
Real-time tomographic reconstruction
Buurlage, J.

Citation
Buurlage, J. (2020, July 1). Real-time tomographic reconstruction. Retrieved from
https://hdl.handle.net/1887/123182

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/123182

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/123182

Cover Page

The handle http://hdl.handle.net/1887/123182 holds various files of this Leiden University

dissertation.

Author: Buurlage, J.

Title: Real-time tomographic reconstruction

Issue Date: 2020-07-01

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/123182

Chapter 5

Real-time quasi-3D tomographic
reconstruction

Tomography is an important non-destructive technique for studying the
three-dimensional structure of samples in various scientific fields such as
biology, material science, and medicine, as well as being broadly applied
in industry. Increasingly, tomography is used to understand dynamic pro-
cesses in detail, e.g., by imaging biological samples that vary with time
[Moo+13], or by studying material properties in a changing environment
[Pat+15; Gib+15].

The change from static to time-resolved tomography is accompanied
by a steep increase in computational requirements for the tomographic
reconstruction. Moreover, many experiments have controlled parameters
that rely, e.g., on specific events happening in the sample, which can be
hard to identify from projection images alone. This means not only that
the reconstruction is computationally expensive, but also that the typical
offline reconstruction does not fulfill current needs due to long computa-
tion times.

In addition to the need for real-time tomography, i.e., having access

This chapter is based on:

Real-time quasi-3D tomographic reconstruction. JW Buurlage, H Kohr, WJ
Palenstijn, KJ Batenburg. Measurement Science and Technology 29 (6),
2018

91

92 CHAPTER 5. QUASI-3D RECONSTRUCTION

to reconstructions while scanning, developments in acquisition hardware
also contribute to the computational challenge. For instance, the number
of pixels on detectors is growing, and the detectors are operating at in-
creasing frame rates. Furthermore, real-time tomography scanners are be-
ing developed for, e.g., airport security setups [Tho+15; War+16], which
are able to perform full scans in short time windows. This highlights the
importance of efficient reconstruction techniques.

Current approaches to tackle the computational challenges in real-time
tomographic reconstruction can be roughly subdivided into two groups.
First, reconstruction algorithms that are computationally more efficient are
being adopted. Two examples of this are the gridrec method [Dow+99;
MS12] and methods based on the log-polar Radon transform [Nik+17].
Second, reconstruction algorithms can be run in parallel, either on dis-
tributed compute clusters or specialized hardware such as GPUs [PBS11;
Pal+17; Xu+10]. However, while these approaches can lead to a dramatic
reduction in reconstruction times, the computational demands for recon-
structing the full 3D volume remain a bottleneck for truly real-time tomo-
graphic reconstruction. By realizing that while currently often full 3D re-
constructions are made, the reconstructed volume is primarily viewed slice
by slice, we observe that more computational work is done than necessary.

Instead, one can create a processing workflow where slices are only
reconstructed on demand. In this way, the computational requirements
can be reduced by orders of magnitude, and in many cases the required
amount of data communication can also be significantly reduced. Filtered
backprojection (FBP) type methods allow these slices to have an arbitrary
orientation. From a user’s point of view these slices can easily be shifted
and rotated and effectively it is as though 3D data is available, while only a
small number of slices are actually reconstructed at any time, as illustrated
by Figure 5.1. With this shift in perspective, we make quasi-3D real-time
tomographic reconstruction feasible, in the sense that the results are visu-
ally identical to an architecture where the full 3D volume is reconstructed
and then viewed slice-by-slice, yet at a fraction of the computational cost.

In this chapter we present a new methodology for real-time reconstruc-
tions, together with a software stack implementing these ideas. In Section
5.1 we revisit the mathematical properties of FBP type methods, that en-
able us to reconstruct arbitrarily oriented slices without forming the full
3D volume. While these properties follow directly from the basic formu-

5.1. RECONSTRUCTION OF ARBITRARY SLICES 93

Figure 5.1: The solid arrows give a high-level overview of the data flow in
a typical tomographic reconstruction setup. On the left, the projection data
is acquired. In the middle, a reconstruction stack is created with an image
for each slice along the rotation axis. From these slices, arbitrary slices
of other orientations can be obtained through interpolation. In our new
approach, represented with a dotted line, the generation of the reconstruc-
tion stack is skipped, and arbitrary slices are reconstructed directly from
the projection data.

las, current approaches usually reconstruct the full 3D data at once. In
Section 5.2, we present the interface and usage of the RECAST3D (RECon-
struction of Arbitrary Slices in Tomography) visualization software. It is a
vital component of the proposed real-time reconstruction pipeline, as it al-
lows the user to choose the slice(s) of interest in a dynamic way. In Section
5.3 we introduce the different components that are necessary to perform
quasi-3D reconstructions. We highlight the unique distributed architecture
of our novel reconstruction pipeline. Finally, in Section 5.4, we show that
this new software greatly reduces reconstruction times, ultimately enabling
almost instant slice reconstructions.

5.1 Reconstruction of arbitrary slices

Filtered backprojection (FBP) type methods for tomography are known to
be very efficient in terms of numerical complexity and data usage. Whenever
there are sufficiently many projections over the entire range of view angles,
and the noise level is not too high, FBP typically performs very well also in
terms of reconstruction quality. Here we understand as FBP any method
that adheres to the “convolve, then backproject” workflow as shown in Fig-

94 CHAPTER 5. QUASI-3D RECONSTRUCTION

ure 5.2. Examples of such methods are standard parallel beam FBP, the FDK
algorithm for circular cone beam reconstruction [FDK84], and Katsevitch’s
algorithm for helical cone-beam reconstruction [Kat02] or general source
trajectories [Kat03].

Projection data

Filtered data

Reconstruction

convolve

backproject

Figure 5.2: Workflow of filtered backprojection methods.

It is well-known that in 3D parallel beam geometry, horizontal slices
can be reconstructed independently and from a single detector row. How-
ever, as we will demonstrate, FBP values in any subset of the reconstruction
volume are mutually independent in any geometry. We start by recapitu-
lating the well-known horizontal slice-by-slice reconstruction method in
parallel beam geometry and then generalize to arbitrary slices and arbit-
rary geometries.

5.1.1 Parallel beam geometry

We consider the 3D parallel beam geometry with the z-axis as the only rota-
tion axis (single-axis tilting). If f denotes a 3D volume, the corresponding
projection data is given as the line integrals

g(ϕ, s, z) =

∫ ∞

−∞
f
�

− t sinϕ + s cosϕ, t cosϕ + s sinϕ, z)dt.

5.1. RECONSTRUCTION OF ARBITRARY SLICES 95

In an idealized setting, these values are available for ϕ ∈ [0,π) and (s, z) ∈
R2. Filtered backprojection now consists of a one-dimensional filtering
operation with a filter k : R→ R in the s variable for each z, followed by
backprojection:

gfiltered(ϕ, s, z) =
∫∞
−∞ g(ϕ, s− u, z) k(u)du, (5.1)

fFBP(x , y, z) =
∫ π

0
gfiltered

�

ϕ, x cosϕ + y sinϕ, z)dϕ. (5.2)

From (5.1) and (5.2) it is immediately clear that horizontal slices

fz0
(x , y) = f (x , y, z0),

with fixed z = z0 can be reconstructed from a single data row gz0
(ϕ, s) =

g(ϕ, s, z0), i.e.,

fz0, FBP(x , y) =

∫ π

0

gz0,filtered

�

ϕ, x cosϕ + y sinϕ)dϕ.

In fact, if one is interested only in fz0
(x , y) for a single value z0, then one

has to perform also the filtering in (5.1) only for this fixed value of z0.
This reduces the whole task of reconstructing a horizontal slice to a two-
dimensional problem.

Remark: It is important to notice that for all variants of single-slice re-
construction, the computed values in the slice are identical to the values in
the full 3D reconstruction, restricted to the same slice.

The right-hand side of (5.2) refers only to the current reconstruction
point (x , y, z), which implies that these points can be placed arbitrarily in
3D space. In particular, this mutual independence is not a special prop-
erty of the parallel beam geometry but rather of the structure of the FBP
algorithm itself. Hence it generalizes immediately to arbitrary slices and
arbitrary geometries.

For instance, the remaining ortho-slices can be reconstructed as fol-
lows:

fx0, FBP(y, z) =
∫ π

0
gfiltered

�

ϕ, x0 cosϕ + y sinϕ, z)dϕ,

f y0, FBP(x , z) =
∫ π

0
gfiltered

�

ϕ, x cosϕ + y0 sinϕ, z)dϕ,

96 CHAPTER 5. QUASI-3D RECONSTRUCTION

with the evident definitions

fx0
(y, z) = f (x0, y, z), f y0

(x , z) = f (x , y0, z).

Again, the orthoslices contain the exact same values as a full volumetric
reconstruction after restriction to these slices. Note, though, that both
ortho-slices require the whole dataset since the z variable appears on both
sides.

5.1.2 Cone beam geometry

We define the widely used circular cone beam geometry which is character-
ized by a point source moving on a circle of radius r > 0 in the x-y-plane
and a flat detector on the opposite side of the same circle.

We parametrize the unit circle in the x-y-plane by

θ (ϕ) = (− sinϕ, cosϕ, 0), ϕ ∈ [0, 2π).

Now we define the source position and the detector piercing point as two
opposite points on a circle with radius r > 0 in the same plane:

a(ϕ) = −rθ (ϕ), p(ϕ) = rθ (ϕ).

Finally we place a flat rectangular detector such that the ray from the
source through the origin “pierces” the detector midpoint exactly at the
piercing point p(ϕ), and orient the detector perpendicular to the piercing
ray:

D(ϕ) =
�

p(ϕ) + uθ⊥(ϕ) + z ez

�

� −w/2≤ u≤ w/2, −h/2≤ z ≤ h/2
	

.

Here, w and h stand for the width and the height of the detector, respect-
ively, θ⊥(ϕ) = (cosϕ, sinϕ, 0) = −θ (ϕ +π/2) the unit vector tangent to
the circle at angle ϕ, and ez = (0, 0,1). See Figure 5.3 for an illustration
of the geometry.

This definition is straightforward to extend to arbitrary rotation axes
and different radii for source and detector circles.

With these geometric conventions we define the projection data in cir-
cular cone beam geometry as

g(ϕ, y) =

∫ ∞

0

f
�

a(ϕ)+ t
�

y −a(ϕ)
��

dt, ϕ ∈ [0,2π), y ∈ D(ϕ). (5.3)

5.1. RECONSTRUCTION OF ARBITRARY SLICES 97

detector

source

φ
p(φ)θ(φ)

θ⟂(φ)

ez

Figure 5.3: Sketch of a circular cone beam acquisition geometry as used
by the backprojection (5.4).

It can be shown (see, e.g., [NW01]) that the backprojection for this geo-
metry in a point x = (x , y, z) is

BP[g](x) =

∫ 2π

0

1
2r t(x ,ϕ)2

g

�

ϕ,
x · θ⊥(ϕ)
t(x ,ϕ)

,
x · ez

t(x ,ϕ)

�

dϕ, (5.4)

where “·” is the dot product in 3 dimensions and

t(x ,ϕ) =

�

a(ϕ)− x
�

· a(ϕ)
2r2

is the relative position of a reconstruction point x ∈ R3 along the ray from
the source point a(ϕ) to the detector through x . Although the backpro-
jection (5.4) is more involved to evaluate numerically, it still computes the
value at a given volume point x independently from any other such point.

A very popular reconstruction method in circular cone beam geometry
is the FDK algorithm [FDK84]. It consists of applying a one-dimensional
filter kFDK along the column coordinate u to preweighted measurements g̃,
followed by the backprojection given in (5.4):

g̃(ϕ, y) = ||p(ϕ)−a(ϕ)||
||y−a(ϕ)|| g(ϕ, y),

gfiltered(ϕ, u, z) =
∫

R g̃(ϕ, u− v, z) kFDK(v)dv,

fFDK(x) = BP[gfiltered](x).

Typically, kFDK is chosen to be the ramp filter. To reconstruct an arbitrary
slice S = r + n⊥, r ,n ∈ R3, n 6= (0,0, 0), we can simply evaluate this

98 CHAPTER 5. QUASI-3D RECONSTRUCTION

formula for all x ∈ S. Just as for parallel beam reconstruction, the values
computed in the slice are the same as if a full 3D FDK reconstruction was
restricted to the same slice. In fact, the single-slice reconstruction avoids
the interpolation step that would otherwise be incurred when restricting a
full 3D reconstruction to a slice.

The FDK algorithm approximates the exact solution only in the cent-
ral horizontal slice z = 0, while for other points in the volume, the data
provided by circular cone beam acquisition is insufficient, leading to cone-
beam artifacts. In [JKM11] the performance of FDK for experimental data
is discussed. Certain extensions and modifications such as those that choose
a specific filter, see, e.g., [Hah+13], also fit into our proposed framework.

To acquire complete data, one can additionally move both a and p with
constant velocity l/(2π) along the rotation axis ez relative to the object,
resulting in a helix instead of a circle:

a(ϕ) = −rθ (ϕ) +
lϕ
2π

ez, p(ϕ) = rθ (ϕ) +
lϕ
2π

ez.

For this helical geometry, the reconstruction formula of Katsevich [Kat02]
provides exact inversion. It is also of filtered backprojection type, even
though both filtering and backprojection have more complex expressions.
The formula induces a family of FBP methods by replacing the filter for
exact inversion with a regularizing filter. In fact, for any piecewise smooth
source trajectory satisfying certain geometric conditions, an exact FBP type
reconstruction formula can be given [Kat03].

In conclusion, a method for the fast computation of a single-slice FBP
reconstruction is useful for applications with either parallel beam or cone
beam acquisition.

5.2 Software

Using the mathematical properties of FBP methods discussed in the pre-
vious section, we can introduce an optimized workflow for real-time visu-
alization of tomographic reconstructions. In this section we present RE-
CAST3D, visualization software that controls an on-demand reconstruction
pipeline. In particular, it can be used for on-the-fly reconstruction of ar-
bitrarily oriented slices. Our novel approach is to only compute a limited

5.2. SOFTWARE 99

Figure 5.4: Screenshot of RECAST3D. Some simple analysis tools are
provided in a GUI (1). In this example setup, three orthogonal slices are
being shown in the middle (2) with the mouse currently hovering over one
of them. A user can translate and rotate the planes by dragging them with
the mouse. When the mouse button is released, the visualizer requests a
reconstruction of the new slice. During the change of slice orientation and
position, a low-resolution preview is shown. The interface is highly ex-
tensible. As an example we show the projection images (3) and the beam
direction (4) in the same scene as the reconstruction, providing the user
with additional information about the experimental setup.

number of slices, for example a set of three orthogonal slices, lowering the
computational costs of the reconstruction tremendously. The slices that
are being reconstructed can be changed with an intuitive interface. An
exemplary screenshot of the visualization software is shown in Figure 5.4.

From a user’s perspective, a typical workflow with RECAST3D is as fol-
lows. The tool is started on a workstation and connects to a reconstruction
server that receives the relevant projection images. For small enough prob-
lems, this server can be the workstation itself. The software asks for spe-
cific slice reconstructions from the reconstruction server, initially present-
ing three orthogonal slices to the user. Assuming RECAST3D is used in a
real-time setting, these are being reconstructed on-the-fly. The user can

100 CHAPTER 5. QUASI-3D RECONSTRUCTION

hover the mouse over the slices and rotate and translate them in an intu-
itive manner. As new projection images arrive, the slices can be updated
continuously.

We envision a modular system which we can extend gradually over
time, as common needs and requirements become more clear. In the initial
version of RECAST3D, next to the high resolution slices a low-resolution
3D preview is available when changing the orientation of a slice which
allows the user to identify slices that are of particular interest. In addition,
we show the projection images and visualize the acquisition geometry in
the same 3D scene as the reconstruction. This presents the user with even
more insight on the data that is coming in in real-time. It is possible to,
e.g., change the color scheme that is used, or to rescale the data.

5.3 Implementation

The implementation of RECAST3D required a complete redesign of the
typical tomographic reconstruction pipeline. In our discussion here we
distinguish between three different stages of the reconstruction pipeline:
acquisition, reconstruction and visualization. Note that in an actual exper-
imental setting, we will need additional operations such as flatfielding and
ring artefact correction. In the realization of our new quasi-3D reconstruc-
tion pipeline, all these stages work together with the common goal of giv-
ing the user a real-time quasi-3D reconstruction. To ensure the flexibility
and scalability of our pipeline the system is completely distributed, in the
sense that communication between the software components for the differ-
ent stages happens through well-defined packets using a message passing
protocol. The software stack consists of three main components:

1. Reconstruction software that is capable of performing the reconstruc-
tion of an arbitrarily oriented slice.

2. Definitions of the various packets supported by our communication
protocol, together with a software library for constructing, sending,
receiving, and parsing these packets.

3. The software for real-time visualization, RECAST3D, which is also the
control center for the distributed software stack.

5.3. IMPLEMENTATION 101

Acquisition Reconstruction Visualization

Figure 5.5: A simplified, but typical tomography pipeline, where the com-
mon pre- and post-processing steps are ignored. We emphasize here its
linearity, i.e., data proceeds in its entirety from one stage to the next. Fur-
thermore, in most cases these phases happen completely in a sequential
manner.

Together, these components form an implementation of an extended recon-
struction pipeline. Typically, the data in a tomography setup flows as in the
linear pipeline shown in Figure 5.5. The software stack we introduce puts
all the components in direct and real-time contact, enabling finer control
over the dataflow, as shown in Figure 5.6. This has a number of advant-
ages. We list some of them, in no particular order:

• Only subsets of the data have to be sent (or are requested) between
the different stages.

• The computational requirements are significantly reduced, since only
the slices that are shown are reconstructed.

• Since the entire system is integrated, the rich feedback allows the
user to perform experiments faster and more efficiently

Distributed architecture

As mentioned in the previous section, our distributed architecture is based
on a message passing protocol. Here, we describe in detail the different
concepts and parts used in the distributed pipeline.

An experiment, or reconstruction, is captured in the system as a scene.
These scenes consist of a number of data objects, such as reconstructed
slices, projection data, and information on the acquisition geometry.

The central concept in the distributed pipeline is that of a packet. There
are various packets that are used for communication, some examples are
given in Listing 5.1. Every packet contains metadata used to identify an
object in question (e.g., an identifier for a scene, and a slice), and perhaps

102 CHAPTER 5. QUASI-3D RECONSTRUCTION

Acquisition Reconstruction

Visualization

Figure 5.6: An extended complete pipeline, cf. Figure 5.5. All different
stages are in direct contact, and no longer happen sequentially but in par-
allel. The implementations of the stages of the tomographic pipeline now
communicate and coordinate with each other, reducing the dataflow and
computational requirements. Although our distributed pipeline supports
all communication paths, only the solid arrows are currently used.

some payload (i.e., a projection image, or a reconstructed slice) together
with fields describing the payload such as the number of pixels or the po-
sition of the detector and source.

The packets that are described are independent of the specific techno-
logy used for sending them. In our reference implementation, ZeroMQ
streams are used for communication. The core of the software stack is
written in the C++ programming language.

Because the architecture is completely distributed, all components can
be used independently and they are easily extensible. This modular ap-
proach allows users of our software to easily use or replace parts of the
pipeline to suit their own purposes. Bindings to the Python programming
language are provided, giving an accessible customization point. See also
Listing 5.2 for an example of a custom script in our framework, which is
able to completely replace the reconstruction component.

More generally, an important internal guideline for the development
of this new pipeline is that it should be able to leverage existing and fu-
ture software that is developed for image reconstruction. The library and
specification take care of the necessary communication and coordination.
The extended pipeline is implemented on a high level, rather than modi-
fying existing software. Instead, existing software is used wherever pos-
sible. This gives our new system the great advantage of supporting custom
software, from acquisition to reconstruction to visualization. Our current

5.4. RESULTS 103

struct GeometrySpecification {

int32_t scene_id;

bool parallel;

int32_t projections;

std::array<float, 3> volume_min_point;

std::array<float, 3> volume_max_point;

};

struct SliceData {

int32_t scene_id;

int32_t slice_id;

std::array<int32_t, 2> slice_size;

std::vector<uint32_t> data;

};

Listing 5.1: Example packets, represented as a record data structure in the
C++ programming language. The first packet defines some global inform-
ation on the acquisition geometry: the number of projections, whether it
describes a parallel or cone beam setup, together with the object volume
which describes a bounding box for the sample being imaged. The second
packet defines the data for a specific slice, with fields for the number of
pixels together with the raw reconstructed data.

reconstruction server is built on top of ODL (the Operator Discretization
Library [AKÖ17]) for describing the required geometric transformations at
a high level, and the ASTRA Toolbox [Aar+16] for GPU-accelerated back-
projection, customized for single slice processing.

Our software is available in open-source repositories, and can be found
at https://github.com/cicwi/.

5.4 Results

In this section we compare the computational performance (i.e., the speed
of reconstruction) of quasi-3D reconstructions to full 3D reconstructions.
For the results presented here, the reconstructions are performed on a
single node. This node has two Intel Xeon E5-2623v3 processors, 128 GB

104 CHAPTER 5. QUASI-3D RECONSTRUCTION

import tomop

def reconstruction_callback(slice_geometry):

data = custom_slice_data_function(slice_geometry)

return data

server = tomop.server("Scene title", "tcp://localhost:5555")

server.set_callback(reconstruction_callback)

server.serve()

Listing 5.2: Example script for custom on-demand slice reconstruction.
When the user rotates, translates, or creates a slice in the visualization
interface, the system will request the new data for this slice using the user-
supplied callback function. In the first line, the tomopackets library is
imported. Next, a callback function is defined that takes an orientation,
reconstructs the corresponding slice, and returns that reconstructed data.
Below that, it is shown how to setup and connect a server.

RAM, and two dual-GPU NVIDIA GTX TITAN Z cards for a total of 4 GPUs
with 6GB RAM each. The projection data has been prerecorded and pre-
filtered, and is directly available to the reconstruction software. During a
scan, the filtering can be done at the detector while taking images, without
impacting the reconstruction time.

We use simulated data in our experiments. The test geometry is a circu-
lar cone beam geometry with rotation axis z. The object has size N×N×M .
The virtual detector is of size N × M and is positioned at the origin. The
source is at distance 10× N from the center of the object. We take a total
of N projections. Here, N and M are varied throughout our experiments.

The number of detector pixels that are required for the reconstruction
of a single slice depends on the orientation of the slice (see also Section
5.1). We consider three slices: 1. an axial slice is a slice orthogonal to the
rotation axis, 2. a vertical slice is parallel to the rotation axis, 3. a slice in
between these extremes is a tilted slice.

We compare the timings of a full 3D reconstruction, with the timings
of slice-based reconstructions for various orientations in Table 5.1. Some
examples of the reconstructed slices are shown in Figure 5.7. Note that,

5.4. RESULTS 105

voxels GPUs full 3D axial vertical tilted
256× 256× 256 1× 0.84 s 26.5 ms 22.6 ms 23.8 ms

4× 0.31 s 35.9 ms 26.6 ms 22.9 ms
512× 512× 512 1× 1.07 s 33.4 ms 22.6 ms 31.8 ms

4× 0.60 s 40.4 ms 27.2 ms 23.5 ms
1024× 1024× 1024 1× 17.3 s 61.6 ms 64.8 ms 63.1 ms

4× 6.69 s 38.5 ms 39.1 ms 37.2 ms
2048× 2048× 1024 1× 274 s 286 ms 5.22 s 5.48 s

4× 65.0 s 100 ms 106 ms 105 ms

Table 5.1: Reconstruction times for full 3D data, compared to reconstruc-
tion times for 2D slices of various orientations. See the text for a descrip-
tion of the hardware and test geometry. Here, the axial and vertical slices
are taken at the center of the volume. The tilted slice is an axial slice,
rotated 45◦ around the x axis. We consider a varying number of recon-
structed voxels, corresponding to the N ×N ×M volumes in the text. The
performance when using a single GPU or multiple GPUs is also compared.
For the relatively low numbers presented here, the standard deviation can
be as high as 20% of the measurement, while for higher resolutions the
numbers get relatively more stable with standard deviations of about 10%
of the measurement.

as explained in Section 5.1, the single slice reconstructions are identical
to reconstructions that would be obtained from a full 3D reconstruction.
In particular, there is no loss of accuracy. The results show that individual
slices can be computed quickly, even at high resolutions. The distributed
system induces some overhead, which is included in the numbers presen-
ted. These can be a significant part of the total reconstruction times, partic-
ularly at lower resolutions. Using multiple GPUs can significantly decrease
the reconstruction times, especially at high resolutions. For the highest
resolution considered, the required data for reconstructing non-axial slices
no longer fits on a single GPU which means that using multiple GPUs is a
necessity for obtaining low reconstruction times.

When reconstructing vertical slices, already the complete data has to
be filtered. In addition, the majority of the data is required for a backpro-
jection. If all three orthoslices are required, then the complete data set
is needed for the backprojection. However, the computational cost of the
reconstruction always remains low. Because we visualize only individual

106 CHAPTER 5. QUASI-3D RECONSTRUCTION

Figure 5.7: Reconstructed slices for a volume of 1024×1024×1024 voxels.
Here we used a modified 3D Shepp-Logan phantom. The left, middle and
right reconstructed slices correspond to the axial, vertical and tilted slices
as defined in Table 5.1.

slices, the amount of data required for visualization is always limited.
In our experiments we considered a circular cone beam geometry be-

cause in general it is a harder geometry to reconstruct than a parallel geo-
metry. However, for quasi-3D reconstructions many properties that usually
make reconstructing parallel geometries much simpler are lost, because
slices of arbitrary orientation have to be reconstructed. In our experiments,
we have observed similar performance for parallel geometries as for cone
beam geometries.

5.5 Use cases

The ability to observe the internal state of the object in quasi-3D through
the RECAST3D software is mainly valuable if real-time actions can be taken
as a result of the observations, which would not be possible if one has to
wait for a full 3D volume to be reconstructed. The RECAST3D software
has several use cases, all related to various dynamic aspects of the image
acquisition:

• Dynamic processes within the object of interest itself can be fol-
lowed in real-time in a quasi-3D setting. For example, a bubble that
moves through a liquid can be tracked by using three slices posi-
tioned in the center of the bubble and adjusting the slices to the
observed direction.

5.6. EXPERIMENTS 107

• Dynamic external parameters related to the object state (temper-
ature control, pressure control) can be adjusted to the observed state
of the object. For instance, using a temperature controlled stage, the
temperature of the object can be lowered until certain phase trans-
itions occur inside the object (observed in the slices), after which the
object is scanned at constant temperature.

• Dynamic acquisition parameters (source and detector positioning,
rotation of the object) can be adjusted to the observed features of
the object. For instance, the scanning geometry can be adjusted for
the presence of metal (leading to artefacts) that has been observed
at certain locations in the object and the object can be positioned
closer to the source, zooming into a region-of-interest.

Moreover, the ability to quickly visualize several slices through the in-
terior of the object while the object is in the scanner provides immediate
feedback about the quality of the data, showing for example if the scan is
good enough to resolve features of interest that are oriented in a particular
direction chosen by the user.

5.6 Experiments

In this section we give two concrete examples of applications for the RE-
CAST3D methodology.

The two datasets are acquired using the custom built and highly flex-
ible FleX-Ray CT scanner, developed by XRE NV and located at CWI. The
apparatus consists of a cone-beam microfocus X-ray point source that pro-
jects polychromatic X-rays onto a 1943× 1535 pixels, 14-bit, flat detector
panel. The acquired data is binned on the fly by 2-by-2 pixel windows, i.e.,
each raw projection is of size 972×768. The data is collected over 360 de-
grees in circular and continuous motion with 1200 projections distributed
evenly over the full circle. For dataset A, the exposure time was 160 ms,
the X-ray tube settings were 50kV, 50W, and we consider a limited detector
window of size 1943 × 1135. For dataset B, exposure time was 100 ms,
the X-ray tube settings were 40kV, 20W. The data is openly available online
[CBB18].

108 CHAPTER 5. QUASI-3D RECONSTRUCTION

As a first application, we give an example of a dynamic imaging situ-
ation where slice-based reconstruction can be sufficient. Consider a bio-
medical application where a needle is inserted into a subject or sample
along a straight line, until some target is reached. First, the needle has to
be located which can always be done by looking at, e.g., the standard three
ortho-slices. After this, a slice containing the needle can be reconstructed
dynamically. If necessary, this slice can be adjusted if the needle moves.
To create a simplified test case for this use case, a needle-shaped structure
was made out of Play-Doh and inserted in a box filled with poppy seeds
(dataset A). As illustrated in Figure 5.8, a single projection is not sufficient
to locate the needle, although the needle is visible. However, using the
quasi-3D reconstruction a slice containing the needle can easily be identi-
fied.

As a second application, we consider an adaptive experiment where
some finer structure is first located, after which a more detailed scan of this
structure is made. An example would be to image growth rings in wood
structures. This can be used, e.g., for non-destructive dendrochronology in
archeological samples [Bil+12]. In the overview scan, the plane in which
the growth rings lie can be found using our proposed methodology. After
identifying this region, a high-resolution scan of this region can be made.
As a test case we consider a piece of wood shaped as an egg (dataset B).
In Figure 5.8, we show a single projection of the wooden egg, a quasi-
3D visualization, and a slice containing the growth rings. Observe that in
general it is hard to identify the growth-ring orientation from projection
images alone.

5.7 Outlook and conclusions

In this chapter, we have introduced a new methodology for real-time quasi-
3D tomographic reconstruction, and software implementing these ideas
called RECAST3D. We show that reconstructing a limited number of arbit-
rarily oriented slices can be done at a fraction of the computational cost of
a full 3D reconstruction, yet yielding similar information and insights for
certain use cases.

In this work we focused on FBP and related reconstruction methods. In
comparison, algebraic reconstruction methods lack the important proper-

5.7. OUTLOOK AND CONCLUSIONS 109

Figure 5.8: We show projections (top row), reconstructed slices (middle
row) and quasi-3D reconstructions (bottom row). The contrast of the pro-
jections has been tuned by hand. On the left, dataset A is shown. On the
right, dataset B is shown.

110 CHAPTER 5. QUASI-3D RECONSTRUCTION

ties that we exploit. However, hybrid methods are conceivable which are
tightly related to techniques for region-of-interest tomography. We expect
that these more advanced reconstruction techniques can also fit into the
framework presented here.

In addition to time-resolved experiments becoming more common, an
interesting challenge will be to develop adaptive techniques. With these
techniques, the scanning process itself can be steered based on the real-
time reconstructions. Our distributed pipeline was developed specifically
with this use-case in mind. Indeed, the cross-links between the different
stages give rise to many interesting new possibilities. For example, the
reconstruction cluster is able to control the scanner. This allows for al-
gorithmically controlled experiments, that are driven dynamically by the
reconstructions.

