
Real-time tomographic reconstruction
Buurlage, J.

Citation
Buurlage, J. (2020, July 1). Real-time tomographic reconstruction. Retrieved from
https://hdl.handle.net/1887/123182
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/123182
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/123182


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/123182 holds various files of this Leiden University 

dissertation.  

 

Author: Buurlage, J. 

Title: Real-time tomographic reconstruction 

Issue Date: 2020-07-01 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/123182


Chapter 2

A modern interface for BSP
programs

The bulk-synchronous parallel (BSP) model was introduced as a bridging
model for parallel programming by Valiant in 1989 [Val90]. It enables a
way to structure parallel computations, which aids in the design and ana-
lysis of parallel programs.

The BSP model defines an abstract computer, the BSP computer, on
which BSP algorithms can run. Such a computer consists of p identical pro-
cessors, each having access to their own local memory. A communication
network is available which can be used by the different processors to com-
municate data. During the execution of an algorithm, there are points at
which bulk synchronizations are performed. The time of such a synchron-
ization, the latency, is denoted by l. The communication cost per data word
is denoted by g. The parameters l and g are usually expressed in number
of floating-point operations (FLOPs). They can be related to wall-clock time
by considering the computation rate r of the individual processors which
is measured in floating-point operations per second (FLOP/s). A BSP com-
puter is captured completely by the parameter tuple (p, g, l, r).

This chapter is based on:

Bulk: A Modern C++ Interface for Bulk-Synchronous Parallel Programs.
JW Buurlage, TR Bannink, RH Bisseling. European Conference on Parallel
Processing, 519-532, 2018

17



18 CHAPTER 2. BULK

At a high level, a BSP algorithm is a series of supersteps that each con-
sist of a computation phase and a communication phase. The processors of
a BSP computer can simultaneously send and receive data, and they can
do so independently. This means that the cost of communication is domin-
ated by the maximum number of words sent or received by any processor.
At the end of each superstep a bulk synchronization is performed ensur-
ing that all outstanding communication has been resolved. Each processor
runs the same program, but on different data, which means that BSP al-
gorithms adhere to the Single Program Multiple Data (SPMD) paradigm.

The BSP cost of a BSP algorithm can predict the runtime of that al-
gorithm when it is run on a BSP computer. This cost can be expressed
completely in the parameters of a BSP computer. For each superstep, the
cost depends on 1) w(s)i , the amount of work, measured in FLOPs, per-
formed by processor s in the ith superstep, 2) r(s)i , the number of data
words received, and 3) t(s)i , the number of data words transmitted (sent)
by processor s in superstep i. The runtime of a parallel algorithm is dom-
inated by the processor that takes the longest time, both for computa-
tion and communication. In the case of communication, we therefore re-
quire the concept of an h-relation, defined as the maximum number of
words transmitted or received by any processor during the superstep, i.e.,
hi =max0≤s<p max{t(s)i , r(s)i }. This leads naturally to the following cost, the
BSP cost, of a BSP algorithm consisting of k supersteps:

T =
k−1
∑

i=0

�

max
0≤s<p

w(s)i + g hi + l
�

.

The BSP model has inspired many parallel programming interfaces.
BSPlib [Hil+98] describes a collection of a limited set of primitives which
can be used for writing BSP programs in the C programming language.
Libraries that implement the BSPlib standard include BSPonMPI [Sui] and
MulticoreBSP for Java [YB12] and C [Yze+14]. Paderborn University BSP
(PUB) [Bon+03] is an alternative BSP library that includes features not
included in BSPlib such as subset synchronization and non-blocking col-
lective operations. A functional BSP library is provided in BSML [LGB05]
for the multi-paradigm programming language Objective CAML. Big data
frameworks based on the BSP model include the popular MapReduce [DG04]
and Pregel [Mal+10] frameworks introduced by Google. These frame-
works have open-source implementations in respectively Apache Hadoop



2.1. THE BULK LIBRARY 19

and Apache Giraph, the latter of which is used for large scale graph com-
puting by, e.g., Facebook [Chi+15]. Apache Hama [Sid+16] is a recent
BSPlib alternative for the Java programming language.

For the C++ programming language, high-level parallel programming
libraries include HPX [Hel+17], whose current interface focuses on asyn-
chronous and concurrent applications, UPC++ [Zhe+14], which provides
a generic and object-oriented partitioned global address space (PGAS) in-
terface, and BSP++ [HFE10] which targets hybrid SMP architectures and
implements direct remote memory access but not bulk-synchronous mes-
sage passing.

Modern hardware is increasingly hierarchical. In a typical HPC cluster
there are many nodes, each consisting of (several) multi-core processors
together with accelerators such as GPUs or many-core coprocessors. Fur-
thermore, there are multiple layers of random-access memory and caches
which all differ in, e.g., size, latency, and read and write speed. In 2011,
Valiant introduced Multi-BSP [Val11], a hierarchical execution model based
on BSP. The nested execution of BSP programs is available in, e.g., the PUB,
MulticoreBSP, and NestStep [Keß00] libraries.

In this chapter we introduce Bulk, a library for the C++ programming
language. The current version is based on the C++17 standard [ISO17].
By leveraging common idioms and features of modern C++ we increase
memory safety and code reuse, and we are able to eliminate boilerplate
code from BSP programs. Furthermore, the flexible backend architecture
ensures that programs written on top of Bulk are able to simultaneously
target systems with shared memory, distributed memory, or even hybrid
systems. The remainder of this chapter is structured as follows. In Sec-
tion 2.1 we introduce the Bulk library, and highlight the differences with
previous BSP libraries. In Section 2.2 we discuss two applications, reg-
ular sample sort and the fast Fourier transform (FFT). In Section 2.3, we
provide experimental results for these applications. Finally, in Section 2.4,
we present our conclusions and discuss possibilities for future work.

2.1 The Bulk library

The Bulk library is a modern BSPlib replacement which focuses on the
memory safety, portability, code reuse, and ease of implementation of BSP



20 CHAPTER 2. BULK

bulk::backend::environment env;

env.spawn(env.available_processors(), [](auto& world) {

world.log("Hello world from %d / %d\n",

world.rank(), world.active_processors());

});

Listing 2.1: The entry point for parallelism using Bulk. We create an envir-
onment, where backend is a placeholder for a concrete backend such as MPI
or C++ threads. Next, we spawn an SPMD block using all the available
processors.

algorithms. Additionally, Bulk provides the possibility to program hybrid
systems and it has several new features compared to existing BSP librar-
ies. First, we present all the concepts of the library that are necessary to
implement classic BSP algorithms.

Bulk interface Here, we give an overview of the Bulk C++ interface1.
We use a monospace font in the running text for C++ code and symbols.
A BSP computer is captured in an environment. This can be an object en-
capsulating, e.g., an MPI cluster, a multi-core processor or a many-core
coprocessor. Within this BSP computer, an SPMD block can be spawned.
Collectively, the processors running this block form a parallel world that is
captured in a world object. This object can be used to communicate, and
for obtaining information about the local process, such as the processor
identifier (PID, in Bulk denoted rank) and the number of active processors.
In all the code examples, s refers to the local rank, and t to an arbitrary
target rank.

A simple program written using Bulk first instantiates an environment
object, which is then used to spawn an SPMD block (in the form of a C++
function) on each processor, to which the local world is passed. See Listing
2.1 for a code example, and Table 2.1 for a table with the relevant methods.

The spawned SPMD section, which is a function that takes the world as
a parameter, consists of a number of supersteps. These supersteps are de-
limited with a call to world::sync. The basic mechanism for communication

1Although we try to be as complete as possible, we do not give a detailed and exhaust-
ive list of all the methods and functions provided by the library. For such a list, together
with all the function signatures and further examples we refer to the online documenta-
tion which can be found at https://jwbuurlage.github.com/Bulk/.



2.1. THE BULK LIBRARY 21

Table 2.1: Available methods for environment and world objects.

class method description
environment spawn starts an SPMD block

available_processors returns maximum p
world active_processors returns chosen p

rank returns local processor ID s
next_rank returns s+ 1 (mod p)
prev_rank returns s− 1 (mod p)
sync ends the current superstep
log logs a string message

revolves around the concept of a distributed variable, which is captured
in a var object. These variables should be constructed in the same super-
step by each processor. Although each processor defines this distributed
variable, its value is generally different on each processor. The value con-
tained in the distributed variable on the local processor is called the local
value, while the concrete values on remote processors are called the remote
values.

A distributed variable is of little use if it does not provide a way to access
remote values of the variable. Bulk provides encapsulated references to the
local and remote values of a distributed variable. We call these references
image objects. Images of remote values can be used for reading, e.g., auto
y = x(t).get() to read from processor t, and for writing, e.g., x(t) = value,
both with the usual bulk-synchronous semantics. See Listing 2.2 for a more
elaborate example. Since the value of a remote image is not immediately
available upon getting it, it is contained in a future object. In the next
superstep, its value can be obtained using future::value, e.g., y.value().

In this simple example, we already see some major benefits of Bulk
over existing BSP libraries; 1) we avoid accessing and manipulating raw
memory locations in user code, making the code more memory safe and
2) the resulting code is shorter, more readable and therefore less prone to
errors. Note that these benefits do not come at a performance cost, since
it can be seen as syntactic sugar that resolves to calls to internal functions
that resemble common BSP primitives.



22 CHAPTER 2. BULK

bulk::var<int> x(world);

auto t = world.next_rank();

x(t) = 2 * world.rank();

world.sync();

// x now contains two times the ID of the previous logical processor

auto b = x(t).get();

world.sync();

// b.value() now contains two times the local ID

Listing 2.2: The basic usage of a distributed variable. The variable is cre-
ated on each processor running the SPMD block. Its images can then be
written to by using the convenient syntax x(processor) = value. Remote val-
ues are obtained by using the syntax x(processor).get().

When restricting ourselves to communication based on distributed vari-
ables, we lose the possibility of performing communication based on slices
or arrays. Distributed variables whose images are arrays have a special
status in Bulk, and are captured in coarray objects. The functionality of
these objects is inspired by Coarray Fortran [NR98]. Coarrays provide
a convenient way to share data across processors. Instead of manually
sending and receiving individual data elements, coarrays model distrib-
uted data as a 2D array, where the first dimension is over the processors,
and the second dimension is over local 1D array indices. The local ele-
ments of a coarray can be accessed as if the coarray were a regular 1D
array. Images to the remote arrays belonging to a coarray xs are obtained
in the same way as for variables, by using the syntax xs(t). These images
can be used to access the remote array. For example, xs(t)[5] = 3 puts the
value 3 in the array element at index 5 of the local array at processor t.
Furthermore, convenient syntax makes it easy to work with slices of coar-
rays. A basic slice for the element interval [start, end), i.e., including start
but excluding end, is obtained using xs(t)[{start, end}]. See Listing 2.3 for
examples of common coarray operations. We summarize the most import-
ant put and get operations for distributed variables and coarrays in Table
2.2.



2.1. THE BULK LIBRARY 23

auto xs = bulk::coarray<int>(world, 4);

auto t = world.next_rank();

xs[0] = 1;

xs(t)[1] = 2 + world.rank();

xs(t)[{2, 4}] = {123, 321};

world.sync();

// xs is now [1, 2 + world.prev_rank(), 123, 321]

Listing 2.3: The basic syntax for dealing with coarrays.

Instead of using distributed variables, it is also possible to perform one-
sided mailbox communication using message passing, which in Bulk is car-
ried out using a queue. The message passing syntax is greatly simplified
compared to previous BSP interfaces, without losing power or flexibility.
This is possible for two reasons. First, it is possible to construct several
queues, removing a common use case for tags to distinguish different kinds
of messages. Second, messages consisting of multiple components can be
constructed on demand using a syntax based on variadic templates. This
gives us the possibility of optionally attaching tags to messages in a queue,
or even denoting the message structure in the construction of the queue it-
self. For example, queue<int, float[]> is a queue with messages that consist
of a single integer, and zero or more real numbers. See Listing 2.4 for the
basic usage of these queues.

In addition to distributed variables and queues, common communica-
tion patterns such as gather_all, foldl, and broadcast are also available. The
Bulk library also has various utility features for, e.g., logging and bench-
marking. We note furthermore that it is straightforward to implement gen-
eric skeletons on top of Bulk, since all distributed objects are implemented
in a generic manner.

Backends and nested execution Bulk has a powerful backend mechan-
ism. The initial release provides backends for distributed memory based on
MPI [MPI94], shared memory based on the standard C++ threading library,
and data streaming for the Epiphany many-core coprocessor [ONU14].
Note that for a shared-memory system, only standard C++ has to be used.



24 CHAPTER 2. BULK

Table 2.2: An overview of the syntax for puts and gets in Bulk. Here, x
and xs are a distributed variable and a coarray, respectively, e.g., auto x =
bulk::var<int>(world), auto xs = bulk::coarray<int>(world, 10)

object image description code
var local (∗) set x = 5

use auto y = x + 3

remote put x(t) = 5

get auto y = x(t).get()

coarray local (∗) set xs[idx] = 5

use auto y = xs[idx] + 3

remote put xs(t)[idx] = 5

get auto y = xs(t)[idx].get()

put slice(∗∗) xs(t)[{start, end}] = {values...}

get slice(∗∗) auto ys = xs(t)[{start, end}].get()

(∗): a local image of a value of type T gets implicitly cast to a T& reference
to the underlying value.
(∗∗): subarrays corresponding to slices are represented using std::vector
containers.

This means that a parallel program written using Bulk can run on a variety
of systems, simply by changing the environment that spawns the SPMD
function. No other changes are required. In addition, libraries that build
on top of Bulk can be written completely independently from the environ-
ment, and only have to manipulate the world object.

Different backends can be used together. For example, distinct com-
pute nodes can communicate using MPI while locally performing shared-
memory multi-threaded parallel computations, all using a single program-
ming interface. Hybrid shared/distributed-memory programs can be writ-
ten simply by nesting environment objects with different backends.



2.2. APPLICATIONS 25

// queue containing simple data

auto numbers = bulk::queue<int>(world);

numbers(t).send(1);

numbers(t).send(2);

world.sync();

for (auto value : numbers)

world.log("%d", value);

// queue containing multiple components

auto index_tuples = bulk::queue<int, int, float>(world);

index_tuples(t).send({1, 2, 3.0f});

index_tuples(t).send({3, 4, 5.0f});

world.sync();

for (auto [i, j, k] : index_tuples)

world.log("(%d, %d, %f)", i, j, k);

Listing 2.4: The use of message passing queues. The local inbox acts as a
regular container, so we can use a range-based for loop. The messages can
be accessed in a concise way using structured bindings.

2.2 Applications

2.2.1 Parallel regular sample sort

Here, we present our BSP variant of the parallel regular sample sort pro-
posed by Shi and Schaeffer in 1992 [SS92]. Hill, Donaldson, and Skilli-
corn [HDS97] presented a BSP version, and Gerbessiotis [Ger15] studied
variants with regular oversampling. Our version reduces the required num-
ber of supersteps by performing a redundant mergesort of the samples on
all processors.

Our BSP variant is summarized in Algorithm 1. Every processor first
sorts its local block of size b = n/p by a quicksort of the interval [sb, (s +
1)b−1], where s is the local processor identity. The processor then takes p
regular samples at distance b/p and broadcasts these to all processors. We
assume for simplicity that p divides b, and, for the purpose of explanation,
that there are no duplicates (which can be achieved by using the original
ordering as a secondary criterion). All processors then synchronize, which



26 CHAPTER 2. BULK

ends the first superstep. In the second superstep, the samples are concat-
enated and sorted. A mergesort is used, since the samples originating in
the same processor were already sorted. Thus, p parts have to be merged.
The start of part t is given by start[t] and the end by start[t+1]−1. From
these samples, p splitters are chosen at distance p, and they are used to
split the local block into p parts. At the end of the second superstep, a local
contribution X st is sent to processor P(t). In the third and final superstep,
the received parts are concatenated and sorted, again using a mergesort
because each received part has already been sorted. See Listing 2.5 for an
illustration of Bulk implementations of the two communication phases of
Algorithm 1.

Shi and Schaeffer have proven that the block size at the end of the
algorithm is at most twice the block size at the start, thus bounding the
size by bs ≤ 2b. A small optimization made possible by our redundant
computation of the samples is that not all samples need to be sorted, but
only the ones relevant for the local processor. The other samples merely
need to be counted, separately for those larger and for those smaller than
the values in the current block.

The total BSP cost of the algorithm, assuming p is a power of two, is

Tsort ≤
n
p

log2
n
p
+ p2 log2 p+

2n
p
· log2 p+

�

p(p− 1) + 2
n
p

�

g + 2l. (2.1)

This is efficient in the range p ≤ n1/3, since the sorting of the array data
then dominates the redundant computation and sorting of the samples.

2.2.2 Fast Fourier Transform

The discrete Fourier transform (DFT) of a complex vector x of length n is
the complex vector y of length n defined by

yk =
n−1
∑

j=0

x je
−2πi jk/n =

n−1
∑

j=0

x jωn
jk, for 0≤ k < n, (2.2)

where we use the notation ωn = e−2πi/n. The DFT can be computed in
5n log2 n floating-point operations by using a radix-2 Fast Fourier Trans-
form (FFT) algorithm assuming that n is a power of two.



2.2. APPLICATIONS 27

Algorithm 1 Regular sample sort for processor P(s), with 0≤ s < p.
input: x: vector of length n, n mod p2 = 0, block distributed with block

size b = n/p.
output: x sorted in increasing order, block distributed with variable block

size bs ≤ 2b.

Quicksort(x, sb, (s+ 1)b− 1);
for i := 0 to p− 1 do

samples[i] := x[sb+ i · b
p ];

for t := 0 to p− 1 do
put samples in P(t);

Sync;

for t := 0 to p− 1 do
start[t] := t p;
for i := 0 to p− 1 do

sample[t p+ i] := samplet[i];
start[p] := p2;
Mergesort(sample, start, p);

for t := 0 to p− 1 do
splitter[t] := sample[t p];

splitter[p] :=∞;

for t := 0 to p− 1 do
X st := {x i : sb ≤ i < (s+ 1)b ∧ splitter[t]≤ x i < splitter[t + 1]};
put X st in P(t);

Sync;

xs := ∪p−1
t=0X ts;

starts[0] := 0;
for t := 1 to p do

starts[t] := starts[t − 1] + |X t−1,s|;
bs := starts[p];
Mergesort(xs, starts, p);



28 CHAPTER 2. BULK

Listing 2.5: Two communication phases in the regular sample sort al-
gorithm.

auto samples = bulk::coarray<T>(world, p * p); // Broadcast samples

for (int t = 0; t < p; ++t)

samples(t)[{s * p, (s + 1) * p}] = local_samples;

world.sync();

auto q = bulk::queue<int, T[]>(world); // Contribution from P(s) to P(t)

for (int t = 0; t < p; ++t)

q(t).send(block_sizes[t], blocks[t]);

world.sync();

Our parallel algorithm for computing the DFT uses the group-cyclic
distribution with cycle c ≤ p, and is based on the algorithm presented
in [IB01] and explained in detail in [Bis04]. The group-cyclic distribution
first assigns a block of the vector x to a group of c processors and then
assigns the vector components within that block cyclically. The number of
processor groups (and blocks) is p/c. The block size of a group is nc/p.
Here, we assume that n, p, c are powers of two. For c = 1, we retrieve the
regular block distribution, and for c = p the cyclic distribution.

The parallel FFT algorithm starts and ends in a cyclic distribution. First,
the algorithm permutes the local vector with components

xs, xs+p, xs+2p, . . . , xs+n−p,

by swapping pairs of components with bit-reversed local indices. The res-
ulting storage format of the data can be viewed as a block distribution, but
with the processor identities bit-reversed. The processor numbering is re-
versed later, during the first data redistribution. After the local bit reversal,
a sequence of butterfly operations is performed, just as in the sequential
FFT, but with every processor performing the pairwise operations on its
local vector components. In the common case p ≤

p
n, the BSP cost of this

algorithm is given by

TFFT, p≤
p

n =
5n log2 n

p
+ 2

n
p

g + l. (2.3)



2.3. RESULTS 29

Table 2.3: Speedups of parallel sort (top) and parallel FFT compared to
std::sort from libstdc++, and the sequential algorithm from FFTW 3.3.7,
respectively. Also given is the sequential time tseq.

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 tseq(s)
Sort n= 220 0.93 1.95 3.83 6.13 8.10 12.00 0.08

n= 221 1.01 2.08 4.11 7.28 10.15 15.31 0.19
n= 222 0.88 1.82 3.58 5.99 10.27 13.92 0.33
n= 223 0.97 1.90 3.63 6.19 11.99 16.22 0.72
n= 224 0.93 1.79 3.21 6.33 8.47 14.76 1.39

FFT n= 223 0.99 1.07 2.08 2.77 5.60 5.51 0.20
n= 224 1.00 1.26 2.14 3.07 5.68 6.08 0.45
n= 225 1.00 1.23 2.22 3.09 5.80 6.05 0.96
n= 226 0.99 1.24 2.01 3.28 5.48 5.97 1.93

2.3 Results

We evaluate the performance of Bulk implementations of the BSP algorithms
sample sort and FFT outlined in the previous section. The numbers presen-
ted are obtained on a single computer with two Intel Xeon Silver 4110
CPUs, each with 8 cores and 16 hardware threads for a total of 32 hard-
ware threads, using the C++ threads backend. The benchmark programs
are compiled with GCC 7.2.1. The results are shown in Table 2.3. The
parallel sort implementation is a direct translation of Algorithm 1, except
that we opt for a three-phase communication protocol instead of relying
on bulk-synchronous message passing to avoid potentially superfluous buf-
fer allocations. The parallel FFT implementation is as described in Section
2.2.2, where we use FFTW [FJ98] as a sequential kernel2. The input arrays
for both algorithms have size n, and they are run on p processors.

For the parallel sorting algorithm, the array contains uniformly dis-
tributed random integers between 0 and 2 × 105. We observe that good
speedups are obtained compared to the sequential implementation. The
maximum speedup seen is about 16× with p = 32 and n= 223.

For the FFT results, the vector has size n. We observe good scalability
up to p = 16, where we seem to hit a limit presumably because of the
shared floating-point unit (FPU) between two logical threads on the same
physical core, and possibly also due to the memory requirements in the

2We use plans with the so-called planning-rigor flag FFTW_MEASURE.



30 CHAPTER 2. BULK

redistribution phase.
Various other algorithms and applications have been implemented on

top of Bulk. The current library release includes a number of examples,
such as simple implementations for the inner product, or the word count
problem. Future releases of the library are planned to have additional
components. One such component is support for arbitrary data distribu-
tions, which is already available as an experimental feature. Furthermore,
an open-source application in computed tomography, Tomos, has been de-
veloped on top of Bulk, illustrating that the library can be used for the
implementation of more complicated software.

2.3.1 Bulk vs. BSPlib

We believe the main goal of Bulk, which is to improve memory safety, port-
ability, code reuse, and ease of implementation compared to BSPlib, has
been largely achieved. In Listing 2.6, we show a Bulk and a BSPlib imple-
mentation of a common operation. The Bulk implementation avoids the
use of raw pointers, uses generic objects, requires significantly fewer lines
of code, and is more readable.

We compare the performance of Bulk to a state-of-the-art BSPlib imple-
mentation, MulticoreBSP for C (MCBSP) [YR14], version 2.0.3 released in
May 2018. We use the implementations of BSPedupack [Bis04], version
2.0.0-beta, as the basis of our BSPlib programs.

Table 2.4 shows the performance of Bulk compared to BSPlib. For sort-
ing, the Bulk implementation is significantly faster, presumably because
the internal sorting algorithm used is different. The Bulk implementation
uses the sorting algorithm from the C++ standard library, whereas the
BSPlib implementation uses the quicksort from the C standard library. The
BSPedupack FFT implementation has been modified to use FFTW for the
sequential kernel. For the FFT, MCBSP outperforms Bulk slightly on larger
problem sizes.

In Table 2.5, the BSP parameters are measured for Bulk and MCBSP.
The computation rate r is measured by applying a simple arithmetic trans-
formation involving two multiplications, one addition and one subtraction,
to an array of 223 double-precision floating-point numbers. The latency l
is measured by averaging over 100 bulk synchronizations without com-
munication. The communication-to-computation ratio g is measured by



2.3. RESULTS 31

// BSPlib

int* xs = malloc(10 * sizeof(int));

bsp_push_reg(xs, 10 * sizeof(int));

bsp_sync();

int ys[3] = {2, 3, 4};

bsp_put((s + 1) % p, ys, xs, 2, 3 * sizeof(int));

bsp_sync();

...

bsp_pop_reg(xs);

free(xs);

// Bulk

auto xs = bulk::coarray<int>(world, 10);

xs(world.next_rank())[{2, 5}] = {2, 3, 4};

world.sync();

Listing 2.6: A comparison between Bulk and BSPlib for putting a subarray.

Table 2.4: Comparing implementations of BSPedupack running on top of
MCBSP, to our implementations on top of Bulk.

Sort FFT
size tMCBSP (s) tBulk (s) size tMCBSP (s) tBulk (s)
n= 220 24.49 13.80 n= 222 0.153 0.144
n= 221 53.00 28.76 n= 223 0.305 0.320
n= 222 113.6 62.42 n= 224 0.629 0.694
n= 223 237.2 142.8

communicating subarrays of various sizes, consisting of up to 107 double-
precision floating-point numbers, between various processor pairs.

The MCBSP library uses a barrier based on a spinlock mechanism by
default. This barrier gives better performance, leading to a low value for l.
Alternatively, a more energy-efficient barrier based on a mutex can be used,
which is similar to the barrier that is implemented in the C++ backend for
Bulk. With this choice, the latency of MCBSP and Bulk are comparable.
MCBSP is able to obtain a better value for g. We plan to include a spin-



32 CHAPTER 2. BULK

Table 2.5: The BSP parameters for MCBSP and the C++ thread backend
for Bulk.

Method r (GFLOP/s) g (FLOPs/word) l (FLOPs)
MCBSP (spinlock) 0.44 2.93 326
MCBSP (mutex) 0.44 2.86 10484
Bulk 0.44 5.65 11702

lock barrier in a future release of Bulk, and to improve the communication
performance further3.

2.4 Conclusion

We present Bulk, a modern BSP interface and library implementation with
many desirable features such as memory safety, support for generic imple-
mentations of algorithms, portability, and encapsulated state, and show
that it allows for clear and concise implementations of BSP algorithms.
Furthermore, we show the scalability of two important applications im-
plemented in Bulk by providing experimental results. Even though both
algorithms have O (n log n) complexity, and nearly all input data have to
be communicated during the algorithm, we still are able to obtain good
speedups with our straightforward implementations. The performance of
Bulk is close to that of a state-of-the-art BSPlib implementation, except for
the mutex-based barrier.

3Spinlock barriers were introduced in Bulk version 1.1.0 which was released after
the publication on which this chapter is based. With this implementation the measured
latency l for Bulk is reduced to 467 FLOPs.


