significantly worse than all ensemble adaptations. Still, the ensembles
are among the best performing models.

In the following, a closer look is taken at the behavior of the different ensemble
approaches. Exemplary plots are shown for the optimization of the weights to find
the best model on the otl-circuit function (cf. Figures A.3 and A.4). The plots
document the development of the weights for each step of the search. Each line
represents a single individual considered during the search, and its color marks
the related search step when the individual was found.

In all of these plots can be seen, that the base models RFMlegp, Esvm, neuralnet
and Tgp did not receive any weight throughout the whole search. This is owed to
the fact that these models failed during the preceding cross-evaluation in at least
one, but rather most or even all of the evaluations. To obtain a reliable ensemble,
models that failed in at least one of the evaluation steps are excluded from the
search for the best weights.

Figure A.3 shows the development of the weights during the optimization using
the additive approaches. The characteristics of these approaches can be easily
read from the plots. The additive approach, which stops after the search stagnates
(cf. Figure A.3a), ends the search after the addition of MLP. Previously added
base models at least gained small weight during the search, but no improvement
could be made with the addition of MLP. As a result, the search stopped.
The additive approach that does not stop on stagnation considered all base mod-
els. The course of the optimization can be read from the plot (cf. Figure A.3b).
The three base models Gauss, Exp and Earth that were part of the search space
from the start on, show nearly the complete range of colors.
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(a) Sequential addition with stop on stagnation. After the search stagnates with
the addition of MLP the search is stopped. Therefore, the base models LM, Qrnn
and tree that are ranked lower than MLP are not considered in this search.

(b) Sequential addition without stop on stagnation. All base models are considered.

Figure A.3: The plots document the development of the weights during the op-
timization for the otl-circuit function using the additive approaches. Each line
represents a single individual considered during the search, and its color marks
the related search step when the individual was found, the white line marks the
best weights combination. Though, through the course of the optimization both
approaches consider different individuals, in the end, they agree on similar weight
combinations.
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(a) Restriction of the mutation.

(b) Preselection of models. During the automatized preselection of the base models,
the search space is restricted to the three best-ranked base models.

Figure A.4: The plots document the development of the weights during the op-
timization for the otl-circuit function using the approaches that restrict the search
space and the mutation respectively. Each line represents a single individual con-
sidered during the search, and its color marks the related search step when the
individual was found, the white line marks the best weights combination.
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The base models that were added later in the course of the optimization show
only a limited range of colors.
In the end, both approaches agree on similar best weights for the best ensemble
combination.

Figure A.4 shows the development of the weights during the optimization using
the approaches that restrict the considered base models or the mutation respec-
tively. Again, the characteristics of these approaches can be easily read from the
plots.
The approach that restricts the mutation searches the complete search space
throughout the course of the optimization. No structure in the search can be
read from the plot; the course of the search seems random. The final search
result visibly differs from the weight combinations preferred by the additive ap-
proaches although most weight is given to the same base models.
The approach that initially selects a subset of the available base models for opti-
mization using a rule based on the comparison to the mean predictor as described
in Section 4.4.4. Applying this rule, the search is restricted to the base models
Gauss, Exp, and Earth. The search on these base models again leads to similar
weights as already preferred by the additive approaches.

A.2 The Performance of Dynamical Adapted CCM
in SPO

In Section 5.2.5 the CCMs using τ = 1, λ = 10 and τ = 20, λ = 20 respec-
tively were compared to two strong ensemble competitors and all base models.
The results presented were condensed to the relevant information to preserve the
readability. For the sake of completeness, in the following, the complete results
for all base models are given and discussed.

Table A.1 presents these results. Given are the mean and standard deviation for
the results of the optimization processes, best results are marked bold. To allow
for a comparison of the models over the different functions, the mean results are
function-wise ranked, and the average ranking, as well as the final rank for each
model, is given in the two last rows.
Some of the entries show a red ‘N/A’. These entries refer to experimental setups
where the optimization process using the stated model did not succeed in at least
one repetition. Therefore, the related rankings in the two last rows are given in
brackets.
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τ = 1, λ = 10 correxp corrgauss corrspline Earth Lm
ackley2D 2.4957 (±1.931) 7.6620 (±1.465) 2.1552 (±3.055) 3.2729 (±3.189) 5.8966 (±1.853) 3.1309 (±1.741)
ackley4D 6.8503 (±3.179) 11.588 (±1.275) 5.3801 (±3.576) 7.8778 (±4.558) 8.1570 (±1.870) 5.2055 (±1.074)
GLG4D 22.430 (±12.00) 33.021 (±5.766) 21.101 (±13.17) 26.344 (±10.49) 29.465 (±10.19) 32.479 (±9.483)
GLG8D 29.616 (±9.420) 57.321 (±7.660) 28.702 (±11.39) 42.634 (±20.82) 60.226 (±4.488) 56.429 (±6.917)
otl-circuit 2.6055 (±0.002) 2.6542 (±0.034) 2.6553 (±0.070) 2.7007 (±0.070) 2.6039 (±0.000) N/A
piston 0.1667 (±0.003) 0.1708 (±0.002) 0.1709 (±0.005) 0.1750 (±0.011) 0.1670 (±0.001) 0.1761 (±0.011)
robot 0.0132 (±0.020) 0.0552 (±0.027) 0.0309 (±0.015) 0.0756 (±0.044) 0.0253 (±0.022) 0.0169 (±0.036)
rosenbrock4D 2.4138 (±1.522) 288.78 (±300.4) 3.5536 (±2.490) 60.989 (±138.8) 727.23 (±610.5) 70.933 (±63.79)
rosenbrock8D 4127.1 (±2989) 3188.6 (±1474) 6819.3 (±2799) 18887 (±12949) 23688 (±12099) 696.83 (±582.0)
wingweight 182.50 (±13.11) 174.83 (±14.12) 178.91 (±14.44) 181.05 (±6.350) 175.94 (±6.323) 185.10 (±12.82)
AVG RANK 3.6 7.2 4.2 6.95 7.05 (5.7)
RANK 2 11 3 7 10 (5)

τ = 20, λ = 20 MLP Neuralnet RandomForest Tgp tree
ackley2D 1.9344 (±2.041) 0.3425 (±0.694) 7.8315 (±2.263) 2.5598 (±1.198) 1.1200 (±0.522) 5.6125 (±1.443)
ackley4D 6.0215 (±3.242) 9.7943 (±3.098) 15.330 (±2.523) 8.9207 (±1.946) 5.8991 (±1.028) 15.540 (±0.936)
GLG4D 23.576 (±13.02) 25.799 (±10.63) 33.676 (±9.031) 30.801 (±7.160) 21.690 (±12.28) 32.181 (±8.249)
GLG8D 30.335 (±7.166) 48.353 (±7.637) 56.281 (±1.467) 53.407 (±6.857) 59.229 (±6.998) 58.156 (±6.744)
otl-circuit 2.6103 (±0.012) 2.6039 (±0.000) 2.8980 (±0.191) 2.7849 (±0.116) 2.7580 (±0.045) 3.0001 (±0.092)
piston 0.1704 (±0.008) 0.1669 (±0.001) 0.2107 (±0.014) 0.1706 (±0.003) 0.1770 (±0.002) 0.2027 (±0.016)
robot 0.0181 (±0.018) 0.0000 (±0.000) 0.000 (±0.000) 0.0239 (±0.033) 0.06681 (±0.032) 0.0876 (±0.056)
rosenbrock4D 4.1977 (±2.088) 815.76 (±560.3) N/A 253.76 (±212.2) 306.48 (±222.6) 732.86 (±689.9)
rosenbrock8D 3224.2 (±2041) 17994 (±12828) N/A 4705.0 (±2657) 6633.4 (±3569) 23605 (±15191)
wingweight 173.0 (±10.35) 181.99 (±11.02) N/A 184.59 (±12.15) 182.94 (±9.371) 181.05 (±12.88)
AVG RANK 3.4 5.2 (6.65) 7 7 10
RANK 1 4 (6) 8.5 8.5 12

Table A.1: The table displays the results for the main experiment setup. Given
are mean optimization result with standard deviation for the CCMs in comparison
to all base models.

The most important result here is that the two CCMs are ranked first and second,
unlike before, where the CCMs were ranked second and third only. This is owed
to the fact, that in the previous representation for each function only the best
performing base model was considered, and this best base model, though changing
for each function, ranked as one in the overall ranking.
Noteworthy are also the results for the rosenbrock functions. The optimization
results obtained from the different base models and the two ensembles range
between 2.4 and 816 for rosenbrock4D and between 697 and 23688 for rosenbrock
8D. Though the variance in the performances of the different base models is
large, the ensembles showed good performances on both functions; the CCM
using τ = 1, λ = 10 even performed best on the rosenbrock4D function.
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Een gebruikelijke methode om de extrema van een functie te berekenen als dit
niet analytisch mogelijk is, is om een search uit te voeren door iteratief en strate-
gisch punten van de functie te kiezen en te evalueren. Echter voor optimalisatie
problemen uit de praktijk, is de bestedingsruimte wat betreft het aantal functie
evaluaties vaak beperkt gezien de benodigde tijd en de kosten van deze functie
evaluaties. Een gebruikelijke techniek, onder deze omstandigheden, is het leren
van een surrogaat model, b.v., een regressie model, gebaseerd op de beschikbare
evaluaties van de response functie om vervolgens dit model te gebruiken voor
het bepalen van de plaats van toekomstige evaluaties. Sequential Parameter Op-
timization (SPO) is een wel bekende methode voor het oplossen van black-box
optimalisatie problemen behept met dure functie evaluaties met gebruikmaking
van surrogaat modellen.

Voor zulke optimalisatie processen, kan de keuze van het surrogaat model een
significante invloed hebben op de kwaliteit en de prestatie van de optimizer.
Om echter relevante beslissingen te maken over welk surrogaat model te kiezen
voor een gegeven probleem, is vaak expert kennis van zowel de functie en de
eigenschappen van het surrogaat model nodig. In veel voorkomende situaties,
echter, is er geen voorkennis van de functie of van alle beschikbare modellen
aanwezig. Geautomatiseerde methoden die geheel zelf leren welk type surrogaat
model het beste past bij het probleem zouden kunnen helpen bij het overwinnen
van deze moeilijkheid.

Deze thesis introduceert nieuwe methoden voor hoe je meerdere heterogene sur-
rogaat modellen voor regressie en optimalisatie van dure black-box optimalisatie
problemen beheert. Het overkoepelende doel is het vrijwaren van de gebruiker
van de last met betrekking tot het kiezen van het juiste surrogaat model en het
creëren van een ensemble genererende strategie dat betrouwbaar en nauwkeurig
werkt voor willekeurige criterium functies en modellen. De primaire focus zijn de
regressie problemen en optimalisatie processen die slechts een relatief klein aantal
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functie evaluaties toelaten daar deze restrictie vaak gepaard gaat met problemen
uit de praktijk.

In Hoofdstuk 3 van deze thesis wordt een taxonomie van bekende methoden die
dit beogen geïntroduceerd en gespecificeerd. De methoden voor het kiezen van
modellen valt uiteen in twee typen.
De ’Single Evaluation Model Selection’ methoden gebruiken, in het algemeen,
een vooraf gedefiniëerde strategie om het meest geschikte model te kiezen. Deze
strategie kan ook gebruik maken van data verkregen uit voorgaande evaluaties.
Zulke ad hoc regels laten de regels van spaarzaamheid (’parsimony’) buiten be-
schouwing en steunen niet of nauwelijks op de data bij helpen van het kiezen van
het beste model.
Methoden die als ’Multi Evaluation Model Selection’ bekend staan, pakken dit
probleem aan door het evalueren van alle beschikbare typen surrogaat modellen.
Maar in gevallen dat er meer dan één sterk model aanwezig is in de verzameling,
kan het gunstig zijn om de inferentie output van verschillende modellen te com-
bineren.
Dat laatste is wat er gedaan wordt in de ’Model Combination’ methoden. De
tot nu toe bekende strategieën zijn echter, in het algemeen, op de een of andere
manier beperkt (b.v., tot homogene modellen of tot bepaalde toepassingen).

In Hoofdstuk 4 worden de inzichten verkregen in Hoofdstuk 3 gebruikt om een
nieuwe ensemble methode te ontwikkelen. Deze aanpak wordt op een funda-
mentele manier bestudeerd door eerst ensembles van twee surrogaat modellen te
evalueren. Er wordt aangetoond dat de convexe combinatie van modellen gun-
stig kan zijn daar de convexe combinatie van voorspellingen van de twee basis
modellen zowel positieve als negatieve voorspellingsfouten van de basis modellen
middelt. De CCM kan wedijveren met de basis modellen en in sommige gevallen
beter presteren dan deze. De inzichten verworven in de studie van convexe com-
binaties van twee basis modellen leiden er toe dat convexe lineaire combinaties
van modellen een ideale keuze is voor het combineren van modellen. De voordelen
die in deze studie gevonden zijn zijn:

• Doordat convex lineaire combinatie gebruikt wordt voor het combineren,
kan een ensemble niet slechter presteren dan het zwakste basis model.

• Het ensemble kan beter presteren dan de basis modellen wanneer tegenge-
stelde voorspellingsfouten worden gecompenseerd.

• Een CCM verdient de voorkeur boven een basis model alleen als de algehele
fit van het ensemble model in feite beter is (in termen van RMSE) dan de
algehele fit van elk van de basis modellen.
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• De convex lineaire combinatie van de voorspellingen voor een gegeven ver-
zameling van gewichten is gemakkelijk uit te rekenen.

Als voorbereiding op de implementatie van het algoritme voor een grote verza-
meling van heterogene modellen, wordt het algoritme op een algemenere manier
gespecificeerd door het gebruik van drie basis modellen. Bovendien wordt ’exhaus-
tive search’ gebruikt voor het vinden van de optimale combinatie van gewichten in
een vast rooster vervangen door een flexibelere (1+1)-ES. Deze aanpassingen zijn
vergezeld met experimenten waarmee gegarandeerd wordt dat de veranderingen
geen nadelige invloed hebben op de prestatie van de methode.

Voortbouwend op dit fundament, wordt in het vervolg, de verzameling van basis
modellen uitgebreid tot de beoogde grootte en worden experimenten uitgevoerd
om te garanderen dat de prestatie van de methode onder deze verandering niet
zal lijden. De eerste experimenten laten zien dat de (1+1)-ES, zonder verdere
aanpassingen, niet overweg kan met de uitgebreide zoekruimte. Daarom wor-
den verschillende aanpakken besproken en geïmplementeerd om deze complicatie
te lijf te gaan. Ten slotte, wordt het hoofdstuk afgerond met het vergelijken
van de experimenten voor alle aanpakken op een verzameling van test functies
welke gebaseerd zijn op fysische modellen. Het blijkt dat in sommige gevallen de
aanpakken beter presteren dan de basis modellen. Een ander essentieel inzicht
verkregen door het uitvoeren van de experimenten is dat een model soms een
gunstige bijdrage tot het ensemble levert terwijl geen enkel ’high-ranked’ model
dit kan teweegbrengen.

In Hoofdstuk 5 wordt de ontwikkelde ensemble strategie in meer detail geïntro-
duceerd en aangepast voor toepassing in SPO. Deze aanpassingen zijn nodig,
b.v., om de modellen continu af te stemmen ten gevolge van de aanwezigheid van
dynamisch veranderende en niet-uniforme data sets. De aanpassingen zijn:

• Periodieke reconstructie van modellen en tijdelijk opschorten van modellen
om rekening te houden met dynamische updates.

• Lokaal ’density weighted cross-validation’ om om te kunnen gaan met niet-
uniforme data distributies.

• Aanpassing van de (1+1)-ES gewichtenoptimalisatie methode om grote en-
semble sets te kunnen verwerken.

De dynamisch aanpassend ensemble strategie wordt dan uitgebreid getest met
betrekking tot prestatie en rekentijd in sequentiële optimalisatie processen op
verscheidene criterium functies. Ten eerste, worden instanties van de methode
die gebruik maakt van verschillende settings voor de reconstructie- en opschor-
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tingsinterval vergeleken en de invloed van deze settings op de prestatie en reken-
tijd wordt geanalyseerd. Zowel wat betreft de prestatie als de rekentijd wordt
de methode vergeleken met elk basis model en met twee sterke ensemble concur-
renten die verschillende kenmerken die deel uitmaken van de kenmerken van de
voorgestelde ensemble methode bezitten.

De resultaten laten zien dat de dynamisch aanpasbare ensemble strategie be-
trouwbaar presteert en wat de nauwkeurigheid betreft kan wedijveren met zowel
de basis modellen als de concurrenten. Men kan aantonen dat de voorgestelde
ensemble strategie methode een duidelijk voordeel oplevert vergeleken met metho-
den die zich beperken tot de keuze van een enkele basis model in vaste intervallen.
Gegeven dat het beste model op voorhand niet bekend is, is de dynamisch aan-
pasbare ensemble strategie de beste keuze.
De analyse van de impact (invloed) van het reconstructie interval en het opschor-
tingsinterval op de prestatie van de ensemble strategie laat zien dat een gewone
update van de ensemble setup te prefereren is, alhoewel deze update zich moet
beperken tot een kleinere deelverzameling van sterkere basis modellen die in een
minder frequent interval ge-update mogen worden. Een weloverwogen keuze voor
de lengte van deze intervallen heeft ook een duidelijke invloed op de rekentijd van
de ensemble strategie.

Samengevat kan men zeggen dat het gelukt is om een strategie te ontwikkelen
dat in de eerste plaats zo betrouwbaar en precies mogelijk werkt op willekeu-
rige criterium functies en dat willekeurige typen surrogaat modellen gebruikt als
voornaamste doelen is bereikt. Alhoewel het bewust wordt aanvaard dat dit be-
reikt kan worden ten koste van de ensemble rekentijd, dit nadeel verminderd kan
worden door gebruik te maken van weloverwogen settings voor het reconstructie
interval en opschortingstijd. Echter, als de nadruk op dure real-world applicaties
valt, zullen de benodigde rekentijden verwaarloosbaar zijn.
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