
Real-time tomographic reconstruction
Buurlage, J.

Citation
Buurlage, J. (2020, July 1). Real-time tomographic reconstruction. Retrieved from
https://hdl.handle.net/1887/123182

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/123182

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/123182

Cover Page

The handle http://hdl.handle.net/1887/123182 holds various files of this Leiden University

dissertation.

Author: Buurlage, J.

Title: Real-time tomographic reconstruction

Issue Date: 2020-07-01

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/123182

Chapter 3

Geometric partitioning for
tomography

Tomography is a technique for creating 3D images of the interior of
an object in a noninvasive way. Using some form of photon or particle
beam, two-dimensional projections of the object are acquired, correspond-
ing to integrals of some scalar volumetric property of the object (e.g.,
density, chemical concentration, etc.). Using computed tomography (CT)
techniques, the measurements can then be used to perform a tomographic
reconstruction of the three-dimensional profile of this property [Her09;
KS01].

The projection measurements are performed by a two-dimensional de-
tector containing a grid of pixels. In a tomographic scan, a finite number of
projection images are acquired. The source position, detector position, and
detector orientation vary for each projection image. Without loss of gener-
ality, we consider the source and the detector to move around a stationary
object. Each source–pixel pair defines a line segment through the volume.
All the source–pixel pairs for all projection images together combine to
form a set of line segments. We call this set the acquisition geometry, and

This chapter is based on:

A geometric partitioning method for distributed tomographic reconstruc-
tion. JW Buurlage, RH Bisseling, KJ Batenburg. Parallel Computing 81,
104-121, 2019

33

34 CHAPTER 3. GEOMETRIC PARTITIONING

Figure 3.1: Schematic overview of a 3D tomography setup. Here, we show
a single projection. On the left, we have a point source marked by a disk,
which is emitting penetrating radiation. A cone-shaped collection of rays
penetrates a cubic region of space shown in the center. As an example,
we let it contain an object shaped as a octahedron. On the other side of
the object we have the detector, shown as a square region, which performs
intensity measurements of the rays. The projection of the object is shown
in gray. The source and detector move opposite to each other along, for
example, a circular path. Projection images are acquired at a finite number
of source and detector positions.

denote it by G . A common example is that the source positions correspond
to equidistant points along a circle or helix, with the detector positioned
on the opposite side of the object. An illustration of a basic tomography
setup is shown in figure 3.1.

The scanned object is contained in a region V ⊂ R3 which we always
take to be a cuboid. We call this region the object volume.

Tomographic reconstruction methods aim to recover a function from
a finite set of line integrals. Here, we list a number of commonly used
methods. Analytic methods are based on discretizations of continuous in-

35

version formulas, and include filtered back projection type methods, such
as FBP, FDK [FDK84] and Katsevich’s algorithm for helical CT [Kat02]. An
alternative is to formulate the reconstruction task as a linear inverse prob-
lem involving the tomographic system matrix. Iterative methods are then
employed to solve this system; examples include ART [Kac37; GBH70],
SART [And84], SIRT [Gil72], and Krylov subspace methods such as CGLS
[HS52]. Most of these methods are row-action methods, and access a sub-
set of the rows in each iteration. Column-action methods access a subset
of the columns in each iteration instead [Wat94]. Other iterative methods
include statistical reconstruction methods such as ML-EM [LC+84] and
MBIR [SB93]. While analytic methods are typically easy to implement
and are computationally efficient, they can lead to poor image quality if
the reconstruction problem is underdetermined, if the measured data con-
tains substantial noise, or if the acquisition geometry is non-standard. In
these cases, iterative methods perform better, but they are computationally
more expensive. With variational methods, tomographic reconstruction is
viewed as a more general optimization problem, which allows for soph-
isticated noise models, as well as a priori knowledge of properties of the
object to be incorporated through regularization terms. Methods such as
FISTA [BT09], Chambolle–Pock [CP10] are popular for solving optimiza-
tion problems in image reconstruction.

An important subset of these reconstruction methods performs matrix–
vector products with the tomographic system matrix as their most compu-
tationally expensive subroutine. These methods include SIRT, CGLS and
other Krylov methods, ML-EM, FISTA and Chambolle–Pock. The focus of
the present work is to accelerate distributed-memory implementations of
these methods by computing an appropriate data distribution. This data
distribution depends heavily on the acquisition geometry that is used for
the experiment.

Advances in acquisition technology, such as a rapidly increasing num-
ber of detector pixels operating at high frame rates, as well as a growing
interest in multi-modal and multi-scale tomography, make reconstruction
tasks increasingly computationally expensive. In particular, typical data
sets that are acquired are quickly growing in size. Object volumes consist-
ing of 20003 or even 40003 volume elements (voxels) are no longer un-
common, which means that reconstruction algorithms have to deal with
vectors of sizes up to 64× 109.

36 CHAPTER 3. GEOMETRIC PARTITIONING

It is highly desirable to perform large-scale tomography in reasonable
time. We consider this to be one of the main goals for the next generation
of reconstruction techniques and algorithms. We distinguish between two
approaches that are being taken in algorithm research for fast tomography.
First, alternative reconstruction algorithms are being developed that ap-
proximate advanced but slow iterative methods, by faster and lighter meth-
ods [BB02; PB13; Kun+07; Nik+17; Zen12]. Second, techniques are be-
ing developed that take advantage of advances in computer hardware.
Modern computing systems are increasingly parallel. By using the in-
creased hardware capabilities to their full extent, reconstruction times can
be greatly reduced. Modern implementations of common operations in
tomographic reconstruction that are accelerated on multi-core processors
or GPUs can give order-of-magnitude speedups over more conventional
approaches [Chi+11; PBS11; SH14; Aar+15; Xu+10]. Additionally, with
distributed implementations even higher reconstruction speeds can be ob-
tained, but so far these implementations target only standard acquisition
geometries for relatively low node counts [BG05; Pal+17; Ros+13]. In par-
ticular, for single-axis parallel-beam geometries, where conceptually the
source is infinitely far away, efficient reconstruction is easy to realize be-
cause the task is trivially parallel [Mar+17; Wan+17]. The partitioning
method we present here is flexible, and can be applied to arbitrary acquis-
ition geometries.

In this chapter, we consider distributed-memory parallel methods for
tomographic reconstruction. The main contribution of this chapter is to
introduce an effective and efficient method for partitioning these data sets
with respect to the matrix–vector products. The resulting partitioning de-
pends only on the acquisition geometry, and is therefore reusable. The
method can be used to automatically distribute the computational load
over any number of processing elements. Furthermore, the resulting parti-
tionings give insight into the computational structure of distributed-memory
parallel methods in tomography.

The remainder of this chapter is structured as follows. In Section 3.1,
we introduce the discretized tomographic reconstruction problem and the
projection operations. In Section 3.2, we discuss distributed-memory par-
allel implementations of the projection operators, and introduce an asso-
ciated geometric partitioning problem. In Section 3.3, we present an al-
gorithm that solves the geometric partitioning problem. In Section 3.4, we

3.1. PROJECTION OPERATIONS 37

give the results of our numerical experiments. In Section 3.5, we discuss
these results and the applicability of our method. Finally, in Section 3.6,
we present our conclusions.

3.1 Projection operations

By discretizing the object volume V into n voxels, and linearizing the un-
derlying physical model, we can represent the tomographic reconstruction
problem as a linear system of equations:

Wx= b. (3.1)

Here, the vector x of size n is the image that is to be reconstructed, and
the vector b of size m represents the measurements for each of the m line
segments in the acquisition geometry. Matrix element wi j of W is a weight
related to the length of line `i ∈ G in the jth voxel of the object volume.
The m× n matrix W is sparse because every line intersects only a limited
number of voxels.

The matrix W , called the system matrix, is usually not formed explicitly,
because for any realistic number of voxels it quickly becomes prohibitively
large. Instead, it is generated row-by-row by a discrete integration method
(DIM), also called a kernel or projector, whenever W is used to, e.g., trans-
form a vector. That is to say, tomography implementations are typically
matrix-free. Common choices for a DIM are the slice-interpolated [XM06],
and distance-driven [MB04] DIMs. In this chapter, we assume that the
weights correspond exactly to the length of a line in a voxel. See figure 3.2
for an example of the construction of a tomography matrix.

The matrix–vector product Wx is typically called forward projection in
tomography literature, while a matrix–vector product with the transpose
of the system matrix, i.e., W T y, is called the back projection. For a num-
ber of reconstruction methods, including SIRT and those based on Krylov
subspaces, these projection operations make up the dominant part of the
computational cost.

38 CHAPTER 3. GEOMETRIC PARTITIONING

V

1 2 3

4 5 6

7 8 9

W

1 2 3 4 5 6 7 8 9

Figure 3.2: Construction of a tomography matrix in two dimensions. On
the left, the object volume is shown together with two sets of three lines,
corresponding to two projection images. One of these sets is shown in red,
green and blue. The other projection is shown as dotted gray lines. The
corresponding nonzero pattern, corresponding to nonzero lengths of the
lines through the voxels, is shown on the right.

3.2 Distributed projection operations

The nonzero pattern of a typical tomography matrix is visualized in fig-
ure 3.3. There are some special aspects of a tomography matrix that dis-
tinguish it from a typical sparse matrix as we encounter them in for ex-
ample the SuiteSparse matrix collection [DH11]. First, as mentioned in
the previous section, it is too large to store explicitly. Instead, it is typic-
ally generated row-by-row from the acquisition geometry each time it is
used. Second, the underlying structure is geometrical in nature, and this
geometric information can be exploited for efficient implementations of
operations involving the matrix. Third, if the object volume consists of n
voxels, then there are O

�

n1/3
�

nonzeros per row, since each row corres-
ponds to a line intersecting a 3D volume (often a cube), so that the matrix
has a relatively high density.

Running SpMV in parallel is an extensively studied problem [Bis04;
CA99; Wil+09; YR14]. In order to compute a general SpMV u = Av in
parallel, the sparse matrix A has to be partitioned, i.e., its nonzeros should
be assigned to one of the p available processors. This defines a (local) sub-
matrix A(s) for each processor s. In addition, the vectors v and u need to be

3.2. DISTRIBUTED PROJECTION OPERATIONS 39

Figure 3.3: The nonzero pattern of the matrix W for a very small tomo-
graphic reconstruction problem. We consider a discretized object volume
of 5× 5× 5 voxels, with a detector shape of 5× 5 pixels. The matrix was
generated using a slice-interpolated DIM and a standard parallel geometry
with 4 projections taken. The matrix has 100 rows, 125 columns and 1394
nonzeros.

partitioned. Generally, communication is required to obtain the necessary
nonlocal components v j, or to send nonzero contributions for compon-
ents ui that are not assigned to the local processor. Trying to minimize the
total communication volume (not to be confused with the object volume) by
finding a good partitioning gives rise to a rich optimization problem, and
various methods and software packages have been specifically designed to
treat this problem [CA99; Dev+06; VB05].

3.2.1 Partitionings

Because the system matrix W is not explicitly available, it is not easy to
see how conventional partitioning methods can be applied. However, we
do have access to the underlying geometric structure of the tomography
problem, of which W is a discrete representation. Therefore, we can indir-
ectly partition the matrix W by considering only the acquisition geometry

40 CHAPTER 3. GEOMETRIC PARTITIONING

processors slab onedimrow onedimcol mediumgrain

16 111248 139216 108741 101402
32 233095 292833 210330 188294
64 3928222 3987888 2604930 2210671

Table 3.1: Communication volumes found by Mondriaan for different split-
ting methods. The imposed maximum imbalance is 0.05. The partitioned
matrix corresponds to a typical circular cone beam acquisition geometry
(see figure 3.6(a)) with 1282 pixels on the detector, and an object volume
of 1283 voxels. onedimrow corresponds to a 1D row partitioning, onedimcol
to a 1D column partitioning, and mediumgrain [PB14] to a 2D matrix parti-
tioning. The communication volume of a slab partitioning, which is a 1D
column partitioning corresponding to the object volume being split into p
equal parts along the rotation axis, is shown as a reference.

G and the object volume V .
We identify multiple options. First, we can partition the object volume

V . Each processor is then assigned a subvolume V (s), and the local oper-
ations are restricted to the voxels in this subvolume. This corresponds to
a 1D matrix column partitioning of W . Second, we can partition the geo-
metry G , i.e., assign a collection of lines to each processor. In this case,
each processor is assigned a subgeometry G (s), and the local operations are
restricted to the lines in this subgeometry. This corresponds to a 1D matrix
row partitioning. Third, we could consider 2D matrix partitionings. How-
ever, because of the matrix-free implementation of tomographic projection
operations, using general 2D matrix partitionings seems to be infeasible.

We have investigated the performance of 1D column and row partition-
ings for a small tomographic problem for which the system matrix can still
be formed explicitly, by a combinatorial approach using the Mondriaan par-
titioning software [VB05]. The results are shown in table 3.1, and suggest
that 1D column partitionings perform much better than 1D row partition-
ings, and that limited further gains can be obtained with 2D partitioning
if it would be possible to use them.

An intuitive explanation of the superior performance of 1D column par-
titioning compared to 1D row partitioning is that for any projection a small
part of the volume will forward project to a small region of the detector,
whereas any small region of the detector will back project to a larger part

3.2. DISTRIBUTED PROJECTION OPERATIONS 41

of the volume.
Based on these considerations and numerical results, we shall focus

exclusively on 1D matrix column partitionings. Thus, we assume that there
is some partitioning of the volume:

π= {V (s) | 0≤ s < p}. (3.2)

so that for all s 6= t the interiors of V (s) and V (t) are disjoint, and∪p−1
s=0V

(s) =
V . Here, s and t are indices corresponding to one of the p processors. Let
us derive how to express the parallel forward projection in this distributed
setting. The forward projection y=Wx can be expressed as

yi =
∑

wi j∈W (i,:)

wi j x j.

Here, W (i, :) denotes the ith row of the matrix W . When performing this
sum in parallel over a volume partitioned according to π, each processor
s can contribute to component yi, so that these components are no longer
necessarily computed by a single processor. Each component yi is the sum
of local contributions:

yi =
p−1
∑

s=0

∑

wi j∈W (s)(i,:)

wi j x j

 .

Here, W (s) is the local submatrix induced by the local volume V (s). For a
good partitioning, many rows of these submatrices should be empty, lead-
ing to only a limited number of contributions for each component yi. For
each component yi, one of the contributors, the owner φ(i) of the ith com-
ponent, is selected to receive all nonzero contributions and perform the
outer sum. After the forward projection, the computed value of yi will
thus be stored exclusively on processor φ(i).

We summarize the resulting parallel algorithm for the forward projec-
tion in algorithm 2. It is given in single program multiple data (SPMD)
form, and is parametrized on the processor number s. It is a bulk-synchronous
parallel (BSP) [Val90] program, see [Bis04] for an introduction. In short,
computations in BSP programs are carried out in supersteps. Communic-
ation is staged: it is prepared during a superstep, but carried out only
at the end of that superstep. Communication is represented in the text

42 CHAPTER 3. GEOMETRIC PARTITIONING

by PUT statements. In between the supersteps, there is a communication
point where outstanding communication is resolved, followed by a global
synchronization. This boundary is represented by a SYNC statement.

For locally storing and computing y, we only need to consider the relev-
ant (local) part, i.e., those components yi for which the ith line `i intersects
the local volume. This means that a volume partitioning induces subgeo-
metries, given by the subset of the acquisition geometry with only lines that
intersect the local subvolume. We will write G|V (s) for these subgeometries.

The back projection operation can be implemented in a similar way. To
back project into its local volume, a processor requires only the values yi

to which it contributes. If a back projection follows a forward projection,
then this means that the owner φ(i) should communicate the computed
value of yi to all of its contributors at the beginning of the back projection
operator. In particular, the communication volume for the back projection
is the same as for the forward projection.

Algorithm 2 Parallel forward projection algorithm for processor s.
Input: x(s), W (s), φ.
Output: y(s)

z(s) =W (s)x(s)

for all i s.t. z(s)i 6= 0 do
PUT z(s)i in φ(i)

–SYNC–

y(s)← 0
for all i s.t. φ(i) = s do

for all t s.t. z(t)i 6= 0 do
y (s)i ← y (s)i + z(t)i

We end this section with two observations that are relevant for the
matrix-free implementation of distributed projection operations, and il-
lustrate how these implementations differ from general SpMV implement-
ations. First, if the local subvolume V (s) is a convex region, such as a
cuboid, then the submatrix W (s) can be generated efficiently by the same

3.2. DISTRIBUTED PROJECTION OPERATIONS 43

DIM as is used for W . Second, since a component yi corresponds to a line
segment for a source–pixel pair, we can efficiently find at once the set of
contributors for groups of lines in the following way. We consider in turn
each projection image, for each of which the position of the source is fixed.
For each projection image, we look at the region to which the subvolume
projects, i.e., the shadow of the subvolume on the detector. The regions
where two or more shadows overlap, correspond to a group of lines with
the same set of two or more contributors.

3.2.2 Partitioning the object volume

What is a good partitioning? The communication volume of the distributed
forward projection operation arises because several subvolumes can con-
tribute to the same component yi. Geometrically, this can be interpreted
as a line of the acquisition geometry intersecting several subvolumes asso-
ciated with different processors. Before we give an expression for the total
communication volume of the algorithm, we define:

λ`(π) = |{s | ` ∈ G|V (s)}|,

i.e., the line cut λ`(π) is equal to the number of subvolumes in π that are
intersected by the line `. We assume that each line ` has a non-empty
intersection with the full volume, so that we have λ`(π)≥ 1.

We can express the communication volume of the forward projection
and back projection operations directly in terms of the line cut:

V (π) =
∑

`∈G

(λ`(π)− 1).

We will also put a load balancing constraint on the partitioning. To this
end, we define the computational weight ω(j) of a voxel as the number of
lines in the acquisition geometry that intersect the voxel. This computa-
tional weight equals the number of times a voxel is used during the for-
ward projection. The computational load is the sum of the computational
weights over all voxels in the local volume:

T (s) =
∑

j : x j∈V (s)
ω(j).

44 CHAPTER 3. GEOMETRIC PARTITIONING

We define the load imbalance as:

ε(π) = max
0≤s<p

T (s)

Tavg
− 1.

Here, Tavg is the average computational load, i.e., the sum of the computa-
tional weights over the entire volume divided by the number of processors.
To ensure that each processor performs roughly the same number of com-
putations, the load imbalance should be kept close to zero. With these
definitions in place, we can state the tomographic partitioning problem
associated to distributed tomographic reconstruction:

Let G be an acquisition geometry, V the object volume, εmax the
maximum allowed load imbalance, and p the number of pro-
cessors. Let Π denote the set of p-way volume partitionings, as
given by (3.2). The tomographic partitioning problem (TOMPP)
is the following optimization problem:

minimizeπ∈Π V (π)
subject to ε(π)< εmax.

Since an acquisition geometry G is simply a set of line segments, we
obtain a purely geometric problem: partition a cuboid to minimize the total
line cut for a given set of lines.

3.3 Geometric recursive coordinate bisection

We look only at a specific class of partitionings, where each subvolume is a
rectangular cuboid that is aligned with the coordinate axes. This restriction
is motivated by the following considerations. First, partitioning problems
are notoriously hard. Similar partitioning problems for graphs and hyper-
graphs have been shown to be NP-hard [BJ92; Len90]. Therefore we ought
to reduce the search space considerably. Second, axis-aligned subvolumes
are well suited for GPU computations. In particular, efficient GPU imple-
mentations rely on texture and index spaces that are rectangular. Third,
the resulting partitionings should be easy to describe. The method we
present will produce a binary space partitioning of the volume V . This

3.3. GEOMETRIC RECURSIVE COORDINATE BISECTION 45

means that the resulting partitionings can be used without any reference
to the method that produced it.

In the following, when we write V = V0∪V1∪ . . .∪Vp−1, all volumes V
and Vi are assumed to be axis-aligned rectangular cuboids. In addition, the
interiors for all pairs Vi and V j with i 6= j are disjoint. This union implies
a partitioning π. We call such a partitioning a cuboid partitioning. Below,
we write V (V0, . . . ,Vp−1) for the communication volume V (π).

We will first present the following observation, which informally states
that the communication volume for a bipartitioning is equal to the number
of lines crossing the interface between the two parts. This is illustrated in
figure 3.4.

Lemma 2. Let V = V0 ∪ V1, be a cuboid partitioning as above. The com-
munication volume V (V0,V1) for any acquisition geometry G is equal to the
number of lines in G that have a non-empty intersection with the interface
between V0 and V1.

The core result that is used by our algorithm is a geometric version of
theorem 2.2 in [VB05], and generalizes an observation from [CA99]. The
result states that the communication volume is additive.

Theorem 3. Let V = V0 ∪ V1 ∪ . . .∪Vp−1 be a cuboid partitioning as above.
Then for any acquisition geometry G we have:

V (V0,V1, . . . ,Vp−1) = V (V0,V1, . . . ,Vp−2 ∪Vp−1) + V (Vp−2,Vp−1). (3.3)

The proofs of lemma 2 and theorem 3 are straightforward and are given
at the end of this chapter.

3.3.1 GRCB algorithm

With these results, we are ready to describe a geometric recursive coordinate
bisectioning (GRCB) algorithm for the TOMPP. Taking an arbitrary acquis-
ition geometry as input, it results in a cuboid partitioning of the object
volume.

Recursive coordinate bisectioning (RCB) and generalizations of this
method have proven to be successful partitioning strategies [BB87; Dev+16]
for finite-element and finite-difference computations.

46 CHAPTER 3. GEOMETRIC PARTITIONING

V1

V0

y

Figure 3.4: A set of lines through a square two-dimensional object volume
V = V0 ∪ V1. The lines intersecting both subvolumes are exactly those
lines that cross the horizontal interface at height y , shown here with a
dashed line, between V0 and V1. In this case, three of the six lines have an
intersection point (shown as •) with the interface.

For the sake of presentation, we will restrict ourselves in this subsection
in the following two ways. First, the number of processors is assumed to be
a power of two. That is to say, we partition the volume into p = 2q parts, for
some q. Second, the computational weights ω are assumed to be uniform
over the object volume, so that we only have to consider the number of
voxels of a part for load balancing considerations. We will describe later
how it is possible to lift both of these restrictions.

The GRCB algorithm works as follows. We start with the full volume
V , and recursively split it into two parts, using an appropriate axis-aligned
splitting plane that is to be computed. Theorem 3 ensures that each time
we split, we only have to consider the subvolume being split and the lines
intersecting this subvolume to obtain the change in communication volume.
Furthermore, by lemma 2 we can compute this communication volume by
counting the number of intersections in the splitting plane.

The overall form of the GRCB algorithm is given in algorithm 3. We

3.3. GEOMETRIC RECURSIVE COORDINATE BISECTION 47

represent the resulting binary space partitioning as a balanced binary tree
(the partitioning tree). We represent the tree recursively using nodes of the
form 〈n1, v, n2〉, where n1 is the left child node, v is the value contained in
the node, and n2 is the right child node. With 〈−〉, we denote an empty
node (a leaf of the tree has two empty child nodes). Each node of the tree
has as its value a pair (d, a), with 1 ≤ d ≤ 3 the axis along which the
volume splits, and a ∈ R the position of the splitting plane along this axis.
When splitting results in two computationally unequal parts, the load im-
balance for the smaller part can be relaxed. We take the same approach as
the Mondriaan partitioning method [VB05], and choose εmax dynamically
and separately for the newly introduced subvolumes, depending on the
current load imbalance and the total computational weight of the volume
that is split.

Algorithm 3 Geometric recursive coordinate bisectioning (GRCB).
Subroutine: PARTITION

Input: V ,G , q,εmax

Output: the root node n of the partitioning (sub)tree

if q = 0 then
return 〈−〉

(d, a),V1,V2← SPLIT(V , G , εmax/q)

ωmax← (1+ εmax)ω(V)/2q

ε1←ωmax · 2q−1/ω(V1)− 1
ε2←ωmax · 2q−1/ω(V2)− 1

n1← PARTITION(V1, G|V1
, q− 1, ε1)

n2← PARTITION(V2, G|V2
, q− 1, ε2)

return 〈n1, (d, a), n2〉

The splitting subroutine shown in algorithm 4 computes a split for a
volume W and a set of lines H through this volume. At the beginning
of this subroutine, we compute for each line in H the two intersection
points with the boundary of the volumeW . We call these pairs of intersec-
tion points belonging to the same line partners. All the intersection points

48 CHAPTER 3. GEOMETRIC PARTITIONING

together make up a set E which we call the event points.
Next, we perform three plane sweeps, one for each of the three axes.

Before we sweep along the dth axis, we preprocess the set of event points.
First, we sort the event points by their dth coordinate. Second, for each
event point, we decide if it is an incoming event or an outgoing event with
respect to the dth axis. An event point is incoming if its partner has a
larger dth component. If its partner has a smaller dth component, then it
is outgoing. If their dth components are equal, the events can be safely
ignored for this sweep, since the line will always be completely contained
in one of the two subvolumes.

We are now ready to describe the plane sweep, which is illustrated in
figure 3.5. Conceptually, we move a sweeping plane (perpendicular to the
dth axis) that starts outside of the volume, by slowly increasing its dth
coordinate. This plane will represent a candidate split of the volume W .
Since it starts outside of the volume, initially there are no lines crossing
the interface. We stop at each event point. If the event is incoming, then
the corresponding line will begin intersecting the sweeping plane. If the
event is outgoing, then the corresponding line will no longer intersect the
sweeping plane. This means that during the sweep, the number of lines
intersecting the sweeping plane increases or decreases by one at each event
point. In particular, it is very easy to keep track of the communication
volume that would be incurred if the current sweeping plane would be
taken as a splitting plane.

At each of the event points, the load balance constraint is checked.
If it is satisfied, and the communication volume is the lowest among all
valid splits encountered so far, we store the current sweeping plane as
the current split candidate. After the third plane sweep, the split that is
currently stored as the best one is returned.

After performing p − 1 splits, the GRCB algorithm terminates. The
splitting routine consists of the following computational steps. First, we
compute the intersections in O(m) time, where m is the number of lines.
Second, we sort these intersections for each axis in O(m log m) time to ob-
tain the events for the plane sweeps. Finally, the plane sweeps each consist
of a loop over the O(m) events, and the body of this loop runs in constant
time. We conclude that sorting the intersections dominates the computa-
tional costs of the splitting procedure. Therefore, the full GRCB algorithm
runs in O(pm log m) time. To put this into context, a single SpMV involving

3.3. GEOMETRIC RECURSIVE COORDINATE BISECTION 49

Algorithm 4 Bisecting a volume W to minimize the line cut for a set of
linesH .

Subroutine: SPLIT.
Input: H , W , εmax

Output: (d, a), W1, W2

compute set E of intersections ofH with W
Vmin←∞
(dbest, abest)← (∞,∞)

for d in {1, 2,3} do
sort E by dth coordinate
V ← 0
for x in E do

if event x is incoming then
V ← V + 1

else if event x is outgoing then
V ← V − 1

if load imbalance εmax is satisfied with split (d, a), and V < Vmin

then
Vmin← V
(dbest, abest)← (d, xd)

Let W1 and W2 be the two subvolumes for the split (dbest, abest)

return (dbest, abest),W1,W2

a tomographic projection matrix runs in O(mn1/3) time. The GRCB al-
gorithm is efficient, and the resulting partitionings can be reused when
the same acquisition geometry is employed for multiple scans. This is the
case, for example, with a lab scanner that has fixed source and detector
positions.

50 CHAPTER 3. GEOMETRIC PARTITIONING

y1

y2

y3

Figure 3.5: Visualization of the 2D equivalent of the 3D plane sweep de-
scribed in algorithm 4. Imagine that we are considering a horizontal can-
didate interface which we are moving upwards, i.e., we gradually increase
the y coordinate of the interface. If we were to split the volume accord-
ing to the current candidate interface, the communication volume would
be given by the number of lines crossing that interface. The only y co-
ordinates where this number changes correspond to the y coordinates of
intersection events, i.e., points where a line intersects the object volume
boundary. Outgoing intersection events (shown as ×), and incoming inter-
section events (shown as�) are marked. We illustrate candidate interfaces
(shown as a dotted line) together with the interface intersections (shown
as •), for three different y coordinates.

3.3.2 Removing restrictions

For partitioning into p 6= 2q parts, we can use a modified SPLIT subroutine
that allows for splitting into two parts by a different ratio than 1 : 1.

If we have non-uniform computational weights, we can still efficiently
compute the total weight of a (candidate) subvolume. For this, we perform
one preprocessing step, and store for each voxel at coordinate (i, j, k) the
cumulative sum of the cube with lower corner (0, 0,0) and upper corner

3.4. RESULTS 51

(a) CCB, SAPB (b) DAPB (c) HCB

(d) LAM (e) TSYN

Figure 3.6: Schematic overview of the acquisition geometries that we con-
sider. Here, the source trajectory is shown with a fat red line. The center of
the detector is assumed to be at the antipodal point, except in (d) where
the detector position is shown in blue. In (a) and (b), we indicate both
parallel-beam and cone-beam geometries. In (d), the fat points indicate
the positions of the detector and source, which are always one half rota-
tion out of phase and move with the same angular velocity.

(i, j, k), requiring only O (n) memory and time, where n is the number
of voxels in the full object volume. When we want to compute the total
weight of a cuboid with lower corner (i1, j1, k1) and upper corner (i2, j2, k2),
we can retrieve this in O (1) time using the principle of inclusion–exclusion
with the cumulative sums that have been precomputed.

3.4 Results

The 3D acquisition geometries that we study in this work are all commonly
used. They are illustrated in figure 3.6, and are listed below. The paramet-
ers for these geometries are given in the appendix to this chapter.

1. Single-axis parallel-beam (SAPB). The (point) source, conceptually
infinitely far away, and the detector rotate in a circular trajectory

52 CHAPTER 3. GEOMETRIC PARTITIONING

around the object. Example uses are tomography at synchrotron
sources [Mar+17] and electron tomography [MD09]. In this acquisi-
tion geometry, each line is contained in a single slice, making it trivial
to partition the volume.

2. Dual-axis parallel-beam (DAPB). Similar to SAPB, but after completing
one circle, an alternative axis is chosen and another rotation is made
[Mas97; Pen+95]. This acquisition geometry is commonly used in
imaging for life sciences.

3. Circular cone-beam (CCB). Similar to SAPB, but the source is at some
fixed distance. We distinguish between two cases (a) wide: the source
is close to the sample. Here, wide means that the cone angle is large.
(b) narrow: the source is far away, which is closer to the parallel-
beam case. Circular cone-beam is the usual acquisition geometry for
laboratory CT scanners.

4. Helical cone-beam (HCB). Here, the setup is the same as for CCB,
but the source and detector also move along the rotation axis. This
corresponds to a helical trajectory. Helical cone-beam is often used in
a medical setting, but it is also used for the analysis of rock samples
[She+14].

5. Laminography (LAM). The source and detector array follow different
circular trajectories which are parallel to, say, the z = 0 plane. The
source and central point on the detector are always one half rotation
out of phase, and move with the same angular velocity [MPS10].
Laminography is a common technique for imaging flat objects such
as paintings or semiconductor wafers.

6. Tomosynthesis (TSYN). The detector array is placed statically under a
sample, while the source follows a circular trajectory around a given
axis for some limited arc. Among other applications, it is used for
breast cancer screening, and the inspection of passenger luggage
[Hel10; Rei+11].

3.4. RESULTS 53

3.4.1 Resulting partitionings

For each geometry, we have run the GRCB algorithm for a varying number
of processors. We consider processor counts between 16 and 256, and for
each geometry we compare against a 1D block partitioning of the volume,
which we will call the standard partitioning. In this standard partitioning,
equal slabs of adjacent slices along one of the three dimensions are dis-
tributed among the processors, which is current practice for distributed-
memory methods in tomography [Pal+17; Ros+13]. Because the vast ma-
jority of acquisition geometries have a preferred direction, this partition-
ing serves as a better base case than, e.g., performing a recursive bisection
along the longest dimension. For an example of a standard partitioning,
see the resulting GRCB partitioning of the SAPB acquisition geometry in
figure 3.7(a) which happens to coincide with the standard partitioning.

We note that we expect the GRCB partitionings to be valid also for
ultra-high resolutions, as long as the geometric structure does not change
significantly. We chose to keep the problem sizes limited to object volumes
consisting of 5123 voxels to allow our experiments to be done in reason-
able time. We employ a simple DIM for the evaluation, that attributes
equidistant sampling points completely to the closest voxel.

We have always chosen the axis for the standard partitioning that gives
the lowest communication volume. The load imbalance for GRCB parti-
tioned object volumes is kept under εmax = 0.05. We do not assume con-
stant weights, and use the cumulative sum approach outlined before. We
summarize the results in table 3.2. We visualize the resulting partitionings
for p = 64 in figure 3.7. A 3D animation visualizing the partitionings and
associated acquisition geometries is available as supplementary material
to the publication on which this chapter is based. Each part is given a
separate color, but because of the high number of parts, some colors may
look similar. It is immediately clear from table 3.2 that when considering
a large number of processors, which also implies more freedom in hav-
ing partitionings with rich structures, a large reduction in communication
volume can be obtained by using GRCB partitioned object volumes.

The negative gains for the helical cone-beam geometries in the case
of low processor counts are most likely caused by the strict load balance
constraint we employ. In particular, the standard partitioning is not al-
ways balanced. For example, we have computed the load imbalance of

54 CHAPTER 3. GEOMETRIC PARTITIONING

the standard partitioning for HCBw and HCBn, and found that it is always
above 0.25 for each processor count that we consider. This means that in
this case the comparison between a standard and a bisected partitioning
is unfair. In fact, it is a benefit of our method that we always end up with
well-balanced partitionings.

As already hinted at before, when considering higher processor counts,
the structures visible in the partitionings become far richer. We give two
examples of partitionings for p = 256 processors in figure 3.8 which illus-
trates this.

An alternative baseline to compare against would be a partitioning in
cubes, by splitting the volume into p = p0 × p1 × p2 equal parts. Because
it is unclear in general how to choose (p0, p1, p2), we only consider the
special case of p = 64 where we can naturally split into 4 × 4 × 4 parts.
The resulting communication volumes are shown in table 3.3. For some
acquisition geometries, this cube partitioning is an improvement over the
standard slab partitioning.

3.4.2 Effects on runtime

To evaluate the effect of the partitioning on the runtime of tomographic
reconstruction, we have developed a software package for performing dis-
tributed tomographic reconstruction. This Tomos toolbox can be found in
an online, open-source repository1. We have run experiments using Tomos
on the Lisa Cluster maintained by SURFsara in Amsterdam. Our commu-
nication is implemented using the Bulk library2, and carried out on top of
MPI. The experiments were executed on up to 16 nodes with Intel E5-2650
v2 processors running at 2.60 GHz that have 16 cores each and 64GB of
RAM. The nodes were connected using Mellanox FDR InfiniBand.

In figure 3.9, we show the effect of the partitioning method on the
runtime of a distributed reconstruction algorithm for a varying number
of processors. For our results, we use the SIRT reconstruction algorithm.
Our evaluation focuses on cone-beam geometries, in particular the CCBn,
HCBw, LAMw and TSYN acquisition geometries. The GRCB partitioned object
volumes lead to a significant speedup for the reconstruction relative to the

1
https://www.github.com/jwbuurlage/Tomos/

2
https://www.github.com/jwbuurlage/Bulk/

3.4. RESULTS 55

G p = 16 p = 32 p = 64 p = 128 p = 256
(×105) (×106) (×107) (×108) (×109)

SAPB VGRCB 0 0 0 0 0
VSTD 0 0 0 0 0
g 0.0% 0.0% 0.0% 0.0% 0.0%
ε 0.00 0.00 0.00 0.00 0.00

DAPB VGRCB 4.9 5.2 6.1 6.5 0.8
VSTD 11.8 19.5 31.6 51.0 10.2
g 58.7% 73.2% 80.7% 87.2% 92.0%
ε 0.03 0.04 0.05 0.03 0.05

CCBn VGRCB 1.1 1.6 1.9 2.3 0.3
VSTD 1.1 1.9 3.2 5.2 1.0
g 0.1% 16.8% 39.6% 55.8% 69.0%
ε 0.04 0.04 0.05 0.03 0.05

CCBw VGRCB 1.9 2.4 2.9 3.2 0.4
VSTD 2.5 4.3 7.1 11.6 2.3
g 21.5% 44.8% 59.8% 72.0% 81.5%
ε 0.04 0.04 0.05 0.03 0.05

HCBw VGRCB 2.3 2.5 2.8 3.3 0.4
VSTD 1.8 2.9 4.7 7.7 1.5
g -29.6% 14.3% 40.7% 57.3% 71.0%
ε 0.05 0.04 0.05 0.03 0.05

HCBn VGRCB 2.3 2.1 2.3 2.6 0.4
VSTD 1.1 1.8 3.0 4.9 1.0
g -104.4% -12.4% 24.2% 45.7% 62.0%
ε 0.04 0.05 0.05 0.04 0.05

LAMn VGRCB 1.4 1.9 2.2 2.7 0.4
VSTD 3.7 6.3 10.2 16.6 3.3
g 62.0% 69.5% 78.1% 83.9% 89.0%
ε 0.00 0.01 0.05 0.03 0.05

LAMw VGRCB 2.5 3.3 3.7 3.9 0.6
VSTD 6.2 10.3 16.9 27.3 5.5
g 60.2% 68.2% 77.9% 85.8% 90.0%
ε 0.00 0.04 0.04 0.03 0.05

TSYN VGRCB 1.1 1.5 1.8 2.1 0.3
VSTD 2.3 4.0 6.6 10.8 2.2
g 51.0% 62.5% 72.8% 80.4% 86.6%
ε 0.03 0.02 0.05 0.03 0.05

Table 3.2: Communication volumes for the acquisition geometries under
consideration, for a varying number of processors p. The communication
volume under the GRCB partitioning is given by VGRCB, while the commu-
nication volume under a standard 1D slab partitioning is given by VSTD.
The gain g is defined as g = (1−VGRCB/VSTD)×100%. The load imbalance
of the GRCB partitioned volume is kept under εmax = 0.05, and is given as
ε. The closest-voxel DIM was used.

56 CHAPTER 3. GEOMETRIC PARTITIONING

(a) SAPB (b) DAPB (c) CCBw

(d) CCBn (e) HCBw (f) HCBn

(g) LAMw (h) LAMn (i) TSYN

Figure 3.7: Resulting GRCB partitionings for p = 64 processors. The axes

are as in
y
xz . If there is a main rotation axis, it corresponds to z. For

TSYN, the stationary detector is placed perpendicular to the z-axis.

3.4. RESULTS 57

CCBn CCBw DAPB HCBw HCBn LAMn LAMw SAPB TSYN

VGRCB 1.9 2.9 6.1 2.8 2.3 2.3 3.7 0.0 1.8
VCUBE 4.4 4.5 6.2 4.9 4.8 4.1 4.6 6.2 3.8
VSTD 3.2 7.1 31.6 4.7 3.0 10.2 16.9 0.0 6.6

Table 3.3: Additional partitioning results, cf. table 3.2. Here, we ad-
ditionally give the communication volume VCUBE for a partitioning into
p = 64= 4×4×4 equal parts. Communication volume is given in multiples
of 107.

(a) LAMw (b) HCBw

Figure 3.8: Resulting GRCB partitionings for p = 256 processors.

standard slab partitioned object volumes. When isolating the communica-
tion times, the effect is even more noticeable, as illustrated in figure 3.10.

In the previous section, we noted the high load imbalance and the re-
latively low communication volume of the standard partitioning for the
HCBw geometry in case of small p. In the results presented here, we see
that indeed the communication time for low processor counts for the GRCB
partitioning is higher for HCBw; however, the total runtime of a SIRT itera-
tion is always in favour of the GRCB partitioning since it assures that the
computational load is balanced.

When comparing the communication times with the communication
volumes shown in table 3.2, one has to take into consideration that the
times are not expected to be linearly dependent on the total communic-

58 CHAPTER 3. GEOMETRIC PARTITIONING

16 32 64 128 256
p

0.1

1.0
τ CCBn (GRCB)

HCBw (GRCB)

LAMw (GRCB)

TSYN (GRCB)

CCBn (STD)

HCBw (STD)

LAMw (STD)

TSYN (STD)

Figure 3.9: The runtime of one SIRT iteration plotted against the number
of processors. Vertically, the relative runtime τ is shown on a logarithmic
scale, defined for each geometry as the time compared to the runtime of re-
constructing using a standard partitioning with p = 16 processors. The re-
construction times for the GRCB partitionings are shown using solid lines,
and for the standard partitionings using dotted lines. Horizontally, the
number of processors is shown on a logarithmic scale. The runtimes for
GRCB partitionings with p = 256 processors are 18.28, 10.52, 13.57 and
19.58 seconds for CCBn, HCBw, LAMw and TSYN, respectively.

ation volume. Other important factors are the maximum communication
volume per part, and the number of messages that are sent.

The main assumption we make is that by reducing the total communic-
ation volume, and keeping the parts balanced, we also indirectly reduce
the communication volume per part and ultimately the total communic-
ation time. Based on the results we present, we may conclude that our
partitioning method leads to a large decrease in communication time and
better scalability, as well as a better load balancing.

The number of messages µ is shown in table 3.4, and is defined as

3.4. RESULTS 59

16 32 64 128 256
p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

τ
CCBn (GRCB)

HCBw (GRCB)

LAMw (GRCB)

TSYN (GRCB)

CCBn (STD)

HCBw (STD)

LAMw (STD)

TSYN (STD)

Figure 3.10: The communication time of one SIRT iteration plotted against
the number of processors. Vertically, the relative communication time τ is
shown, defined for each geometry as the time compared to the communic-
ation time for a standard partitioning with p = 16 processors. The commu-
nication times for the GRCB partitionings are shown using solid lines, and
for the standard partitionings using dotted lines. Horizontally, the number
of processors is shown on a logarithmic scale. The communication times
for GRCB partitionings with p = 256 processors are 3.09, 2.94, 5.74 and
4.90 seconds for CCBn, HCBw, LAMw and TSYN, respectively.

the number of sender–receiver pairs of processors that are communicating
with one another during the reconstruction. Our method does not try to
reduce the total number of messages, and we observe that the number of
messages is of the same order of magnitude for both partitioning methods.
In fact, in many cases the number of messages approaches the maximum
possible number of messages which is 2p(p−1). This seems hard to avoid,
since interactions in tomography are global; the rays in the acquisition geo-
metry cross the entire object volume, coupling all the voxels they intersect.

When using the partitionings for distributed reconstruction, only a rep-

60 CHAPTER 3. GEOMETRIC PARTITIONING

CCBn HCBw LAMw TSYN µmax

p = 16 µSTD 84 276 360 116 480
µGRCB 92 316 360 166

p = 32 µSTD 300 1032 1454 412 1984
µGRCB 388 1092 1108 582

p = 64 µSTD 1084 4064 5836 1538 8064
µGRCB 1356 4040 4324 2022

p = 128 µSTD 4156 16228 23339 6020 32512
µGRCB 4688 14854 14554 6400

p = 256 µSTD 16228 64648 93644 23916 130560
µGRCB 17324 53972 47052 18170

Table 3.4: The message counts for a number of geometries and a varying
number of processors. The message count for the standard partitioning is
denoted by µSTD, while for GRCB partitioned volumes they are denoted by
µGRCB. The maximum possible number of messages (all-to-all) is given as
µmax.

Figure 3.11: Reconstructed slices for an object volume of 512×512×512
voxels with the CCBn acquisition geometry using 64 processors. For the re-
construction, 100 iterations of SIRT were applied with a slice-interpolated
DIM. Here we used a modified 3D Shepp–Logan phantom. The left, middle,
and right reconstructed slices are taken in the middle along the z, x, and
y axes respectively.

resentation of the bisectionings has to be stored and loaded. A suitable DIM
for the acquisition geometry is chosen independently. To demonstrate that
our implementation actually works in practice, we show a reconstruction
for CCBn in figure 3.11.

3.5. DISCUSSION 61

3.5 Discussion

For our evaluation we used straightforward custom implementations of the
projection operations. In a heavily optimized implementation, we expect
that the communication times will play an even more important role. In
the future, we plan on employing the partitionings found with the GRCB
method to improve the reconstruction times for real-world tomographic
experiments. This involves combining the partitionings presented in this
chapter, with state-of-the-art software for tomographic reconstruction. So
far, we have used CPUs for our evaluation, but we plan to use GPUs in-
stead, making computations faster but also making communication relat-
ively even more important.

The load balancing constraint we employ models only the number of
nonzeros assigned to each processor, where a nonzero indicates a line–
voxel intersection. The actual time spent by a processor in the local for-
ward projection and backprojection steps depends on a number of addi-
tional factors. For example: (i) there is an overhead relating to the num-
ber of local rows, because the nonzeros are generated instead of stored,
(ii) memory access patterns are known to have an important influence,
(iii) depending on the chosen DIM the actual nonzero pattern can differ
from the one used in our model, (iv) there are effects relating to the sys-
tem, such as variability between cores and the scheduling of processes. To
check the relation between the modelled computational load and the ac-
tual runtime, we have measured the time T̃ (s) spent by processor s in the
local forward projection step (not including any communication) for the
CCBw geometry. The runtime imbalance ε̃ = max0≤s<p T̃ (s)/T̃avg − 1, was
found to be between 0.07 and 0.15, while the load balance εmax was set
to 0.05. A more sophisticated model for the computational load beyond
counting the number of local nonzeros may improve the actual achieved
runtime balance, but is outside the scope of this work.

With variational reconstruction methods, prior information on the ob-
ject can be incorporated. A common approach is to include the norm of the
image gradient as an additional penalty term. In distributed-memory im-
plementations, evaluating the gradient in every voxel requires the commu-
nication of all interfaces between subvolumes. We have not modeled this
additional communication in the derivation of our algorithm. For the parti-
tionings presented here, the communication volume due to gradient com-

62 CHAPTER 3. GEOMETRIC PARTITIONING

putations is an order of magnitude lower than the communication volume
due to the total line cut for all acquisition geometries except single-axis
parallel beam. Therefore, we think it is warranted to ignore this cost in
our expression for the communication volume.

In this work, we have assumed a simple network topology, where com-
munication performance is identical between any pair of nodes. However,
many modern HPC systems are hierarchical. For example, there could be
p1 nodes, where each node has p2 processing elements such as CPU cores
or GPUs. If we use our unmodified method to partition the object volume
into p = p1p2 parts, we would not take into account that communication
between processing elements residing on the same node is more efficient.

We will sketch how, by a straightforward modification of the load bal-
ance constraints used in the algorithm, a suitable partitioning can be found
for hierarchical systems. The idea is to allow a relatively large load im-
balance between the nodes, resulting in low inter-node communication
volume, and to pay for this by imposing a smaller load imbalance within a
node, at the cost of a potentially higher intra-node communication volume.
In the first stage, the partitioning algorithm is used to split the volume
into p1 parts using a load imbalance ε1 = γε. Here, 0 < γ < 1 relates
to the ratio between the inter-node and intra-node communication cost.
After this first stage, each of the p1 parts are partitioned independently
into p2 parts by the same algorithm. For the second partitioning stage,
a part-dependent load imbalance ε2(s) will ensure that the resulting load
imbalance is at most ε. How to choose γ to optimally exploit a two-level
memory hierarchy requires further study that is beyond the scope of the
present work.

3.6 Conclusion

We consider distributed-memory tomographic reconstruction and intro-
duce a tomographic partitioning problem (TOMPP). We present GRCB, a
partitioning method to solve this problem, that considers the underlying
geometry of the tomographic reconstruction. This is in contrast to combin-
atorial partitioning methods that are based solely on the nonzero pattern
of the corresponding sparse matrix. Our method can be applied to arbit-
rary acquisition geometries. We show that with our new method, we can

3.6. CONCLUSION 63

reduce the necessary communication in distributed-memory parallel tomo-
graphic reconstruction and improve the scalability of an important class of
reconstruction algorithms, including SIRT, CGLS and other Krylov meth-
ods, ML-EM, FISTA and Chambolle–Pock.

Proofs

proof of lemma 2. It suffices to show that a line intersects both subvolumes
if and only if it has a non-empty intersection with (or crosses) the interface
between them. If a line is contained in the interface, then the statement
holds since it crosses the interface, and it intersects both subvolumes. As-
sume the line is not contained in the interface. Say that a line intersects
both V0 and V1, then there exist points a ∈ V0 and b ∈ V1 that are both on
the line. Because cuboids are convex, the line segment from a to b (which
is contained in the original line) is entirely in V , and starts in V0 while it
ends in V1. Therefore, it has to cross the interface. Conversely, if a line
crosses the interface at a point c, then we immediately have c ∈ V0 and
c ∈ V1 so that the line intersects both subvolumes.

proof of theorem 3. Since we can no longer assume that each line intersects
the full volume in each term, we define

λ′
`
(π) =max(λ`(π)− 1, 0),

so that
V =

∑

`∈G

λ′
`
(π).

In other words, if ` crosses the volume to be split, λ′
`
(π) is the number of

subvolumes crossed by ` minus one, otherwise it is zero. It is enough to
consider each term, corresponding to individual lines, separately. We have
to show:

λ′
`
(V0,V1, . . . ,Vp−1) = λ

′
`
(V0,V1, . . . ,Vp−2 ∪Vp−1) +λ

′
`
(Vp−2,Vp−1).

We will split the proof into two cases. If a line does not intersect Vp−2∪
Vp−1, then both sides equal λ′

`
(V0,V1, . . . ,Vp−1).

64 CHAPTER 3. GEOMETRIC PARTITIONING

If it does intersect Vp−2∪Vp−1, then we have two subcases correspond-
ing to the line intersecting either both Vp−2 and Vp−1, or one of the two.
For the former, we have:

λ′`(V0,V1, . . . ,Vp−2 ∪Vp−1) +λ
′
`(Vp−2,Vp−1) = λ

′
`(V0,V1, . . . ,Vp−3) + 1+ 1

= λ′`(V0,V1, . . . ,Vp−3,Vp−2,Vp−1)

as required. For the latter, we assume without loss of generality that it
intersects Vp−2 and compute

λ′`(V0,V1, . . . ,Vp−2 ∪Vp−1) +λ
′
`(Vp−2,Vp−1) = λ

′
`(V0,V1, . . . ,Vp−3) + 1+ 0

= λ′`(V0,V1, . . . ,Vp−3,Vp−2)

= λ′`(V0,V1, . . . ,Vp−3,Vp−2,Vp−1)

which finishes the proof.

Parameters of the acquisition geometries

3.6. CONCLUSION 65

G
k

s
d

D
ϕ

r s
r d

ϑ

S
A

P
B

51
2

(1
.0

,1
.0
)

D
A

P
B

51
2

(1
.0

,1
.0
)

C
C

B
n

76
8
(−

5.
0,

0.
5,

0.
5)

(4
.0

,0
.5

,0
.5
)

(2
.0

,2
.0
)

C
C

B
w

76
8
(−

2.
0,

0.
5,

0.
5)

(2
.0

,0
.5

,0
.5
)

(2
.0

,2
.0
)

H
C

B
w

51
2
(−

3.
0,

0.
5,

0.
5)

(4
.0

,0
.5

,0
.5
)

(2
.0

,2
.0
)

4π
H

C
B

n
51

2
(−

5.
0,

0.
5,

0.
5)

(6
.0

,0
.5

,0
.5
)

(2
.0

,2
.0
)

4π
LA

M
n

51
2
(0

.5
,0

.5
,3

.0
)

(0
.5

,0
.5

,−
2.

0)
(2

.5
,2

.5
)

0.
5

0.
5

LA
M

w
51

2
(0

.5
,0

.5
,3

.0
)

(0
.5

,0
.5

,−
2.

0)
(2

.5
,2

.5
)

1.
0

1.
0

T
S

Y
N

76
8
(0

.5
,0

.5
,3

.0
)

(0
.5

,0
.5

,−
1.

0)
(2

.0
,2

.0
)

0.
7

Ta
bl

e
3.

5:
Pa

ra
m

et
er

s
of

th
e

ac
qu

is
it

io
n

ge
om

et
ri

es
us

ed
fo

rp
ar

ti
ti

on
in

g
th

e
vo

lu
m

e.
In

al
lc

as
es

,t
he

ph
ys

ic
al

ex
te

nt
of

th
e

ob
je

ct
vo

lu
m

e
is
[0

,1
]3

an
d

th
e

nu
m

be
r

of
vo

xe
ls

is
51

23
.

Th
e

nu
m

be
r

of
pr

oj
ec

ti
on

s
is

al
w

ay
s

51
2.

Po
si

ti
on

s
ar

e
gi

ve
n

in
(x

,y
,z
)

co
or

di
na

te
s.

A
n

em
pt

y
fie

ld
m

ea
ns

th
at

th
e

pa
ra

m
et

er
is

no
t

ap
pl

ic
ab

le
fo

r
th

at
ge

om
et

ry
.

Th
e

pr
im

ar
y

ro
ta

ti
on

ax
is

is
al

w
ay

s
th

e
z-

ax
is

,
ex

ce
pt

fo
r

T
S

Y
N

w
he

re
it

is
th

e
x-

ax
is

.
Fo

r
D

A
P

B
th

e
se

co
nd

ro
ta

ti
on

ax
is

is
th

e
x-

ax
is

.
A

ng
le

s
ar

e
gi

ve
n

in
ra

di
an

s.
W

it
h

k
w

e
de

no
te

th
e

nu
m

be
r

of
ro

w
s

an
d

co
lu

m
ns

on
th

e
de

te
ct

or
.

Th
e

so
ur

ce
an

d
de

te
ct

or
ar

e
po

si
ti

on
ed

at
s

an
d

d
re

sp
ec

ti
ve

ly
.

Th
e

si
ze

of
th

e
de

te
ct

or
is

de
no

te
d

by
D

.
W

it
h
ϕ

w
e

de
no

te
th

e
to

ta
lr

ot
at

io
n

an
gl

e,
i.e

.,
ϕ
=

4π
m

ea
ns

tw
o

fu
ll

re
vo

lu
ti

on
s

ar
e

m
ad

e
in

th
e

he
lic

al
ge

om
et

ri
es

.
W

it
h

r s
an

d
r d

w
e

re
sp

ec
ti

ve
ly

de
no

te
th

e
ra

di
us

of
th

e
so

ur
ce

ci
rc

le
an

d
de

te
ct

or
ci

rc
le

fo
r

la
m

in
og

ra
ph

y.
W

it
h
ϑ

w
e

de
no

te
th

e
to

ta
la

rc
le

ng
th

of
th

e
so

ur
ce

m
ov

em
en

t
in

to
m

os
yn

th
es

is
.

66 CHAPTER 3. GEOMETRIC PARTITIONING

