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Chapter 1

Introduction

The ability to look inside an object without destroying it is useful for many
applications in, e.g., science, industry, and medicine. In tomographic ima-
ging, projection images of the object are acquired along different directions
using some kind of penetrating beam. From these projection images, the
3D interior can be computed using tomographic reconstruction methods
[Her09; KS01].

Tomography is the technique behind many 3D imaging devices and
techniques. Well known examples include medical CT scanners and µ-CT
(laboratory) setups. At synchrotron radiation facilities, a (highly luminis-
cent) beam of X-rays is generated by accelerating electrons to high speeds
along a circular trajectory, and this beam can be used to perform tomo-
graphic experiments. Electron microscopes penetrate samples with an elec-
tron beam instead of X-rays, and by tilting the sample a tilt series of pro-
jection images of, e.g., a nanoparticle can be produced.

The imaging techniques outlined above rely on the same basic prin-
ciple. A source generates some form of penetrating radiation, for example
X-rays. A 3D object is placed in front of the source. Inside this object, the
radiation beam loses its intensity through interaction with the material.
In other words, the beam is attenuated, and how much it gets attenuated
depends on the kind of beam, and certain volumetric properties of the ma-
terial (e.g., its density).

A detector captures a 2D profile of the radiation beam after it has passed
through the object. The resulting 2D images are called projection images,
and correspond in some sense to shadows of the object. This process is re-

1



2 CHAPTER 1. INTRODUCTION

peated for a number of combinations of source/detector positions. Tomo-
graphic reconstruction algorithms deal with the problem of obtaining a 3D
profile of the interior of the imaged object, from a set of projection images.

This reconstruction step is typically performed offline, i.e., after the
scan has completed. If instead the reconstruction can be performed online
and in real time, then the insight gained from the 3D reconstruction of the
object can be used to immediately steer the experiment. Acquisition para-
meters such as source and detector positioning could be optimized based
on the internal structure of the specific object being imaged. Furthermore,
dynamic processes in the imaged object could be followed as they occur.
Consider an experiment where the behaviour is investigated of an object
under changes in external parameters, such as the temperature or pressure.
Real-time access to reconstructions would aid the on-the-fly adjustment of
these parameters. For example, the operator can choose to stop heating
the object as soon as a phase transition is observed.

The runtime of conventional reconstruction algorithms is typically much
longer than the time it takes to acquire the projection images, and this
prohibits the real-time reconstruction and visualization of the imaged ob-
ject. The research in this dissertation introduces various techniques (in
particular: new parallelization schemes, data partitioning methods, and a
quasi-3D reconstruction framework) that significantly reduce the time it
takes to run conventional tomographic reconstruction algorithms without
affecting image quality. The resulting methods and software implement-
ations put reconstruction times in the same ballpark as the time it takes
to do a tomographic scan, so that we can speak of real-time tomographic
reconstruction.

1.1 Tomographic reconstruction

Before discussing our novel techniques for real-time tomography, I will
first give a general overview of mathematical methods that are required
for a complete understanding of the work. For simplicity, we will initially
consider 2D tomography in our mathematical description, where we aim
to reconstruct the interior of a 2D object from its 1D projections. All ideas
apply directly to 3D tomography, i.e., the reconstruction of a 3D object
from its 2D projections.
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Rf

f

Figure 1.1: The Radon transform of a function are its line integrals. Here,
we visualize 5 lines passing through the domain of a function f . The blue
line represents the line integral values along this specific angle, assuming
the function f is constant. This corresponds to a projection image in a
tomographic experiment.

The interior of an object can be modelled as a function f : R2 → R,
with f (x) representing the value of some volumetric property of the object
at location x. The total attenuation of a ray ` passing through the object,
can be written as a line integral over the function f . Therefore, it is natural
to consider the function Rf : L → R, where L is the set of all lines in the
plane, and

Rf (`) =

∫

`

f (x) dx.

The function Rf is called the Radon transform of f , and is closely re-
lated to projection images in tomography. If we have a ray SD passing
through the imaged object from source position S to detector pixel D, then
Rf (SD) represents the measurement of the detector at pixel D for source
position S. This is visualized in Figure 1.1.

Tomographic reconstruction methods aim to retrieve f from its Radon
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transform Rf .

1.1.1 Projection matrix

Instead of considering the set of all lines, we consider a specific set of lines
G that is specific to real-world experimental conditions. These conditions
are captured in the acquisition geometry, corresponding to a collection of
projection parameters. These parameters are (1) the detector position, (2)
the detector tilt, (3) the position of the source, (4) the physical size of the
detector, and (5) the detector shape in pixels. The set G is the set of lines
defined by all source–detector pixel pairs over all projections.

Furthermore, we look at a discretized version of the real-valued func-
tion f . We assume the object is contained in a rectangular box, and dis-
cretize this box in a number of volume elements, or voxels.

The discrete analog of the Radon transform, is the linear transformation
defined by the projection matrix W . This matrix has a row for each line in
G, and a column for each voxel of the volume. An element Wi j of the matrix
corresponds to the length of the line from G at index i, through the voxel
with index j. This matrix is sparse, since each line only intersects a small
minority of the voxels.

The product y ≡ Wx is called the forward projection of the image x,
and corresponds to the imaging experiment, with y representing the val-
ues of the projection images. A matrix–vector product with the adjoint
transformation, x ≡ W T y, is called the backprojection of y. Visually, this
corresponds to smearing out the measured values over the volume.

Tomographic reconstruction is a linear inverse problem: given meas-
urements y find an image x such that:

Wx= y. (1.1)

The matrix W is generated by an acquisition geometry. To deal with noise
in the data and errors in the model, the system is often solved in the least-
squares sense:

x= argmin
x̃∈Rn

||y−W x̃||2. (1.2)

There are two important systems that are used to compute least squares
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solutions to underdetermined and overdetermined systems, respectively:

WW T z= y, x=W T z. (1.3)

W T Wx=W T y. (1.4)

The system (1.4) is known as the normal equations. A solution to the nor-
mal equations is also a solution to (1.2).

1.1.2 Direct methods

Filtered backprojection

A common acquisition geometry is parallel beam, where the source is (con-
ceptually) infinitely far away. In this case, the incoming rays in each de-
tector pixel are perpendicular to the detector. Because of this property, the
3D reconstruction actually corresponds to a series of 2D reconstructions:
one for each pixel row on the detector.

A fast reconstruction method for parallel beam geometries is filtered
backprojection (FBP). We split the data into blocks, one for each one-dimen-
sional projection:

y= [y[1] | · · · |y[P]]T .

This data is first filtered, which in this case means a one-dimensional con-
volution Ch with kernel h is applied to each block. Next, the filtered data
is backprojected:

x=W T

�

P
⊕

p=1

Ch

�

y. (1.5)

Here, the direct sum indicates that Ch acts upon each block separately.
One choice for h is the Ram–Lak filter, where for the ith element of the
Fourier transformed filter we have F (h)i ∼ |ξi| with ξi the corresponding
frequency. This filter yields an exact reconstruction in case of unlimited
and noise-free data.

Using the convolution theorem, each row can be filtered efficiently:

Chy[i] ≡ h ∗ y[i] =F−1(F (h)�F (y[i])).

Here, � denotes pointwise multiplication.
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FDK

If we have a point source at some finite distance from the object, the incom-
ing beam is not parallel but cone shaped. When the source and detector
move in a circular trajectory around the object (or equivalently, the object
rotates around a single axis), we speak of a circular cone-beam geometry.

The FDK method [FDK84] is a method similar to filtered backprojection
for such geometries. The data is still filtered in the same manner as for FBP,
with a 1D convolution for each row on the detector. In addition, the data is
weighted, with rows away from the center of the detector being dampened
before backprojecting.

Let M be the number of pixel rows on the detector. As before, we split
our data into blocks, one for each pixel row of our (now two-dimensional)
projections. An FDK reconstruction is of the form:

x=W T

�

PM
⊕

p=1

Ch

�

Zy. (1.6)

Here, Z = diag(zi) is a diagonal matrix. If an element yi is part of the
pth projection, then it has an associated detector pixel position fi, source
position sp, and detector plane Dp. The FDK weights are given by:

zi ≡
d(sp, fi)

d(sp, Dp)
,

where d(·, ·) denotes the Euclidean distance in R3.

1.1.3 Iterative methods

Direct inversion methods such as FBP and FDK effectively approximate the
inverse of the projection matrix in a single step. An alternative class of
reconstruction methods are iterative methods. As the name implies, it-
erative methods refine an image over a number of iterations. Here, we
will list a number of iterative methods that are commonly used in tomo-
graphic reconstruction. We roughly distinguish between two kinds of it-
erative methods: row-action methods relax equations defined by the rows
of the projection matrix, while column-action methods act on the matrix
columns instead.
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ART

The prototypical row-action method is the Kaczmarz method [Kac37] (also
known as ART [GBH70] in the tomography literature).

Each row Wi: of the matrix W , together with the component yi defines
an equation that x should satisfy:

Wi: · x= yi.

Geometrically, this equation defines a hyperplane. A simple, but (perhaps
surprisingly) effective iterative way of solving (1.1), is to make the current
iterate satisfy these equations in turn. Let x(k) be the current iterate, s the
step to take, and say we want the new iterate to satisfy the ith equation.
Then we have for the next iterate:

Wi: · x(k+1) = yi,

Wi: · (x(k) + s) = yi,

Wi: · s= yi −Wi: · x(k).

We can view this as an extremely underdetermined system for the vector
s. The shortest step can be computed using the generalized inverse, since
it yields the minimum-norm least squares solution:

s=W †
i:(yi − ri · x(k)) =

Wi:

||Wi:||22
(yi −Wi: · x(k)).

Geometrically speaking, the next iterate is the projection of the current
iterate on the hyperplane defined by the ith equation.

ART corresponds to Gauss–Seidel iteration on the system (1.3).

ICD

Iterative coordinate descent (ICD) [Wat94], a column-action method, up-
dates only one of the components x j of the image x at each iteration:

x← x+δe j,
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where the vector e j has a 1 in the jth position, and zeros elsewhere. It is
natural to choose δ in such a way that the residual is minimized:

y−W (x+δe j) = 0,

Wδe j = y−Wx,

δW: j = y−Wx.

Here, W: j is the jth column of W . We view this as an overdetermined
system for δ, and obtain the least-squares solution using the generalized
inverse:

δ =W †
: j (y−Wx) =

W T
: j

||W: j||22
(y−Wx) .

ICD corresponds to Gauss–Seidel iteration on the system (1.4).

SART

Simultaneous ART (SART) [And84] is a modification of ART to update the
current iterate in order to (attempt to) satisfy a block of equations at the
same time. The vector y = [y[1] | · · · |y[B]]T is split into B blocks. The
update for a block y[i] can be written as:

x← x+ωW [i]T M [i](y[i] −W [i]x).

where ω is an optional relaxation parameter, and M = diag(m), mi =
||Wi:||−2

2 . The blocks are updated in a sequential, cyclic manner.

SIRT

SIRT [Gil72; BG05] is an iterative method that makes use of full forward
and backprojection operations, and is a simultaneous row-action method.
We define a SIRT update to be:

x← x+ωCW T R(y−Wx),

where ω is an optional relaxation parameter, and:

C = diag(c), c−1
j =

m
∑

i=1

Wi j;

R= diag(r), r−1
i =

n
∑

j=1

Wi j.
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If instead C = R = Id is chosen, SIRT reduces to Landweber iteration
which is equivalent to solving (1.4) using gradient descent.

Krylov

The k-dimensional Krylov subspace generated with W and y is defined as:

Kk(W,y) = span{y, Wy, . . . , W k−1y}.

These subspaces are of interest since even for low k they contain good
approximate solutions. An intuitive way to see why this is, is by consider-
ing the Cayley–Hamilton theorem that states that a matrix is a root of its
own characteristic polynomial. This means the inverse can be expanded in
terms of powers of W :

a0Id+ a1W + a2W 2 + . . .+ anW n = 0,

=⇒ W−1 = b0Id+ b1W + b2W 2 + . . . + bn−1W n−1.

We see that if large powers of W (can be coerced to) tend to zero, we can
approximate the inverse using only small powers of W , which is equivalent
to choosing solutions from the Krylov subspaces.

The kth iteratate generated by a Krylov method is the optimal element
fromKk(W,y) for solving the least squares problem (1.2). There are mul-
tiple notions of optimality, and here we consider two. The first notion, and
perhaps the most obvious, is to minimize the residual:

x(k) = argmin
x∈Kk(W,y)

||Wx− y||2.

GMRES is a Krylov method of this kind. The second notion of optimality is
to let the kth residual be perpendicular to Kk(W,y). The conjugate gradi-
ent (CG) method [HS52] is of this kind, and can be applied to symmetric
positive definite systems. CGLS amounts to applying CG to the normal
equations (1.4). Similarly, CGNE is obtained when applying CG to (1.3).

Variational methods

If prior knowledge on the image is available, then reconstruction quality
can be significantly improved. A general way to do this is by adding penalty
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terms, leading to regularized least squares problems. For example, if the
image is piecewise constant then the gradient image will be sparse. In
other words, we expect the 1-norm of the gradient magnitude |∇x| of the
image to be small. This can be incorporated into the least squares problem:

argmin
x∈Rn

||y−Wx||22 +λ|| |∇x| ||1. (1.7)

Algorithms for such variational formulations typically work by minimizing
each successive term in turn. Examples of such algorithms include FISTA
[BT09] and Chambolle–Pock [CP10].

Many iterative algorithms, including SIRT, Krylov methods, FISTA, and
Chambolle–Pock, have one key aspect in common: they alternate between
forward projection and backprojection operations. Furthermore, these are
typically the most computationally expensive steps in the algorithm. Al-
gorithms that use the forward projection and backprojection as subroutines
are usually computationally more efficient than, e.g., ART that operate on
individual equations, as they enable parallel updates.

An important distinction between iterative and direct reconstruction
methods, is that direct methods are local: each volume element can be
reconstructed independently and efficiently from the (filtered) projection
data.

A selection of reconstruction methods are compared in Figure 1.2.

1.2 Low-communication partitionings

Modern computers, and in particular computer systems that are used for
large-scale scientific computations, are massively parallel. They typically
have a high number of largely independent processing elements, such as
processors, nodes, GPUs, or cores.

When designing algorithms that run on such systems, choosing the
right data distribution is key. Specifically, data needed by one of the pro-
cessing elements should be local to that element, so that it is easy to retrieve
the necessary data during the execution of an algorithm. In other words,
we should partition the input data and distribute the parts over the pro-
cessing elements appropriately. A partitioning for p processing elements is
defined as follows.
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(a) SIRT (b) FBP

(c) SART (d) CGLS

Figure 1.2: Reconstructions of a 2D FORBILD phantom for a selection of
different methods.

Definition 1. A p-way partitioning πV of a set V is a collection of subsets
Vi ⊂ V :

πV = {V1, . . . , Vp},

such that

(i) the parts are non-empty: Vi 6= ;,

(ii) the partitioning is complete:
⋃

i Vi = V , and,
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(iii) the parts are mutually disjoint: i 6= j =⇒ Vi ∩ Vj = ;.

A relevant example that is closely related to the partitioning problems
treated in this dissertation is partitioning for the parallel sparse matrix–
vector product (SpMV). For a sparse matrix A, the relevant input data V is
a set of row–column pairs indicating the location of nonzero elements:

V ≡ {(i, j) | Ai j 6= 0}.

When we compute an SpMV y = Ax, we are computing a series of inner
products: one for each component of y, since yi = Ai: · x. During this
process, the nonzeros in the jth column are multiplied with the component
x j.

In a distributed-memory setting the data involved in an SpMV, i.e., the
vector components x j and yi, and the nonzero elements Ai j, are partitioned
over the set of processing elements. Let P(·) be the part an element is as-
signed to. If for a nonzero P(Ai j) 6= P(x j), then the component x j has to
be communicated. If P(Ai j) 6= P(yi), then a partial sum has to be commu-
nicated for yi [Bis04; CA01].

A good partitioning minimizes the total communication, as this is of-
ten the bottleneck in distributed-memory implementations, under the con-
straint that roughly the same number of elements are assigned to each
part. This constraint is referred to as load balancing. (Bi)partitioning a
sparse matrix for low communication volume is a combinatorial problem.
If the nonzeros in the ith row ( jth column) are assigned to the same part,
then there is no communication for component yi (component x j). The
total communication is therefore the total number of non-uniform rows
and columns, see Figure 1.3.

When executing a distributed memory SpMV operation, each processor
needs to be aware of relevant information of the global partitioning. For
example, if processor s owns nonzeros in row i but it does not own the cor-
responding element yi, then it needs to know the processor P(yi) in order
to send its contribution to the final value of the component. This inform-
ation is stored in communication data structures, which are precomputed
for each processor and subsequently stored.
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Figure 1.3: Sparse matrix partitioning. Each nonzero element of the 8×8
sparse matrix is indicated by a colored square. The elements are parti-
tioned in two: a red part and a blue part. On the left and top of the
matrix, the colors that are present in each row and column are indicated.
The communication volume (CV ) is the total number of rows and columns
that have both red and blue elements. In this example, CV = 5.

1.3 Outline

The following chapters each correspond to a research article that was pub-
lished during my time as a PhD student. Although they have been edited
slightly, each chapter can still be read more or less independently. The
dissertation can be split into three parts.

The first part consists only of Chapter 2. There, the BSP model is
discussed, which is the basis of the performance analysis in subsequent
chapters. Furthermore, we introduce the Bulk interface for implementing
HPC software on top of the BSP model. The reference implementations
used for the numerical experiments of the algorithms and methods intro-
duced in later chapters, as well as the open-source reconstruction pipeline
that resulted from the research presented in this dissertation, make extens-
ive use of the Bulk interface.

In the second part, consisting of Chapter 3 and Chapter 4, we consider
partitioning algorithms for tomographic reconstruction. Communication
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in distributed-memory SpMVs involving projection matrices, i.e., the for-
ward projection and backprojection operations, is of key importance for
the overall execution time of tomographic reconstruction. In particular,
successful partitioning strategies have the potential to make iterative re-
construction algorithms scale to dozens of GPUs, enabling them to run in
real time. Previously developed SpMV partitioning methods are difficult
to apply to tomographic reconstruction because of the data sizes involved,
and do not make use of the geometric structure of the projections operat-
ors.

In Chapter 3, we formulate a low-communication partitioning problem
for tomographic reconstruction. This partitioning problem is based on the
underlying acquisition geometry that generates the projection matrix, in-
stead of operating directly on the nonzero pattern of the matrix. We first
give an exact geometric characterisation of the communication volume and
load balance. We develop an efficient geometric recursive coordinate bi-
section (GRCB) partitioning method for the imaged 3D volume, and show
that this can be translated into an implicit column partitioning of the pro-
jection matrix.

In Chapter 4 we further develop our geometric model for the commu-
nication volume and load balance in tomography. Our refined method
works directly on the (cone-shaped) projections, removing the need to con-
sider the discrete set of rays that correspond to the rows of the projection
matrix W . In this continuous setting, we can still approximate the load
balance and communication volume by considering a subdivision of the
detector defined by the overlapping shadows of the parts in the partition-
ing. We also modify the GRCB algorithm to this continuous setting, res-
ulting in a partitioning method that can run in real time. This enables the
partitioning algorithm to run as part of a real-time reconstruction pipeline.

In the third part, consisting of Chapter 5 and Chapter 6, we propose
a method for realizing live 3D reconstruction for real-time tomographic
imaging, by exploiting the local property of direct methods such as FBP
discussed before. We call this method quasi-3D reconstruction, and also
demonstrate its use in imaging experiments.

In Chapter 5 we describe the core idea of our method. Instead of re-
constructing the full 3D image, we develop a method for reconstructing
arbitrary oblique slices at a fraction of the cost. By combining multiple
slices, and allowing them to be chosen on-the-fly without reprocessing the
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projection data, we maintain the illusion of having a full reconstructed 3D
volume available. We also introduce the RECAST3D software, which is a
full-stack reference implementation for quasi-3D tomographic reconstruc-
tions.

Finally, in Chapter 6 we show the feasibility of quasi-3D reconstruction
in practice, by demonstrating real-time reconstruction capabilities at the
TOMCAT beamline of the Swiss Light Source synchrotron radiation facility.
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