
Real-time tomographic reconstruction
Buurlage, J.

Citation
Buurlage, J. (2020, July 1). Real-time tomographic reconstruction. Retrieved from
https://hdl.handle.net/1887/123182

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/123182

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/123182

Cover Page

The handle http://hdl.handle.net/1887/123182 holds various files of this Leiden University

dissertation.

Author: Buurlage, J.

Title: Real-time tomographic reconstruction

Issue Date: 2020-07-01

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/123182

Real-time tomographic reconstruction

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. C. J. J. M. Stolker,
volgens besluit van het College voor Promoties

te verdedigen op 1 juli 2020
klokke 11:15 uur

door

Jan-Willem Buurlage

geboren te Heerenveen
in 1991

Promotor:
Prof. dr. K. J. Batenburg

Copromotor:
Prof. dr. R. H. Bisseling Universiteit Utrecht

Samenstelling promotiecommissie

Voorzitter:
Prof. dr. P. Stevenhagen

Secretaris:
Prof. dr. S. J. Edixhoven

Overige leden:
Prof. dr. S. Bals Universiteit Antwerpen
Prof. dr. P. C. Hansen Technical University of Denmark
Dr. B. Uçar École Normale Supérieure de Lyon

The research presented in this dissertation was carried out at Centrum
Wiskunde & Informatica (CWI) in Amsterdam.

Financial support was provided by The Netherlands Organisation for Sci-
entific Research (NWO), project number 639.073.506.

Contents

1 Introduction 1
1.1 Tomographic reconstruction 2
1.2 Low-communication partitionings 10
1.3 Outline . 13

2 A modern interface for BSP programs 17
2.1 The Bulk library . 19
2.2 Applications . 25
2.3 Results . 29
2.4 Conclusion . 32

3 Geometric partitioning for tomography 33
3.1 Projection operations . 37
3.2 Distributed projection operations 38
3.3 Geometric recursive coordinate bisection 44
3.4 Results . 51
3.5 Discussion . 61
3.6 Conclusion . 62

4 A projection-based partitioning method 67
4.1 Background . 69
4.2 A new projection-based partitioning method 74
4.3 Communication data structures 80
4.4 Numerical experiments . 82
4.5 Conclusion . 89

CONTENTS

5 Real-time quasi-3D tomographic reconstruction 91
5.1 Reconstruction of arbitrary slices 93
5.2 Software . 98
5.3 Implementation . 100
5.4 Results . 103
5.5 Use cases . 106
5.6 Experiments . 107
5.7 Outlook and conclusions . 108

6 Application of quasi-3D reconstruction to synchrotron tomo-
graphy 111
6.1 Method . 114
6.2 Scientific applications . 123
6.3 Outlook: A route towards adaptive experiment control . . . 130
6.4 Conclusions . 131

7 Conclusion 133

Bibliography 137

List of publications 149

Samenvatting in het Nederlands 151

Curriculum Vitae 157

Acknowledgments 159

Chapter 1

Introduction

The ability to look inside an object without destroying it is useful for many
applications in, e.g., science, industry, and medicine. In tomographic ima-
ging, projection images of the object are acquired along different directions
using some kind of penetrating beam. From these projection images, the
3D interior can be computed using tomographic reconstruction methods
[Her09; KS01].

Tomography is the technique behind many 3D imaging devices and
techniques. Well known examples include medical CT scanners and µ-CT
(laboratory) setups. At synchrotron radiation facilities, a (highly luminis-
cent) beam of X-rays is generated by accelerating electrons to high speeds
along a circular trajectory, and this beam can be used to perform tomo-
graphic experiments. Electron microscopes penetrate samples with an elec-
tron beam instead of X-rays, and by tilting the sample a tilt series of pro-
jection images of, e.g., a nanoparticle can be produced.

The imaging techniques outlined above rely on the same basic prin-
ciple. A source generates some form of penetrating radiation, for example
X-rays. A 3D object is placed in front of the source. Inside this object, the
radiation beam loses its intensity through interaction with the material.
In other words, the beam is attenuated, and how much it gets attenuated
depends on the kind of beam, and certain volumetric properties of the ma-
terial (e.g., its density).

A detector captures a 2D profile of the radiation beam after it has passed
through the object. The resulting 2D images are called projection images,
and correspond in some sense to shadows of the object. This process is re-

1

2 CHAPTER 1. INTRODUCTION

peated for a number of combinations of source/detector positions. Tomo-
graphic reconstruction algorithms deal with the problem of obtaining a 3D
profile of the interior of the imaged object, from a set of projection images.

This reconstruction step is typically performed offline, i.e., after the
scan has completed. If instead the reconstruction can be performed online
and in real time, then the insight gained from the 3D reconstruction of the
object can be used to immediately steer the experiment. Acquisition para-
meters such as source and detector positioning could be optimized based
on the internal structure of the specific object being imaged. Furthermore,
dynamic processes in the imaged object could be followed as they occur.
Consider an experiment where the behaviour is investigated of an object
under changes in external parameters, such as the temperature or pressure.
Real-time access to reconstructions would aid the on-the-fly adjustment of
these parameters. For example, the operator can choose to stop heating
the object as soon as a phase transition is observed.

The runtime of conventional reconstruction algorithms is typically much
longer than the time it takes to acquire the projection images, and this
prohibits the real-time reconstruction and visualization of the imaged ob-
ject. The research in this dissertation introduces various techniques (in
particular: new parallelization schemes, data partitioning methods, and a
quasi-3D reconstruction framework) that significantly reduce the time it
takes to run conventional tomographic reconstruction algorithms without
affecting image quality. The resulting methods and software implement-
ations put reconstruction times in the same ballpark as the time it takes
to do a tomographic scan, so that we can speak of real-time tomographic
reconstruction.

1.1 Tomographic reconstruction

Before discussing our novel techniques for real-time tomography, I will
first give a general overview of mathematical methods that are required
for a complete understanding of the work. For simplicity, we will initially
consider 2D tomography in our mathematical description, where we aim
to reconstruct the interior of a 2D object from its 1D projections. All ideas
apply directly to 3D tomography, i.e., the reconstruction of a 3D object
from its 2D projections.

1.1. TOMOGRAPHIC RECONSTRUCTION 3

Rf

f

Figure 1.1: The Radon transform of a function are its line integrals. Here,
we visualize 5 lines passing through the domain of a function f . The blue
line represents the line integral values along this specific angle, assuming
the function f is constant. This corresponds to a projection image in a
tomographic experiment.

The interior of an object can be modelled as a function f : R2 → R,
with f (x) representing the value of some volumetric property of the object
at location x. The total attenuation of a ray ` passing through the object,
can be written as a line integral over the function f . Therefore, it is natural
to consider the function Rf : L → R, where L is the set of all lines in the
plane, and

Rf (`) =

∫

`

f (x) dx.

The function Rf is called the Radon transform of f , and is closely re-
lated to projection images in tomography. If we have a ray SD passing
through the imaged object from source position S to detector pixel D, then
Rf (SD) represents the measurement of the detector at pixel D for source
position S. This is visualized in Figure 1.1.

Tomographic reconstruction methods aim to retrieve f from its Radon

4 CHAPTER 1. INTRODUCTION

transform Rf .

1.1.1 Projection matrix

Instead of considering the set of all lines, we consider a specific set of lines
G that is specific to real-world experimental conditions. These conditions
are captured in the acquisition geometry, corresponding to a collection of
projection parameters. These parameters are (1) the detector position, (2)
the detector tilt, (3) the position of the source, (4) the physical size of the
detector, and (5) the detector shape in pixels. The set G is the set of lines
defined by all source–detector pixel pairs over all projections.

Furthermore, we look at a discretized version of the real-valued func-
tion f . We assume the object is contained in a rectangular box, and dis-
cretize this box in a number of volume elements, or voxels.

The discrete analog of the Radon transform, is the linear transformation
defined by the projection matrix W . This matrix has a row for each line in
G, and a column for each voxel of the volume. An element Wi j of the matrix
corresponds to the length of the line from G at index i, through the voxel
with index j. This matrix is sparse, since each line only intersects a small
minority of the voxels.

The product y ≡ Wx is called the forward projection of the image x,
and corresponds to the imaging experiment, with y representing the val-
ues of the projection images. A matrix–vector product with the adjoint
transformation, x ≡ W T y, is called the backprojection of y. Visually, this
corresponds to smearing out the measured values over the volume.

Tomographic reconstruction is a linear inverse problem: given meas-
urements y find an image x such that:

Wx= y. (1.1)

The matrix W is generated by an acquisition geometry. To deal with noise
in the data and errors in the model, the system is often solved in the least-
squares sense:

x= argmin
x̃∈Rn

||y−W x̃||2. (1.2)

There are two important systems that are used to compute least squares

1.1. TOMOGRAPHIC RECONSTRUCTION 5

solutions to underdetermined and overdetermined systems, respectively:

WW T z= y, x=W T z. (1.3)

W T Wx=W T y. (1.4)

The system (1.4) is known as the normal equations. A solution to the nor-
mal equations is also a solution to (1.2).

1.1.2 Direct methods

Filtered backprojection

A common acquisition geometry is parallel beam, where the source is (con-
ceptually) infinitely far away. In this case, the incoming rays in each de-
tector pixel are perpendicular to the detector. Because of this property, the
3D reconstruction actually corresponds to a series of 2D reconstructions:
one for each pixel row on the detector.

A fast reconstruction method for parallel beam geometries is filtered
backprojection (FBP). We split the data into blocks, one for each one-dimen-
sional projection:

y= [y[1] | · · · |y[P]]T .

This data is first filtered, which in this case means a one-dimensional con-
volution Ch with kernel h is applied to each block. Next, the filtered data
is backprojected:

x=W T

�

P
⊕

p=1

Ch

�

y. (1.5)

Here, the direct sum indicates that Ch acts upon each block separately.
One choice for h is the Ram–Lak filter, where for the ith element of the
Fourier transformed filter we have F (h)i ∼ |ξi| with ξi the corresponding
frequency. This filter yields an exact reconstruction in case of unlimited
and noise-free data.

Using the convolution theorem, each row can be filtered efficiently:

Chy[i] ≡ h ∗ y[i] =F−1(F (h)�F (y[i])).

Here, � denotes pointwise multiplication.

6 CHAPTER 1. INTRODUCTION

FDK

If we have a point source at some finite distance from the object, the incom-
ing beam is not parallel but cone shaped. When the source and detector
move in a circular trajectory around the object (or equivalently, the object
rotates around a single axis), we speak of a circular cone-beam geometry.

The FDK method [FDK84] is a method similar to filtered backprojection
for such geometries. The data is still filtered in the same manner as for FBP,
with a 1D convolution for each row on the detector. In addition, the data is
weighted, with rows away from the center of the detector being dampened
before backprojecting.

Let M be the number of pixel rows on the detector. As before, we split
our data into blocks, one for each pixel row of our (now two-dimensional)
projections. An FDK reconstruction is of the form:

x=W T

�

PM
⊕

p=1

Ch

�

Zy. (1.6)

Here, Z = diag(zi) is a diagonal matrix. If an element yi is part of the
pth projection, then it has an associated detector pixel position fi, source
position sp, and detector plane Dp. The FDK weights are given by:

zi ≡
d(sp, fi)

d(sp, Dp)
,

where d(·, ·) denotes the Euclidean distance in R3.

1.1.3 Iterative methods

Direct inversion methods such as FBP and FDK effectively approximate the
inverse of the projection matrix in a single step. An alternative class of
reconstruction methods are iterative methods. As the name implies, it-
erative methods refine an image over a number of iterations. Here, we
will list a number of iterative methods that are commonly used in tomo-
graphic reconstruction. We roughly distinguish between two kinds of it-
erative methods: row-action methods relax equations defined by the rows
of the projection matrix, while column-action methods act on the matrix
columns instead.

1.1. TOMOGRAPHIC RECONSTRUCTION 7

ART

The prototypical row-action method is the Kaczmarz method [Kac37] (also
known as ART [GBH70] in the tomography literature).

Each row Wi: of the matrix W , together with the component yi defines
an equation that x should satisfy:

Wi: · x= yi.

Geometrically, this equation defines a hyperplane. A simple, but (perhaps
surprisingly) effective iterative way of solving (1.1), is to make the current
iterate satisfy these equations in turn. Let x(k) be the current iterate, s the
step to take, and say we want the new iterate to satisfy the ith equation.
Then we have for the next iterate:

Wi: · x(k+1) = yi,

Wi: · (x(k) + s) = yi,

Wi: · s= yi −Wi: · x(k).

We can view this as an extremely underdetermined system for the vector
s. The shortest step can be computed using the generalized inverse, since
it yields the minimum-norm least squares solution:

s=W †
i:(yi − ri · x(k)) =

Wi:

||Wi:||22
(yi −Wi: · x(k)).

Geometrically speaking, the next iterate is the projection of the current
iterate on the hyperplane defined by the ith equation.

ART corresponds to Gauss–Seidel iteration on the system (1.3).

ICD

Iterative coordinate descent (ICD) [Wat94], a column-action method, up-
dates only one of the components x j of the image x at each iteration:

x← x+δe j,

8 CHAPTER 1. INTRODUCTION

where the vector e j has a 1 in the jth position, and zeros elsewhere. It is
natural to choose δ in such a way that the residual is minimized:

y−W (x+δe j) = 0,

Wδe j = y−Wx,

δW: j = y−Wx.

Here, W: j is the jth column of W . We view this as an overdetermined
system for δ, and obtain the least-squares solution using the generalized
inverse:

δ =W †
: j (y−Wx) =

W T
: j

||W: j||22
(y−Wx) .

ICD corresponds to Gauss–Seidel iteration on the system (1.4).

SART

Simultaneous ART (SART) [And84] is a modification of ART to update the
current iterate in order to (attempt to) satisfy a block of equations at the
same time. The vector y = [y[1] | · · · |y[B]]T is split into B blocks. The
update for a block y[i] can be written as:

x← x+ωW [i]T M [i](y[i] −W [i]x).

where ω is an optional relaxation parameter, and M = diag(m), mi =
||Wi:||−2

2 . The blocks are updated in a sequential, cyclic manner.

SIRT

SIRT [Gil72; BG05] is an iterative method that makes use of full forward
and backprojection operations, and is a simultaneous row-action method.
We define a SIRT update to be:

x← x+ωCW T R(y−Wx),

where ω is an optional relaxation parameter, and:

C = diag(c), c−1
j =

m
∑

i=1

Wi j;

R= diag(r), r−1
i =

n
∑

j=1

Wi j.

1.1. TOMOGRAPHIC RECONSTRUCTION 9

If instead C = R = Id is chosen, SIRT reduces to Landweber iteration
which is equivalent to solving (1.4) using gradient descent.

Krylov

The k-dimensional Krylov subspace generated with W and y is defined as:

Kk(W,y) = span{y, Wy, . . . , W k−1y}.

These subspaces are of interest since even for low k they contain good
approximate solutions. An intuitive way to see why this is, is by consider-
ing the Cayley–Hamilton theorem that states that a matrix is a root of its
own characteristic polynomial. This means the inverse can be expanded in
terms of powers of W :

a0Id+ a1W + a2W 2 + . . .+ anW n = 0,

=⇒ W−1 = b0Id+ b1W + b2W 2 + . . . + bn−1W n−1.

We see that if large powers of W (can be coerced to) tend to zero, we can
approximate the inverse using only small powers of W , which is equivalent
to choosing solutions from the Krylov subspaces.

The kth iteratate generated by a Krylov method is the optimal element
fromKk(W,y) for solving the least squares problem (1.2). There are mul-
tiple notions of optimality, and here we consider two. The first notion, and
perhaps the most obvious, is to minimize the residual:

x(k) = argmin
x∈Kk(W,y)

||Wx− y||2.

GMRES is a Krylov method of this kind. The second notion of optimality is
to let the kth residual be perpendicular to Kk(W,y). The conjugate gradi-
ent (CG) method [HS52] is of this kind, and can be applied to symmetric
positive definite systems. CGLS amounts to applying CG to the normal
equations (1.4). Similarly, CGNE is obtained when applying CG to (1.3).

Variational methods

If prior knowledge on the image is available, then reconstruction quality
can be significantly improved. A general way to do this is by adding penalty

10 CHAPTER 1. INTRODUCTION

terms, leading to regularized least squares problems. For example, if the
image is piecewise constant then the gradient image will be sparse. In
other words, we expect the 1-norm of the gradient magnitude |∇x| of the
image to be small. This can be incorporated into the least squares problem:

argmin
x∈Rn

||y−Wx||22 +λ|| |∇x| ||1. (1.7)

Algorithms for such variational formulations typically work by minimizing
each successive term in turn. Examples of such algorithms include FISTA
[BT09] and Chambolle–Pock [CP10].

Many iterative algorithms, including SIRT, Krylov methods, FISTA, and
Chambolle–Pock, have one key aspect in common: they alternate between
forward projection and backprojection operations. Furthermore, these are
typically the most computationally expensive steps in the algorithm. Al-
gorithms that use the forward projection and backprojection as subroutines
are usually computationally more efficient than, e.g., ART that operate on
individual equations, as they enable parallel updates.

An important distinction between iterative and direct reconstruction
methods, is that direct methods are local: each volume element can be
reconstructed independently and efficiently from the (filtered) projection
data.

A selection of reconstruction methods are compared in Figure 1.2.

1.2 Low-communication partitionings

Modern computers, and in particular computer systems that are used for
large-scale scientific computations, are massively parallel. They typically
have a high number of largely independent processing elements, such as
processors, nodes, GPUs, or cores.

When designing algorithms that run on such systems, choosing the
right data distribution is key. Specifically, data needed by one of the pro-
cessing elements should be local to that element, so that it is easy to retrieve
the necessary data during the execution of an algorithm. In other words,
we should partition the input data and distribute the parts over the pro-
cessing elements appropriately. A partitioning for p processing elements is
defined as follows.

1.2. LOW-COMMUNICATION PARTITIONINGS 11

(a) SIRT (b) FBP

(c) SART (d) CGLS

Figure 1.2: Reconstructions of a 2D FORBILD phantom for a selection of
different methods.

Definition 1. A p-way partitioning πV of a set V is a collection of subsets
Vi ⊂ V :

πV = {V1, . . . , Vp},

such that

(i) the parts are non-empty: Vi 6= ;,

(ii) the partitioning is complete:
⋃

i Vi = V , and,

12 CHAPTER 1. INTRODUCTION

(iii) the parts are mutually disjoint: i 6= j =⇒ Vi ∩ Vj = ;.

A relevant example that is closely related to the partitioning problems
treated in this dissertation is partitioning for the parallel sparse matrix–
vector product (SpMV). For a sparse matrix A, the relevant input data V is
a set of row–column pairs indicating the location of nonzero elements:

V ≡ {(i, j) | Ai j 6= 0}.

When we compute an SpMV y = Ax, we are computing a series of inner
products: one for each component of y, since yi = Ai: · x. During this
process, the nonzeros in the jth column are multiplied with the component
x j.

In a distributed-memory setting the data involved in an SpMV, i.e., the
vector components x j and yi, and the nonzero elements Ai j, are partitioned
over the set of processing elements. Let P(·) be the part an element is as-
signed to. If for a nonzero P(Ai j) 6= P(x j), then the component x j has to
be communicated. If P(Ai j) 6= P(yi), then a partial sum has to be commu-
nicated for yi [Bis04; CA01].

A good partitioning minimizes the total communication, as this is of-
ten the bottleneck in distributed-memory implementations, under the con-
straint that roughly the same number of elements are assigned to each
part. This constraint is referred to as load balancing. (Bi)partitioning a
sparse matrix for low communication volume is a combinatorial problem.
If the nonzeros in the ith row (jth column) are assigned to the same part,
then there is no communication for component yi (component x j). The
total communication is therefore the total number of non-uniform rows
and columns, see Figure 1.3.

When executing a distributed memory SpMV operation, each processor
needs to be aware of relevant information of the global partitioning. For
example, if processor s owns nonzeros in row i but it does not own the cor-
responding element yi, then it needs to know the processor P(yi) in order
to send its contribution to the final value of the component. This inform-
ation is stored in communication data structures, which are precomputed
for each processor and subsequently stored.

1.3. OUTLINE 13

Figure 1.3: Sparse matrix partitioning. Each nonzero element of the 8×8
sparse matrix is indicated by a colored square. The elements are parti-
tioned in two: a red part and a blue part. On the left and top of the
matrix, the colors that are present in each row and column are indicated.
The communication volume (CV) is the total number of rows and columns
that have both red and blue elements. In this example, CV = 5.

1.3 Outline

The following chapters each correspond to a research article that was pub-
lished during my time as a PhD student. Although they have been edited
slightly, each chapter can still be read more or less independently. The
dissertation can be split into three parts.

The first part consists only of Chapter 2. There, the BSP model is
discussed, which is the basis of the performance analysis in subsequent
chapters. Furthermore, we introduce the Bulk interface for implementing
HPC software on top of the BSP model. The reference implementations
used for the numerical experiments of the algorithms and methods intro-
duced in later chapters, as well as the open-source reconstruction pipeline
that resulted from the research presented in this dissertation, make extens-
ive use of the Bulk interface.

In the second part, consisting of Chapter 3 and Chapter 4, we consider
partitioning algorithms for tomographic reconstruction. Communication

14 CHAPTER 1. INTRODUCTION

in distributed-memory SpMVs involving projection matrices, i.e., the for-
ward projection and backprojection operations, is of key importance for
the overall execution time of tomographic reconstruction. In particular,
successful partitioning strategies have the potential to make iterative re-
construction algorithms scale to dozens of GPUs, enabling them to run in
real time. Previously developed SpMV partitioning methods are difficult
to apply to tomographic reconstruction because of the data sizes involved,
and do not make use of the geometric structure of the projections operat-
ors.

In Chapter 3, we formulate a low-communication partitioning problem
for tomographic reconstruction. This partitioning problem is based on the
underlying acquisition geometry that generates the projection matrix, in-
stead of operating directly on the nonzero pattern of the matrix. We first
give an exact geometric characterisation of the communication volume and
load balance. We develop an efficient geometric recursive coordinate bi-
section (GRCB) partitioning method for the imaged 3D volume, and show
that this can be translated into an implicit column partitioning of the pro-
jection matrix.

In Chapter 4 we further develop our geometric model for the commu-
nication volume and load balance in tomography. Our refined method
works directly on the (cone-shaped) projections, removing the need to con-
sider the discrete set of rays that correspond to the rows of the projection
matrix W . In this continuous setting, we can still approximate the load
balance and communication volume by considering a subdivision of the
detector defined by the overlapping shadows of the parts in the partition-
ing. We also modify the GRCB algorithm to this continuous setting, res-
ulting in a partitioning method that can run in real time. This enables the
partitioning algorithm to run as part of a real-time reconstruction pipeline.

In the third part, consisting of Chapter 5 and Chapter 6, we propose
a method for realizing live 3D reconstruction for real-time tomographic
imaging, by exploiting the local property of direct methods such as FBP
discussed before. We call this method quasi-3D reconstruction, and also
demonstrate its use in imaging experiments.

In Chapter 5 we describe the core idea of our method. Instead of re-
constructing the full 3D image, we develop a method for reconstructing
arbitrary oblique slices at a fraction of the cost. By combining multiple
slices, and allowing them to be chosen on-the-fly without reprocessing the

1.3. OUTLINE 15

projection data, we maintain the illusion of having a full reconstructed 3D
volume available. We also introduce the RECAST3D software, which is a
full-stack reference implementation for quasi-3D tomographic reconstruc-
tions.

Finally, in Chapter 6 we show the feasibility of quasi-3D reconstruction
in practice, by demonstrating real-time reconstruction capabilities at the
TOMCAT beamline of the Swiss Light Source synchrotron radiation facility.

16 CHAPTER 1. INTRODUCTION

Chapter 2

A modern interface for BSP
programs

The bulk-synchronous parallel (BSP) model was introduced as a bridging
model for parallel programming by Valiant in 1989 [Val90]. It enables a
way to structure parallel computations, which aids in the design and ana-
lysis of parallel programs.

The BSP model defines an abstract computer, the BSP computer, on
which BSP algorithms can run. Such a computer consists of p identical pro-
cessors, each having access to their own local memory. A communication
network is available which can be used by the different processors to com-
municate data. During the execution of an algorithm, there are points at
which bulk synchronizations are performed. The time of such a synchron-
ization, the latency, is denoted by l. The communication cost per data word
is denoted by g. The parameters l and g are usually expressed in number
of floating-point operations (FLOPs). They can be related to wall-clock time
by considering the computation rate r of the individual processors which
is measured in floating-point operations per second (FLOP/s). A BSP com-
puter is captured completely by the parameter tuple (p, g, l, r).

This chapter is based on:

Bulk: A Modern C++ Interface for Bulk-Synchronous Parallel Programs.
JW Buurlage, TR Bannink, RH Bisseling. European Conference on Parallel
Processing, 519-532, 2018

17

18 CHAPTER 2. BULK

At a high level, a BSP algorithm is a series of supersteps that each con-
sist of a computation phase and a communication phase. The processors of
a BSP computer can simultaneously send and receive data, and they can
do so independently. This means that the cost of communication is domin-
ated by the maximum number of words sent or received by any processor.
At the end of each superstep a bulk synchronization is performed ensur-
ing that all outstanding communication has been resolved. Each processor
runs the same program, but on different data, which means that BSP al-
gorithms adhere to the Single Program Multiple Data (SPMD) paradigm.

The BSP cost of a BSP algorithm can predict the runtime of that al-
gorithm when it is run on a BSP computer. This cost can be expressed
completely in the parameters of a BSP computer. For each superstep, the
cost depends on 1) w(s)i , the amount of work, measured in FLOPs, per-
formed by processor s in the ith superstep, 2) r(s)i , the number of data
words received, and 3) t(s)i , the number of data words transmitted (sent)
by processor s in superstep i. The runtime of a parallel algorithm is dom-
inated by the processor that takes the longest time, both for computa-
tion and communication. In the case of communication, we therefore re-
quire the concept of an h-relation, defined as the maximum number of
words transmitted or received by any processor during the superstep, i.e.,
hi =max0≤s<p max{t(s)i , r(s)i }. This leads naturally to the following cost, the
BSP cost, of a BSP algorithm consisting of k supersteps:

T =
k−1
∑

i=0

�

max
0≤s<p

w(s)i + g hi + l
�

.

The BSP model has inspired many parallel programming interfaces.
BSPlib [Hil+98] describes a collection of a limited set of primitives which
can be used for writing BSP programs in the C programming language.
Libraries that implement the BSPlib standard include BSPonMPI [Sui] and
MulticoreBSP for Java [YB12] and C [Yze+14]. Paderborn University BSP
(PUB) [Bon+03] is an alternative BSP library that includes features not
included in BSPlib such as subset synchronization and non-blocking col-
lective operations. A functional BSP library is provided in BSML [LGB05]
for the multi-paradigm programming language Objective CAML. Big data
frameworks based on the BSP model include the popular MapReduce [DG04]
and Pregel [Mal+10] frameworks introduced by Google. These frame-
works have open-source implementations in respectively Apache Hadoop

2.1. THE BULK LIBRARY 19

and Apache Giraph, the latter of which is used for large scale graph com-
puting by, e.g., Facebook [Chi+15]. Apache Hama [Sid+16] is a recent
BSPlib alternative for the Java programming language.

For the C++ programming language, high-level parallel programming
libraries include HPX [Hel+17], whose current interface focuses on asyn-
chronous and concurrent applications, UPC++ [Zhe+14], which provides
a generic and object-oriented partitioned global address space (PGAS) in-
terface, and BSP++ [HFE10] which targets hybrid SMP architectures and
implements direct remote memory access but not bulk-synchronous mes-
sage passing.

Modern hardware is increasingly hierarchical. In a typical HPC cluster
there are many nodes, each consisting of (several) multi-core processors
together with accelerators such as GPUs or many-core coprocessors. Fur-
thermore, there are multiple layers of random-access memory and caches
which all differ in, e.g., size, latency, and read and write speed. In 2011,
Valiant introduced Multi-BSP [Val11], a hierarchical execution model based
on BSP. The nested execution of BSP programs is available in, e.g., the PUB,
MulticoreBSP, and NestStep [Keß00] libraries.

In this chapter we introduce Bulk, a library for the C++ programming
language. The current version is based on the C++17 standard [ISO17].
By leveraging common idioms and features of modern C++ we increase
memory safety and code reuse, and we are able to eliminate boilerplate
code from BSP programs. Furthermore, the flexible backend architecture
ensures that programs written on top of Bulk are able to simultaneously
target systems with shared memory, distributed memory, or even hybrid
systems. The remainder of this chapter is structured as follows. In Sec-
tion 2.1 we introduce the Bulk library, and highlight the differences with
previous BSP libraries. In Section 2.2 we discuss two applications, reg-
ular sample sort and the fast Fourier transform (FFT). In Section 2.3, we
provide experimental results for these applications. Finally, in Section 2.4,
we present our conclusions and discuss possibilities for future work.

2.1 The Bulk library

The Bulk library is a modern BSPlib replacement which focuses on the
memory safety, portability, code reuse, and ease of implementation of BSP

20 CHAPTER 2. BULK

bulk::backend::environment env;

env.spawn(env.available_processors(), [](auto& world) {

world.log("Hello world from %d / %d\n",

world.rank(), world.active_processors());

});

Listing 2.1: The entry point for parallelism using Bulk. We create an envir-
onment, where backend is a placeholder for a concrete backend such as MPI
or C++ threads. Next, we spawn an SPMD block using all the available
processors.

algorithms. Additionally, Bulk provides the possibility to program hybrid
systems and it has several new features compared to existing BSP librar-
ies. First, we present all the concepts of the library that are necessary to
implement classic BSP algorithms.

Bulk interface Here, we give an overview of the Bulk C++ interface1.
We use a monospace font in the running text for C++ code and symbols.
A BSP computer is captured in an environment. This can be an object en-
capsulating, e.g., an MPI cluster, a multi-core processor or a many-core
coprocessor. Within this BSP computer, an SPMD block can be spawned.
Collectively, the processors running this block form a parallel world that is
captured in a world object. This object can be used to communicate, and
for obtaining information about the local process, such as the processor
identifier (PID, in Bulk denoted rank) and the number of active processors.
In all the code examples, s refers to the local rank, and t to an arbitrary
target rank.

A simple program written using Bulk first instantiates an environment
object, which is then used to spawn an SPMD block (in the form of a C++
function) on each processor, to which the local world is passed. See Listing
2.1 for a code example, and Table 2.1 for a table with the relevant methods.

The spawned SPMD section, which is a function that takes the world as
a parameter, consists of a number of supersteps. These supersteps are de-
limited with a call to world::sync. The basic mechanism for communication

1Although we try to be as complete as possible, we do not give a detailed and exhaust-
ive list of all the methods and functions provided by the library. For such a list, together
with all the function signatures and further examples we refer to the online documenta-
tion which can be found at https://jwbuurlage.github.com/Bulk/.

2.1. THE BULK LIBRARY 21

Table 2.1: Available methods for environment and world objects.

class method description
environment spawn starts an SPMD block

available_processors returns maximum p
world active_processors returns chosen p

rank returns local processor ID s
next_rank returns s+ 1 (mod p)
prev_rank returns s− 1 (mod p)
sync ends the current superstep
log logs a string message

revolves around the concept of a distributed variable, which is captured
in a var object. These variables should be constructed in the same super-
step by each processor. Although each processor defines this distributed
variable, its value is generally different on each processor. The value con-
tained in the distributed variable on the local processor is called the local
value, while the concrete values on remote processors are called the remote
values.

A distributed variable is of little use if it does not provide a way to access
remote values of the variable. Bulk provides encapsulated references to the
local and remote values of a distributed variable. We call these references
image objects. Images of remote values can be used for reading, e.g., auto
y = x(t).get() to read from processor t, and for writing, e.g., x(t) = value,
both with the usual bulk-synchronous semantics. See Listing 2.2 for a more
elaborate example. Since the value of a remote image is not immediately
available upon getting it, it is contained in a future object. In the next
superstep, its value can be obtained using future::value, e.g., y.value().

In this simple example, we already see some major benefits of Bulk
over existing BSP libraries; 1) we avoid accessing and manipulating raw
memory locations in user code, making the code more memory safe and
2) the resulting code is shorter, more readable and therefore less prone to
errors. Note that these benefits do not come at a performance cost, since
it can be seen as syntactic sugar that resolves to calls to internal functions
that resemble common BSP primitives.

22 CHAPTER 2. BULK

bulk::var<int> x(world);

auto t = world.next_rank();

x(t) = 2 * world.rank();

world.sync();

// x now contains two times the ID of the previous logical processor

auto b = x(t).get();

world.sync();

// b.value() now contains two times the local ID

Listing 2.2: The basic usage of a distributed variable. The variable is cre-
ated on each processor running the SPMD block. Its images can then be
written to by using the convenient syntax x(processor) = value. Remote val-
ues are obtained by using the syntax x(processor).get().

When restricting ourselves to communication based on distributed vari-
ables, we lose the possibility of performing communication based on slices
or arrays. Distributed variables whose images are arrays have a special
status in Bulk, and are captured in coarray objects. The functionality of
these objects is inspired by Coarray Fortran [NR98]. Coarrays provide
a convenient way to share data across processors. Instead of manually
sending and receiving individual data elements, coarrays model distrib-
uted data as a 2D array, where the first dimension is over the processors,
and the second dimension is over local 1D array indices. The local ele-
ments of a coarray can be accessed as if the coarray were a regular 1D
array. Images to the remote arrays belonging to a coarray xs are obtained
in the same way as for variables, by using the syntax xs(t). These images
can be used to access the remote array. For example, xs(t)[5] = 3 puts the
value 3 in the array element at index 5 of the local array at processor t.
Furthermore, convenient syntax makes it easy to work with slices of coar-
rays. A basic slice for the element interval [start, end), i.e., including start
but excluding end, is obtained using xs(t)[{start, end}]. See Listing 2.3 for
examples of common coarray operations. We summarize the most import-
ant put and get operations for distributed variables and coarrays in Table
2.2.

2.1. THE BULK LIBRARY 23

auto xs = bulk::coarray<int>(world, 4);

auto t = world.next_rank();

xs[0] = 1;

xs(t)[1] = 2 + world.rank();

xs(t)[{2, 4}] = {123, 321};

world.sync();

// xs is now [1, 2 + world.prev_rank(), 123, 321]

Listing 2.3: The basic syntax for dealing with coarrays.

Instead of using distributed variables, it is also possible to perform one-
sided mailbox communication using message passing, which in Bulk is car-
ried out using a queue. The message passing syntax is greatly simplified
compared to previous BSP interfaces, without losing power or flexibility.
This is possible for two reasons. First, it is possible to construct several
queues, removing a common use case for tags to distinguish different kinds
of messages. Second, messages consisting of multiple components can be
constructed on demand using a syntax based on variadic templates. This
gives us the possibility of optionally attaching tags to messages in a queue,
or even denoting the message structure in the construction of the queue it-
self. For example, queue<int, float[]> is a queue with messages that consist
of a single integer, and zero or more real numbers. See Listing 2.4 for the
basic usage of these queues.

In addition to distributed variables and queues, common communica-
tion patterns such as gather_all, foldl, and broadcast are also available. The
Bulk library also has various utility features for, e.g., logging and bench-
marking. We note furthermore that it is straightforward to implement gen-
eric skeletons on top of Bulk, since all distributed objects are implemented
in a generic manner.

Backends and nested execution Bulk has a powerful backend mechan-
ism. The initial release provides backends for distributed memory based on
MPI [MPI94], shared memory based on the standard C++ threading library,
and data streaming for the Epiphany many-core coprocessor [ONU14].
Note that for a shared-memory system, only standard C++ has to be used.

24 CHAPTER 2. BULK

Table 2.2: An overview of the syntax for puts and gets in Bulk. Here, x
and xs are a distributed variable and a coarray, respectively, e.g., auto x =
bulk::var<int>(world), auto xs = bulk::coarray<int>(world, 10)

object image description code
var local (∗) set x = 5

use auto y = x + 3

remote put x(t) = 5

get auto y = x(t).get()

coarray local (∗) set xs[idx] = 5

use auto y = xs[idx] + 3

remote put xs(t)[idx] = 5

get auto y = xs(t)[idx].get()

put slice(∗∗) xs(t)[{start, end}] = {values...}

get slice(∗∗) auto ys = xs(t)[{start, end}].get()

(∗): a local image of a value of type T gets implicitly cast to a T& reference
to the underlying value.
(∗∗): subarrays corresponding to slices are represented using std::vector
containers.

This means that a parallel program written using Bulk can run on a variety
of systems, simply by changing the environment that spawns the SPMD
function. No other changes are required. In addition, libraries that build
on top of Bulk can be written completely independently from the environ-
ment, and only have to manipulate the world object.

Different backends can be used together. For example, distinct com-
pute nodes can communicate using MPI while locally performing shared-
memory multi-threaded parallel computations, all using a single program-
ming interface. Hybrid shared/distributed-memory programs can be writ-
ten simply by nesting environment objects with different backends.

2.2. APPLICATIONS 25

// queue containing simple data

auto numbers = bulk::queue<int>(world);

numbers(t).send(1);

numbers(t).send(2);

world.sync();

for (auto value : numbers)

world.log("%d", value);

// queue containing multiple components

auto index_tuples = bulk::queue<int, int, float>(world);

index_tuples(t).send({1, 2, 3.0f});

index_tuples(t).send({3, 4, 5.0f});

world.sync();

for (auto [i, j, k] : index_tuples)

world.log("(%d, %d, %f)", i, j, k);

Listing 2.4: The use of message passing queues. The local inbox acts as a
regular container, so we can use a range-based for loop. The messages can
be accessed in a concise way using structured bindings.

2.2 Applications

2.2.1 Parallel regular sample sort

Here, we present our BSP variant of the parallel regular sample sort pro-
posed by Shi and Schaeffer in 1992 [SS92]. Hill, Donaldson, and Skilli-
corn [HDS97] presented a BSP version, and Gerbessiotis [Ger15] studied
variants with regular oversampling. Our version reduces the required num-
ber of supersteps by performing a redundant mergesort of the samples on
all processors.

Our BSP variant is summarized in Algorithm 1. Every processor first
sorts its local block of size b = n/p by a quicksort of the interval [sb, (s +
1)b−1], where s is the local processor identity. The processor then takes p
regular samples at distance b/p and broadcasts these to all processors. We
assume for simplicity that p divides b, and, for the purpose of explanation,
that there are no duplicates (which can be achieved by using the original
ordering as a secondary criterion). All processors then synchronize, which

26 CHAPTER 2. BULK

ends the first superstep. In the second superstep, the samples are concat-
enated and sorted. A mergesort is used, since the samples originating in
the same processor were already sorted. Thus, p parts have to be merged.
The start of part t is given by start[t] and the end by start[t+1]−1. From
these samples, p splitters are chosen at distance p, and they are used to
split the local block into p parts. At the end of the second superstep, a local
contribution X st is sent to processor P(t). In the third and final superstep,
the received parts are concatenated and sorted, again using a mergesort
because each received part has already been sorted. See Listing 2.5 for an
illustration of Bulk implementations of the two communication phases of
Algorithm 1.

Shi and Schaeffer have proven that the block size at the end of the
algorithm is at most twice the block size at the start, thus bounding the
size by bs ≤ 2b. A small optimization made possible by our redundant
computation of the samples is that not all samples need to be sorted, but
only the ones relevant for the local processor. The other samples merely
need to be counted, separately for those larger and for those smaller than
the values in the current block.

The total BSP cost of the algorithm, assuming p is a power of two, is

Tsort ≤
n
p

log2
n
p
+ p2 log2 p+

2n
p
· log2 p+

�

p(p− 1) + 2
n
p

�

g + 2l. (2.1)

This is efficient in the range p ≤ n1/3, since the sorting of the array data
then dominates the redundant computation and sorting of the samples.

2.2.2 Fast Fourier Transform

The discrete Fourier transform (DFT) of a complex vector x of length n is
the complex vector y of length n defined by

yk =
n−1
∑

j=0

x je
−2πi jk/n =

n−1
∑

j=0

x jωn
jk, for 0≤ k < n, (2.2)

where we use the notation ωn = e−2πi/n. The DFT can be computed in
5n log2 n floating-point operations by using a radix-2 Fast Fourier Trans-
form (FFT) algorithm assuming that n is a power of two.

2.2. APPLICATIONS 27

Algorithm 1 Regular sample sort for processor P(s), with 0≤ s < p.
input: x: vector of length n, n mod p2 = 0, block distributed with block

size b = n/p.
output: x sorted in increasing order, block distributed with variable block

size bs ≤ 2b.

Quicksort(x, sb, (s+ 1)b− 1);
for i := 0 to p− 1 do

samples[i] := x[sb+ i · b
p];

for t := 0 to p− 1 do
put samples in P(t);

Sync;

for t := 0 to p− 1 do
start[t] := t p;
for i := 0 to p− 1 do

sample[t p+ i] := samplet[i];
start[p] := p2;
Mergesort(sample, start, p);

for t := 0 to p− 1 do
splitter[t] := sample[t p];

splitter[p] :=∞;

for t := 0 to p− 1 do
X st := {x i : sb ≤ i < (s+ 1)b ∧ splitter[t]≤ x i < splitter[t + 1]};
put X st in P(t);

Sync;

xs := ∪p−1
t=0X ts;

starts[0] := 0;
for t := 1 to p do

starts[t] := starts[t − 1] + |X t−1,s|;
bs := starts[p];
Mergesort(xs, starts, p);

28 CHAPTER 2. BULK

Listing 2.5: Two communication phases in the regular sample sort al-
gorithm.

auto samples = bulk::coarray<T>(world, p * p); // Broadcast samples

for (int t = 0; t < p; ++t)

samples(t)[{s * p, (s + 1) * p}] = local_samples;

world.sync();

auto q = bulk::queue<int, T[]>(world); // Contribution from P(s) to P(t)

for (int t = 0; t < p; ++t)

q(t).send(block_sizes[t], blocks[t]);

world.sync();

Our parallel algorithm for computing the DFT uses the group-cyclic
distribution with cycle c ≤ p, and is based on the algorithm presented
in [IB01] and explained in detail in [Bis04]. The group-cyclic distribution
first assigns a block of the vector x to a group of c processors and then
assigns the vector components within that block cyclically. The number of
processor groups (and blocks) is p/c. The block size of a group is nc/p.
Here, we assume that n, p, c are powers of two. For c = 1, we retrieve the
regular block distribution, and for c = p the cyclic distribution.

The parallel FFT algorithm starts and ends in a cyclic distribution. First,
the algorithm permutes the local vector with components

xs, xs+p, xs+2p, . . . , xs+n−p,

by swapping pairs of components with bit-reversed local indices. The res-
ulting storage format of the data can be viewed as a block distribution, but
with the processor identities bit-reversed. The processor numbering is re-
versed later, during the first data redistribution. After the local bit reversal,
a sequence of butterfly operations is performed, just as in the sequential
FFT, but with every processor performing the pairwise operations on its
local vector components. In the common case p ≤

p
n, the BSP cost of this

algorithm is given by

TFFT, p≤
p

n =
5n log2 n

p
+ 2

n
p

g + l. (2.3)

2.3. RESULTS 29

Table 2.3: Speedups of parallel sort (top) and parallel FFT compared to
std::sort from libstdc++, and the sequential algorithm from FFTW 3.3.7,
respectively. Also given is the sequential time tseq.

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 tseq(s)
Sort n= 220 0.93 1.95 3.83 6.13 8.10 12.00 0.08

n= 221 1.01 2.08 4.11 7.28 10.15 15.31 0.19
n= 222 0.88 1.82 3.58 5.99 10.27 13.92 0.33
n= 223 0.97 1.90 3.63 6.19 11.99 16.22 0.72
n= 224 0.93 1.79 3.21 6.33 8.47 14.76 1.39

FFT n= 223 0.99 1.07 2.08 2.77 5.60 5.51 0.20
n= 224 1.00 1.26 2.14 3.07 5.68 6.08 0.45
n= 225 1.00 1.23 2.22 3.09 5.80 6.05 0.96
n= 226 0.99 1.24 2.01 3.28 5.48 5.97 1.93

2.3 Results

We evaluate the performance of Bulk implementations of the BSP algorithms
sample sort and FFT outlined in the previous section. The numbers presen-
ted are obtained on a single computer with two Intel Xeon Silver 4110
CPUs, each with 8 cores and 16 hardware threads for a total of 32 hard-
ware threads, using the C++ threads backend. The benchmark programs
are compiled with GCC 7.2.1. The results are shown in Table 2.3. The
parallel sort implementation is a direct translation of Algorithm 1, except
that we opt for a three-phase communication protocol instead of relying
on bulk-synchronous message passing to avoid potentially superfluous buf-
fer allocations. The parallel FFT implementation is as described in Section
2.2.2, where we use FFTW [FJ98] as a sequential kernel2. The input arrays
for both algorithms have size n, and they are run on p processors.

For the parallel sorting algorithm, the array contains uniformly dis-
tributed random integers between 0 and 2 × 105. We observe that good
speedups are obtained compared to the sequential implementation. The
maximum speedup seen is about 16× with p = 32 and n= 223.

For the FFT results, the vector has size n. We observe good scalability
up to p = 16, where we seem to hit a limit presumably because of the
shared floating-point unit (FPU) between two logical threads on the same
physical core, and possibly also due to the memory requirements in the

2We use plans with the so-called planning-rigor flag FFTW_MEASURE.

30 CHAPTER 2. BULK

redistribution phase.
Various other algorithms and applications have been implemented on

top of Bulk. The current library release includes a number of examples,
such as simple implementations for the inner product, or the word count
problem. Future releases of the library are planned to have additional
components. One such component is support for arbitrary data distribu-
tions, which is already available as an experimental feature. Furthermore,
an open-source application in computed tomography, Tomos, has been de-
veloped on top of Bulk, illustrating that the library can be used for the
implementation of more complicated software.

2.3.1 Bulk vs. BSPlib

We believe the main goal of Bulk, which is to improve memory safety, port-
ability, code reuse, and ease of implementation compared to BSPlib, has
been largely achieved. In Listing 2.6, we show a Bulk and a BSPlib imple-
mentation of a common operation. The Bulk implementation avoids the
use of raw pointers, uses generic objects, requires significantly fewer lines
of code, and is more readable.

We compare the performance of Bulk to a state-of-the-art BSPlib imple-
mentation, MulticoreBSP for C (MCBSP) [YR14], version 2.0.3 released in
May 2018. We use the implementations of BSPedupack [Bis04], version
2.0.0-beta, as the basis of our BSPlib programs.

Table 2.4 shows the performance of Bulk compared to BSPlib. For sort-
ing, the Bulk implementation is significantly faster, presumably because
the internal sorting algorithm used is different. The Bulk implementation
uses the sorting algorithm from the C++ standard library, whereas the
BSPlib implementation uses the quicksort from the C standard library. The
BSPedupack FFT implementation has been modified to use FFTW for the
sequential kernel. For the FFT, MCBSP outperforms Bulk slightly on larger
problem sizes.

In Table 2.5, the BSP parameters are measured for Bulk and MCBSP.
The computation rate r is measured by applying a simple arithmetic trans-
formation involving two multiplications, one addition and one subtraction,
to an array of 223 double-precision floating-point numbers. The latency l
is measured by averaging over 100 bulk synchronizations without com-
munication. The communication-to-computation ratio g is measured by

2.3. RESULTS 31

// BSPlib

int* xs = malloc(10 * sizeof(int));

bsp_push_reg(xs, 10 * sizeof(int));

bsp_sync();

int ys[3] = {2, 3, 4};

bsp_put((s + 1) % p, ys, xs, 2, 3 * sizeof(int));

bsp_sync();

...

bsp_pop_reg(xs);

free(xs);

// Bulk

auto xs = bulk::coarray<int>(world, 10);

xs(world.next_rank())[{2, 5}] = {2, 3, 4};

world.sync();

Listing 2.6: A comparison between Bulk and BSPlib for putting a subarray.

Table 2.4: Comparing implementations of BSPedupack running on top of
MCBSP, to our implementations on top of Bulk.

Sort FFT
size tMCBSP (s) tBulk (s) size tMCBSP (s) tBulk (s)
n= 220 24.49 13.80 n= 222 0.153 0.144
n= 221 53.00 28.76 n= 223 0.305 0.320
n= 222 113.6 62.42 n= 224 0.629 0.694
n= 223 237.2 142.8

communicating subarrays of various sizes, consisting of up to 107 double-
precision floating-point numbers, between various processor pairs.

The MCBSP library uses a barrier based on a spinlock mechanism by
default. This barrier gives better performance, leading to a low value for l.
Alternatively, a more energy-efficient barrier based on a mutex can be used,
which is similar to the barrier that is implemented in the C++ backend for
Bulk. With this choice, the latency of MCBSP and Bulk are comparable.
MCBSP is able to obtain a better value for g. We plan to include a spin-

32 CHAPTER 2. BULK

Table 2.5: The BSP parameters for MCBSP and the C++ thread backend
for Bulk.

Method r (GFLOP/s) g (FLOPs/word) l (FLOPs)
MCBSP (spinlock) 0.44 2.93 326
MCBSP (mutex) 0.44 2.86 10484
Bulk 0.44 5.65 11702

lock barrier in a future release of Bulk, and to improve the communication
performance further3.

2.4 Conclusion

We present Bulk, a modern BSP interface and library implementation with
many desirable features such as memory safety, support for generic imple-
mentations of algorithms, portability, and encapsulated state, and show
that it allows for clear and concise implementations of BSP algorithms.
Furthermore, we show the scalability of two important applications im-
plemented in Bulk by providing experimental results. Even though both
algorithms have O (n log n) complexity, and nearly all input data have to
be communicated during the algorithm, we still are able to obtain good
speedups with our straightforward implementations. The performance of
Bulk is close to that of a state-of-the-art BSPlib implementation, except for
the mutex-based barrier.

3Spinlock barriers were introduced in Bulk version 1.1.0 which was released after
the publication on which this chapter is based. With this implementation the measured
latency l for Bulk is reduced to 467 FLOPs.

Chapter 3

Geometric partitioning for
tomography

Tomography is a technique for creating 3D images of the interior of
an object in a noninvasive way. Using some form of photon or particle
beam, two-dimensional projections of the object are acquired, correspond-
ing to integrals of some scalar volumetric property of the object (e.g.,
density, chemical concentration, etc.). Using computed tomography (CT)
techniques, the measurements can then be used to perform a tomographic
reconstruction of the three-dimensional profile of this property [Her09;
KS01].

The projection measurements are performed by a two-dimensional de-
tector containing a grid of pixels. In a tomographic scan, a finite number of
projection images are acquired. The source position, detector position, and
detector orientation vary for each projection image. Without loss of gener-
ality, we consider the source and the detector to move around a stationary
object. Each source–pixel pair defines a line segment through the volume.
All the source–pixel pairs for all projection images together combine to
form a set of line segments. We call this set the acquisition geometry, and

This chapter is based on:

A geometric partitioning method for distributed tomographic reconstruc-
tion. JW Buurlage, RH Bisseling, KJ Batenburg. Parallel Computing 81,
104-121, 2019

33

34 CHAPTER 3. GEOMETRIC PARTITIONING

Figure 3.1: Schematic overview of a 3D tomography setup. Here, we show
a single projection. On the left, we have a point source marked by a disk,
which is emitting penetrating radiation. A cone-shaped collection of rays
penetrates a cubic region of space shown in the center. As an example,
we let it contain an object shaped as a octahedron. On the other side of
the object we have the detector, shown as a square region, which performs
intensity measurements of the rays. The projection of the object is shown
in gray. The source and detector move opposite to each other along, for
example, a circular path. Projection images are acquired at a finite number
of source and detector positions.

denote it by G . A common example is that the source positions correspond
to equidistant points along a circle or helix, with the detector positioned
on the opposite side of the object. An illustration of a basic tomography
setup is shown in figure 3.1.

The scanned object is contained in a region V ⊂ R3 which we always
take to be a cuboid. We call this region the object volume.

Tomographic reconstruction methods aim to recover a function from
a finite set of line integrals. Here, we list a number of commonly used
methods. Analytic methods are based on discretizations of continuous in-

35

version formulas, and include filtered back projection type methods, such
as FBP, FDK [FDK84] and Katsevich’s algorithm for helical CT [Kat02]. An
alternative is to formulate the reconstruction task as a linear inverse prob-
lem involving the tomographic system matrix. Iterative methods are then
employed to solve this system; examples include ART [Kac37; GBH70],
SART [And84], SIRT [Gil72], and Krylov subspace methods such as CGLS
[HS52]. Most of these methods are row-action methods, and access a sub-
set of the rows in each iteration. Column-action methods access a subset
of the columns in each iteration instead [Wat94]. Other iterative methods
include statistical reconstruction methods such as ML-EM [LC+84] and
MBIR [SB93]. While analytic methods are typically easy to implement
and are computationally efficient, they can lead to poor image quality if
the reconstruction problem is underdetermined, if the measured data con-
tains substantial noise, or if the acquisition geometry is non-standard. In
these cases, iterative methods perform better, but they are computationally
more expensive. With variational methods, tomographic reconstruction is
viewed as a more general optimization problem, which allows for soph-
isticated noise models, as well as a priori knowledge of properties of the
object to be incorporated through regularization terms. Methods such as
FISTA [BT09], Chambolle–Pock [CP10] are popular for solving optimiza-
tion problems in image reconstruction.

An important subset of these reconstruction methods performs matrix–
vector products with the tomographic system matrix as their most compu-
tationally expensive subroutine. These methods include SIRT, CGLS and
other Krylov methods, ML-EM, FISTA and Chambolle–Pock. The focus of
the present work is to accelerate distributed-memory implementations of
these methods by computing an appropriate data distribution. This data
distribution depends heavily on the acquisition geometry that is used for
the experiment.

Advances in acquisition technology, such as a rapidly increasing num-
ber of detector pixels operating at high frame rates, as well as a growing
interest in multi-modal and multi-scale tomography, make reconstruction
tasks increasingly computationally expensive. In particular, typical data
sets that are acquired are quickly growing in size. Object volumes consist-
ing of 20003 or even 40003 volume elements (voxels) are no longer un-
common, which means that reconstruction algorithms have to deal with
vectors of sizes up to 64× 109.

36 CHAPTER 3. GEOMETRIC PARTITIONING

It is highly desirable to perform large-scale tomography in reasonable
time. We consider this to be one of the main goals for the next generation
of reconstruction techniques and algorithms. We distinguish between two
approaches that are being taken in algorithm research for fast tomography.
First, alternative reconstruction algorithms are being developed that ap-
proximate advanced but slow iterative methods, by faster and lighter meth-
ods [BB02; PB13; Kun+07; Nik+17; Zen12]. Second, techniques are be-
ing developed that take advantage of advances in computer hardware.
Modern computing systems are increasingly parallel. By using the in-
creased hardware capabilities to their full extent, reconstruction times can
be greatly reduced. Modern implementations of common operations in
tomographic reconstruction that are accelerated on multi-core processors
or GPUs can give order-of-magnitude speedups over more conventional
approaches [Chi+11; PBS11; SH14; Aar+15; Xu+10]. Additionally, with
distributed implementations even higher reconstruction speeds can be ob-
tained, but so far these implementations target only standard acquisition
geometries for relatively low node counts [BG05; Pal+17; Ros+13]. In par-
ticular, for single-axis parallel-beam geometries, where conceptually the
source is infinitely far away, efficient reconstruction is easy to realize be-
cause the task is trivially parallel [Mar+17; Wan+17]. The partitioning
method we present here is flexible, and can be applied to arbitrary acquis-
ition geometries.

In this chapter, we consider distributed-memory parallel methods for
tomographic reconstruction. The main contribution of this chapter is to
introduce an effective and efficient method for partitioning these data sets
with respect to the matrix–vector products. The resulting partitioning de-
pends only on the acquisition geometry, and is therefore reusable. The
method can be used to automatically distribute the computational load
over any number of processing elements. Furthermore, the resulting parti-
tionings give insight into the computational structure of distributed-memory
parallel methods in tomography.

The remainder of this chapter is structured as follows. In Section 3.1,
we introduce the discretized tomographic reconstruction problem and the
projection operations. In Section 3.2, we discuss distributed-memory par-
allel implementations of the projection operators, and introduce an asso-
ciated geometric partitioning problem. In Section 3.3, we present an al-
gorithm that solves the geometric partitioning problem. In Section 3.4, we

3.1. PROJECTION OPERATIONS 37

give the results of our numerical experiments. In Section 3.5, we discuss
these results and the applicability of our method. Finally, in Section 3.6,
we present our conclusions.

3.1 Projection operations

By discretizing the object volume V into n voxels, and linearizing the un-
derlying physical model, we can represent the tomographic reconstruction
problem as a linear system of equations:

Wx= b. (3.1)

Here, the vector x of size n is the image that is to be reconstructed, and
the vector b of size m represents the measurements for each of the m line
segments in the acquisition geometry. Matrix element wi j of W is a weight
related to the length of line `i ∈ G in the jth voxel of the object volume.
The m× n matrix W is sparse because every line intersects only a limited
number of voxels.

The matrix W , called the system matrix, is usually not formed explicitly,
because for any realistic number of voxels it quickly becomes prohibitively
large. Instead, it is generated row-by-row by a discrete integration method
(DIM), also called a kernel or projector, whenever W is used to, e.g., trans-
form a vector. That is to say, tomography implementations are typically
matrix-free. Common choices for a DIM are the slice-interpolated [XM06],
and distance-driven [MB04] DIMs. In this chapter, we assume that the
weights correspond exactly to the length of a line in a voxel. See figure 3.2
for an example of the construction of a tomography matrix.

The matrix–vector product Wx is typically called forward projection in
tomography literature, while a matrix–vector product with the transpose
of the system matrix, i.e., W T y, is called the back projection. For a num-
ber of reconstruction methods, including SIRT and those based on Krylov
subspaces, these projection operations make up the dominant part of the
computational cost.

38 CHAPTER 3. GEOMETRIC PARTITIONING

V

1 2 3

4 5 6

7 8 9

W

1 2 3 4 5 6 7 8 9

Figure 3.2: Construction of a tomography matrix in two dimensions. On
the left, the object volume is shown together with two sets of three lines,
corresponding to two projection images. One of these sets is shown in red,
green and blue. The other projection is shown as dotted gray lines. The
corresponding nonzero pattern, corresponding to nonzero lengths of the
lines through the voxels, is shown on the right.

3.2 Distributed projection operations

The nonzero pattern of a typical tomography matrix is visualized in fig-
ure 3.3. There are some special aspects of a tomography matrix that dis-
tinguish it from a typical sparse matrix as we encounter them in for ex-
ample the SuiteSparse matrix collection [DH11]. First, as mentioned in
the previous section, it is too large to store explicitly. Instead, it is typic-
ally generated row-by-row from the acquisition geometry each time it is
used. Second, the underlying structure is geometrical in nature, and this
geometric information can be exploited for efficient implementations of
operations involving the matrix. Third, if the object volume consists of n
voxels, then there are O

�

n1/3
�

nonzeros per row, since each row corres-
ponds to a line intersecting a 3D volume (often a cube), so that the matrix
has a relatively high density.

Running SpMV in parallel is an extensively studied problem [Bis04;
CA99; Wil+09; YR14]. In order to compute a general SpMV u = Av in
parallel, the sparse matrix A has to be partitioned, i.e., its nonzeros should
be assigned to one of the p available processors. This defines a (local) sub-
matrix A(s) for each processor s. In addition, the vectors v and u need to be

3.2. DISTRIBUTED PROJECTION OPERATIONS 39

Figure 3.3: The nonzero pattern of the matrix W for a very small tomo-
graphic reconstruction problem. We consider a discretized object volume
of 5× 5× 5 voxels, with a detector shape of 5× 5 pixels. The matrix was
generated using a slice-interpolated DIM and a standard parallel geometry
with 4 projections taken. The matrix has 100 rows, 125 columns and 1394
nonzeros.

partitioned. Generally, communication is required to obtain the necessary
nonlocal components v j, or to send nonzero contributions for compon-
ents ui that are not assigned to the local processor. Trying to minimize the
total communication volume (not to be confused with the object volume) by
finding a good partitioning gives rise to a rich optimization problem, and
various methods and software packages have been specifically designed to
treat this problem [CA99; Dev+06; VB05].

3.2.1 Partitionings

Because the system matrix W is not explicitly available, it is not easy to
see how conventional partitioning methods can be applied. However, we
do have access to the underlying geometric structure of the tomography
problem, of which W is a discrete representation. Therefore, we can indir-
ectly partition the matrix W by considering only the acquisition geometry

40 CHAPTER 3. GEOMETRIC PARTITIONING

processors slab onedimrow onedimcol mediumgrain

16 111248 139216 108741 101402
32 233095 292833 210330 188294
64 3928222 3987888 2604930 2210671

Table 3.1: Communication volumes found by Mondriaan for different split-
ting methods. The imposed maximum imbalance is 0.05. The partitioned
matrix corresponds to a typical circular cone beam acquisition geometry
(see figure 3.6(a)) with 1282 pixels on the detector, and an object volume
of 1283 voxels. onedimrow corresponds to a 1D row partitioning, onedimcol
to a 1D column partitioning, and mediumgrain [PB14] to a 2D matrix parti-
tioning. The communication volume of a slab partitioning, which is a 1D
column partitioning corresponding to the object volume being split into p
equal parts along the rotation axis, is shown as a reference.

G and the object volume V .
We identify multiple options. First, we can partition the object volume

V . Each processor is then assigned a subvolume V (s), and the local oper-
ations are restricted to the voxels in this subvolume. This corresponds to
a 1D matrix column partitioning of W . Second, we can partition the geo-
metry G , i.e., assign a collection of lines to each processor. In this case,
each processor is assigned a subgeometry G (s), and the local operations are
restricted to the lines in this subgeometry. This corresponds to a 1D matrix
row partitioning. Third, we could consider 2D matrix partitionings. How-
ever, because of the matrix-free implementation of tomographic projection
operations, using general 2D matrix partitionings seems to be infeasible.

We have investigated the performance of 1D column and row partition-
ings for a small tomographic problem for which the system matrix can still
be formed explicitly, by a combinatorial approach using the Mondriaan par-
titioning software [VB05]. The results are shown in table 3.1, and suggest
that 1D column partitionings perform much better than 1D row partition-
ings, and that limited further gains can be obtained with 2D partitioning
if it would be possible to use them.

An intuitive explanation of the superior performance of 1D column par-
titioning compared to 1D row partitioning is that for any projection a small
part of the volume will forward project to a small region of the detector,
whereas any small region of the detector will back project to a larger part

3.2. DISTRIBUTED PROJECTION OPERATIONS 41

of the volume.
Based on these considerations and numerical results, we shall focus

exclusively on 1D matrix column partitionings. Thus, we assume that there
is some partitioning of the volume:

π= {V (s) | 0≤ s < p}. (3.2)

so that for all s 6= t the interiors of V (s) and V (t) are disjoint, and∪p−1
s=0V

(s) =
V . Here, s and t are indices corresponding to one of the p processors. Let
us derive how to express the parallel forward projection in this distributed
setting. The forward projection y=Wx can be expressed as

yi =
∑

wi j∈W (i,:)

wi j x j.

Here, W (i, :) denotes the ith row of the matrix W . When performing this
sum in parallel over a volume partitioned according to π, each processor
s can contribute to component yi, so that these components are no longer
necessarily computed by a single processor. Each component yi is the sum
of local contributions:

yi =
p−1
∑

s=0

∑

wi j∈W (s)(i,:)

wi j x j

 .

Here, W (s) is the local submatrix induced by the local volume V (s). For a
good partitioning, many rows of these submatrices should be empty, lead-
ing to only a limited number of contributions for each component yi. For
each component yi, one of the contributors, the owner φ(i) of the ith com-
ponent, is selected to receive all nonzero contributions and perform the
outer sum. After the forward projection, the computed value of yi will
thus be stored exclusively on processor φ(i).

We summarize the resulting parallel algorithm for the forward projec-
tion in algorithm 2. It is given in single program multiple data (SPMD)
form, and is parametrized on the processor number s. It is a bulk-synchronous
parallel (BSP) [Val90] program, see [Bis04] for an introduction. In short,
computations in BSP programs are carried out in supersteps. Communic-
ation is staged: it is prepared during a superstep, but carried out only
at the end of that superstep. Communication is represented in the text

42 CHAPTER 3. GEOMETRIC PARTITIONING

by PUT statements. In between the supersteps, there is a communication
point where outstanding communication is resolved, followed by a global
synchronization. This boundary is represented by a SYNC statement.

For locally storing and computing y, we only need to consider the relev-
ant (local) part, i.e., those components yi for which the ith line `i intersects
the local volume. This means that a volume partitioning induces subgeo-
metries, given by the subset of the acquisition geometry with only lines that
intersect the local subvolume. We will write G|V (s) for these subgeometries.

The back projection operation can be implemented in a similar way. To
back project into its local volume, a processor requires only the values yi

to which it contributes. If a back projection follows a forward projection,
then this means that the owner φ(i) should communicate the computed
value of yi to all of its contributors at the beginning of the back projection
operator. In particular, the communication volume for the back projection
is the same as for the forward projection.

Algorithm 2 Parallel forward projection algorithm for processor s.
Input: x(s), W (s), φ.
Output: y(s)

z(s) =W (s)x(s)

for all i s.t. z(s)i 6= 0 do
PUT z(s)i in φ(i)

–SYNC–

y(s)← 0
for all i s.t. φ(i) = s do

for all t s.t. z(t)i 6= 0 do
y (s)i ← y (s)i + z(t)i

We end this section with two observations that are relevant for the
matrix-free implementation of distributed projection operations, and il-
lustrate how these implementations differ from general SpMV implement-
ations. First, if the local subvolume V (s) is a convex region, such as a
cuboid, then the submatrix W (s) can be generated efficiently by the same

3.2. DISTRIBUTED PROJECTION OPERATIONS 43

DIM as is used for W . Second, since a component yi corresponds to a line
segment for a source–pixel pair, we can efficiently find at once the set of
contributors for groups of lines in the following way. We consider in turn
each projection image, for each of which the position of the source is fixed.
For each projection image, we look at the region to which the subvolume
projects, i.e., the shadow of the subvolume on the detector. The regions
where two or more shadows overlap, correspond to a group of lines with
the same set of two or more contributors.

3.2.2 Partitioning the object volume

What is a good partitioning? The communication volume of the distributed
forward projection operation arises because several subvolumes can con-
tribute to the same component yi. Geometrically, this can be interpreted
as a line of the acquisition geometry intersecting several subvolumes asso-
ciated with different processors. Before we give an expression for the total
communication volume of the algorithm, we define:

λ`(π) = |{s | ` ∈ G|V (s)}|,

i.e., the line cut λ`(π) is equal to the number of subvolumes in π that are
intersected by the line `. We assume that each line ` has a non-empty
intersection with the full volume, so that we have λ`(π)≥ 1.

We can express the communication volume of the forward projection
and back projection operations directly in terms of the line cut:

V (π) =
∑

`∈G

(λ`(π)− 1).

We will also put a load balancing constraint on the partitioning. To this
end, we define the computational weight ω(j) of a voxel as the number of
lines in the acquisition geometry that intersect the voxel. This computa-
tional weight equals the number of times a voxel is used during the for-
ward projection. The computational load is the sum of the computational
weights over all voxels in the local volume:

T (s) =
∑

j : x j∈V (s)
ω(j).

44 CHAPTER 3. GEOMETRIC PARTITIONING

We define the load imbalance as:

ε(π) = max
0≤s<p

T (s)

Tavg
− 1.

Here, Tavg is the average computational load, i.e., the sum of the computa-
tional weights over the entire volume divided by the number of processors.
To ensure that each processor performs roughly the same number of com-
putations, the load imbalance should be kept close to zero. With these
definitions in place, we can state the tomographic partitioning problem
associated to distributed tomographic reconstruction:

Let G be an acquisition geometry, V the object volume, εmax the
maximum allowed load imbalance, and p the number of pro-
cessors. Let Π denote the set of p-way volume partitionings, as
given by (3.2). The tomographic partitioning problem (TOMPP)
is the following optimization problem:

minimizeπ∈Π V (π)
subject to ε(π)< εmax.

Since an acquisition geometry G is simply a set of line segments, we
obtain a purely geometric problem: partition a cuboid to minimize the total
line cut for a given set of lines.

3.3 Geometric recursive coordinate bisection

We look only at a specific class of partitionings, where each subvolume is a
rectangular cuboid that is aligned with the coordinate axes. This restriction
is motivated by the following considerations. First, partitioning problems
are notoriously hard. Similar partitioning problems for graphs and hyper-
graphs have been shown to be NP-hard [BJ92; Len90]. Therefore we ought
to reduce the search space considerably. Second, axis-aligned subvolumes
are well suited for GPU computations. In particular, efficient GPU imple-
mentations rely on texture and index spaces that are rectangular. Third,
the resulting partitionings should be easy to describe. The method we
present will produce a binary space partitioning of the volume V . This

3.3. GEOMETRIC RECURSIVE COORDINATE BISECTION 45

means that the resulting partitionings can be used without any reference
to the method that produced it.

In the following, when we write V = V0∪V1∪ . . .∪Vp−1, all volumes V
and Vi are assumed to be axis-aligned rectangular cuboids. In addition, the
interiors for all pairs Vi and V j with i 6= j are disjoint. This union implies
a partitioning π. We call such a partitioning a cuboid partitioning. Below,
we write V (V0, . . . ,Vp−1) for the communication volume V (π).

We will first present the following observation, which informally states
that the communication volume for a bipartitioning is equal to the number
of lines crossing the interface between the two parts. This is illustrated in
figure 3.4.

Lemma 2. Let V = V0 ∪ V1, be a cuboid partitioning as above. The com-
munication volume V (V0,V1) for any acquisition geometry G is equal to the
number of lines in G that have a non-empty intersection with the interface
between V0 and V1.

The core result that is used by our algorithm is a geometric version of
theorem 2.2 in [VB05], and generalizes an observation from [CA99]. The
result states that the communication volume is additive.

Theorem 3. Let V = V0 ∪ V1 ∪ . . .∪Vp−1 be a cuboid partitioning as above.
Then for any acquisition geometry G we have:

V (V0,V1, . . . ,Vp−1) = V (V0,V1, . . . ,Vp−2 ∪Vp−1) + V (Vp−2,Vp−1). (3.3)

The proofs of lemma 2 and theorem 3 are straightforward and are given
at the end of this chapter.

3.3.1 GRCB algorithm

With these results, we are ready to describe a geometric recursive coordinate
bisectioning (GRCB) algorithm for the TOMPP. Taking an arbitrary acquis-
ition geometry as input, it results in a cuboid partitioning of the object
volume.

Recursive coordinate bisectioning (RCB) and generalizations of this
method have proven to be successful partitioning strategies [BB87; Dev+16]
for finite-element and finite-difference computations.

46 CHAPTER 3. GEOMETRIC PARTITIONING

V1

V0

y

Figure 3.4: A set of lines through a square two-dimensional object volume
V = V0 ∪ V1. The lines intersecting both subvolumes are exactly those
lines that cross the horizontal interface at height y , shown here with a
dashed line, between V0 and V1. In this case, three of the six lines have an
intersection point (shown as •) with the interface.

For the sake of presentation, we will restrict ourselves in this subsection
in the following two ways. First, the number of processors is assumed to be
a power of two. That is to say, we partition the volume into p = 2q parts, for
some q. Second, the computational weights ω are assumed to be uniform
over the object volume, so that we only have to consider the number of
voxels of a part for load balancing considerations. We will describe later
how it is possible to lift both of these restrictions.

The GRCB algorithm works as follows. We start with the full volume
V , and recursively split it into two parts, using an appropriate axis-aligned
splitting plane that is to be computed. Theorem 3 ensures that each time
we split, we only have to consider the subvolume being split and the lines
intersecting this subvolume to obtain the change in communication volume.
Furthermore, by lemma 2 we can compute this communication volume by
counting the number of intersections in the splitting plane.

The overall form of the GRCB algorithm is given in algorithm 3. We

3.3. GEOMETRIC RECURSIVE COORDINATE BISECTION 47

represent the resulting binary space partitioning as a balanced binary tree
(the partitioning tree). We represent the tree recursively using nodes of the
form 〈n1, v, n2〉, where n1 is the left child node, v is the value contained in
the node, and n2 is the right child node. With 〈−〉, we denote an empty
node (a leaf of the tree has two empty child nodes). Each node of the tree
has as its value a pair (d, a), with 1 ≤ d ≤ 3 the axis along which the
volume splits, and a ∈ R the position of the splitting plane along this axis.
When splitting results in two computationally unequal parts, the load im-
balance for the smaller part can be relaxed. We take the same approach as
the Mondriaan partitioning method [VB05], and choose εmax dynamically
and separately for the newly introduced subvolumes, depending on the
current load imbalance and the total computational weight of the volume
that is split.

Algorithm 3 Geometric recursive coordinate bisectioning (GRCB).
Subroutine: PARTITION

Input: V ,G , q,εmax

Output: the root node n of the partitioning (sub)tree

if q = 0 then
return 〈−〉

(d, a),V1,V2← SPLIT(V , G , εmax/q)

ωmax← (1+ εmax)ω(V)/2q

ε1←ωmax · 2q−1/ω(V1)− 1
ε2←ωmax · 2q−1/ω(V2)− 1

n1← PARTITION(V1, G|V1
, q− 1, ε1)

n2← PARTITION(V2, G|V2
, q− 1, ε2)

return 〈n1, (d, a), n2〉

The splitting subroutine shown in algorithm 4 computes a split for a
volume W and a set of lines H through this volume. At the beginning
of this subroutine, we compute for each line in H the two intersection
points with the boundary of the volumeW . We call these pairs of intersec-
tion points belonging to the same line partners. All the intersection points

48 CHAPTER 3. GEOMETRIC PARTITIONING

together make up a set E which we call the event points.
Next, we perform three plane sweeps, one for each of the three axes.

Before we sweep along the dth axis, we preprocess the set of event points.
First, we sort the event points by their dth coordinate. Second, for each
event point, we decide if it is an incoming event or an outgoing event with
respect to the dth axis. An event point is incoming if its partner has a
larger dth component. If its partner has a smaller dth component, then it
is outgoing. If their dth components are equal, the events can be safely
ignored for this sweep, since the line will always be completely contained
in one of the two subvolumes.

We are now ready to describe the plane sweep, which is illustrated in
figure 3.5. Conceptually, we move a sweeping plane (perpendicular to the
dth axis) that starts outside of the volume, by slowly increasing its dth
coordinate. This plane will represent a candidate split of the volume W .
Since it starts outside of the volume, initially there are no lines crossing
the interface. We stop at each event point. If the event is incoming, then
the corresponding line will begin intersecting the sweeping plane. If the
event is outgoing, then the corresponding line will no longer intersect the
sweeping plane. This means that during the sweep, the number of lines
intersecting the sweeping plane increases or decreases by one at each event
point. In particular, it is very easy to keep track of the communication
volume that would be incurred if the current sweeping plane would be
taken as a splitting plane.

At each of the event points, the load balance constraint is checked.
If it is satisfied, and the communication volume is the lowest among all
valid splits encountered so far, we store the current sweeping plane as
the current split candidate. After the third plane sweep, the split that is
currently stored as the best one is returned.

After performing p − 1 splits, the GRCB algorithm terminates. The
splitting routine consists of the following computational steps. First, we
compute the intersections in O(m) time, where m is the number of lines.
Second, we sort these intersections for each axis in O(m log m) time to ob-
tain the events for the plane sweeps. Finally, the plane sweeps each consist
of a loop over the O(m) events, and the body of this loop runs in constant
time. We conclude that sorting the intersections dominates the computa-
tional costs of the splitting procedure. Therefore, the full GRCB algorithm
runs in O(pm log m) time. To put this into context, a single SpMV involving

3.3. GEOMETRIC RECURSIVE COORDINATE BISECTION 49

Algorithm 4 Bisecting a volume W to minimize the line cut for a set of
linesH .

Subroutine: SPLIT.
Input: H , W , εmax

Output: (d, a), W1, W2

compute set E of intersections ofH with W
Vmin←∞
(dbest, abest)← (∞,∞)

for d in {1, 2,3} do
sort E by dth coordinate
V ← 0
for x in E do

if event x is incoming then
V ← V + 1

else if event x is outgoing then
V ← V − 1

if load imbalance εmax is satisfied with split (d, a), and V < Vmin

then
Vmin← V
(dbest, abest)← (d, xd)

Let W1 and W2 be the two subvolumes for the split (dbest, abest)

return (dbest, abest),W1,W2

a tomographic projection matrix runs in O(mn1/3) time. The GRCB al-
gorithm is efficient, and the resulting partitionings can be reused when
the same acquisition geometry is employed for multiple scans. This is the
case, for example, with a lab scanner that has fixed source and detector
positions.

50 CHAPTER 3. GEOMETRIC PARTITIONING

y1

y2

y3

Figure 3.5: Visualization of the 2D equivalent of the 3D plane sweep de-
scribed in algorithm 4. Imagine that we are considering a horizontal can-
didate interface which we are moving upwards, i.e., we gradually increase
the y coordinate of the interface. If we were to split the volume accord-
ing to the current candidate interface, the communication volume would
be given by the number of lines crossing that interface. The only y co-
ordinates where this number changes correspond to the y coordinates of
intersection events, i.e., points where a line intersects the object volume
boundary. Outgoing intersection events (shown as ×), and incoming inter-
section events (shown as�) are marked. We illustrate candidate interfaces
(shown as a dotted line) together with the interface intersections (shown
as •), for three different y coordinates.

3.3.2 Removing restrictions

For partitioning into p 6= 2q parts, we can use a modified SPLIT subroutine
that allows for splitting into two parts by a different ratio than 1 : 1.

If we have non-uniform computational weights, we can still efficiently
compute the total weight of a (candidate) subvolume. For this, we perform
one preprocessing step, and store for each voxel at coordinate (i, j, k) the
cumulative sum of the cube with lower corner (0, 0,0) and upper corner

3.4. RESULTS 51

(a) CCB, SAPB (b) DAPB (c) HCB

(d) LAM (e) TSYN

Figure 3.6: Schematic overview of the acquisition geometries that we con-
sider. Here, the source trajectory is shown with a fat red line. The center of
the detector is assumed to be at the antipodal point, except in (d) where
the detector position is shown in blue. In (a) and (b), we indicate both
parallel-beam and cone-beam geometries. In (d), the fat points indicate
the positions of the detector and source, which are always one half rota-
tion out of phase and move with the same angular velocity.

(i, j, k), requiring only O (n) memory and time, where n is the number
of voxels in the full object volume. When we want to compute the total
weight of a cuboid with lower corner (i1, j1, k1) and upper corner (i2, j2, k2),
we can retrieve this in O (1) time using the principle of inclusion–exclusion
with the cumulative sums that have been precomputed.

3.4 Results

The 3D acquisition geometries that we study in this work are all commonly
used. They are illustrated in figure 3.6, and are listed below. The paramet-
ers for these geometries are given in the appendix to this chapter.

1. Single-axis parallel-beam (SAPB). The (point) source, conceptually
infinitely far away, and the detector rotate in a circular trajectory

52 CHAPTER 3. GEOMETRIC PARTITIONING

around the object. Example uses are tomography at synchrotron
sources [Mar+17] and electron tomography [MD09]. In this acquisi-
tion geometry, each line is contained in a single slice, making it trivial
to partition the volume.

2. Dual-axis parallel-beam (DAPB). Similar to SAPB, but after completing
one circle, an alternative axis is chosen and another rotation is made
[Mas97; Pen+95]. This acquisition geometry is commonly used in
imaging for life sciences.

3. Circular cone-beam (CCB). Similar to SAPB, but the source is at some
fixed distance. We distinguish between two cases (a) wide: the source
is close to the sample. Here, wide means that the cone angle is large.
(b) narrow: the source is far away, which is closer to the parallel-
beam case. Circular cone-beam is the usual acquisition geometry for
laboratory CT scanners.

4. Helical cone-beam (HCB). Here, the setup is the same as for CCB,
but the source and detector also move along the rotation axis. This
corresponds to a helical trajectory. Helical cone-beam is often used in
a medical setting, but it is also used for the analysis of rock samples
[She+14].

5. Laminography (LAM). The source and detector array follow different
circular trajectories which are parallel to, say, the z = 0 plane. The
source and central point on the detector are always one half rotation
out of phase, and move with the same angular velocity [MPS10].
Laminography is a common technique for imaging flat objects such
as paintings or semiconductor wafers.

6. Tomosynthesis (TSYN). The detector array is placed statically under a
sample, while the source follows a circular trajectory around a given
axis for some limited arc. Among other applications, it is used for
breast cancer screening, and the inspection of passenger luggage
[Hel10; Rei+11].

3.4. RESULTS 53

3.4.1 Resulting partitionings

For each geometry, we have run the GRCB algorithm for a varying number
of processors. We consider processor counts between 16 and 256, and for
each geometry we compare against a 1D block partitioning of the volume,
which we will call the standard partitioning. In this standard partitioning,
equal slabs of adjacent slices along one of the three dimensions are dis-
tributed among the processors, which is current practice for distributed-
memory methods in tomography [Pal+17; Ros+13]. Because the vast ma-
jority of acquisition geometries have a preferred direction, this partition-
ing serves as a better base case than, e.g., performing a recursive bisection
along the longest dimension. For an example of a standard partitioning,
see the resulting GRCB partitioning of the SAPB acquisition geometry in
figure 3.7(a) which happens to coincide with the standard partitioning.

We note that we expect the GRCB partitionings to be valid also for
ultra-high resolutions, as long as the geometric structure does not change
significantly. We chose to keep the problem sizes limited to object volumes
consisting of 5123 voxels to allow our experiments to be done in reason-
able time. We employ a simple DIM for the evaluation, that attributes
equidistant sampling points completely to the closest voxel.

We have always chosen the axis for the standard partitioning that gives
the lowest communication volume. The load imbalance for GRCB parti-
tioned object volumes is kept under εmax = 0.05. We do not assume con-
stant weights, and use the cumulative sum approach outlined before. We
summarize the results in table 3.2. We visualize the resulting partitionings
for p = 64 in figure 3.7. A 3D animation visualizing the partitionings and
associated acquisition geometries is available as supplementary material
to the publication on which this chapter is based. Each part is given a
separate color, but because of the high number of parts, some colors may
look similar. It is immediately clear from table 3.2 that when considering
a large number of processors, which also implies more freedom in hav-
ing partitionings with rich structures, a large reduction in communication
volume can be obtained by using GRCB partitioned object volumes.

The negative gains for the helical cone-beam geometries in the case
of low processor counts are most likely caused by the strict load balance
constraint we employ. In particular, the standard partitioning is not al-
ways balanced. For example, we have computed the load imbalance of

54 CHAPTER 3. GEOMETRIC PARTITIONING

the standard partitioning for HCBw and HCBn, and found that it is always
above 0.25 for each processor count that we consider. This means that in
this case the comparison between a standard and a bisected partitioning
is unfair. In fact, it is a benefit of our method that we always end up with
well-balanced partitionings.

As already hinted at before, when considering higher processor counts,
the structures visible in the partitionings become far richer. We give two
examples of partitionings for p = 256 processors in figure 3.8 which illus-
trates this.

An alternative baseline to compare against would be a partitioning in
cubes, by splitting the volume into p = p0 × p1 × p2 equal parts. Because
it is unclear in general how to choose (p0, p1, p2), we only consider the
special case of p = 64 where we can naturally split into 4 × 4 × 4 parts.
The resulting communication volumes are shown in table 3.3. For some
acquisition geometries, this cube partitioning is an improvement over the
standard slab partitioning.

3.4.2 Effects on runtime

To evaluate the effect of the partitioning on the runtime of tomographic
reconstruction, we have developed a software package for performing dis-
tributed tomographic reconstruction. This Tomos toolbox can be found in
an online, open-source repository1. We have run experiments using Tomos
on the Lisa Cluster maintained by SURFsara in Amsterdam. Our commu-
nication is implemented using the Bulk library2, and carried out on top of
MPI. The experiments were executed on up to 16 nodes with Intel E5-2650
v2 processors running at 2.60 GHz that have 16 cores each and 64GB of
RAM. The nodes were connected using Mellanox FDR InfiniBand.

In figure 3.9, we show the effect of the partitioning method on the
runtime of a distributed reconstruction algorithm for a varying number
of processors. For our results, we use the SIRT reconstruction algorithm.
Our evaluation focuses on cone-beam geometries, in particular the CCBn,
HCBw, LAMw and TSYN acquisition geometries. The GRCB partitioned object
volumes lead to a significant speedup for the reconstruction relative to the

1
https://www.github.com/jwbuurlage/Tomos/

2
https://www.github.com/jwbuurlage/Bulk/

3.4. RESULTS 55

G p = 16 p = 32 p = 64 p = 128 p = 256
(×105) (×106) (×107) (×108) (×109)

SAPB VGRCB 0 0 0 0 0
VSTD 0 0 0 0 0
g 0.0% 0.0% 0.0% 0.0% 0.0%
ε 0.00 0.00 0.00 0.00 0.00

DAPB VGRCB 4.9 5.2 6.1 6.5 0.8
VSTD 11.8 19.5 31.6 51.0 10.2
g 58.7% 73.2% 80.7% 87.2% 92.0%
ε 0.03 0.04 0.05 0.03 0.05

CCBn VGRCB 1.1 1.6 1.9 2.3 0.3
VSTD 1.1 1.9 3.2 5.2 1.0
g 0.1% 16.8% 39.6% 55.8% 69.0%
ε 0.04 0.04 0.05 0.03 0.05

CCBw VGRCB 1.9 2.4 2.9 3.2 0.4
VSTD 2.5 4.3 7.1 11.6 2.3
g 21.5% 44.8% 59.8% 72.0% 81.5%
ε 0.04 0.04 0.05 0.03 0.05

HCBw VGRCB 2.3 2.5 2.8 3.3 0.4
VSTD 1.8 2.9 4.7 7.7 1.5
g -29.6% 14.3% 40.7% 57.3% 71.0%
ε 0.05 0.04 0.05 0.03 0.05

HCBn VGRCB 2.3 2.1 2.3 2.6 0.4
VSTD 1.1 1.8 3.0 4.9 1.0
g -104.4% -12.4% 24.2% 45.7% 62.0%
ε 0.04 0.05 0.05 0.04 0.05

LAMn VGRCB 1.4 1.9 2.2 2.7 0.4
VSTD 3.7 6.3 10.2 16.6 3.3
g 62.0% 69.5% 78.1% 83.9% 89.0%
ε 0.00 0.01 0.05 0.03 0.05

LAMw VGRCB 2.5 3.3 3.7 3.9 0.6
VSTD 6.2 10.3 16.9 27.3 5.5
g 60.2% 68.2% 77.9% 85.8% 90.0%
ε 0.00 0.04 0.04 0.03 0.05

TSYN VGRCB 1.1 1.5 1.8 2.1 0.3
VSTD 2.3 4.0 6.6 10.8 2.2
g 51.0% 62.5% 72.8% 80.4% 86.6%
ε 0.03 0.02 0.05 0.03 0.05

Table 3.2: Communication volumes for the acquisition geometries under
consideration, for a varying number of processors p. The communication
volume under the GRCB partitioning is given by VGRCB, while the commu-
nication volume under a standard 1D slab partitioning is given by VSTD.
The gain g is defined as g = (1−VGRCB/VSTD)×100%. The load imbalance
of the GRCB partitioned volume is kept under εmax = 0.05, and is given as
ε. The closest-voxel DIM was used.

56 CHAPTER 3. GEOMETRIC PARTITIONING

(a) SAPB (b) DAPB (c) CCBw

(d) CCBn (e) HCBw (f) HCBn

(g) LAMw (h) LAMn (i) TSYN

Figure 3.7: Resulting GRCB partitionings for p = 64 processors. The axes

are as in
y
xz . If there is a main rotation axis, it corresponds to z. For

TSYN, the stationary detector is placed perpendicular to the z-axis.

3.4. RESULTS 57

CCBn CCBw DAPB HCBw HCBn LAMn LAMw SAPB TSYN

VGRCB 1.9 2.9 6.1 2.8 2.3 2.3 3.7 0.0 1.8
VCUBE 4.4 4.5 6.2 4.9 4.8 4.1 4.6 6.2 3.8
VSTD 3.2 7.1 31.6 4.7 3.0 10.2 16.9 0.0 6.6

Table 3.3: Additional partitioning results, cf. table 3.2. Here, we ad-
ditionally give the communication volume VCUBE for a partitioning into
p = 64= 4×4×4 equal parts. Communication volume is given in multiples
of 107.

(a) LAMw (b) HCBw

Figure 3.8: Resulting GRCB partitionings for p = 256 processors.

standard slab partitioned object volumes. When isolating the communica-
tion times, the effect is even more noticeable, as illustrated in figure 3.10.

In the previous section, we noted the high load imbalance and the re-
latively low communication volume of the standard partitioning for the
HCBw geometry in case of small p. In the results presented here, we see
that indeed the communication time for low processor counts for the GRCB
partitioning is higher for HCBw; however, the total runtime of a SIRT itera-
tion is always in favour of the GRCB partitioning since it assures that the
computational load is balanced.

When comparing the communication times with the communication
volumes shown in table 3.2, one has to take into consideration that the
times are not expected to be linearly dependent on the total communic-

58 CHAPTER 3. GEOMETRIC PARTITIONING

16 32 64 128 256
p

0.1

1.0
τ CCBn (GRCB)

HCBw (GRCB)

LAMw (GRCB)

TSYN (GRCB)

CCBn (STD)

HCBw (STD)

LAMw (STD)

TSYN (STD)

Figure 3.9: The runtime of one SIRT iteration plotted against the number
of processors. Vertically, the relative runtime τ is shown on a logarithmic
scale, defined for each geometry as the time compared to the runtime of re-
constructing using a standard partitioning with p = 16 processors. The re-
construction times for the GRCB partitionings are shown using solid lines,
and for the standard partitionings using dotted lines. Horizontally, the
number of processors is shown on a logarithmic scale. The runtimes for
GRCB partitionings with p = 256 processors are 18.28, 10.52, 13.57 and
19.58 seconds for CCBn, HCBw, LAMw and TSYN, respectively.

ation volume. Other important factors are the maximum communication
volume per part, and the number of messages that are sent.

The main assumption we make is that by reducing the total communic-
ation volume, and keeping the parts balanced, we also indirectly reduce
the communication volume per part and ultimately the total communic-
ation time. Based on the results we present, we may conclude that our
partitioning method leads to a large decrease in communication time and
better scalability, as well as a better load balancing.

The number of messages µ is shown in table 3.4, and is defined as

3.4. RESULTS 59

16 32 64 128 256
p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

τ
CCBn (GRCB)

HCBw (GRCB)

LAMw (GRCB)

TSYN (GRCB)

CCBn (STD)

HCBw (STD)

LAMw (STD)

TSYN (STD)

Figure 3.10: The communication time of one SIRT iteration plotted against
the number of processors. Vertically, the relative communication time τ is
shown, defined for each geometry as the time compared to the communic-
ation time for a standard partitioning with p = 16 processors. The commu-
nication times for the GRCB partitionings are shown using solid lines, and
for the standard partitionings using dotted lines. Horizontally, the number
of processors is shown on a logarithmic scale. The communication times
for GRCB partitionings with p = 256 processors are 3.09, 2.94, 5.74 and
4.90 seconds for CCBn, HCBw, LAMw and TSYN, respectively.

the number of sender–receiver pairs of processors that are communicating
with one another during the reconstruction. Our method does not try to
reduce the total number of messages, and we observe that the number of
messages is of the same order of magnitude for both partitioning methods.
In fact, in many cases the number of messages approaches the maximum
possible number of messages which is 2p(p−1). This seems hard to avoid,
since interactions in tomography are global; the rays in the acquisition geo-
metry cross the entire object volume, coupling all the voxels they intersect.

When using the partitionings for distributed reconstruction, only a rep-

60 CHAPTER 3. GEOMETRIC PARTITIONING

CCBn HCBw LAMw TSYN µmax

p = 16 µSTD 84 276 360 116 480
µGRCB 92 316 360 166

p = 32 µSTD 300 1032 1454 412 1984
µGRCB 388 1092 1108 582

p = 64 µSTD 1084 4064 5836 1538 8064
µGRCB 1356 4040 4324 2022

p = 128 µSTD 4156 16228 23339 6020 32512
µGRCB 4688 14854 14554 6400

p = 256 µSTD 16228 64648 93644 23916 130560
µGRCB 17324 53972 47052 18170

Table 3.4: The message counts for a number of geometries and a varying
number of processors. The message count for the standard partitioning is
denoted by µSTD, while for GRCB partitioned volumes they are denoted by
µGRCB. The maximum possible number of messages (all-to-all) is given as
µmax.

Figure 3.11: Reconstructed slices for an object volume of 512×512×512
voxels with the CCBn acquisition geometry using 64 processors. For the re-
construction, 100 iterations of SIRT were applied with a slice-interpolated
DIM. Here we used a modified 3D Shepp–Logan phantom. The left, middle,
and right reconstructed slices are taken in the middle along the z, x, and
y axes respectively.

resentation of the bisectionings has to be stored and loaded. A suitable DIM
for the acquisition geometry is chosen independently. To demonstrate that
our implementation actually works in practice, we show a reconstruction
for CCBn in figure 3.11.

3.5. DISCUSSION 61

3.5 Discussion

For our evaluation we used straightforward custom implementations of the
projection operations. In a heavily optimized implementation, we expect
that the communication times will play an even more important role. In
the future, we plan on employing the partitionings found with the GRCB
method to improve the reconstruction times for real-world tomographic
experiments. This involves combining the partitionings presented in this
chapter, with state-of-the-art software for tomographic reconstruction. So
far, we have used CPUs for our evaluation, but we plan to use GPUs in-
stead, making computations faster but also making communication relat-
ively even more important.

The load balancing constraint we employ models only the number of
nonzeros assigned to each processor, where a nonzero indicates a line–
voxel intersection. The actual time spent by a processor in the local for-
ward projection and backprojection steps depends on a number of addi-
tional factors. For example: (i) there is an overhead relating to the num-
ber of local rows, because the nonzeros are generated instead of stored,
(ii) memory access patterns are known to have an important influence,
(iii) depending on the chosen DIM the actual nonzero pattern can differ
from the one used in our model, (iv) there are effects relating to the sys-
tem, such as variability between cores and the scheduling of processes. To
check the relation between the modelled computational load and the ac-
tual runtime, we have measured the time T̃ (s) spent by processor s in the
local forward projection step (not including any communication) for the
CCBw geometry. The runtime imbalance ε̃ = max0≤s<p T̃ (s)/T̃avg − 1, was
found to be between 0.07 and 0.15, while the load balance εmax was set
to 0.05. A more sophisticated model for the computational load beyond
counting the number of local nonzeros may improve the actual achieved
runtime balance, but is outside the scope of this work.

With variational reconstruction methods, prior information on the ob-
ject can be incorporated. A common approach is to include the norm of the
image gradient as an additional penalty term. In distributed-memory im-
plementations, evaluating the gradient in every voxel requires the commu-
nication of all interfaces between subvolumes. We have not modeled this
additional communication in the derivation of our algorithm. For the parti-
tionings presented here, the communication volume due to gradient com-

62 CHAPTER 3. GEOMETRIC PARTITIONING

putations is an order of magnitude lower than the communication volume
due to the total line cut for all acquisition geometries except single-axis
parallel beam. Therefore, we think it is warranted to ignore this cost in
our expression for the communication volume.

In this work, we have assumed a simple network topology, where com-
munication performance is identical between any pair of nodes. However,
many modern HPC systems are hierarchical. For example, there could be
p1 nodes, where each node has p2 processing elements such as CPU cores
or GPUs. If we use our unmodified method to partition the object volume
into p = p1p2 parts, we would not take into account that communication
between processing elements residing on the same node is more efficient.

We will sketch how, by a straightforward modification of the load bal-
ance constraints used in the algorithm, a suitable partitioning can be found
for hierarchical systems. The idea is to allow a relatively large load im-
balance between the nodes, resulting in low inter-node communication
volume, and to pay for this by imposing a smaller load imbalance within a
node, at the cost of a potentially higher intra-node communication volume.
In the first stage, the partitioning algorithm is used to split the volume
into p1 parts using a load imbalance ε1 = γε. Here, 0 < γ < 1 relates
to the ratio between the inter-node and intra-node communication cost.
After this first stage, each of the p1 parts are partitioned independently
into p2 parts by the same algorithm. For the second partitioning stage,
a part-dependent load imbalance ε2(s) will ensure that the resulting load
imbalance is at most ε. How to choose γ to optimally exploit a two-level
memory hierarchy requires further study that is beyond the scope of the
present work.

3.6 Conclusion

We consider distributed-memory tomographic reconstruction and intro-
duce a tomographic partitioning problem (TOMPP). We present GRCB, a
partitioning method to solve this problem, that considers the underlying
geometry of the tomographic reconstruction. This is in contrast to combin-
atorial partitioning methods that are based solely on the nonzero pattern
of the corresponding sparse matrix. Our method can be applied to arbit-
rary acquisition geometries. We show that with our new method, we can

3.6. CONCLUSION 63

reduce the necessary communication in distributed-memory parallel tomo-
graphic reconstruction and improve the scalability of an important class of
reconstruction algorithms, including SIRT, CGLS and other Krylov meth-
ods, ML-EM, FISTA and Chambolle–Pock.

Proofs

proof of lemma 2. It suffices to show that a line intersects both subvolumes
if and only if it has a non-empty intersection with (or crosses) the interface
between them. If a line is contained in the interface, then the statement
holds since it crosses the interface, and it intersects both subvolumes. As-
sume the line is not contained in the interface. Say that a line intersects
both V0 and V1, then there exist points a ∈ V0 and b ∈ V1 that are both on
the line. Because cuboids are convex, the line segment from a to b (which
is contained in the original line) is entirely in V , and starts in V0 while it
ends in V1. Therefore, it has to cross the interface. Conversely, if a line
crosses the interface at a point c, then we immediately have c ∈ V0 and
c ∈ V1 so that the line intersects both subvolumes.

proof of theorem 3. Since we can no longer assume that each line intersects
the full volume in each term, we define

λ′
`
(π) =max(λ`(π)− 1, 0),

so that
V =

∑

`∈G

λ′
`
(π).

In other words, if ` crosses the volume to be split, λ′
`
(π) is the number of

subvolumes crossed by ` minus one, otherwise it is zero. It is enough to
consider each term, corresponding to individual lines, separately. We have
to show:

λ′
`
(V0,V1, . . . ,Vp−1) = λ

′
`
(V0,V1, . . . ,Vp−2 ∪Vp−1) +λ

′
`
(Vp−2,Vp−1).

We will split the proof into two cases. If a line does not intersect Vp−2∪
Vp−1, then both sides equal λ′

`
(V0,V1, . . . ,Vp−1).

64 CHAPTER 3. GEOMETRIC PARTITIONING

If it does intersect Vp−2∪Vp−1, then we have two subcases correspond-
ing to the line intersecting either both Vp−2 and Vp−1, or one of the two.
For the former, we have:

λ′`(V0,V1, . . . ,Vp−2 ∪Vp−1) +λ
′
`(Vp−2,Vp−1) = λ

′
`(V0,V1, . . . ,Vp−3) + 1+ 1

= λ′`(V0,V1, . . . ,Vp−3,Vp−2,Vp−1)

as required. For the latter, we assume without loss of generality that it
intersects Vp−2 and compute

λ′`(V0,V1, . . . ,Vp−2 ∪Vp−1) +λ
′
`(Vp−2,Vp−1) = λ

′
`(V0,V1, . . . ,Vp−3) + 1+ 0

= λ′`(V0,V1, . . . ,Vp−3,Vp−2)

= λ′`(V0,V1, . . . ,Vp−3,Vp−2,Vp−1)

which finishes the proof.

Parameters of the acquisition geometries

3.6. CONCLUSION 65

G
k

s
d

D
ϕ

r s
r d

ϑ

S
A

P
B

51
2

(1
.0

,1
.0
)

D
A

P
B

51
2

(1
.0

,1
.0
)

C
C

B
n

76
8
(−

5.
0,

0.
5,

0.
5)

(4
.0

,0
.5

,0
.5
)

(2
.0

,2
.0
)

C
C

B
w

76
8
(−

2.
0,

0.
5,

0.
5)

(2
.0

,0
.5

,0
.5
)

(2
.0

,2
.0
)

H
C

B
w

51
2
(−

3.
0,

0.
5,

0.
5)

(4
.0

,0
.5

,0
.5
)

(2
.0

,2
.0
)

4π
H

C
B

n
51

2
(−

5.
0,

0.
5,

0.
5)

(6
.0

,0
.5

,0
.5
)

(2
.0

,2
.0
)

4π
LA

M
n

51
2
(0

.5
,0

.5
,3

.0
)

(0
.5

,0
.5

,−
2.

0)
(2

.5
,2

.5
)

0.
5

0.
5

LA
M

w
51

2
(0

.5
,0

.5
,3

.0
)

(0
.5

,0
.5

,−
2.

0)
(2

.5
,2

.5
)

1.
0

1.
0

T
S

Y
N

76
8
(0

.5
,0

.5
,3

.0
)

(0
.5

,0
.5

,−
1.

0)
(2

.0
,2

.0
)

0.
7

Ta
bl

e
3.

5:
Pa

ra
m

et
er

s
of

th
e

ac
qu

is
it

io
n

ge
om

et
ri

es
us

ed
fo

rp
ar

ti
ti

on
in

g
th

e
vo

lu
m

e.
In

al
lc

as
es

,t
he

ph
ys

ic
al

ex
te

nt
of

th
e

ob
je

ct
vo

lu
m

e
is
[0

,1
]3

an
d

th
e

nu
m

be
r

of
vo

xe
ls

is
51

23
.

Th
e

nu
m

be
r

of
pr

oj
ec

ti
on

s
is

al
w

ay
s

51
2.

Po
si

ti
on

s
ar

e
gi

ve
n

in
(x

,y
,z
)

co
or

di
na

te
s.

A
n

em
pt

y
fie

ld
m

ea
ns

th
at

th
e

pa
ra

m
et

er
is

no
t

ap
pl

ic
ab

le
fo

r
th

at
ge

om
et

ry
.

Th
e

pr
im

ar
y

ro
ta

ti
on

ax
is

is
al

w
ay

s
th

e
z-

ax
is

,
ex

ce
pt

fo
r

T
S

Y
N

w
he

re
it

is
th

e
x-

ax
is

.
Fo

r
D

A
P

B
th

e
se

co
nd

ro
ta

ti
on

ax
is

is
th

e
x-

ax
is

.
A

ng
le

s
ar

e
gi

ve
n

in
ra

di
an

s.
W

it
h

k
w

e
de

no
te

th
e

nu
m

be
r

of
ro

w
s

an
d

co
lu

m
ns

on
th

e
de

te
ct

or
.

Th
e

so
ur

ce
an

d
de

te
ct

or
ar

e
po

si
ti

on
ed

at
s

an
d

d
re

sp
ec

ti
ve

ly
.

Th
e

si
ze

of
th

e
de

te
ct

or
is

de
no

te
d

by
D

.
W

it
h
ϕ

w
e

de
no

te
th

e
to

ta
lr

ot
at

io
n

an
gl

e,
i.e

.,
ϕ
=

4π
m

ea
ns

tw
o

fu
ll

re
vo

lu
ti

on
s

ar
e

m
ad

e
in

th
e

he
lic

al
ge

om
et

ri
es

.
W

it
h

r s
an

d
r d

w
e

re
sp

ec
ti

ve
ly

de
no

te
th

e
ra

di
us

of
th

e
so

ur
ce

ci
rc

le
an

d
de

te
ct

or
ci

rc
le

fo
r

la
m

in
og

ra
ph

y.
W

it
h
ϑ

w
e

de
no

te
th

e
to

ta
la

rc
le

ng
th

of
th

e
so

ur
ce

m
ov

em
en

t
in

to
m

os
yn

th
es

is
.

66 CHAPTER 3. GEOMETRIC PARTITIONING

Chapter 4

A projection-based partitioning
method

With tomographic techniques, the interior of an object can be imaged
without destroying the object, which makes tomography an important tool
in medicine, industry, and science. Using a beam of penetrating radiation,
consisting of, e.g., photons or electrons, two-dimensional projections of an
object are acquired. These projections can be related to integrals of some
volumetric property of the object, such as its density. Computed Tomo-
graphy (CT) is a technique to retrieve a 3D profile of this property from
the measured projection images [Buz08; Avi01].

A tomographic experiment is performed using a source that emits the
penetrating radiation, and a two-dimensional detector that captures the
projection images. A finite number of projections are taken of the object.
In this chapter, we will consider point sources, and rectangular flat panel
detectors. This means that each projection corresponds to a cone, with at
its base the detector, and at its apex the source.

Two important operations in CT algorithms are the forward projection

This chapter is based on:

A projection-based partitioning method for distributed tomographic recon-
struction. JW Buurlage, WJ Palenstijn, RH Bisseling, KJ Batenburg. Proceed-
ings of the SIAM Conference on Parallel Processing for Scientific Comput-
ing, 58–68, 2020

67

68 CHAPTER 4. PROJECTION-BASED PARTITIONING

and the backprojection. A forward projection operation is a linear trans-
formation that models the physical experiment. It takes a discretized rep-
resentation of the object, and outputs the two-dimensional projections of
the object. The backprojection operator is the adjoint of the forward pro-
jection operator. Various models can be used for this linear transformation
[LFB10; MB04; XM06].

There are a broad variety of reconstruction algorithms for CT. An im-
portant subset of these algorithms uses forward projection and backpro-
jection operations, and these operations typically dominate their runtime
costs. Our focus in this chapter is on reconstruction methods that alternate
between forward projection and backprojection operations, with option-
ally some in-between operations in the image or measurement domain.
These include SIRT [Gil72], Krylov methods such as CGLS [HS52], ML-
EM [LC+84], and methods originating from convex optimization such as
FISTA [BT09] and Chambolle–Pock [CP10].

The computational cost of these reconstruction methods grows super-
linearly with respect to the input data. The size of typical tomographic data
sets is rapidly increasing, due to advances in hardware and increased in-
terest in multi-modal imaging, imaging of dynamic systems, and adaptive
acquisition. Large data sets of many GBs in size are increasingly common,
and for these data sets even optimized GPU implementations do not al-
ways suffice to keep the computational costs manageable. This motivates
the move to large distributed-memory compute clusters, to keep recon-
struction times reasonable.

When performing projection operations on a distributed-memory sys-
tem, communication is the main bottleneck for algorithms that make use
of alternating forward projection and backprojection operations. The data
partitioning method presented in this chapter concerns itself with minim-
izing the required communication, without changing the overall structure
of the underlying algorithms, for an arbitrary acquisition geometry, i.e., a
set of source and detector positions. It is a refinement of the previously
published GRCB partitioning algorithm [BBB19].

While the GRCB method has a good time complexity compared to, e.g.,
the projection operations, it is still too slow to apply in real time. This
limits its applicability in various situations, such as adaptive acquisition
where the user may want to zoom in on a region-of-interest after initial
inspection, or in cases where the acquisition geometry simply changes from

4.1. BACKGROUND 69

scan to scan, because the user changes, e.g., the source-to-object distance,
or the source-to-detector distance.

This chapter is structured as follows. In Section 4.1, we discuss how to
model tomographic reconstruction as a linear inverse problem, discuss an
associated partitioning problem, and summarize the original GRCB parti-
tioning method. In Section 4.2, we introduce a geometric characterization
of the partitioning problem, and use this to develop a more efficient par-
titioning algorithm. In Section 4.3, we introduce a memory-efficient data
structure that stores communication metadata. In Section 4.4, we give the
results of our numerical experiments. Finally, in Section 4.5, we present
our conclusions.

4.1 Background

Tomographic reconstruction.

Tomographic reconstruction can be modeled as a linear system of equa-
tions. The physical model is discretized in order to obtain a matrix W ∈
Rm×n, that maps a discretized representation x ∈ Rn of the object (the im-
age), to a vector of measurements b ∈ Rm. A component x j corresponds
to the jth voxel in the volume. A component bi corresponds to a measure-
ment for the ith ray, between a source point and a pixel on the detector.
The reconstruction problem in tomography is a linear inverse problem of
the form: given W and b, find x such that:

Wx≈ b.

In order to construct the system matrix W we introduce two concepts:
the acquisition geometry, and the object volume. The acquisition geometry
is a set of line segments in three-dimensional space. For each projection,
where the radiation source and detector positions are fixed, each detector
element on the detector (corresponding to a pixel in the projection image),
is the end point of a line segment that starts at the position of the source.
The imaged object is represented as a discretized volume of voxels. Each
voxel corresponds to a small cube, and the associated value x j corresponds
to some volumetric property of the object, such as its density, at the location
of the voxel.

70 CHAPTER 4. PROJECTION-BASED PARTITIONING

row i

ray i

0 1

2 3

4 5

7

Figure 4.1: Constructing a row of the system matrix W . The object volume
is discretized into 2 × 2 × 2 voxels, and a ray from the acquisition geo-
metry intersects this volume. Here, it passes through four of the numbered
voxels, the ones marked red, leading to four nonzeros in the corresponding
matrix row.

We do not consider parallel-beam geometries, where conceptually the
source is infinitely far away, as they are usually easier to partition. How-
ever, the method we present should generalize to those geometries as well.

Each row of the matrix W corresponds to a line segment in the acquis-
ition geometry. Each column of W corresponds to a voxel of the object
volume. We assume that the matrix elements Wi j are given by the length
of the intersection of the ith line with the jth voxel. Note that W is sparse,
as each line will only intersect a relatively small collection of voxels. This
construction is illustrated in figure 4.1.

The forward projection and backprojection operations that are crucial
for many reconstruction algorithms, correspond to sparse matrix–vector
(SpMV) products with W and W T , respectively.

4.1. BACKGROUND 71

Parallel execution of projection operations.

When the sparse matrix–vector products y = Wx and x = W T y are ex-
ecuted on a distributed-memory system that consists of p nodes (or pro-
cessing elements, or simply processors), communication between the nodes
is the single most important consideration for the computational efficiency.
The relevant data are the nonzeros of the matrix W , the components of the
image x, and the components of the measurements y. For each of these
three types of data, a suitable p-way partitioning has to be chosen.

The sth part of the data, is assigned to the sth processor. The three types
of data: the image, measurements, and nonzeros, correspond to three ways
of partitioning the underlying sparse matrix. An image partitioning implies
a column partitioning of the matrix, a measurement partitioning implies a
row partitioning of the matrix, and finally a nonzero-based partitioning
gives a 2D partitioning of the matrix.

Communication occurs because different processors depend on the same
data. Each nonzero Wi j corresponds to two floating-point operations (flops),
as it has to be multiplied with image component x j and the result of this
multiplication occurs in the sum for the measurement component yi =
∑

Wi j 6=0 Wi j x j. In other words, a nonzero element Wi j couples the jth com-
ponent of x and the ith component of y. Communication is usually un-
avoidable if one requires a balanced partitioning where each part is of
roughly equal size, but by choosing a suitable partitioning the total com-
munication volume, i.e., the number of data words sent, can be reduced sig-
nificantly. The components of the vectors x and y must also be assigned to a
processor, without any restriction. In that case, the parallel algorithm will
have four phases: (i) a scatter phase where each component x j is commu-
nicated to the processors that need it; (ii) a local computation of products
Wi j x j followed by an addition of products for the same row i; (iii) a gather
phase where the contributions to each component yi are communicated to
the owner of the component; (iv) a local addition of the received contri-
butions for each component yi.

Partitioning for SpMVs is a well-studied problem in combinatorial sci-
entific computing. The underlying structure is modeled as a hypergraph,
where common models include row-net and column-net [CA99], medium-
grain [PB14], and fine-grain [CA01]. Partitioning methods aim to find a
balanced partitioning of the vertices of the model hypergraph, that minim-

72 CHAPTER 4. PROJECTION-BASED PARTITIONING

izes the total communication volume and in certain cases also the number
of messages sent.

The system matrix for a tomographic reconstruction problem is sparse
and consists of O

�

mn1/3
�

nonzeros, and common values for m and n are
109 or even higher. This corresponds to many terabytes of data, which
means that the matrix cannot be stored explicitly for the desired high resol-
utions, even when employing a sparse data structure, and that the forward
and backprojection must be implemented in a matrix-free manner. This
also means that it is not at all clear how SpMV partitioning approaches
can be applied. Instead, we consider the underlying geometry of the prob-
lem.

Tomographic partitioning problem.

In tomographic reconstruction, a cuboid region V ⊂ R3 called the object
volume is defined. The sample being scanned is completely contained in
V , and after discretizing the object volume into n= nx×ny×nz voxels, the
sample can be represented using an image x with one component for each
voxel. For distributed-memory tomographic reconstruction, we choose to
find a suitable partitioning of the object volume V , which after discretizing
gives a partitioning of the image x, corresponding to a column partitioning
of the matrix. The relevant part of W can be generated locally on each
processor. Only contributing partial sums for the projection data have to
be communicated during the projection operations.

The quality of a partitioning is judged on two grounds: the amount of
communication it induces, and whether or not the parts are roughly equal
in terms of computational cost.

Instead of considering the nonzeros, we can look at the problem geo-
metrically. A tomographic measurement consists of a number of projec-
tions, and for each projection we consider the line segments from the
source position to each pixel on the detector. This defines a set of line seg-
ments G that we call the acquisition geometry. Communication is required
for each line in the acquisition geometry that travels through multiple parts
of the image volume. The number of parts a line ` crosses for a partition-
ing π is denoted by λ`(π). Since we can designate one of the parts as the

4.1. BACKGROUND 73

owner of the line, we have for the communication volume:

Λ(π) =
∑

`∈G

(λ`(π)− 1).

For a good partitioning π, this value will be manageably small.
The computational cost of a part is modeled as the number of flops it

has to perform in a projection operation. Each voxel is involved in twice
as many flops as there are lines ` ∈ G crossing the voxel. For the jth
voxel, we write ω(j) for the number of lines crossing the voxel. The total
computational weight of the sth part is then given by:

T (s) =
∑

j : x j∈Vs

ω(j).

Here, the notation x j ∈ Vs indicates that the voxel x j is assigned to the sth
part after discretizing. For a good partitioning, the following load imbal-
ance ε should be kept small:

ε(π) = max
0≤s<p

T (s)

Tavg
− 1,

where Tavg =
∑

s T (s)/p. We can summarize the tomographic partitioning
problem as follows.

Definition 4. Let G be an acquisition geometry, V the object volume, εmax

the maximum allowed load imbalance, and p the number of processors.
Let Π denote the set of all p-way volume partitionings. The tomographic
partitioning problem is the following optimization problem:

minimizeπ∈Π Λ(π)
subject to ε(π)≤ εmax.

Geometric recursive coordinate bisectioning.

The GRCB algorithm only looks at partitionings π that are obtained by re-
cursive coordinate bisectioning. That is to say, the volume is recursively
split p−1 times, each time along one of the axes. Axis-aligned cuboid par-
titionings such as the ones obtained by GRCB are convenient in practice,

74 CHAPTER 4. PROJECTION-BASED PARTITIONING

and can be expected to give reasonably good results. Because the commu-
nication volume is additive (see theorem 2 in [BBB19]), bisectioning can
be done independently for each part, which is why we can obtain a good
partitioning for any number of processors by recursively splitting in two.

The splitting subroutine of GRCB that performs the bisectioning, is
based on a plane sweep. We are able to identify which splitting plane,
among all the possible axis-aligned ones, is able to best limit the com-
munication volume by directly considering all the lines in the acquisition
geometry G .

4.2 A new projection-based partitioning method

The GRCB algorithm uses a discrete model for the acquisition geometry,
explicitly considering a set of rays. While this leads to an exact represent-
ation of computation load (in flops) and communication volume (in data
words), it does mean that the input data sizes for the partitioning method
are large.

Here, we take a different approach and use a continuous model for
the acquisition geometry, communication volume, and computational load.
For fine enough resolutions, we expect the discretization error incurred by
this model to be small. Instead of minimizing the communication volume
subject to a load balance constraint, we now aim to minimize the commu-
nication volume and the load imbalance simultaneously by generating a
candidate split for each of the three coordinate axes on the basis of load
balance, and among these candidate splits choose the one that realizes the
lowest communication volume.

As before, the object volume is a cuboid V = [x1, x2] × [y1, y2] ×
[z1, z2] ⊂ R3 that we want to partition into p parts. We limit ourselves to
partitionings obtained by recursive bisectioning. In this chapter, the faces
of a cuboid are considered part of the cuboid.

The acquisition geometry is modeled as a set P of cone-shaped projec-
tions pk. Each projection pk can be described by a source–detector pair.
The point-source is at position sk ∈ R3. The detector is a rectangular re-
gion Dk ⊂ R3. The cone with base Dk and apex sk defines the projection
pk.

4.2. A NEW PROJECTION-BASED PARTITIONING METHOD 75

Figure 4.2: The shadow of a part with respect to the point source defines
the region on the detector for which line segments cross the part. Here,
the part and its shadow are shown in red. The shadow can be computed by
projecting the eight vertices of the cuboid on the detector, and then taking
their convex hull.

4.2.1 Communication volume.

We consider the effect that one of the projections pk = (sk, Dk) has on the
communication volume. In the discrete model, the volume depends on
the resolution on the detector, i.e., the shape in pixels of the detector Dk,
e.g., 2000 × 2000. For each detector pixel with center d(i)k , we consider
the line segment ` from sk to d(i)k . The number of cuts in `, which is the
number of additional parts of the object volume that it intersects, is the
contribution in number of data words to the communication volume. Note
that we determine a single p-way partitioning of the object volume for the
set of all rays from all projections.

We describe here a new approach that works directly on the cones
defined by the projections, rather than the individual pixels. It is there-
fore independent of the detector discretization, and this greatly reduces
the size of the input data to the partitioning algorithm.

We exploit the fact that line segments corresponding to neighbouring
pixels often cross the same parts. We want to group rays by identifying
pixels in a region of the detector for which the corresponding line seg-
ments all cross exactly the same parts. The key observation that makes
this possible is that a region of the detector for which the line segments
cross a given part of the object volume, corresponds to the shadow of that
part onto the detector. This is illustrated in figure 4.2.

76 CHAPTER 4. PROJECTION-BASED PARTITIONING

Figure 4.3: Where shadows of a part overlap, line segments in that region
cross multiple parts.

The communication volume in our continuous model is estimated in
the following way. We consider a candidate split into two parts. Strategies
to generate these candidate splits are discussed later. This split happens
along one of the axes of the object volume, at a given location. The split
induces two subvolumes, one to the left of the splitting plane, and one to
the right. To identify the region on the detector for which the line segments
cross both parts, we forward project the vertices of these subvolumes onto
the detector. The shadow of each subvolume can be found by taking the
convex hull of its projected vertices. The area of the intersection of the
two shadows is proportional to the number of line segments crossing both
parts for any fine enough discretization of the detector. We compute this
for each projection in P in order to find the total communication volume.

A subroutine for computing the communication volume for any can-
didate split of the volume V into a left part VL and a right part VR is given
in algorithm 5, optionally taking into account volume for a gradient-based
regularizer as discussed in section 4.2.3.

Because the communication volume is additive, we can split the volume
recursively. After p−1 splits, we have obtained a partitioning into p parts.
The interplay between shadow intersections and communication volume
for a fixed projection is illustrated in figure 4.3.

4.2. A NEW PROJECTION-BASED PARTITIONING METHOD 77

Algorithm 5 Computing the communication volume for a given split. Here,
M is a magnification value, relating the detector size to the object volume
size, and VL and VR are cuboids corresponding to the volumes to the left
and to the right of the candidate splitting plane.

Subroutine: COMMUNICATIONVOLUME

Input: VL, VR, P
Output: Λ

Λ← 0
for all pk ∈ P do

SL ← CONVEXHULL(PROJECT(pk, VERTICES(VL)))
SR← CONVEXHULL(PROJECT(pk, VERTICES(VR)))
Λ← Λ+ AREA(SL ∩ SR)

if consider gradient then
Λ← Λ+M × AREA(VL ∩ VR)

4.2.2 Load balance.

We next discuss generating a set of candidate splits that we want to evalu-
ate. These candidate splits should divide the object volume into parts with
roughly equal computational weight, and among that set we choose the
one that induces the least amount of communication.

Modeling the computational weight in our continuous setting does not
appear to be as straightforward as for the communication volume. Recall
that the computational weight of a voxel is defined as the number of lines
intersecting it. We no longer have an explicit set of lines nor of voxels,
but regardless of the discretization we have that the line density in the
volume for a given projection decreases as 1/r2 where r is the distance
to the source. The computational weight of a part Vs should therefore be
proportional to the integral:

|P|
∑

k=1

∫

Vs

1
||x− sk||22

dx. (4.1)

If we want to split along, say, the x axis, into two parts with equal compu-

78 CHAPTER 4. PROJECTION-BASED PARTITIONING

tational weight, then we want to find c ∈ [x1, x2] so that

∫ c

x1

∫ y2

y1

∫ z2

z1

|P|
∑

k=1

1
||x− sk||22

dz d y d x

=

∫ x2

c

∫ y2

y1

∫ z2

z1

|P|
∑

k=1

1
||x− sk||22

dz d y d x .

The volume integral for a rectangular volume V = [x1, x2] × [y1, y2] ×
[z1, z2] can be written as the following 2D integral:

∫ x2

x1

∫ y2

y1

|P|
∑

k=1

� 1
ak(x , y)

�

arctan
� z2 − sk,z

ak(x , y)

�

− arctan
� z1 − sk,z

ak(x , y)

���

d y d x ,

(4.2)

where
ak(x , y) =

q

(x − sk,x)2 + (y − sk,y)2.

This is, of course, more efficient to solve numerically compared to the ori-
ginal three-dimensional problem.

For finding c, we use the following strategy. We take N samples in the
volume V . Next, we choose c such that

(c − x1) f̄L = (x2 − c) f̄R,

where f̄L is the average of the integrand in (4.1), or the more efficient
variant in (4.2), for samples with an x-coordinate smaller than c, and f̄R

for the remaining samples. We find the optimal c by sorting the N samples
by their x-coordinate, and performing a linear scan while updating the
averages to the left and right of c. It is possible to decide on the number
of samples N dynamically, by updating c for each new sample, and taking
samples until the optimal value for c converges.

A difficulty is introduced for acquisition geometries where, because
of a limited detector size, or a source that is close to the object, the ob-
ject volume is not contained in the cones defined by the projections. In
these cases, we want to integrate over the intersection of the cone and the
volume. This can be easily realized by rejecting samples for a projection

4.2. A NEW PROJECTION-BASED PARTITIONING METHOD 79

pk if the sample projects to a point outside of the detector. For these ac-
quisition geometries, we cannot employ the analytical reduction from 3D
to 2D shown in (4.2).

As an alternative to approximating the above integrals numerically, we
can employ a simpler strategy to identify valid candidate splits. We still
consider each axis in turn. If we split in the middle along a given axis, we
end up with two parts that are equal in volume and should thus have the
same number of voxels (up to discretization errors). If the number of lines
intersecting a voxel is more or less constant throughout the volume, the
number of voxels is one way to achieve a reasonable load balance.

Solving the numerical integraton problem, or using the splitting in the
middle strategy (which we will refer to as MIDWAY in our experiments),
both result in three candidate splits, one for each axis. Out of these three
candidate splits, the best one is chosen each time, based on communication
volume.

4.2.3 Image gradient computations.

Image gradient computations form an optional component of a number
of reconstruction methods. Prior information on the object, such as the
object being piecewise constant, or being smooth, can be incorporated as
a penalty term involving the norm of the image gradient. In these cases,
tomographic reconstruction is performed by solving a regularized least-
squares problem. For example, for TV regularization we have:

argmin
x∈Rn

||b−Wx||22 +λ|| |∇x| ||1. (4.3)

To perform (discrete) gradient computations, each processor requires
the value of the neighbouring voxels to each of its voxels. This means that
values for voxels that lie next to the splitting plane have to be obtained from
a remote processor. In previous work, this communication cost was ignored
in the partitioning algorithm. However, it is straightforward to include this
as a term in the communication volume, by considering the area of the
splitting plane in addition to the area of the shadow intersections.

Both the area of the splitting plane, and the area of the shadow intersec-
tions on the detector are proportional to their respective communication
weights, but by a different coefficient. Therefore, the areas should be nor-
malized, so that they can be compared to each other. The discretization

80 CHAPTER 4. PROJECTION-BASED PARTITIONING

on the detector should take into account the total area of the detector, and
the discretization of the object volume should in turn take into account its
total volume.

In particular, discretization is commonly chosen so that if a voxel in
the volume has a cross-section of area X , then the area of its shadow Y
corresponds roughly to the size of a detector pixel. We will use the mag-
nification value M = Y /X to relate the communication volumes due to
gradient computations and due to an SpMV.

In our new algorithm, this communication volume for gradient com-
putations is optionally taken into account. When splitting a part that is
elongated in some direction, the cross-section (area of the splitting plane)
will depend on the axis chosen, and this can influence the resulting parti-
tioning.

4.3 Communication data structures

In this subsection, we will discuss how to use the partitionings efficiently
in practice. The partitionings aim to minimize the communication volume,
while evenly sharing the work among the processors. However, performing
the communication requires storing information on what gets sent where
during the execution.

The iterative algorithms that are the focus of this work, perform altern-
ating forward projection and backprojection operations. During a forward
projection, that is the calculation of y=Wx, contributions to the compon-
ents of y are computed by the processors whose part of the object volume
is crossed by the line segment corresponding to that component. There-
fore, each component of y has one or more contributing processors. One of
these contributing processors is designated as the owner of the component.
The owner computes the sum of the contributions. Before a backprojection
x = W T y, this sum is distributed to the group of contributing processors.
With this gather–scatter setup the modeled communication volume is real-
ized in practice.

The communication data structure contains information on the sets of
contributing processors for each component. This information has to be
stored so that the gather and scatter operations can be executed efficiently
in every iteration.

4.3. COMMUNICATION DATA STRUCTURES 81

A straightforward way to build the communication data structures, is
to compute and store for each individual component its set of contributing
processors, and to designate one of them as an owner (e.g., at random
or through a round-robin scheme). However, this will severely increase
the memory use, since the size of the communication data structures for a
realistic number of processors will be bigger than the projection data itself.
This is because the metadata, that identifies what is being communicated,
is associated with every individual component.

To remedy this problem, we again exploit the fact that line segments
corresponding to neighbouring pixels on the detector often cross the same
parts. In particular, we would like to find the regions of pixels of projec-
tion images that have the same set of contributing processors. This can be
realized by looking at arrangements induced by the shadows of each part
of the partitioning.

An arrangement is a subdivision of the plane into a collection of labeled
regions, or faces. In our case, we are interested in subdivisions of the de-
tector plane, and the labels (or tags) are the sets of contributing processors
for the face.

We consider each projection separately. Every processor shadow defines
an arrangement of the rectangle of the detector containing two faces: the
shadow of the part, and its complement. The p arrangements can be
merged efficiently, as described in section 2.3 of the textbook by de Berg
et al. [Ber+08]. The resulting overlay arrangement has faces defined by
the intersections of the faces in the original arrangements, and the tags
can be combined arbitrarily. In our case, the faces in the original arrange-
ments have a single contributing processor corresponding to a tag that is
a list with one element. We start with an empty arrangement, and iter-
atively merge in the arrangements for each processor. When new faces
are constructed during the MERGE subroutine, the lists of contributors of
the original faces are concatenated. After merging together the p arrange-
ments, the resulting overlay structure defines a number of faces, and each
of these faces has an associated set of contributing processors as defined
by its tag. We summarize this method in algorithm 6.

Our novel communication data structure is thus a subdivision of the
detector into a set of faces, with an associated tag for each face listing the
contributing processors for that region. For a visual example, see figure
4.4. We then proceed to rasterize these faces, leading for each face to a

82 CHAPTER 4. PROJECTION-BASED PARTITIONING

Algorithm 6 Finding the overlay for the communication structure for a
given projection pk. Here, [s] is a list with a single element s.

Subroutine: FINDFACES

Input: π= {Vs}, pk

Output: OVERLAY

OVERLAY← EMPTYARRANGEMENT

for 0≤ s < p do
CORNERSs← PROJECT(pk, VERTICES(Vs))
SHADOWs← CONVEXHULL(CORNERSs)
ARRANGEMENTs← FROMFACETAG(SHADOWs, [s])
MERGE(OVERLAY, ARRANGEMENTs, CONCATENATE)

collection of scanlines. A scanline is a consecutive set of pixels of a row
on the detector. We use this collection of scanlines in the final algorithm
for performing the communication during an SpMV operation. This novel
approach not only drastically reduces the size of the communication data
structures, but also allows to perform aggregate reads from GPU memory.

4.4 Numerical experiments

We consider four categories of acquisition geometries for our numerical
experiments.

• CCB. Circular cone-beam. The source and detector move in a circular
trajectory around the object. This is the typical geometry for laborat-
ory CT machines. We distinguish between CCBn where the cone has
a narrow angle, and the source is relatively far away, and CCBw with
a wide angle, and the source is close to the volume.

• HCB. Helical cone-beam. The source and detector move in a helical
trajectory around the object. This is similar to CCB, but in addition
to the circular movement, the source and detector also move along
the orthogonal direction. This is a common acquisition geometry in
medical CT.

• LAM. Laminography. The source and detector both move along their
own circular trajectory, but these trajectories are on opposite sides of

4.4. NUMERICAL EXPERIMENTS 83

Figure 4.4: Example of the overlay structure for a single projection of the
CCBw (left), and LAMw (right) geometries (see section 4.4). Note that the
shadows of a part might partially fall outside of the detector. On the top
row, the shadows of the coloured parts are given. On the bottom row, the
overlay structure is shown. In the overlay, a darker gray indicates a larger
set of contributing processors.

the volumes, typically perpendicular to one of the axes of the object
volume. This geometry can be used to image flat objects. We dis-
tinguish between LAMw with circular trajectories with a large radius,
and LAMn with a small radius.

• TSYN. Tomosynthesis. A static detector is placed under the object,
while the source moves along a limited-angle arc above the object.
This geometry is used, e.g., for breast cancer screening and airport
security.

84 CHAPTER 4. PROJECTION-BASED PARTITIONING

Partitioning results.

Here, we compare two methods for load balancing that were discussed in
section 4.2.2, MIDWAY where we split the volume into two parts of equal
volume, and SAMPLING where we take a fixed number N = 100 000 of
sample points for which we evaluate the integrand in (4.1), and then per-
form a linear scan to find the optimal splitting point. We compare the
results for these methods with the original GRCB partitioning method. In
practice, these partitionings are of interest for multi-GPU clusters consist-
ing of up to p = 64 GPUs. We therefore consider three processor counts,
16, 32, and 64. The partitioning statistics such as communication volume
and load imbalance are evaluated on volumes consisting of 2563 voxels,
which is fine enough to obtain accurate statistics. We show some of the
partitionings visually in figure 4.5.

In table 4.1, we show the communication volume Λ, load imbalance
ε, number of messages µ (i.e., the number of processor pairs that perform
the communication), and partitioning time T . Note that we do not optim-
ize for the number of messages explicitly. First, we observe that there are
no large discrepancies in the communication volume between the three
different methods. For MIDWAY, the partitioning time is low (between
100 ms–600 ms), but the load imbalance can be up to 0.34 for the geomet-
ries considered. The number of messages is somewhat lower compared to
the other partitioning algorithms, since the parts are automatically aligned
because of the fixed split points, which is beneficial for the number of mes-
sages. The maximum number of messages is µmax = p(p−1), and we note
that the number µ achieved is often a significant fraction of µmax. This
attests to the difficulty of avoiding communication in tomography, caused
by rays crossing the object in many directions. We see that the SAMPLING

method based on our continuous formulation of the load balance is able to
achieve a reasonable load balance. Only in two cases it is slightly higher
than the maximum load imbalance (0.05) that was imposed for GRCB. The
runtime of the partitioning algorithm is up to 100× less than the runtime
of GRCB, while the resulting partitionings have similar quality.

In table 4.2, we consider the communication volume for regularized re-
construction methods that solve (4.3). We do this by explicitly considering
communication because of image gradient computations during the parti-
tioning method, or ignoring this cost, as explained in section 4.2.3. The

4.4. NUMERICAL EXPERIMENTS 85

(a) CCBn (b) CCBw

(c) HCB (d) TSYN

(e) LAMn (f) LAMw

Figure 4.5: Resulting partitionings for the circular cone-beam (CCB), hel-
ical cone-beam (HCB), tomosynthesis (TSYN), and laminography (LAM) ac-
quisition geometries. The results shown are for p = 32 processors using
the MIDWAY load balancing strategy.

86 CHAPTER 4. PROJECTION-BASED PARTITIONING

M
ID

W
A

Y
S

A
M

P
LIN

G
G

R
C

B

p
G

Λ
ε

µ
T

Λ
ε

µ
T

Λ
ε

µ
T

16
C

C
B

n
0.72

0.00
44

0.15
0.72

0.00
40

6.72
0.72

0.00
44

242.54
C

C
B

w
1.26

0.01
64

0.09
1.26

0.04
64

4.95
1.26

0.03
64

274.98
H

C
B

1.14
0.28

84
0.16

1.18
0.04

96
4.76

1.18
0.05

96
203.48

LA
M

n
0.92

0.00
84

0.15
0.92

0.04
140

7.28
0.91

0.05
120

240.11
LA

M
w

1.61
0.00

180
0.14

1.61
0.03

180
7.04

1.61
0.05

180
296.20

T
S

Y
N

0.72
0.10

76
0.15

0.73
0.03

76
2.22

0.72
0.05

76
210.32

32
C

C
B

n
1.28

0.00
180

0.32
1.28

0.00
172

4.75
1.28

0.04
180

273.62
C

C
B

w
1.90

0.01
272

0.31
1.90

0.04
272

4.74
1.90

0.04
272

350.76
H

C
B

1.91
0.33

328
0.33

1.96
0.04

350
4.92

1.98
0.05

368
296.13

LA
M

n
1.53

0.01
340

0.24
1.53

0.05
446

7.23
1.53

0.05
394

330.22
LA

M
w

2.61
0.17

552
0.19

2.66
0.03

552
7.23

2.65
0.05

552
347.40

T
S

Y
N

1.19
0.10

284
0.19

1.19
0.05

272
2.43

1.19
0.05

284
253.28

64
C

C
B

n
1.92

0.04
640

0.38
1.92

0.04
648

5.43
1.92

0.05
640

324.07
C

C
B

w
2.86

0.01
1040

0.37
2.85

0.04
1040

5.14
2.85

0.05
1040

449.93
H

C
B

2.74
0.34

1052
0.40

2.80
0.05

1170
5.25

2.79
0.05

1150
400.16

LA
M

n
2.21

0.01
1268

0.37
2.20

0.06
1412

10.17
2.31

0.04
1346

480.77
LA

M
w

3.68
0.17

1978
0.60

3.74
0.06

2048
10.29

3.73
0.05

2020
536.73

T
S

Y
N

1.79
0.12

936
0.40

1.80
0.05

928
4.09

1.80
0.05

948
246.44

Table
4.1:

Partitioning
statistics.

W
e

com
pare

the
com

m
unication

volum
e
Λ

,
given

in
m

ultiples
of

10
7,

the
load

im
balance

ε,the
num

ber
ofm

essages
µ

and
the

partitioning
tim

e
T

in
seconds

for
various

com
binations

of
processor

count
p

and
acquisition

geom
etry
G

.

4.4. NUMERICAL EXPERIMENTS 87

p G ΛG

Λ

ΛG
reg

Λreg

ΛG
total
Λtotal

16 CCBn 1.00 0.88 0.97
CCBw 1.00 1.00 1.00
HCB 1.00 1.00 1.00
LAMn 1.00 1.00 1.00
LAMw 1.00 1.00 1.00
TSYN 1.00 1.00 1.00

32 CCBn 1.00 0.92 0.99
CCBw 1.00 1.00 1.00
HCB 1.00 0.94 0.99
LAMn 1.00 1.00 1.00
LAMw 1.00 1.00 1.00
TSYN 1.00 0.92 0.99

64 CCBn 1.00 1.00 1.00
CCBw 1.00 0.92 0.99
HCB 1.00 1.00 1.00
LAMn 1.00 1.00 1.00
LAMw 1.00 1.00 1.00
TSYN 1.00 0.95 0.99

Table 4.2: The relative performance when considering the gradient-based
regularization in the communication volume. We compare the communic-
ation Λ due to SpMV, the communication Λreg due to an image gradient
computation, as well as the total communication Λtotal = Λ + Λreg. The
fractions given are the communications when explicitly taking into account
the gradient communication during the partitioning (marked with a super-
script G), divided by the communication when this cost is ignored, both for
the SAMPLING method.

effect is limited because the communication due to image gradient com-
putations is relatively small, as especially for larger processor counts the
total communication volume is dominated by that of the SpMV step. How-
ever, it improves the overall communication in some cases, up to 3% for
CCBn, which is an acquisition geometry with relatively low communication
volume Λ for the SpMVs.

88 CHAPTER 4. PROJECTION-BASED PARTITIONING

Performance measurements.

We have implemented an extension to the open-source ASTRA tomography
toolbox that allows tomographic reconstruction algorithms to run on dis-
tributed memory GPU clusters. This extension is called Pleiades, after the
famous open star cluster. The ASTRA toolbox [Aar+16] has highly op-
timized GPU implementations of projection operators, which we use for
the local forward projection and backprojection operations. Our extension
uses Bulk [BBB18] to realize the communication between nodes. Bulk is
a modern C++ library for bulk-synchronous parallel programs. It simpli-
fies the implementation of communication logic significantly compared to,
e.g., BSPlib or MPI.

Our extension is an improvement over a previously published extension
to the ASTRA toolbox based on MPI [Pal+17], which we will call ASTRA-
MPI. This previous extension uses slab partitionings, where the volume is
split up into blocks of consecutive slices along one of the axes. This makes
it suitable only for circular cone-beam geometries.

In contrast, our distributed-memory extension to the ASTRA tomo-
graphy toolbox is flexible with respect to the acquisition geometry and the
used data partitioning, which we achieved by implementing the techniques
outlined in this chapter. We compare the performance of Pleiades to that of
ASTRA-MPI for the only acquisition geometries in our set that ASTRA-MPI
supports, which are CCBn and CCBw. In addition, we test the scalability of
Pleiades for HCB. Our test consists of three Landweber iterations defined
by the update:

x← x+W T (b−Wx),

which follows the typical structure of an iterative method by alternating
forward projection and backprojection operations. In all cases, we take a
volume of 20483 voxels, and 1024 projections of 2048× 2048 pixels.

The performance tests were run on a compute cluster of 8 nodes with
a 40 Gbit Mellanox Infiniband connection. Each node has four NVIDIA
GeForce GTX TITAN X GPUs, two Intel Xeon E5-2630 v3 CPUs running at
2.40GHz, and 128GB RAM. We use the MIDWAY strategy for Pleiades, par-
titioning over the 32 GPUs. Figure 4.6 shows the results of these measure-
ments. For some acquisition geometries, the amount of available memory
made it impossible to run with a low number of GPUs. Our initial imple-
mentation of Pleiades supports only p = 2q processors. We observe that

4.5. CONCLUSION 89

8 16 32
p

0.0

50.0

100.0

150.0

200.0

T
(s
)

CCBn (Pleiades)

CCBw (Pleiades)

HCB (Pleiades)

CCBn (ASTRA-MPI)

CCBw (ASTRA-MPI)

Figure 4.6: Scaling results of Pleiades versus ASTRA-MPI. Vertically, the
runtime in seconds of three consecutive Landweber iterations is shown.
Horizontally, we show the number of GPUs that were used.

Pleiades is significantly faster than ASTRA-MPI, and Pleiades continues to
scale even when using all the available GPUs, unlike ASTRA-MPI which
reached a communication bottleneck for CCBw at around 16 GPUs.

4.5 Conclusion

We presented a new partitioning method for tomographic reconstruction
that can handle arbitrary acquisition geometries. Furthermore, we intro-
duced an efficient data structure for the communication metadata that
needs to be stored to use these partitionings in practice. We demonstrated
that the method is able to produce partitionings of similar quality to those
produced by the previously published GRCB method, but is much faster.
Finally, we showed scalability results for using these partitionings in prac-
tice for a typical reconstruction task. For CCBw with 32 GPUs we achieved

90 CHAPTER 4. PROJECTION-BASED PARTITIONING

a speedup of 2.8× compared to ASTRA-MPI.

Chapter 5

Real-time quasi-3D tomographic
reconstruction

Tomography is an important non-destructive technique for studying the
three-dimensional structure of samples in various scientific fields such as
biology, material science, and medicine, as well as being broadly applied
in industry. Increasingly, tomography is used to understand dynamic pro-
cesses in detail, e.g., by imaging biological samples that vary with time
[Moo+13], or by studying material properties in a changing environment
[Pat+15; Gib+15].

The change from static to time-resolved tomography is accompanied
by a steep increase in computational requirements for the tomographic
reconstruction. Moreover, many experiments have controlled parameters
that rely, e.g., on specific events happening in the sample, which can be
hard to identify from projection images alone. This means not only that
the reconstruction is computationally expensive, but also that the typical
offline reconstruction does not fulfill current needs due to long computa-
tion times.

In addition to the need for real-time tomography, i.e., having access

This chapter is based on:

Real-time quasi-3D tomographic reconstruction. JW Buurlage, H Kohr, WJ
Palenstijn, KJ Batenburg. Measurement Science and Technology 29 (6),
2018

91

92 CHAPTER 5. QUASI-3D RECONSTRUCTION

to reconstructions while scanning, developments in acquisition hardware
also contribute to the computational challenge. For instance, the number
of pixels on detectors is growing, and the detectors are operating at in-
creasing frame rates. Furthermore, real-time tomography scanners are be-
ing developed for, e.g., airport security setups [Tho+15; War+16], which
are able to perform full scans in short time windows. This highlights the
importance of efficient reconstruction techniques.

Current approaches to tackle the computational challenges in real-time
tomographic reconstruction can be roughly subdivided into two groups.
First, reconstruction algorithms that are computationally more efficient are
being adopted. Two examples of this are the gridrec method [Dow+99;
MS12] and methods based on the log-polar Radon transform [Nik+17].
Second, reconstruction algorithms can be run in parallel, either on dis-
tributed compute clusters or specialized hardware such as GPUs [PBS11;
Pal+17; Xu+10]. However, while these approaches can lead to a dramatic
reduction in reconstruction times, the computational demands for recon-
structing the full 3D volume remain a bottleneck for truly real-time tomo-
graphic reconstruction. By realizing that while currently often full 3D re-
constructions are made, the reconstructed volume is primarily viewed slice
by slice, we observe that more computational work is done than necessary.

Instead, one can create a processing workflow where slices are only
reconstructed on demand. In this way, the computational requirements
can be reduced by orders of magnitude, and in many cases the required
amount of data communication can also be significantly reduced. Filtered
backprojection (FBP) type methods allow these slices to have an arbitrary
orientation. From a user’s point of view these slices can easily be shifted
and rotated and effectively it is as though 3D data is available, while only a
small number of slices are actually reconstructed at any time, as illustrated
by Figure 5.1. With this shift in perspective, we make quasi-3D real-time
tomographic reconstruction feasible, in the sense that the results are visu-
ally identical to an architecture where the full 3D volume is reconstructed
and then viewed slice-by-slice, yet at a fraction of the computational cost.

In this chapter we present a new methodology for real-time reconstruc-
tions, together with a software stack implementing these ideas. In Section
5.1 we revisit the mathematical properties of FBP type methods, that en-
able us to reconstruct arbitrarily oriented slices without forming the full
3D volume. While these properties follow directly from the basic formu-

5.1. RECONSTRUCTION OF ARBITRARY SLICES 93

Figure 5.1: The solid arrows give a high-level overview of the data flow in
a typical tomographic reconstruction setup. On the left, the projection data
is acquired. In the middle, a reconstruction stack is created with an image
for each slice along the rotation axis. From these slices, arbitrary slices
of other orientations can be obtained through interpolation. In our new
approach, represented with a dotted line, the generation of the reconstruc-
tion stack is skipped, and arbitrary slices are reconstructed directly from
the projection data.

las, current approaches usually reconstruct the full 3D data at once. In
Section 5.2, we present the interface and usage of the RECAST3D (RECon-
struction of Arbitrary Slices in Tomography) visualization software. It is a
vital component of the proposed real-time reconstruction pipeline, as it al-
lows the user to choose the slice(s) of interest in a dynamic way. In Section
5.3 we introduce the different components that are necessary to perform
quasi-3D reconstructions. We highlight the unique distributed architecture
of our novel reconstruction pipeline. Finally, in Section 5.4, we show that
this new software greatly reduces reconstruction times, ultimately enabling
almost instant slice reconstructions.

5.1 Reconstruction of arbitrary slices

Filtered backprojection (FBP) type methods for tomography are known to
be very efficient in terms of numerical complexity and data usage. Whenever
there are sufficiently many projections over the entire range of view angles,
and the noise level is not too high, FBP typically performs very well also in
terms of reconstruction quality. Here we understand as FBP any method
that adheres to the “convolve, then backproject” workflow as shown in Fig-

94 CHAPTER 5. QUASI-3D RECONSTRUCTION

ure 5.2. Examples of such methods are standard parallel beam FBP, the FDK
algorithm for circular cone beam reconstruction [FDK84], and Katsevitch’s
algorithm for helical cone-beam reconstruction [Kat02] or general source
trajectories [Kat03].

Projection data

Filtered data

Reconstruction

convolve

backproject

Figure 5.2: Workflow of filtered backprojection methods.

It is well-known that in 3D parallel beam geometry, horizontal slices
can be reconstructed independently and from a single detector row. How-
ever, as we will demonstrate, FBP values in any subset of the reconstruction
volume are mutually independent in any geometry. We start by recapitu-
lating the well-known horizontal slice-by-slice reconstruction method in
parallel beam geometry and then generalize to arbitrary slices and arbit-
rary geometries.

5.1.1 Parallel beam geometry

We consider the 3D parallel beam geometry with the z-axis as the only rota-
tion axis (single-axis tilting). If f denotes a 3D volume, the corresponding
projection data is given as the line integrals

g(ϕ, s, z) =

∫ ∞

−∞
f
�

− t sinϕ + s cosϕ, t cosϕ + s sinϕ, z)dt.

5.1. RECONSTRUCTION OF ARBITRARY SLICES 95

In an idealized setting, these values are available for ϕ ∈ [0,π) and (s, z) ∈
R2. Filtered backprojection now consists of a one-dimensional filtering
operation with a filter k : R→ R in the s variable for each z, followed by
backprojection:

gfiltered(ϕ, s, z) =
∫∞
−∞ g(ϕ, s− u, z) k(u)du, (5.1)

fFBP(x , y, z) =
∫ π

0
gfiltered

�

ϕ, x cosϕ + y sinϕ, z)dϕ. (5.2)

From (5.1) and (5.2) it is immediately clear that horizontal slices

fz0
(x , y) = f (x , y, z0),

with fixed z = z0 can be reconstructed from a single data row gz0
(ϕ, s) =

g(ϕ, s, z0), i.e.,

fz0, FBP(x , y) =

∫ π

0

gz0,filtered

�

ϕ, x cosϕ + y sinϕ)dϕ.

In fact, if one is interested only in fz0
(x , y) for a single value z0, then one

has to perform also the filtering in (5.1) only for this fixed value of z0.
This reduces the whole task of reconstructing a horizontal slice to a two-
dimensional problem.

Remark: It is important to notice that for all variants of single-slice re-
construction, the computed values in the slice are identical to the values in
the full 3D reconstruction, restricted to the same slice.

The right-hand side of (5.2) refers only to the current reconstruction
point (x , y, z), which implies that these points can be placed arbitrarily in
3D space. In particular, this mutual independence is not a special prop-
erty of the parallel beam geometry but rather of the structure of the FBP
algorithm itself. Hence it generalizes immediately to arbitrary slices and
arbitrary geometries.

For instance, the remaining ortho-slices can be reconstructed as fol-
lows:

fx0, FBP(y, z) =
∫ π

0
gfiltered

�

ϕ, x0 cosϕ + y sinϕ, z)dϕ,

f y0, FBP(x , z) =
∫ π

0
gfiltered

�

ϕ, x cosϕ + y0 sinϕ, z)dϕ,

96 CHAPTER 5. QUASI-3D RECONSTRUCTION

with the evident definitions

fx0
(y, z) = f (x0, y, z), f y0

(x , z) = f (x , y0, z).

Again, the orthoslices contain the exact same values as a full volumetric
reconstruction after restriction to these slices. Note, though, that both
ortho-slices require the whole dataset since the z variable appears on both
sides.

5.1.2 Cone beam geometry

We define the widely used circular cone beam geometry which is character-
ized by a point source moving on a circle of radius r > 0 in the x-y-plane
and a flat detector on the opposite side of the same circle.

We parametrize the unit circle in the x-y-plane by

θ (ϕ) = (− sinϕ, cosϕ, 0), ϕ ∈ [0, 2π).

Now we define the source position and the detector piercing point as two
opposite points on a circle with radius r > 0 in the same plane:

a(ϕ) = −rθ (ϕ), p(ϕ) = rθ (ϕ).

Finally we place a flat rectangular detector such that the ray from the
source through the origin “pierces” the detector midpoint exactly at the
piercing point p(ϕ), and orient the detector perpendicular to the piercing
ray:

D(ϕ) =
�

p(ϕ) + uθ⊥(ϕ) + z ez

�

� −w/2≤ u≤ w/2, −h/2≤ z ≤ h/2
	

.

Here, w and h stand for the width and the height of the detector, respect-
ively, θ⊥(ϕ) = (cosϕ, sinϕ, 0) = −θ (ϕ +π/2) the unit vector tangent to
the circle at angle ϕ, and ez = (0, 0,1). See Figure 5.3 for an illustration
of the geometry.

This definition is straightforward to extend to arbitrary rotation axes
and different radii for source and detector circles.

With these geometric conventions we define the projection data in cir-
cular cone beam geometry as

g(ϕ, y) =

∫ ∞

0

f
�

a(ϕ)+ t
�

y −a(ϕ)
��

dt, ϕ ∈ [0,2π), y ∈ D(ϕ). (5.3)

5.1. RECONSTRUCTION OF ARBITRARY SLICES 97

detector

source

φ
p(φ)θ(φ)

θ⟂(φ)

ez

Figure 5.3: Sketch of a circular cone beam acquisition geometry as used
by the backprojection (5.4).

It can be shown (see, e.g., [NW01]) that the backprojection for this geo-
metry in a point x = (x , y, z) is

BP[g](x) =

∫ 2π

0

1
2r t(x ,ϕ)2

g

�

ϕ,
x · θ⊥(ϕ)
t(x ,ϕ)

,
x · ez

t(x ,ϕ)

�

dϕ, (5.4)

where “·” is the dot product in 3 dimensions and

t(x ,ϕ) =

�

a(ϕ)− x
�

· a(ϕ)
2r2

is the relative position of a reconstruction point x ∈ R3 along the ray from
the source point a(ϕ) to the detector through x . Although the backpro-
jection (5.4) is more involved to evaluate numerically, it still computes the
value at a given volume point x independently from any other such point.

A very popular reconstruction method in circular cone beam geometry
is the FDK algorithm [FDK84]. It consists of applying a one-dimensional
filter kFDK along the column coordinate u to preweighted measurements g̃,
followed by the backprojection given in (5.4):

g̃(ϕ, y) = ||p(ϕ)−a(ϕ)||
||y−a(ϕ)|| g(ϕ, y),

gfiltered(ϕ, u, z) =
∫

R g̃(ϕ, u− v, z) kFDK(v)dv,

fFDK(x) = BP[gfiltered](x).

Typically, kFDK is chosen to be the ramp filter. To reconstruct an arbitrary
slice S = r + n⊥, r ,n ∈ R3, n 6= (0,0, 0), we can simply evaluate this

98 CHAPTER 5. QUASI-3D RECONSTRUCTION

formula for all x ∈ S. Just as for parallel beam reconstruction, the values
computed in the slice are the same as if a full 3D FDK reconstruction was
restricted to the same slice. In fact, the single-slice reconstruction avoids
the interpolation step that would otherwise be incurred when restricting a
full 3D reconstruction to a slice.

The FDK algorithm approximates the exact solution only in the cent-
ral horizontal slice z = 0, while for other points in the volume, the data
provided by circular cone beam acquisition is insufficient, leading to cone-
beam artifacts. In [JKM11] the performance of FDK for experimental data
is discussed. Certain extensions and modifications such as those that choose
a specific filter, see, e.g., [Hah+13], also fit into our proposed framework.

To acquire complete data, one can additionally move both a and p with
constant velocity l/(2π) along the rotation axis ez relative to the object,
resulting in a helix instead of a circle:

a(ϕ) = −rθ (ϕ) +
lϕ
2π

ez, p(ϕ) = rθ (ϕ) +
lϕ
2π

ez.

For this helical geometry, the reconstruction formula of Katsevich [Kat02]
provides exact inversion. It is also of filtered backprojection type, even
though both filtering and backprojection have more complex expressions.
The formula induces a family of FBP methods by replacing the filter for
exact inversion with a regularizing filter. In fact, for any piecewise smooth
source trajectory satisfying certain geometric conditions, an exact FBP type
reconstruction formula can be given [Kat03].

In conclusion, a method for the fast computation of a single-slice FBP
reconstruction is useful for applications with either parallel beam or cone
beam acquisition.

5.2 Software

Using the mathematical properties of FBP methods discussed in the pre-
vious section, we can introduce an optimized workflow for real-time visu-
alization of tomographic reconstructions. In this section we present RE-
CAST3D, visualization software that controls an on-demand reconstruction
pipeline. In particular, it can be used for on-the-fly reconstruction of ar-
bitrarily oriented slices. Our novel approach is to only compute a limited

5.2. SOFTWARE 99

Figure 5.4: Screenshot of RECAST3D. Some simple analysis tools are
provided in a GUI (1). In this example setup, three orthogonal slices are
being shown in the middle (2) with the mouse currently hovering over one
of them. A user can translate and rotate the planes by dragging them with
the mouse. When the mouse button is released, the visualizer requests a
reconstruction of the new slice. During the change of slice orientation and
position, a low-resolution preview is shown. The interface is highly ex-
tensible. As an example we show the projection images (3) and the beam
direction (4) in the same scene as the reconstruction, providing the user
with additional information about the experimental setup.

number of slices, for example a set of three orthogonal slices, lowering the
computational costs of the reconstruction tremendously. The slices that
are being reconstructed can be changed with an intuitive interface. An
exemplary screenshot of the visualization software is shown in Figure 5.4.

From a user’s perspective, a typical workflow with RECAST3D is as fol-
lows. The tool is started on a workstation and connects to a reconstruction
server that receives the relevant projection images. For small enough prob-
lems, this server can be the workstation itself. The software asks for spe-
cific slice reconstructions from the reconstruction server, initially present-
ing three orthogonal slices to the user. Assuming RECAST3D is used in a
real-time setting, these are being reconstructed on-the-fly. The user can

100 CHAPTER 5. QUASI-3D RECONSTRUCTION

hover the mouse over the slices and rotate and translate them in an intu-
itive manner. As new projection images arrive, the slices can be updated
continuously.

We envision a modular system which we can extend gradually over
time, as common needs and requirements become more clear. In the initial
version of RECAST3D, next to the high resolution slices a low-resolution
3D preview is available when changing the orientation of a slice which
allows the user to identify slices that are of particular interest. In addition,
we show the projection images and visualize the acquisition geometry in
the same 3D scene as the reconstruction. This presents the user with even
more insight on the data that is coming in in real-time. It is possible to,
e.g., change the color scheme that is used, or to rescale the data.

5.3 Implementation

The implementation of RECAST3D required a complete redesign of the
typical tomographic reconstruction pipeline. In our discussion here we
distinguish between three different stages of the reconstruction pipeline:
acquisition, reconstruction and visualization. Note that in an actual exper-
imental setting, we will need additional operations such as flatfielding and
ring artefact correction. In the realization of our new quasi-3D reconstruc-
tion pipeline, all these stages work together with the common goal of giv-
ing the user a real-time quasi-3D reconstruction. To ensure the flexibility
and scalability of our pipeline the system is completely distributed, in the
sense that communication between the software components for the differ-
ent stages happens through well-defined packets using a message passing
protocol. The software stack consists of three main components:

1. Reconstruction software that is capable of performing the reconstruc-
tion of an arbitrarily oriented slice.

2. Definitions of the various packets supported by our communication
protocol, together with a software library for constructing, sending,
receiving, and parsing these packets.

3. The software for real-time visualization, RECAST3D, which is also the
control center for the distributed software stack.

5.3. IMPLEMENTATION 101

Acquisition Reconstruction Visualization

Figure 5.5: A simplified, but typical tomography pipeline, where the com-
mon pre- and post-processing steps are ignored. We emphasize here its
linearity, i.e., data proceeds in its entirety from one stage to the next. Fur-
thermore, in most cases these phases happen completely in a sequential
manner.

Together, these components form an implementation of an extended recon-
struction pipeline. Typically, the data in a tomography setup flows as in the
linear pipeline shown in Figure 5.5. The software stack we introduce puts
all the components in direct and real-time contact, enabling finer control
over the dataflow, as shown in Figure 5.6. This has a number of advant-
ages. We list some of them, in no particular order:

• Only subsets of the data have to be sent (or are requested) between
the different stages.

• The computational requirements are significantly reduced, since only
the slices that are shown are reconstructed.

• Since the entire system is integrated, the rich feedback allows the
user to perform experiments faster and more efficiently

Distributed architecture

As mentioned in the previous section, our distributed architecture is based
on a message passing protocol. Here, we describe in detail the different
concepts and parts used in the distributed pipeline.

An experiment, or reconstruction, is captured in the system as a scene.
These scenes consist of a number of data objects, such as reconstructed
slices, projection data, and information on the acquisition geometry.

The central concept in the distributed pipeline is that of a packet. There
are various packets that are used for communication, some examples are
given in Listing 5.1. Every packet contains metadata used to identify an
object in question (e.g., an identifier for a scene, and a slice), and perhaps

102 CHAPTER 5. QUASI-3D RECONSTRUCTION

Acquisition Reconstruction

Visualization

Figure 5.6: An extended complete pipeline, cf. Figure 5.5. All different
stages are in direct contact, and no longer happen sequentially but in par-
allel. The implementations of the stages of the tomographic pipeline now
communicate and coordinate with each other, reducing the dataflow and
computational requirements. Although our distributed pipeline supports
all communication paths, only the solid arrows are currently used.

some payload (i.e., a projection image, or a reconstructed slice) together
with fields describing the payload such as the number of pixels or the po-
sition of the detector and source.

The packets that are described are independent of the specific techno-
logy used for sending them. In our reference implementation, ZeroMQ
streams are used for communication. The core of the software stack is
written in the C++ programming language.

Because the architecture is completely distributed, all components can
be used independently and they are easily extensible. This modular ap-
proach allows users of our software to easily use or replace parts of the
pipeline to suit their own purposes. Bindings to the Python programming
language are provided, giving an accessible customization point. See also
Listing 5.2 for an example of a custom script in our framework, which is
able to completely replace the reconstruction component.

More generally, an important internal guideline for the development
of this new pipeline is that it should be able to leverage existing and fu-
ture software that is developed for image reconstruction. The library and
specification take care of the necessary communication and coordination.
The extended pipeline is implemented on a high level, rather than modi-
fying existing software. Instead, existing software is used wherever pos-
sible. This gives our new system the great advantage of supporting custom
software, from acquisition to reconstruction to visualization. Our current

5.4. RESULTS 103

struct GeometrySpecification {

int32_t scene_id;

bool parallel;

int32_t projections;

std::array<float, 3> volume_min_point;

std::array<float, 3> volume_max_point;

};

struct SliceData {

int32_t scene_id;

int32_t slice_id;

std::array<int32_t, 2> slice_size;

std::vector<uint32_t> data;

};

Listing 5.1: Example packets, represented as a record data structure in the
C++ programming language. The first packet defines some global inform-
ation on the acquisition geometry: the number of projections, whether it
describes a parallel or cone beam setup, together with the object volume
which describes a bounding box for the sample being imaged. The second
packet defines the data for a specific slice, with fields for the number of
pixels together with the raw reconstructed data.

reconstruction server is built on top of ODL (the Operator Discretization
Library [AKÖ17]) for describing the required geometric transformations at
a high level, and the ASTRA Toolbox [Aar+16] for GPU-accelerated back-
projection, customized for single slice processing.

Our software is available in open-source repositories, and can be found
at https://github.com/cicwi/.

5.4 Results

In this section we compare the computational performance (i.e., the speed
of reconstruction) of quasi-3D reconstructions to full 3D reconstructions.
For the results presented here, the reconstructions are performed on a
single node. This node has two Intel Xeon E5-2623v3 processors, 128 GB

104 CHAPTER 5. QUASI-3D RECONSTRUCTION

import tomop

def reconstruction_callback(slice_geometry):

data = custom_slice_data_function(slice_geometry)

return data

server = tomop.server("Scene title", "tcp://localhost:5555")

server.set_callback(reconstruction_callback)

server.serve()

Listing 5.2: Example script for custom on-demand slice reconstruction.
When the user rotates, translates, or creates a slice in the visualization
interface, the system will request the new data for this slice using the user-
supplied callback function. In the first line, the tomopackets library is
imported. Next, a callback function is defined that takes an orientation,
reconstructs the corresponding slice, and returns that reconstructed data.
Below that, it is shown how to setup and connect a server.

RAM, and two dual-GPU NVIDIA GTX TITAN Z cards for a total of 4 GPUs
with 6GB RAM each. The projection data has been prerecorded and pre-
filtered, and is directly available to the reconstruction software. During a
scan, the filtering can be done at the detector while taking images, without
impacting the reconstruction time.

We use simulated data in our experiments. The test geometry is a circu-
lar cone beam geometry with rotation axis z. The object has size N×N×M .
The virtual detector is of size N × M and is positioned at the origin. The
source is at distance 10× N from the center of the object. We take a total
of N projections. Here, N and M are varied throughout our experiments.

The number of detector pixels that are required for the reconstruction
of a single slice depends on the orientation of the slice (see also Section
5.1). We consider three slices: 1. an axial slice is a slice orthogonal to the
rotation axis, 2. a vertical slice is parallel to the rotation axis, 3. a slice in
between these extremes is a tilted slice.

We compare the timings of a full 3D reconstruction, with the timings
of slice-based reconstructions for various orientations in Table 5.1. Some
examples of the reconstructed slices are shown in Figure 5.7. Note that,

5.4. RESULTS 105

voxels GPUs full 3D axial vertical tilted
256× 256× 256 1× 0.84 s 26.5 ms 22.6 ms 23.8 ms

4× 0.31 s 35.9 ms 26.6 ms 22.9 ms
512× 512× 512 1× 1.07 s 33.4 ms 22.6 ms 31.8 ms

4× 0.60 s 40.4 ms 27.2 ms 23.5 ms
1024× 1024× 1024 1× 17.3 s 61.6 ms 64.8 ms 63.1 ms

4× 6.69 s 38.5 ms 39.1 ms 37.2 ms
2048× 2048× 1024 1× 274 s 286 ms 5.22 s 5.48 s

4× 65.0 s 100 ms 106 ms 105 ms

Table 5.1: Reconstruction times for full 3D data, compared to reconstruc-
tion times for 2D slices of various orientations. See the text for a descrip-
tion of the hardware and test geometry. Here, the axial and vertical slices
are taken at the center of the volume. The tilted slice is an axial slice,
rotated 45◦ around the x axis. We consider a varying number of recon-
structed voxels, corresponding to the N ×N ×M volumes in the text. The
performance when using a single GPU or multiple GPUs is also compared.
For the relatively low numbers presented here, the standard deviation can
be as high as 20% of the measurement, while for higher resolutions the
numbers get relatively more stable with standard deviations of about 10%
of the measurement.

as explained in Section 5.1, the single slice reconstructions are identical
to reconstructions that would be obtained from a full 3D reconstruction.
In particular, there is no loss of accuracy. The results show that individual
slices can be computed quickly, even at high resolutions. The distributed
system induces some overhead, which is included in the numbers presen-
ted. These can be a significant part of the total reconstruction times, partic-
ularly at lower resolutions. Using multiple GPUs can significantly decrease
the reconstruction times, especially at high resolutions. For the highest
resolution considered, the required data for reconstructing non-axial slices
no longer fits on a single GPU which means that using multiple GPUs is a
necessity for obtaining low reconstruction times.

When reconstructing vertical slices, already the complete data has to
be filtered. In addition, the majority of the data is required for a backpro-
jection. If all three orthoslices are required, then the complete data set
is needed for the backprojection. However, the computational cost of the
reconstruction always remains low. Because we visualize only individual

106 CHAPTER 5. QUASI-3D RECONSTRUCTION

Figure 5.7: Reconstructed slices for a volume of 1024×1024×1024 voxels.
Here we used a modified 3D Shepp-Logan phantom. The left, middle and
right reconstructed slices correspond to the axial, vertical and tilted slices
as defined in Table 5.1.

slices, the amount of data required for visualization is always limited.
In our experiments we considered a circular cone beam geometry be-

cause in general it is a harder geometry to reconstruct than a parallel geo-
metry. However, for quasi-3D reconstructions many properties that usually
make reconstructing parallel geometries much simpler are lost, because
slices of arbitrary orientation have to be reconstructed. In our experiments,
we have observed similar performance for parallel geometries as for cone
beam geometries.

5.5 Use cases

The ability to observe the internal state of the object in quasi-3D through
the RECAST3D software is mainly valuable if real-time actions can be taken
as a result of the observations, which would not be possible if one has to
wait for a full 3D volume to be reconstructed. The RECAST3D software
has several use cases, all related to various dynamic aspects of the image
acquisition:

• Dynamic processes within the object of interest itself can be fol-
lowed in real-time in a quasi-3D setting. For example, a bubble that
moves through a liquid can be tracked by using three slices posi-
tioned in the center of the bubble and adjusting the slices to the
observed direction.

5.6. EXPERIMENTS 107

• Dynamic external parameters related to the object state (temper-
ature control, pressure control) can be adjusted to the observed state
of the object. For instance, using a temperature controlled stage, the
temperature of the object can be lowered until certain phase trans-
itions occur inside the object (observed in the slices), after which the
object is scanned at constant temperature.

• Dynamic acquisition parameters (source and detector positioning,
rotation of the object) can be adjusted to the observed features of
the object. For instance, the scanning geometry can be adjusted for
the presence of metal (leading to artefacts) that has been observed
at certain locations in the object and the object can be positioned
closer to the source, zooming into a region-of-interest.

Moreover, the ability to quickly visualize several slices through the in-
terior of the object while the object is in the scanner provides immediate
feedback about the quality of the data, showing for example if the scan is
good enough to resolve features of interest that are oriented in a particular
direction chosen by the user.

5.6 Experiments

In this section we give two concrete examples of applications for the RE-
CAST3D methodology.

The two datasets are acquired using the custom built and highly flex-
ible FleX-Ray CT scanner, developed by XRE NV and located at CWI. The
apparatus consists of a cone-beam microfocus X-ray point source that pro-
jects polychromatic X-rays onto a 1943× 1535 pixels, 14-bit, flat detector
panel. The acquired data is binned on the fly by 2-by-2 pixel windows, i.e.,
each raw projection is of size 972×768. The data is collected over 360 de-
grees in circular and continuous motion with 1200 projections distributed
evenly over the full circle. For dataset A, the exposure time was 160 ms,
the X-ray tube settings were 50kV, 50W, and we consider a limited detector
window of size 1943 × 1135. For dataset B, exposure time was 100 ms,
the X-ray tube settings were 40kV, 20W. The data is openly available online
[CBB18].

108 CHAPTER 5. QUASI-3D RECONSTRUCTION

As a first application, we give an example of a dynamic imaging situ-
ation where slice-based reconstruction can be sufficient. Consider a bio-
medical application where a needle is inserted into a subject or sample
along a straight line, until some target is reached. First, the needle has to
be located which can always be done by looking at, e.g., the standard three
ortho-slices. After this, a slice containing the needle can be reconstructed
dynamically. If necessary, this slice can be adjusted if the needle moves.
To create a simplified test case for this use case, a needle-shaped structure
was made out of Play-Doh and inserted in a box filled with poppy seeds
(dataset A). As illustrated in Figure 5.8, a single projection is not sufficient
to locate the needle, although the needle is visible. However, using the
quasi-3D reconstruction a slice containing the needle can easily be identi-
fied.

As a second application, we consider an adaptive experiment where
some finer structure is first located, after which a more detailed scan of this
structure is made. An example would be to image growth rings in wood
structures. This can be used, e.g., for non-destructive dendrochronology in
archeological samples [Bil+12]. In the overview scan, the plane in which
the growth rings lie can be found using our proposed methodology. After
identifying this region, a high-resolution scan of this region can be made.
As a test case we consider a piece of wood shaped as an egg (dataset B).
In Figure 5.8, we show a single projection of the wooden egg, a quasi-
3D visualization, and a slice containing the growth rings. Observe that in
general it is hard to identify the growth-ring orientation from projection
images alone.

5.7 Outlook and conclusions

In this chapter, we have introduced a new methodology for real-time quasi-
3D tomographic reconstruction, and software implementing these ideas
called RECAST3D. We show that reconstructing a limited number of arbit-
rarily oriented slices can be done at a fraction of the computational cost of
a full 3D reconstruction, yet yielding similar information and insights for
certain use cases.

In this work we focused on FBP and related reconstruction methods. In
comparison, algebraic reconstruction methods lack the important proper-

5.7. OUTLOOK AND CONCLUSIONS 109

Figure 5.8: We show projections (top row), reconstructed slices (middle
row) and quasi-3D reconstructions (bottom row). The contrast of the pro-
jections has been tuned by hand. On the left, dataset A is shown. On the
right, dataset B is shown.

110 CHAPTER 5. QUASI-3D RECONSTRUCTION

ties that we exploit. However, hybrid methods are conceivable which are
tightly related to techniques for region-of-interest tomography. We expect
that these more advanced reconstruction techniques can also fit into the
framework presented here.

In addition to time-resolved experiments becoming more common, an
interesting challenge will be to develop adaptive techniques. With these
techniques, the scanning process itself can be steered based on the real-
time reconstructions. Our distributed pipeline was developed specifically
with this use-case in mind. Indeed, the cross-links between the different
stages give rise to many interesting new possibilities. For example, the
reconstruction cluster is able to control the scanner. This allows for al-
gorithmically controlled experiments, that are driven dynamically by the
reconstructions.

Chapter 6

Application of quasi-3D
reconstruction to synchrotron
tomography

Synchrotron tomography beamlines are powerful tools for obtaining
high-resolution interior visualisations of a wide variety of opaque speci-
mens with applications in life sciences, energy research, new materials,
and many other fields. Thanks to advances in CMOS detector techno-
logy during the last decade and to the high photon flux available at state-
of-the-art tomographic microscopy endstations, it is now possible to ac-
quire the raw data required for computing a full 3D snapshot in well un-
der one second at micron resolution, promoting the use of tomographic
microscopy for time-resolved 3D imaging of interior dynamics [Mai+16;
Gar+18; San+14]. For example, the GigaFRoST detector [Mok+17] in use
at the fast tomography endstation of the TOMCAT beamline at the Swiss
Light Source (PSI) can acquire up to 1255 full frame projection images of
size 2016× 2016 pixels, each second, and directly stream them to a data

This chapter is based on:

Real-time reconstruction and visualisation towards dynamic feedback con-
trol during time-resolved tomography experiments at TOMCAT. JW Buur-
lage, F Marone, DM Pelt, WJ Palenstijn, M Stampanoni, KJ Batenburg, CM
Schlepütz. Scientific Reports 9 (1), 1-11, 2019

111

112 CHAPTER 6. QUASI-3D FOR SYNCHROTRON TOMOGRAPHY

backend that is capable of receiving and storing this 7.7 GB per second
in a ring buffer. Efficient handling of these large data rates associated
with time resolved tomographic experiments is a major challenge: large
bandwidths for data transfer and data storage are required as well as suffi-
cient computational resources for performing tomographic reconstruction
and subsequent analysis. Even with modern efficient software packages
and high-performance computational resources, the rate at which the data
can be processed and analysed is often several orders of magnitude slower
than these high rates of data acquisition. At most beamlines, typically the
tomographic reconstruction of a high resolution volume takes at least a
few minutes, with differences related to the used algorithm and available
computational resources (e.g., [Gür+14; Atw+15; Mar+17; Pan+18]).

Direct visual feedback during a time-resolved experiment is of key im-
portance for streamlining the efficiency of the physical imaging setup and
the computational pipeline, which jointly determine the overall utilisation
of the synchrotron beamline. At TOMCAT the beamline operator currently
makes use of two types of direct visual feedback: (i) by observing the raw
projection images it is possible to locate regions of interest in the sample,
as long as these regions can be clearly identified in the projections, which
is not always the case; (ii) by reconstructing a single axial slice on-the-fly
and observing it during the experiment it is possible to get an initial grasp
of the internal structure of the sample [Mar+17]. This limited form of real-
time feedback during the experiment does not provide detailed insights in
the 3D structure of the sample, particularly important for strongly aniso-
tropic objects (e.g., fibres), where virtual tomographic slices with different
orientations can look very different and provide valuable complementary
information.

The lack of real-time 3D feedback represents a major obstacle to the
efficiency of in particular dynamic imaging experiments. Rapid access to
tomographic volumes could increase the success chances of the measure-
ment campaign as it permits fast reaction towards the optimisation of the
beamline parameters and data collection protocols to guarantee sufficient
image quality to subsequently extract the relevant physical information.
Acquisition problems that result in imaging artefacts, such as detector mis-
alignment, could be resolved on-the-fly, thereby making much more effect-
ive use of expensive and scarcely available synchrotron beamtime. In situ
experiments often require event-driven imaging, where the timing of the

113

operations performed on the sample (e.g., heating, wetting) and the tim-
ing of the image acquisition are tightly connected. Examples include stress
loading of construction materials, water uptake of textiles, and migration
processes inside batteries. By observing the interior dynamics in real-time
during the experiment, the control parameters could be adjusted on-the-
fly in response to the observed phenomena. Real-time feedback on the 3D
structure of the sample would provide the ability to match the number of
acquired tomographic volumes to the observed dynamics leading to a po-
tentially substantial reduction of the total amount of produced data, not
irrelevant during time-resolved experiments with kHz frame rate detectors,
and to a maximisation of the information content in the stored datasets.

Because of the importance of direct 3D feedback during the experi-
ment, previous research has focused on reducing the required computa-
tion time for obtaining a 3D snapshot of the scanned object, often through
computational advances. One approach is to use supercomputing facilit-
ies to massively parallelise the various computations [Bic+15; Bic+17],
significantly reducing the required computation time. For example, by us-
ing 32K supercomputing nodes, it is possible to compute full iterative 3D
reconstructions in minutes [Bic+15]. However, supercomputing facilities
typically have to be shared with other users, and computing time may not
be available at the time it is needed during the experiment. A different
approach is to use smaller clusters of GPU-equipped machines in combin-
ation with advanced software packages that can efficiently stream data to
and from the GPUs [Vog+12]. As an example, with this approach it is
possible to compute 3D snapshots of moderately sized problems in sev-
eral seconds using six GPUs [Vog+12]. Despite these advances, real-time
(i.e., sub-second) reconstruction and 3D visualisation during time-resolved
tomography experiments is still out of reach.

In this chapter we present a data processing pipeline for real-time re-
construction and visualisation during the imaging experiment. Our main
contribution is that we combine recent improvements in ultra-fast detector
technology, networking, and tomographic reconstruction. This is a com-
plex engineering effort, which requires combining expertise from multiple
disciplines. Although several groups have shown the potential of real-time
reconstruction at synchrotron light sources, we demonstrate for the first
time a fully implemented pipeline for real-time reconstruction and visu-
alization of time-resolved tomographic experiments. Instead of comput-

114 CHAPTER 6. QUASI-3D FOR SYNCHROTRON TOMOGRAPHY

ing an entire 3D snapshot of the scanned object, our approach computes
multiple arbitrarily oriented slices. The pipeline is based on combining
the GigaFRoST detector system[Mok+17], which provides direct access to
newly acquired projections, with the recently published RECAST3D soft-
ware [Buu+18], which enables real-time visualisation of arbitrarily ori-
ented slices by directly reconstructing the slices from the measured projec-
tions. The image reconstruction part of our pipeline runs on a single GPU-
equipped workstation, thereby providing an imaging solution that can be
implemented at the beamline in a straightforward manner without need
for on-demand access to compute and network resources at a supercom-
puting facility. By setting up three orthogonal slices across the three main
axes of the imaging system, a quasi-3D visualisation of the interior struc-
ture of the sample is obtained. During the experiment, the visualisations
are automatically updated in real-time, ensuring that the most recent state
of the scanned object is always shown. Since the visualised slices can be
re-positioned and tilted in arbitrary directions at any time, the visualisa-
tion can be dynamically aligned with features of interest of the scanned
object providing key information to the scientists in real time, unlocking
the possibility to take further action towards the optimisation and control
of the imaging and experimental parameters.

6.1 Method

To achieve real-time visualisation of tomographic experiments, our pipeline
includes two main parts: a detector component that provides direct access
to acquired projections in real time, and a software component that can
process the acquired data and visualise results in real time. In the real-
isation we present here, the detector component is implemented using the
GigaFRoST detection and readout system [Mok+17], while the software
component consists of the RECAST3D real-time reconstruction and visual-
isation software and streaming architecture [Buu+18]. We will first discuss
in more detail the elements of both components relevant to the presented
pipeline, and then explain how the two components were integrated.

6.1. METHOD 115

Figure 6.1: Overview of the RECAST3D interface. A number of arbitrar-
ily oriented slices are chosen by a user using a simple, intuitive interface.
Reconstructions are continuously updated as new data comes in, giving
real-time visual feedback during time-resolved tomography experiments.
The slices can be reoriented as necessary without any noticeable impact on
the reconstruction time. Various controls for adjusting visualisation and re-
construction parameters are shown on the left.

6.1.1 GigaFRoST

The GigaFRoST [Mok+17] is a detection and readout system that can ac-
quire and stream data continuously at 7.7 GB/s to a dedicated backend
server. Coupled to a scintillator screen and efficient optics, this hardware
unlocks unprecedented time-resolved tomographic microscopy capabilit-
ies, including simultaneously an elevated time resolution and the ability to
follow dynamic phenomena for a long time. Built on top of a commercial
CMOS sensor, it does not have an on-board RAM as is typically the case
for high frame rate cameras on the market optimised for burst operation,
but it directly streams the acquired data through eight fibre-optics connec-

116 CHAPTER 6. QUASI-3D FOR SYNCHROTRON TOMOGRAPHY

tions to a backend server. In this way the number of images that can be
acquired in one sequence is not limited by the internal detector memory
and sustained fast data acquisition is possible. The backend server col-
lects the data blocks dispatched by the detector and reassembles them into
projection images in a ring buffer. These frames can then be sent to any
downstream process (e.g., reconstruction pipeline and file writer). For this
purpose, a publishing process posts the data using a distributed message
passing protocol based on ZeroMQ streams. In this way, simple direct ac-
cess to the acquired images is guaranteed: any downstream process can
subscribe to the ZeroMQ data stream published by the backend.

6.1.2 RECAST3D

The RECAST3D framework [Buu+18] provides a quasi 3D reconstruction
of the scanned object by simultaneously reconstructing and visualising a
set of arbitrarily oriented tomographic slices, which can be dynamically
chosen by the user and are constantly updated in real time (Figure 6.1).
To derive a computationally efficient technique for reconstructing such ar-
bitrarily oriented slices, we first note that the reconstruction problem in
tomography can be modelled as a linear system Ax = b. Here, x has a
component for each of the Nx × Ny × Nz voxels in the discretised repres-
entation of the object being imaged, b is the collection of (preprocessed)
intensity measurements obtained on the detector, and A is the forward-
projection operator, with ai j the contribution of voxel j on intensity meas-
urement i. A is sparse with only O(Nφ) nonzero entries in each column,
where Nφ is the number of projection angles. This sparsity can be used
to efficiently compute reconstructed slices using the filtered backprojec-
tion (FBP) technique. FBP is a popular reconstruction technique, because
it is computationally efficient, straightforward to implement[PSV09], and
provides high-quality reconstructions if a sufficient number of projections
is available and the noise level is limited. An FBP reconstruction consists
of two steps: first, the data is filtered, and afterwards, the filtered data
is backprojected into the image array to produce the final reconstruction.
Using the notation above, FBP can be written as

x= AT Cb, (6.1)

6.1. METHOD 117

where C is a filtering operation that performs 1D convolutions on each
individual row of the projection images.

The key to the RECAST3D approach is that only a limited number
of components of x needs to be computed for arbitrarily oriented slices,
namely those corresponding to voxels of the slices. Without loss of accur-
acy, this can be done efficiently using an FBP algorithm. First, filtered pro-
jections y= Cb can be computed relatively easily in real-time, because the
computation is trivially parallel (each row of each projection can be filtered
independently) and because the 1D convolution operations can be effi-
ciently calculated as element-wise multiplications in the Fourier domain.
Second, since each column of A only contains Nφ nonzeros, the reconstruc-
ted value for a single voxel at any arbitrary position in the volume is given
by a weighted sum of Nφ (filtered) data elements (see equation (6.1)). As
a result, the reconstruction of an arbitrarily oriented slice with n2 voxels
requires only O(n2Nφ) operations, which is significantly less computation-
ally demanding than the reconstruction of the full 3D n3 voxels volume
(O(n3Nφ) operations), since n is typically as high as a few thousand. In
addition, for the reconstruction of an arbitrarily oriented slice, the system
in equation (6.1) can be reduced to include only the information relevant
to the voxels of interest:

�

xslice

xother

�

=
�

Aslice Aother

�T
y ⇒ xslice = AT

slicey. (6.2)

Because this reduced system still represents a backprojection operation,
existing efficient and highly flexible GPU based backprojection routines
(e.g., those found in the ASTRA toolbox[Aar+16]) can be readily used to
compute arbitrarily oriented slices without modification. The local proper-
ties exploited in the presented approach are specific to the FBP algorithm.
Other reconstruction techniques, such as gridrec [Dow+99], which revolve
around regridding of the data in Fourier space, can be up to 20 times faster
for full 3D data sets than FBP [MS12], but cannot be restricted to recon-
struct arbitrarily oriented slices, since they rely on a Fourier inversion of
the entire volume.

The quasi-3D reconstruction pipeline of RECAST3D [Buu+18] is built
upon a message-passing protocol between a visualisation tool for recon-
structed slices and a reconstruction server. The reconstruction server holds
(preprocessed) tomographic projections in memory, and is able to recon-

118 CHAPTER 6. QUASI-3D FOR SYNCHROTRON TOMOGRAPHY

struct arbitrarily oriented slices from this data on demand, e.g., by dy-
namic selection by the user in the visualisation interface (Figure 6.1). A
low-resolution 3D preview is provided by the reconstruction server as well,
to aid the user while selecting slice positions and orientations. The active
set of projections is continuously being updated during the scan, ensuring
that the current state of the scanned object is always visualised.

6.1.3 Integration

The GigaFRoST system and the RECAST3D reconstruction pipeline are
linked through a distributed message passing protocol based on ZeroMQ
streams, which abstract away much of the network communication. The
reconstruction server subscribes to the backend server stream to obtain,
in real time, the projections from the tomographic measurement. Cur-
rently, a single workstation is used for reconstruction and visualisation.
This workstation consists of an NVIDIA Quadro K6000 GPU with 12GB on-
card memory, and two Intel Xeon CPU E5-2680 v2 CPUs. Projections are
received from the backend server over a 10 Gbit network connection.

The tomographic measurement consists of multiple scans. In each scan,
a data frame of Nφ projections is recorded. These projections are pre-
processed and filtered as they come in by the combined 40 independent
hardware threads of the CPUs, and then uploaded to GPU memory. The
implementation also supports optional phase retrieval using the Paganin
method [Pag+02]. The GPU holds two buffers, each large enough to store
a data frame. The active buffer is always the latest complete data frame
that has been fully processed and uploaded. New slice reconstructions are
triggered in two ways: (i) when the user interactively chooses a new slice
to be visualised, typically by translating or rotating one of the active slices
in the visualisation tool, and (ii) when a new data frame has been fully
processed and uploaded. A reconstruction is realised by a single backpro-
jection operation onto a slice from the data in the active buffer, cf. Equation
(6.2). Additionally, a low-resolution 3D volume is reconstructed when a
new data frame has been fully processed and uploaded. A separate process
handles the connection to a visualisation server, sending new reconstruc-
tion data when it becomes available. Optionally, remote observers can
connect through an internet connection to the reconstruction server, and
can request slice reconstructions independently from the on-site user. The

6.1. METHOD 119

(a) (b) (c)

(d)(e)

II

I

III

IV

Experiment Reconstruction

Visualization

Figure 6.2: A tomographic measurement (a) leads (I) to a stack of pro-
jection images (b). The rows of these images have to be filtered (in red),
which can be done in parallel (II). The filtered projection images can be
used to reconstruct individual slices (in grey), by local backprojection op-
erations (c). These slices can be shown together (d). The visualisation
software can request reconstructions (III), in particular upon interactive
slice rotation and translation (IV) by the user (e).

overall setup is illustrated in Figure 6.2. The IT infrastructure is illustrated
in Figure 6.3.

Benchmarking results of the current implementation are presented in
Table 6.1. There are two main performance aspects to consider. The first
aspect is the time it takes to process and upload a data frame to the GPU.
From the results, we see that the setup is capable of processing a set of 400
projections with 768× 520 pixels and uploading it to the GPU well within
a single second. One reason we do not use the full detector resolution,
is to ensure that the projection data fits in the memory of the used GPU.
The GPU memory usage is dominated by the active and passive projection

120 CHAPTER 6. QUASI-3D FOR SYNCHROTRON TOMOGRAPHY

GigaFRoST camera WorkstationBackend server

SLS server room TOMCAT control roomExperimental hutch

8 × 10 Gbit/s fiber-optic cables

10 Gbit/s Ethernet

Intra-node communication

V

R

Workstation

V

Remote observer

Internet connection

Figure 6.3: The IT infrastructure used in the real-time reconstruction
pipeline. The data from the detector is received by a ring buffer on the
backend server. This data is then streamed to the reconstruction software
(R) currently running on a single workstation in the control room. The
communication between the visualisation software (V) and the reconstruc-
tion software now happens within this single workstation.

buffers. Using the full GigaFRoST detector resolution of 2016× 2016 for
400 projections would lead to a memory usage for the projection buffers
of roughly 20162 × 400 × 2 × 4B ≈ 13GB when the values are stored in
single precision. The other buffers, one to store a single reconstructed slice
and one for the low-resolution 3D volume, take up a negligible amount of
memory. Besides affecting memory usage, limiting the size of the projec-
tions also reduces the computational load in the preprocessing step, as well
as the bandwidth required to upload the data to the GPU in time. The re-
striction on the size of the projection data can be lifted by using a GPU
with more memory, or, as we discuss later, by moving to an implementa-
tion that uses multiple GPUs. We are currently able to realise a raw data
bandwidth of roughly 4 Gbit/s. If required, only a part of the data is se-
lected for use in the real-time reconstruction, to ensure that the incoming
data can be processed and uploaded in time. In practice, this means that
the reconstruction shown in the visualiser always comes from data that
has been recorded less than one second earlier. The second performance
aspect to consider is the time it takes to reconstruct an arbitrary slice from
the active data buffer. Because of the way slices are reconstructed, it is con-

6.1. METHOD 121

venient to choose a fixed size for the slices regardless of orientation. This
is a parameter that can be set by the user. We use voxel-driven backprojec-
tion, and sampling is done by interpolating values of the projection images.
For this benchmark, we choose to reconstruct slices with a relatively high
resolution of 1024× 1024 pixels to obtain a conservative estimate for the
maximum reconstruction time. The total response time between the re-
construction and visualisation server, i.e., the time between requesting a
slice reconstruction and receiving it, is less than 100 ms, realising the goal
of being able to examine the imaged sample in real time. In summary, we
see that with this implementation the time elapsing between the selection
of a new slice by the user and its visualisation is negligible, so that it is as
though fully reconstructed 3D data is available.

The connection between the backend server and the RECAST3D ser-
vice is realised using a publish/subscribe pattern. The subscriber listens to
messages sent by the publisher. In our case, a single message corresponds
to one projection image. Using the ZeroMQ implementation of this pat-
tern, message order is maintained between the publisher and subscriber,
and messages are received at most once. However, there are no other strict
guarantees on the messages. For example, it is not guaranteed that all mes-
sages are received by the subscriber. Our setup is mostly robust to missing
messages, as the corresponding part of the buffer will be filled with zeros.
When a backprojection operation using this buffer is executed, the missed
projection images are then effectively ignored. In the worst case, this can
result in missing angle artefacts when the number of dropped images is
large, and it can reduce the overall intensity of the reconstructed image.

The employed scheme gives a lot of flexibility to the system. Listen-
ers can subscribe and unsubscribe on demand, without requiring any ad-
ditional logic to be implemented on the backend server. In the current
implementation, messages are queued when the subscriber is overworked,
and once this queue is full messages will start to drop. This can happen
when we deal with particularly high-throughput data. One possibility to
resolve this issue is to only send every N th data frame to RECAST3D, for
some appropriate value of N , while all get saved to disk, which would
require inserting a ZeroMQ stream splitter into the stream.

In order to support higher resolution data sets, or to increase the num-
ber of data frames the pipeline can process, we have to move beyond using
a single GPU. While currently only a single workstation is used for recon-

122 CHAPTER 6. QUASI-3D FOR SYNCHROTRON TOMOGRAPHY

struction and visualisation, the framework is scalable. Multiple compute
nodes can be used for processing and reconstructing in parallel. One way
to achieve this is to split a data frame into groups of projections and distrib-
ute them over a number of GPUs. Each group of projections can be filtered
independently. When a slice reconstruction is requested, each GPU per-
forms a backprojection with its local group of projections leading to a con-
tribution to the reconstructed slice. Next, we perform a single distributed
step over all GPUs, where the contributions are summed to obtain the slice
reconstruction for the full projection set. We note that this summation is
performed only on 2D data, limiting the required communication between
GPUs as well as the computational cost. This parallelization method is
possible because the backprojection operator is linear. In the current im-
plementation, the CPU-based pre-processing could form a bottleneck to the
scalability. However, expensive steps such as filtering the projections could
be offloaded to a GPU. Based on the results obtained with a modest work-
station, we expect that when a small-size cluster of about 8 GPU nodes
is used, full-resolution tomographic reconstructions with a finer temporal
resolution should be achievable.

It is also possible to further optimise the GigaFRoST system for the
specific application of real-time visualisation and feedback. The service
running on the GigaFRoST backend server is currently implemented as a
ring buffer, and it does not guarantee streaming out the frame data in con-
secutive order. This is in order to optimise performance when it is under
heavy load. Although ZeroMQ streams guarantee maintaining message
order, this means we cannot rely on this in practice, because images from
successive data frames can intermix and throw off the processing and up-
dating of the active buffer. To circumvent this issue for the present experi-
ments, we chose a sufficiently long wait period between individual scans.
After a planned modification to the service running on the backend server,
this should no longer be necessary in the future.

Our primary aim of the proposed pipeline is not to outperform the
already established pipeline running on a large CPU cluster in the recon-
struction of complete 3D data sets. Instead, the main advantages of the
proposed pipeline over the existing pipeline are: (i) Slices with arbitrary
orientations through the volume can be reconstructed. This would not be
possible on the existing production cluster, which relies on the gridrec al-
gorithm instead of FBP and would thus first need to reconstruct the full

6.2. SCIENTIFIC APPLICATIONS 123

PROCESS UPLOAD PREVIEW SLICE TOTAL FOR THREE SLICES

386.3 ms 197.9 ms 49.1 ms 31.5 ms 727.9 ms

Table 6.1: Benchmark results for the reconstruction pipeline. Each data
frame contains 400 projections with 768× 520 pixels. The reconstructed
slices consist of 1024×1024 pixels. The reconstructed 3D preview consists
of 128 × 128 × 128 voxels. Here, PROCESS is the processing time for a
single data frame, e.g., flat fielding and filtering. The total time to upload
a data frame to the GPU is shown as UPLOAD. The reconstruction time for
processed data stored on the GPU for a 2D slice and a 3D preview is given
as SLICE and PREVIEW respectively. Although many of the steps happen in
parallel, a worst-case estimate for the processing of a single data frame and
reconstruction of three arbitrary slices can be found by the sequential time
computed as PROCESS + UPLOAD + PREVIEW + 3 × SLICE. This estimate is
shown as TOTAL FOR THREE SLICES.

volume before being able to compute and visualise an arbitrarily oriented
data slice through the volume. Due to this, the performance gain for visu-
alising arbitrarily oriented slices is over a factor of 10 compared to the pro-
duction pipeline. (ii) The current production environment lacks the inter-
active visualisation environment provided by RECAST3D, and thus also the
capability to choose and adjust the requested slice positions dynamically
during the running measurement. (iii) The proposed system is designed
to run on a very simple and modest compute infrastructure compared to
the relatively large CPU cluster required by the existing pipeline.

6.2 Scientific applications

In this section, the new features, current benefits and future potential of the
presented real-time reconstruction and visualisation tools are illustrated on
a selected case study which is, however, representative of a wide range of
dynamic phenomena.

Fluid uptake characteristics and transport mechanisms in fibrous ma-
terials are widely and intensively studied on a very fundamental level, both
experimentally [Zha+17; Par+19] and through models and simulations
[Kis16; LCL08], for a variety of technical applications, ranging from the
impregnation of carbon fibre composite materials with a fluid polymer mat-

124 CHAPTER 6. QUASI-3D FOR SYNCHROTRON TOMOGRAPHY

rix, via the wettability and absorption of ink in paper and cloth-based car-
rier materials during ink jet printing, to the functionalisation of wearable
textiles to control their water-repellent or moisture absorbing and trans-
porting properties.

The wicking behaviour of a single yarn thread is investigated in a simple
dynamic model experiment. A yarn is essentially a spun bundle of indi-
vidual fibres. Depending on the fibre material, size distribution and ho-
mogeneity, and the tension and twist applied during spinning, the volume,
distribution, shape, and inter-connectivity of pore spaces within the yarn
differ significantly and, in turn, crucially affect the water transport and
distribution within the yarn.

Figure 6.4 shows a sketch and photo of the setup used in the exper-
iment. A yarn has been fabricated from 96 polyethylene terephthalate
(PET) fibres of 22 µm diameter. It is mounted inside a vertically posi-
tioned kapton tube of ca. 6 mm diameter and 50 mm length and is subject
to a slight amount of twist and tension. The bottom part of the kapton tube
features an aperture to allow liquid to enter in order to get the lower end
of the yarn in contact with water. The tube is placed into a larger reservoir
holder into which one can inject the liquid from a remotely controlled syr-
inge pump. The whole assembly is mounted on the rotation stage in the
beamline hutch and can be positioned such that the yarn is centred along
the rotation axis.

Edge-enhanced X-ray absorption images are produced using the filtered
(20 mm pyrolitic graphite + 75 um W) white beam of a 2.9 T superbend-
ing magnet, converted to visible light with a 150 µm thick LuAG:Ce scin-
tillator (Crytur, Czech Republic), and recorded using the GigaFRoST cam-
era coupled to a high numerical aperture microscope [Büh+19] (Optique
Peter, France) featuring an optical magnification of 4x. This results in an
effective pixel size of 2.75 µm. The scintillator was placed 320 mm down-
stream from the sample to obtain some degree of edge-enhancement from
the weakly absorbing PET fibres. Projection images were cropped to a size
of 384 pixels horizontally by 800 pixels vertically to capture the full extent
of the yarn illuminated by the approximately 2.2 mm high X-ray beam.

The experimental challenge for this system is twofold: Firstly, more
than one transport mechanism governs the evolution of the water content
in the yarn. These processes inherently proceed at different speeds and
can result in abrupt changes of the uptake velocity over time. To capture

6.2. SCIENTIFIC APPLICATIONS 125

yarn

screw

screw

kapton
tube

X-ray
beam

reservoir

water

FOV

PET
fibers

(a) (b)

from
pump

kapton
tube

reservoir

screw

yarn

capillary

ca
pi
lla
ry

Figure 6.4: Experimental setup. (a) Photo of the yarn sample holder. (b)
Schematic drawing of the sample holder and measurement geometry.

the fast dynamics, scan times for individual volume reconstructions need
to be kept as short as possible, ideally of the order of 0.1 - 0.5 seconds.
Secondly, the arrival time point of the liquid front at the measurement po-
sition, which lies 10-20 mm above the water surface level in the reservoir,
is very unpredictable and varies considerably from specimen to specimen.
Hence, the data acquisition needs to be sustained at high speeds over a
long period of time, thus putting stringent demands on the data streaming
and storage infrastructure. In the end, the interesting dynamics will be re-
stricted to only a short period during this extended time series, rendering
most of the data unimportant.

The experiment then proceeds as follows: First, the rotation of the dry
sample is started and the acquisition of projection images with the Giga-
FRoST camera [Mok+17] is initiated. To ensure an identical sample orient-
ation for successive volume scans and to throttle the scan rate, we employ
the so-called sequence mode for data acquisition [Lov+16], where the col-
lection of a series of 400 images over a 180 degree range is triggered by

126 CHAPTER 6. QUASI-3D FOR SYNCHROTRON TOMOGRAPHY

the position-sensitive output signal from the rotation stage every 720 de-
grees during continuous rotation. With the chosen exposure time of 1 ms
for each projection, this results in a scan time of 0.4 seconds per scan and
a scan period of 1.6 seconds.

We will now discuss three specific examples of capabilities that our
approach enables in practice.

Capability I: real-time alignment of the setup

One of the first steps in any tomographic X-ray imaging experiment is the
assessment and optimisation of the reconstruction image quality. Usually
this is incrementally adjusted through a series of alignment procedures and
test scans which have to be reconstructed and examined individually after
each alignment step. Parameters to be aligned and optimised may include
the tilt and position of the rotation axis with respect to the camera or the
propagation distance between the sample and the scintillator to achieve
the right amount of edge-enhancement. Performing these alignment and
optimisation steps is greatly simplified and accelerated by the availabil-
ity of a live view of reconstructed slices. These steps are demonstrated in
movie S1 in the supplementary materials1. The rotation axis is initially
offset with respect to the centre of the camera by a few tens of pixels,
resulting in the characteristic C-shaped artefacts of the individual fibres
comprising the sample structure in the axial slices of the live reconstruc-
tion. By simply tweaking the rotation axis’ or camera’s position transverse
to the beam direction with the corresponding translation stage, one can
progressively improve the quality of the reconstructed sample structure un-
til an adequate alignment has been achieved. Note that when measuring
radiation-sensitive samples, the alignment step should naturally be per-
formed with a dedicated alignment tool before mounting the real samples.
The precise centring of the rotation axis is, however, not strictly necessary
to conduct an experiment, as the actual location can be determined in the
reconstruction process and a slight misalignment can be easily corrected
a posteriori to improve the reconstructed image quality. Similarly, in cases
where a precise alignment during the experiment may not be possible due

1The supplementary materials referenced are for the publication on which this chapter
is based.

6.2. SCIENTIFIC APPLICATIONS 127

to mechanical constraints, a non-centred axis position could be specified
as an input for the real-time reconstruction via RECAST3D.

Capability II: real-time sample positioning

While the above mentioned optimisation and alignment steps usually only
need to be performed at the beginning of an experiment series, each sample
to be measured has to be positioned correctly with respect to the rotation
axis to ensure that the proper region of interest (ROI) is imaged. For many
samples, like the yarns in this experiment, this is easily achieved simply by
looking at the projection images. However, particularly when looking at
smaller regions inside an extended sample, navigating to the correct ROI
simply based on the radiographic projections is often not straightforward.
Again, a live view of a small number of reconstructed slices through the
volume can easily guide the navigation and ensure that the proper region
is imaged in the real experiment. An example of this live navigation inside
a sample is seen in movie S2 in the supplementary materials1, where the
region of interest to be measured is the interface between two different
mineral phases in a piece of volcanic rock. While the sample is continu-
ously rotating, one can easily search for the desired location and accurately
position it within the reconstructed field of view shown by the live preview
of RECAST3D.

Capability III: real-time observation of water uptake

Much as the setup alignment and sample positioning are facilitated by the
nearly real-time visualisation of reconstructed slices, the main purpose of
the presented tool is to allow for the live observation of a dynamical process
as it is happening during an experiment. In the case of our yarn sample,
this means the observation of the waterfront arrival in the imaged sample
region and the subsequent filling of the full yarn’s pore structure with li-
quid. Once the sample is completely wetted, the measurement can be
stopped to avoid the acquisition of unnecessary data. The screencast movie
S3 in the supplementary materials1 shows the whole temporal evolution
of the observed sample structure according to the experimental procedure
outlined above.

128 CHAPTER 6. QUASI-3D FOR SYNCHROTRON TOMOGRAPHY

Figure 6.5 shows some representative time points of a data set acquired
on an identically prepared sample with 32 fibres instead of 96, imaged un-
der the same experimental conditions. The only difference with respect
to the measurement with the live preview was that instead of acquiring
one 180 degree scan every two full rotations, a full data set was recor-
ded once per turn, resulting in a scan period of 0.8 seconds instead of the
1.6 seconds used for the scan series visualised on-the-fly with RECAST3D.
Panel (a) of figure 6.5 shows flat-field-corrected projection images, or so-
called radiographies, of the full extent of the imaged yarn section at the
beginning and the end of the water uptake process. Magnified views of
small sections at the top and bottom of this imaged region are shown in
panel (b) for different time points during the scan series. This is the direct
visual feedback tool used so far at most tomographic microscopy beam-
lines to follow the dynamics of the investigated process. It is essentially
impossible to determine when the water front arrives in the two differ-
ent regions from these projection images as the change in contrast is very
small. However, the situation changes dramatically when looking at tomo-
graphic slices of the phase-contrast reconstruction. Vertical slices through
the centre of the full reconstructed volume are shown for the beginning
and the end of the scan series in panel (c). Using axial cuts at the top and
bottom of the sample volume, as shown in panel (d), we can readily detect
the arrival time point of the leading edge of the water front in the bottom
of the imaged region between around 11.2 seconds (still dry) and 12.0
seconds (some pore spaces are filled with water). The same effect is vis-
ible in the top slice about 2.5–3 seconds later. The entire time series of flat-
and dark field corrected radiographic projection images as well as for the
top and bottom reconstructed slices are shown in the supplementary ma-
terials movies S4, S5, and S6, respectively1. A visual rendering of the full
3-dimensional structure (which would not be available in real-time with
RECAST3D) for one time point is shown in panel (e) of figure 6.5 with
a red semi-transparent isosurface of the water and fibre structure, three
axial slices at the bottom, middle, and top of the sample and a vertical
slice through the centre of the fibre bundle.

6.2. SCIENTIFIC APPLICATIONS 129

0.0 s 41.6 s

0.0 s 11.2 s 12.0 s 13.6 s 14.4 s 15.2 s 19.2 s 41.6 s

0.0 s 41.6 s(a) (c)(b)

(e)

14.4 s

0.0 s 11.2 s 12.0 s 13.6 s 14.4 s 15.2 s 19.2 s 41.6 s
(d)

Figure 6.5: Time series of scans showing the water uptake dynamics of the
yarn. (a) Radiographic projection images show the whole imaged yarn
section at the beginning (0.0 seconds, dry) and the end (41.6 seconds,
nearly completely wetted) of the uptake process. Scale bar: 200 µm (b)
Magnified sections of the radiographic images, indicated by the blue boxes
in (a), at several time points during the scan at the top (upper line) and
bottom (lower line) of the sample. Scale bar: 100 µm (c) Vertical centre
slice through the phase contrast reconstruction of the yarn sample at the
beginning and the end of the scan series. Scale bar: 200 µm (d) Horizontal
cuts, indicated by the red line in (c), through the reconstructed volume at
the top and bottom at the same time points shown in (b). Scale bar: 100
µm (e) Rendering of the reconstructed volume at an intermediate time
point during the uptake process, showing one vertical and three axial slices
as well as a semi-transparent red isosurface outlining the volume of the
combined yarn and water volume. Green outlines: Air bubble emaining in
the yarn structure even at the end of the scan series.

6.2.1 Discussion

In many cases, the information that can be gained from strategically chosen
arbitrarily oriented reconstructed slices is a good proxy for the dynamic
evolution of the entire sample and is sufficient for adaptive experimental
control purposes. By positioning reconstructed slices for instance perpen-
dicular to a front evolution direction, liquid breakthrough can easily be
detected. Alternatively, reconstructed slices oriented parallel to it could
give a real-time indication of the speed of the propagating front enabling
on-the-fly adjustment of the experimental parameters. We believe that if

130 CHAPTER 6. QUASI-3D FOR SYNCHROTRON TOMOGRAPHY

the reconstructed slices are carefully chosen, quasi-3D reconstructions, as
the one used in this yarn example, can in many cases provide valuable and
representative information for the full 3D structure. The number and type
of measurements which could profit from an active automatic feedback
will increase with time as new and increasingly optimised tools are being
developed by the large and very active image analysis community.

6.3 Outlook: A route towards adaptive experi-
ment control

The unprecedented possibility provided by the tools presented here to dir-
ectly visually follow live dynamic processes as they happen is very valu-
able for enabling adaptive control of the experiment, for instance to stop
the image acquisition and the experiment when the phenomenon of in-
terest is over, so avoiding the storage of a large amount of useless data.
Another important application is the case of systems where sudden high-
speed events of interest happen only occasionally at essentially unpredict-
able time points.

Access to a few nearly real-time reconstructed slices through the volume
in specifically controlled locations opens up the possibility to go even fur-
ther and to perform quantitative online analysis on these data. Here we
sketch a possible route towards an online feedback mechanism for the
presented example of water wicking in yarns, in particular, where we aim
to identify the time points of water arrival at the bottom and the top of the
imaged sample region, as well as the saturation of the pore volume with
water.

Judging by the phase-reconstructed slices in Figure 6.5(d), identifying
the arrival time point of the waterfront should be relatively straightfor-
ward. A simple approach relies on the ability to automatically segment
the slice data into air and material (in this case, both water and yarn are
classified as material). Since the volume of the yarn does not change dur-
ing the experiment, any change in the amount of detected material can
be attributed to water, and a significant rate of change should only be ob-
served starting with the arrival of the water front. Figure 6.6 plots the total
number of pixels per slice classified as material as a function of the scan
time. The arrival of the water front is clearly identified as the point when

6.4. CONCLUSIONS 131

the material fraction suddenly increases. Consistent with the visual inspec-
tion, the top slice starts to gain in material about 2 – 3 seconds after the
bottom slice. The small insets show the segmented slices from the bottom
of the imaged volume at different time points, using a constant threshold
which was determined automatically using the Otsu [Ots79] method on
the dry fibre bundle corresponding to the first time point.

Active feedback to the experiment control in this case could be to start
saving data only once the arrival of the water front in the bottom-most
slice has been detected and to stop recording data once the water con-
tent in both the top and bottom slices has not changed considerably over
a given time period. Another option would be, for example, to automat-
ically deliver a staining agent to the water reservoir once the unstained
waterfront has reached the imaging region such that the liquid transport
in the already wetted yarn can be observed under identical experimental
conditions in the same sample as the initial wetting behaviour.

Combining our proposed approach for real-time reconstruction with
application-specific postprocessing and visualization operations, the present
example can easily be adapted for a broad range of other use cases where
the state of the sample must be probed and analysed in real-time to allow
for on-the-fly adaptation of experimental parameters.

6.4 Conclusions

The present study demonstrates the feasibility, utility and further potential
of the real-time reconstruction of a small number of arbitrarily oriented
slices to visually observe the evolution of a sample and to obtain quantit-
ative feedback of the dynamic phenomena occurring during tomographic
imaging. The real-time reconstruction has been realised at the TOMCAT
beamline at the Swiss Light Source (PSI), and only requires a single work-
station for the computations. The chosen approach carefully balances the
relative trade-offs between the achievable reconstruction speed, the com-
plexity and cost of the necessary IT infrastructure, and the completeness of
the available subset of data during online processing to deliver a powerful
quantification and visualisation tool that can be relatively easily integrated
into existing data acquisition pipelines with only modest investments in the
necessary computing resources.

132 CHAPTER 6. QUASI-3D FOR SYNCHROTRON TOMOGRAPHY

Figure 6.6: Quantification of the water uptake in the bottom and top slice
as a function of time. The reconstructed slices are segmented using a
constant threshold and the total number of pixels classified as material
is plotted. The insets show the segmented bottom slices at different time
points (along with the reconstructed grey-level image for the first time
point which was used to automatically determine the threshold for the
segmentation).

Chapter 7

Conclusion

The goal of the research presented in this dissertation was to develop tech-
niques that enable real-time tomographic reconstruction. In particular, we
wanted to reduce the runtime of reconstruction algorithms so that they are
in the same ballpark as the time it takes to acquire the projection images.

Throughout this research, my focus has always been on making the
developed methods applicable to as many use cases as possible, which res-
ulted in the polyvalent character of the developed methods. Few assump-
tions are made about the acquisition geometry, reconstructions methods,
or application area.

This genericity is exemplified by the Bulk framework in Chapter 2. Al-
though my personal motivation was for Bulk to aid with the implementa-
tion of distributed tomographic reconstruction, I tried consciously to not
let this use case have too big of an influence on the design decisions that
have been made. As a result, the framework should prove useful for many
applications in parallel scientific computing.

The partitioning techniques presented in Chapters 3 and 4 can be used
for accelerating the forward and backprojection projection operations by
employing multiple GPUs simultaneously. Compared to the state-of-the-
art, these partitionings enable scaling to many more GPUs than was pre-
viously achievable. Together with the newly proposed data structures, I
believe these techniques improve greatly upon previously available solu-
tions. An important class of often used reconstruction methods alternates
between performing forward and backprojection operations. The data dis-
tributions generated by these novel partitioning methods represent a big

133

134 CHAPTER 7. CONCLUSION

step forward in reducing the runtime of these reconstruction methods.
By employing domain-specific information, in our case the acquisition

geometry of the tomography experiment, we were able to improve upon
existing partitioning techniques. In particular, we could make them scale
way beyond what is achievable by solely looking at the nonzero pattern
of the corresponding sparse matrix. This makes you wonder: What other
application areas could benefit from similarly incorporating such domain-
specific information?

The quasi-3D reconstruction technique introduced in Chapter 5 de-
creases the runtime of reconstruction algorithms such as FBP and FDK by
orders of magnitude compared to full 3D reconstructions. For many use
cases, quasi-3D reconstructions contain enough qualitative and quantitat-
ive information on the imaged object. An important feature is that this
technique can be used for many imaging modalities. It has already been
successfully applied to µ-CT systems such as the FleX-ray lab at CWI in
Amsterdam, synchrotron tomography as discussed in detail in Chapter 6,
and electron tomography in a collaboration with EMAT in Antwerp.

Together, the geometric partitioning techniques and quasi-3D recon-
struction can accelerate almost every tomographic reconstruction method
used in practice. However, reconstruction is only one step of the imaging
pipeline. It is usually followed by a post-processing and analysis step. One
of the goals of real-time tomographic reconstruction is to enable direct
feedback, in order to steer the experiment while it is ongoing. The range
of possible applications will increase greatly if post-processing and analysis
can also be performed in real time, and this could certainly be an interest-
ing avenue for future research.

The quasi-3D methodology can also aid in realizing this final step of
real-time post-processing and analysis. RECAST3D, our software package
that implements a full quasi-3D reconstruction pipeline, boasts a powerful
plugin system. Plugins that have already been developed include those
for real-time segmentation, and the real-time analysis of the curvature
of a nanoparticle. Furthermore, more advanced filtered backprojection
type algorithms can easily be implemented directly in RECAST3D. We have
already seen promising results for improving the image quality of the re-
constructions by, e.g., using algebraic filters, computing a combination of
filters using neural networks, and by using computer vision techniques to
reduce noise and other image artifacts.

135

By collaborating with experimental imaging groups, I was lucky enough
to see my research be useful for imaging experiments. This has been very
rewarding, and I hope that in particular Bulk and RECAST3D will aid oth-
ers in performing their research, and to apply their methods in practice.

136 CHAPTER 7. CONCLUSION

Bibliography

[Aar+15] W. van Aarle et al. “The ASTRA Toolbox: A platform for ad-
vanced algorithm development in electron tomography”. In:
Ultramicroscopy 157 (2015), pp. 35–47.

[Aar+16] W. van Aarle et al. “Fast and Flexible X-Ray Tomography Using
the ASTRA Toolbox”. In: Optics Express 24.22 (2016), p. 25129.

[AKÖ17] J. Adler, H. Kohr and O. Öktem. Operator Discretization Lib-
rary. https://github.com/odlgroup/odl. 2017.

[And84] A. Andersen. “Simultaneous Algebraic Reconstruction Tech-
nique (SART): A Superior Implementation of the ART Algorithm”.
In: Ultrasonic Imaging 6.1 (1984), pp. 81–94.

[Atw+15] R. C. Atwood et al. “A high-throughput system for high-quality
tomographic reconstruction of large datasets at Diamond Light
Source”. In: Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 373.2043 (2015),
p. 20140398.

[Avi01] M. S. Avinash C. Kak. Principles of Computerized Tomographic
Imaging. Society for Industrial and Applied Mathematics, 2001.

[BB02] S. Basu and Y. Bresler. “O(N 3 log N) backprojection algorithm
for the 3-D Radon transform”. In: IEEE Transactions on Med-
ical Imaging 21.2 (2002), pp. 76–88.

[BB87] M. J. Berger and S. H. Bokhari. “A partitioning strategy for
nonuniform problems on multiprocessors”. In: IEEE Transac-
tions on Computers C-36.5 (1987), pp. 570–580.

137

138 BIBLIOGRAPHY

[BBB18] J. W. Buurlage, T. Bannink and R. H. Bisseling. “Bulk: a Mod-
ern C++ Interface for Bulk-Synchronous Parallel Programs”.
In: Euro-Par 2018: Parallel Processing. Vol. 11014. Lecture Notes
in Computer Science. Springer, 2018, pp. 519–532.

[BBB19] J. W. Buurlage, R. H. Bisseling and K. J. Batenburg. “A Geo-
metric Partitioning Method for Distributed Tomographic Re-
construction”. In: Parallel Computing 81 (2019), pp. 104–121.

[Ber+08] M. de Berg et al. Computational Geometry: Algorithms and Ap-
plications. 3rd. Santa Clara, CA, USA: Springer-Verlag TELOS,
2008.

[BG05] T. M. Benson and J. Gregor. “Framework for iterative cone-
beam micro-CT reconstruction”. In: IEEE Transactions on Nuc-
lear Science 52.5 I (2005), pp. 1335–1340.

[Bic+15] T. Bicer et al. “Rapid tomographic image reconstruction via
large-scale parallelization”. In: European Conference on Paral-
lel Processing. Springer. 2015, pp. 289–302.

[Bic+17] T. Bicer et al. “Real-Time Data Analysis and Autonomous Steer-
ing of Synchrotron Light Source Experiments”. In: 2017 IEEE
13th International Conference on e-Science (e-Science). Oct. 2017.

[Bil+12] J. Bill et al. “DendroCT – Dendrochronology without dam-
age”. In: Dendrochronologia 30.3 (2012), pp. 223–230.

[Bis04] R. H. Bisseling. Parallel scientific computation: a structured ap-
proach using BSP and MPI. Oxford University Press, Oxford,
UK, 2004, p. 325.

[BJ92] T. N. Bui and C. Jones. “Finding good approximate vertex and
edge partitions is NP-hard”. In: Information Processing Letters
42.3 (1992), pp. 153–159.

[Bon+03] O. Bonorden et al. “The Paderborn University BSP (PUB) lib-
rary”. In: Parallel Computing 29.2 (2003), pp. 187–207.

[BT09] A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding
Algorithm for Linear Inverse Problems”. In: SIAM Journal on
Imaging Sciences 2.1 (2009), pp. 183–202.

BIBLIOGRAPHY 139

[Büh+19] M. Bührer et al. “High numerical aperture macroscope optics
for time-resolved experiments”. In: Journal of Synchrotron Ra-
diation in press (2019).

[Buu+18] J.-W. Buurlage et al. “Real-Time Quasi-3D Tomographic Re-
construction”. In: Measurement Science and Technology (2018).

[Buz08] T. M. Buzug. Introduction to Computed Tomography From Photon
Statistics to Modern Cone-beam CT. Springer, 2008.

[CA01] U. Catalyurek and C. Aykanat. “A fine-grain hypergraph model
for 2D decomposition of sparse matrices”. In: Proceedings 15th
International Parallel and Distributed Processing Symposium.
IPDPS 2001. 2001.

[CA99] U. Catalyurek and C. Aykanat. “Hypergraph-Partitioning-Based
Decomposition for Parallel Sparse-Matrix Vector Multiplica-
tion”. In: IEEE Transactions on Parallel and Distributed Systems
10.7 (1999), pp. 673–693.

[CBB18] S. B. Coban, J. Buurlage and K. J. Batenburg. Two cone beam
test dataset for RECAST3D. https://doi.org/10.5281/zenodo.
1154166. Jan. 2018.

[Chi+11] S. Chilingaryan et al. “A GPU-based architecture for real-time
data assessment at synchrotron experiments”. In: IEEE Trans-
actions on Nuclear Science. Vol. 58. 4 PART 1. 2011, pp. 1447–
1455.

[Chi+15] A. Ching et al. “One trillion edges: graph processing at Facebook-
scale”. In: VLDB 8.12 (2015), pp. 1804–1815.

[CP10] A. Chambolle and T. Pock. “A First-Order Primal-Dual Algorithm
for Convex Problems With Applications To Imaging”. In: Journal
of Mathematical Imaging and Vision 40.1 (2010), pp. 120–
145.

[Dev+06] K. D. Devine et al. “Parallel hypergraph partitioning for sci-
entific computing”. In: 20th International Parallel and Distrib-
uted Processing Symposium, IPDPS 2006. 2006.

[Dev+16] M. Deveci et al. “Multi-Jagged: a scalable parallel spatial par-
titioning algorithm”. In: IEEE Transactions on Parallel and Dis-
tributed Systems 27.3 (2016), pp. 803–817.

140 BIBLIOGRAPHY

[DG04] J. Dean and S. Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters”. In: Proc. OSDI (2004), pp. 137–
149. arXiv: 10.1.1.163.5292.

[DH11] T. A. Davis and Y. Hu. “The University of Florida sparse matrix
collection”. In: ACM Transactions on Mathematical Software
38.1 (2011), pp. 1–25.

[Dow+99] B. A. Dowd et al. “Developments in synchrotron x-ray com-
puted microtomography at the National Synchrotron Light
Source”. In: Developments in X-Ray Tomography II. Sept. 1999,
nil.

[FDK84] L. Feldkamp, L. Davis and J. Kress. “Practical cone-beam al-
gorithm”. In: Journal of the Optical Society of America A 1.6
(1984), pp. 612–619.

[FJ98] M. Frigo and S. G. Johnson. “FFTW: An Adaptive Software Ar-
chitecture for the FFT”. In: Proc. IEEE ICASSP. 1998, pp. 1381–
1384.

[Gar+18] F. García-Moreno et al. “Time-resolved in situ tomography for
the analysis of evolving metal-foam granulates”. In: Journal
of Synchrotron Radiation 25.5 (Sept. 2018), pp. 1505–1508.

[GBH70] R. Gordon, R. Bender and G. T. Herman. “Algebraic Recon-
struction Techniques (ART) for Three-Dimensional Electron
Microscopy and X-Ray Photography”. In: Journal of Theoret-
ical Biology 29.3 (1970), pp. 471–481.

[Ger15] A. V. Gerbessiotis. “Extending the BSP model for multi-core
and out-of-core computing: MBSP”. In: Parallel Computing
41.Supplement C (2015), pp. 90–102.

[Gib+15] J. W. Gibbs et al. “The Three-Dimensional Morphology of Grow-
ing Dendrites”. In: Scientific Reports 5.1 (2015), p. 11824.

[Gil72] P. Gilbert. “Iterative Methods for the Three-Dimensional Re-
construction of an Object From Projections”. In: Journal of
Theoretical Biology 36.1 (1972), pp. 105–117.

[Gür+14] D. Gürsoy et al. “TomoPy: a framework for the analysis of syn-
chrotron tomographic data”. In: Journal of Synchrotron Radi-
ation 21.5 (Sept. 2014), pp. 1188–1193.

BIBLIOGRAPHY 141

[Hah+13] B. N. Hahn et al. “Combined reconstruction and edge detec-
tion in dimensioning”. In: Measurement Science and Techno-
logy 24.12 (2013), p. 125601.

[HDS97] J. M. D. Hill, S. R. Donaldson and D. B. Skillicorn. “Portability
of Performance with the BSPLib Communications Library”. In:
Proc. MPPM. 1997, p. 33.

[Hel+17] T. Heller et al. “HPX–An open source C++ standard library
for parallelism and concurrency”. In: Proc. OpenSuCo. 2017,
p. 5.

[Hel10] M. A. Helvie. “Digital Mammography Imaging: Breast Tomo-
synthesis and Advanced Applications”. In: Radiologic Clinics
of North America 48.5 (2010), pp. 917–929.

[Her09] G. T. Herman. Fundamentals of computerized tomography. 2nd ed.
Springer-Verlag London, 2009.

[HFE10] K. Hamidouche, J. Falcou and D. Etiemble. “Hybrid bulk syn-
chronous parallelism library for clustered SMP architectures”.
In: Proc. HLPP. Baltimore, Maryland, USA, 2010, pp. 55–62.

[Hil+98] J. M. D. Hill et al. “BSPlib: The BSP programming library”. In:
Parallel Computing 24.14 (1998), pp. 1947–1980.

[HS52] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients
for solving linear systems. Vol. 49. 1. NBS Washington, DC,
1952.

[IB01] M. A. Inda and R. H. Bisseling. “A simple and efficient parallel
FFT algorithm using the BSP model”. In: Parallel Computing
27.14 (2001), pp. 1847–1878.

[ISO17] ISO/IEC. 14882:2017(E) – Programming languages – C++.
Geneva, Switzerland, 2017.

[JKM11] N. Jain, M. S. Kalra and P. Munshi. “Characteristic Signature
of Specimen Using an Approximate Formula for 3D Circular
Cone-Beam Tomography”. In: Research in Nondestructive Eval-
uation 22.3 (2011), pp. 169–195. eprint: https://doi.org/10.
1080/09349847.2011.577270.

142 BIBLIOGRAPHY

[Kac37] S. Kaczmarz. “Angenäherte Auflösung von Systemen linearer
Gleichungen”. In: Bull. Int. Acad. Sci. Pologne, A 35 (1937),
pp. 355–357.

[Kat02] A. Katsevich. “Theoretically exact filtered backprojection-type
inversion algorithm for spiral CT”. In: SIAM Journal on Ap-
plied Mathematics 62.6 (2002), pp. 2012–2026.

[Kat03] A. Katsevich. “A general scheme for constructing inversion
algorithms for cone beam CT”. In: International Journal of
Mathematics and Mathematical Sciences 21 (2003), pp. 1305–
1321.

[Keß00] C. W. Keßler. “NestStep: Nested parallelism and virtual shared
memory for the BSP model”. In: J. Supercomputing 17.3 (2000),
pp. 245–262.

[Kis16] E. Kissa. “Wetting and Wicking”. In: Textile Research Journal
66.10 (2016), pp. 660–668.

[KS01] A. C. Kak and M. Slaney. Principles of computerized tomo-
graphic imaging. SIAM, 2001, p. 323.

[Kun+07] H. Kunze et al. “Filter determination for tomosynthesis aided
by iterative reconstruction techniques”. In: 9th International
Meeting on Fully Three-Dimensional Image Reconstruction in
Radiology and Nuclear Medicine. 2007, pp. 309–312.

[LC+84] K. Lange, R. Carson et al. “EM reconstruction algorithms for
emission and transmission tomography”. In: Journal of Com-
puter Assisted Tomography 8.2 (1984), pp. 306–16.

[LCL08] T. Liu, K.-f. Choi and Y. Li. “Wicking in twisted yarns”. In:
Journal of Colloid and Interface Science 318.1 (2008), pp. 134–
139.

[Len90] T. Lengauer. Combinatorial algorithms for integrated circuit
layout. John Wiley and Sons, Chichester, UK, 1990.

[LFB10] Y. Long, J. A. Fessler and J. M. Balter. “3D Forward and Back-
Projection for X-ray CT Using Separable Footprints”. In: IEEE
Transactions on Medical Imaging 29.11 (2010), pp. 1839–1850.

BIBLIOGRAPHY 143

[LGB05] F. Loulergue, F. Gava and D. Billiet. “Bulk Synchronous Par-
allel ML: modular implementation and performance predic-
tion”. In: Proc. ICCS. 2005, pp. 1046–1054.

[Lov+16] G. Lovrić et al. “A multi-purpose imaging endstation for high-
resolution micrometer-scaled sub-second tomography”. In: Phys-
ica Medica 32.12 (2016), pp. 1771–1778.

[Mai+16] E. Maire et al. “20 Hz X-ray tomography during an in situ
tensile test”. In: International Journal of Fracture 200.1 (July
2016), pp. 3–12.

[Mal+10] G. Malewicz et al. “Pregel: a system for large-scale graph pro-
cessing”. In: Proc. SIGMOD (2010), pp. 135–146. arXiv: arXiv:
1503.00626v1.

[Mar+17] F. Marone et al. “Towards On-The-Fly Data Post-Processing for
Real-Time Tomographic Imaging At TOMCAT”. In: Advanced
Structural and Chemical Imaging 3.1 (2017), p. 1.

[Mas97] D. N. Mastronarde. “Dual-axis tomography: an approach with
alignment methods that preserve resolution”. In: Journal of
Structural Biology 120.3 (1997), pp. 343–352.

[MB04] B. D. Man and S. Basu. “Distance-driven projection and back-
projection in three dimensions”. In: Physics in Medicine and
Biology 49.11 (2004), pp. 2463–2475.

[MD09] P. A. Midgley and R. E. Dunin-Borkowski. “Electron tomo-
graphy and holography in materials science”. In: Nature Ma-
terials 8.4 (2009), pp. 271–280.

[Mok+17] R. Mokso et al. “Gigafrost: the Gigabit Fast Readout System
for Tomography”. In: Journal of Synchrotron Radiation 24.6
(2017), pp. 1250–1259.

[Moo+13] J. Moosmann et al. “X-ray phase-contrast in vivo microtomo-
graphy probes new aspects of Xenopus gastrulation”. In: Nature
497.7449 (2013), pp. 374–377.

[MPI94] MPI Forum. “MPI: A Message-Passing Interface Standard”. In:
International Journal of Supercomputer Applications and High-
Performance Computing 8 (1994), pp. 165–414.

144 BIBLIOGRAPHY

[MPS10] M. Maisl, F. Porsch and C. Schorr. “Computed laminography
for x-ray inspection of lightweight constructions”. In: 2nd In-
ternational Symposium on NDT in Aerospace (2010), pp. 2–8.

[MS12] F. Marone and M. Stampanoni. “Regridding Reconstruction
Algorithm for Real-Time Tomographic Imaging”. In: Journal
of Synchrotron Radiation 19.6 (2012), pp. 1029–1037.

[Nik+17] V. V. Nikitin et al. “Fast hyperbolic Radon transform represen-
ted as convolutions in log-polar coordinates”. In: Computers
& Geosciences 105 (2017), pp. 21–33.

[NR98] R. W. Numrich and J. Reid. “Co-array Fortran for parallel pro-
gramming”. In: ACM SIGPLAN Fortran Forum 17.2 (1998),
pp. 1–31.

[NW01] F. Natterer and F. Wübbeling. Mathematical Methods in Image
Reconstruction. Mathematical Modeling and Computation. So-
ciety for Industrial and Applied Mathematics, Jan. 2001.

[ONU14] A. Olofsson, T. Nordström and Z. Ul-Abdin. “Kickstarting high-
performance energy-efficient manycore architectures with Epi-
phany”. In: Asilomar Conference on Signals, Systems and Com-
puters. IEEE. 2014, pp. 1719–1726.

[Ots79] N. Otsu. “A Threshold Selection Method from Gray-Level His-
tograms”. In: IEEE Transactions on Systems, Man, and Cyber-
netics 9.1 (1979), pp. 62–66.

[Pag+02] D. Paganin et al. “Simultaneous Phase and Amplitude Extrac-
tion From a Single Defocused Image of a Homogeneous Ob-
ject”. In: Journal of Microscopy 206.1 (2002), pp. 33–40.

[Pal+17] W. J. Palenstijn et al. “A distributed ASTRA toolbox”. In: Ad-
vanced Structural and Chemical Imaging 2.1 (2017), p. 19.

[Pan+18] R. J. Pandolfi et al. “Xi-cam: a versatile interface for data visu-
alization and analysis”. In: Journal of Synchrotron Radiation
25.4 (July 2018), pp. 1261–1270.

[Par+19] M. Parada et al. “Two stage wicking of yarns at fiber scale
investigated by synchrotron X-ray phase contrast fast tomo-
graphy”. In: Textile Research Journal (2019). Accepted.

BIBLIOGRAPHY 145

[Pat+15] B. M. Patterson et al. “In situ X-ray synchrotron tomographic
imaging during the compression of hyper-elastic polymeric
materials”. In: Journal of Materials Science 51.1 (2015), pp. 171–
187.

[PB13] D. M. Pelt and K. J. Batenburg. “Fast tomographic reconstruc-
tion from limited data using artificial neural networks.” In:
IEEE Transactions on Image Processing 22.12 (2013), pp. 5238–
5251.

[PB14] D. M. Pelt and R. H. Bisseling. “A Medium-Grain Method for
Fast 2D Bipartitioning of Sparse Matrices”. In: IEEE 28th Inter-
national Parallel and Distributed Processing Symposium. 2014,
pp. 529–539.

[PBS11] W. J. Palenstijn, K. J. Batenburg and J. Sijbers. “Performance
improvements for iterative electron tomography reconstruc-
tion using graphics processing units (GPUs)”. In: Journal of
Structural Biology 176.2 (2011), pp. 250–253.

[Pen+95] P. Penczek et al. “Double-tilt electron tomography”. In: Ultra-
microscopy 60.3 (1995), pp. 393–410.

[PSV09] X. Pan, E. Y. Sidky and M. Vannier. “Why do commercial CT
scanners still employ traditional, filtered back-projection for
image reconstruction?” In: Inverse Problems 25.12 (2009), p. 123009.

[Rei+11] C. B. Reid et al. “The development of a pseudo-3D imaging
system (tomosynthesis) for security screening of passenger
baggage”. In: Nuclear Instruments and Methods in Physics Re-
search, Section A. Vol. 652. 1. 2011, pp. 108–111.

[Ros+13] J. M. Rosen et al. “Iterative helical CT reconstruction in the
cloud for ten dollars in five minutes”. In: Fully Three-Dimensional
- Image Reconstruction in Radiology and Nuclear Medicine (2013),
pp. 241–244.

[San+14] T. dos Santos Rolo et al. “In vivo X-ray cine-tomography for
tracking morphological dynamics”. In: Proceedings of the Na-
tional Academy of Sciences 111.11 (2014), pp. 3921–3926.

146 BIBLIOGRAPHY

[SB93] K. Sauer and C. Bouman. “A Local Update Strategy for Iter-
ative Reconstruction From Projections”. In: IEEE Transactions
on Signal Processing 41.2 (1993), pp. 534–548.

[SH14] H. H. B. Sørensen and P. C. Hansen. “Multicore performance
of block algebraic iterative reconstruction methods”. In: SIAM
Journal on Scientific Computing 36.5 (2014), pp. C524–C546.

[She+14] A. Sheppard et al. “Techniques in helical scanning, dynamic
imaging and image segmentation for improved quantitative
analysis with X-ray micro-CT”. In: Nuclear Instruments and
Methods in Physics Research, Section B 324 (2014), pp. 49–
56.

[Sid+16] K. Siddique et al. “Apache Hama: An emerging bulk synchron-
ous parallel computing framework for big data applications”.
In: IEEE Access 4 (2016), pp. 8879–8887.

[SS92] H. Shi and J. Schaeffer. “Parallel Sorting by Regular Sampling”.
In: J. Parallel and Distributed Computing 14.4 (1992), pp. 361–
372.

[Sui] W. Suijlen. BSPonMPI v0.3. https://sourceforge.net/projects/
bsponmpi/.

[Tho+15] W. M. Thompson et al. “High speed imaging of dynamic pro-
cesses with a switched source X-ray CT system”. In: Measure-
ment Science and Technology 26.5 (2015), p. 055401.

[Val11] L. G. Valiant. “A bridging model for multi-core computing”. In:
Journal of Computer and System Sciences 77.1 (2011), pp. 154–
166.

[Val90] L. G. Valiant. “A bridging model for parallel computation”. In:
Communications of the ACM 33.8 (1990), pp. 103–111.

[VB05] B. Vastenhouw and R. H. Bisseling. “A two-dimensional data
distribution method for parallel sparse matrix-vector multi-
plication”. In: SIAM Review 47.1 (2005), pp. 67–95.

BIBLIOGRAPHY 147

[Vog+12] M. Vogelgesang et al. “UFO: A scalable GPU-based image pro-
cessing framework for on-line monitoring”. In: 2012 IEEE 14th
International Conference on High Performance Computing and
Communication & 2012 IEEE 9th International Conference on
Embedded Software and Systems. IEEE. 2012, pp. 824–829.

[Wan+17] X. Wang et al. “Massively parallel 3D image reconstruction”.
In: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis SC ’17.
2017, 3:1–3:12.

[War+16] J. Warnett et al. “Towards in-process X-ray CT for dimen-
sional metrology”. In: Measurement Science and Technology
27.3 (2016), p. 035401.

[Wat94] D. W. Watt. “Column-Relaxed Algebraic Reconstruction Al-
gorithm for Tomography With Noisy Data”. In: Applied Optics
33.20 (1994), p. 4420.

[Wil+09] S. Williams et al. “Optimization of sparse matrix-vector multi-
plication on emerging multicore platforms”. In: Parallel Com-
puting 35.3 (2009), pp. 178–194.

[XM06] F. Xu and K. Mueller. “A comparative study of popular inter-
polation and integration methods for use in computed tomo-
graphy”. In: 3rd IEEE International Symposium on Biomedical
Imaging: Macro to Nano (2006), pp. 1252–1255.

[Xu+10] W. Xu et al. “High-performance iterative electron tomography
reconstruction with long-object compensation using graph-
ics processing units (GPUs)”. In: Journal of Structural Biology
171.2 (2010), pp. 142–153.

[YB12] A. N. Yzelman and R. H. Bisseling. “An object-oriented bulk
synchronous parallel library for multicore programming”. In:
Concurrency and Computation: Practice & Experience 24.5 (2012),
pp. 533–553.

[YR14] A. N. Yzelman and D. Roose. “High-level strategies for parallel
shared-memory sparse matrix-vector multiplication”. In: IEEE
Transactions on Parallel and Distributed Systems 25.1 (2014),
pp. 116–125.

148 BIBLIOGRAPHY

[Yze+14] A. N. Yzelman et al. “MulticoreBSP for C: A high-performance
library for shared-memory parallel programming”. In: Int. J.
Parallel Programming 42.4 (2014), pp. 619–642.

[Zen12] G. L. Zeng. “A filtered backprojection algorithm with char-
acteristics of the iterative Landweber algorithm”. In: Medical
Physics 39.2 (2012), pp. 603–607.

[Zha+17] G. Zhang et al. “X-ray Imaging of Transplanar Liquid Trans-
port Mechanisms in Single Layer Textiles”. In: Langmuir 33.43
(2017), pp. 12072–12079.

[Zhe+14] Y. Zheng et al. “UPC++: A PGAS Extension for C++”. In: Proc.
IEEE IPDPS. 2014, pp. 1105–1114.

List of publications

Publications that are part of this dissertation:

• Real-time quasi-3D tomographic reconstruction. JW Buurlage, H Kohr,
WJ Palenstijn, KJ Batenburg. Measurement Science and Technology
29 (6), 2018

• Bulk: A Modern C++ Interface for Bulk-Synchronous Parallel Pro-
grams. JW Buurlage, T Bannink, RH Bisseling. European Conference
on Parallel Processing, 519–532, 2018

• A geometric partitioning method for distributed tomographic recon-
struction. JW Buurlage, RH Bisseling, KJ Batenburg. Parallel Com-
puting 81, 104–121, 2019

• Real-time reconstruction and visualisation towards dynamic feed-
back control during time-resolved tomography experiments at TOM-
CAT. JW Buurlage, F Marone, DM Pelt, WJ Palenstijn, M Stampanoni,
KJ Batenburg, CM Schlepütz. Scientific Reports 9 (1), 1–11, 2019

• A projection-based partitioning method for distributed tomographic
reconstruction. JW Buurlage, WJ Palenstijn, RH Bisseling, KJ Baten-
burg. Proceedings of the SIAM Conference on Parallel Processing for
Scientific Computing, 58–68, 2020

Publications that are not part of this dissertation:

• Multigrid reconstruction in tomographic imaging. D Marlevi, H Kohr,
JW Buurlage, B Gao, KJ Batenburg, M Colarieti-Tosti. IEEE Trans-
actions on Radiation and Plasma Medical Sciences 4 (3), 300–310,
2019

149

150

• Real-time reconstruction of arbitrary slices for quantitative and in-
situ three-dimensional characterization of nanoparticles. H Vanrompay,
JW Buurlage, DM Pelt, V Kumar, X Zhuo, LM Liz-Marzán, S Bals, KJ
Batenburg. Particle and Particle Systems Characterization (accep-
ted). 2020

Samenvatting in het Nederlands

This chapter contains a lay summary of the research presented in this disser-
tation, and is written in Dutch.

Het in beeld brengen van het binnenste van een object zonder dit open te
breken heeft een groot aantal toepassingen. Hier gebruik ik object in de
breedste zin van het woord: denk bijvoorbeeld aan een patiënt in een CT
scanner, een miniscuul nanodeeltje onder de microscoop, of een brug die
geïnspecteerd moet worden op barsten in het beton.

Tomografische reconstructie is de wiskundige methode achter veel 3D
beeldvormingstechnieken. Deze technieken werken allemaal op basis van
het zelfde principe. Met behulp van straling worden tweedimensionale
projectiebeelden van het driedimensionale object gemaakt. Deze projec-
tiebeelden vormen in zekere zin de schaduw van een object onder een
bepaalde hoek. Bij een 3D scan worden projectiebeelden gemaakt onder
meerdere hoeken, en door deze informatie slim te combineren kan de in-
terne driedimensionale structuur van het object achterhaald worden.

Afhankelijk van de gewenste resolutie van het 3D beeld, kan deze re-
constructiestap een lange tijd duren. Dat deze algoritmes duur kunnen zijn
komt voornamelijk door de grootte van de data. Deze is eenvoudig te de-
monstreren met een simpele berekening: één projectiebeeld bestaat op het
moment typisch uit tot wel 4000 bij 4000 pixels, oftewel 16 megapixels.
Van deze projectiebeelden wordt een 3D beeld gemaakt dat bestaat uit
4000 verschillende 16 megapixel plaatjes. Dit komt neer komt op 256 GB
aan data voor een enkel 3D beeld.

Zelfs wanneer deze berekeningen op moderne computers worden uit-
gevoerd, kost het nog altijd minuten tot uren afhankelijk van de precieze
methode die gebruikt voor de reconstructiestap. Dit beperkt de mogelijk-
heid om veranderingen in het binnenste van een object in beeld te brengen

151

152

Figuur 1: Een illustratie van het FleX-ray lab bij het CWI. De scanner is
ongeveer 2 meter breed, diep, en hoog. Achter het raam wordt een expe-
riment gedaan met een sinaasappel. De röntgenbron, links, bestraalt de
sinaasappel, en de detector, rechts, neemt projectiebeelden op terwijl de
sinaasappel rond wordt gedraaid.

terwijl ze gebeuren. Met andere woorden, het is tot nu toe niet mogelijk
geweest om een actief videobeeld te creëren van het binnenste van een
object.

Het doel van het onderzoek gepresenteerd in mijn proefschrift is om
de reconstructietijd flink omlaag te brengen, zodat het mogelijk wordt om
dynamische veranderingen in het object te volgen terwijl ze gebeuren. Dit
is van belang om het experiment te kunnen bijsturen. Een materiaal kan
bijvoorbeeld verder verhit worden, een patiënt kan gevraagd worden zijn
adem in te houden, of een regio waar ogenschijnlijk iets onverwachts ge-
beurt kan worden uitvergroot. Figuur 1 toont een illustratie van het FleX-
Ray lab van het CWI, waarmee de methoden uit mijn onderzoek getest
zijn.

153

Parallele berekeningen op supercomputers

Een duidelijke trend is dat computers steeds meer parallel worden. Een
computer bestaat uit verschillende soorten processoren zoals de conventi-
onele CPU, de processor op een grafische kaart, en eventueel andere acce-
leratoren. Deze verschillende processoren bestaan zelf vaak uit meerdere
cores. Cores kunnen min of meer onafhankelijk van elkaar berekeningen
uitvoeren. Een CPU bijvoorbeeld, bestaat typisch uit een paar tot tiental-
len cores, en dit aantal stijgt sterk. Een moderne grafische kaart bestaat
uit duizenden (simpelere) cores.

Deze ontwikkeling naar parallele systemen is niet alleen zichtbaar in
consumentenhardware zoals desktops, laptops en mobiele telefoons, maar
ook bij supercomputers die gebruikt worden voor grootschalige (weten-
schappelijke) berekeningen. Bij een supercomputer kun je denken aan een
cluster van computers, die verbonden zijn in de vorm van een netwerk.
Elke computer zelf kan bestaan uit meerdere CPU’s, en kan ook meerdere
grafische kaarten hebben. Supercomputers zijn erg krachtig, maar het is
niet altijd eenvoudig om de gezamenlijke rekenkracht van alle processoren
te bundelen en samen in te zetten voor het oplossen van één en hetzelfde
probleem. Om een algoritme dat bedoeld is voor een enkele processor ge-
schikt te maken om uitgevoerd te worden door een supercomputer, moet
deze geparalleliseerd worden.

Een voor de hand liggende manier om de reconstructie in tomogra-
fie te versnellen is om gebruik te maken van de gezamenlijke rekenkracht
van, bijvoorbeeld, tientallen grafische kaarten. Dit blijkt echter precies
een voorbeeld van een probleem dat zich niet gemakkelijk leent voor het
parallel oplossen. Wanneer een naiëve aanpak wordt gebruikt voor de
parallelisatie, moeten de grafische kaarten dusdanig veel met elkaar com-
municeren om gezamenlijk tot een oplossing te komen, dat het netto niet
genoeg winst oplevert om het algoritme op een supercomputer uit te voe-
ren. Net als wiskundigen zijn computers namelijk beter in nadenken dan
communiceren.

Voor het parallel uitvoeren van tomografische reconstructie splitsen we
het 3D volume op in evenveel delen als het aantal processorelementen dat
we voor de berekening willen gebruiken. Ieder element is vervolgens ver-
antwoordelijk voor het reconstrueren van één van de delen. Beeld je een
röntgenstraal in die door een 3D object wordt gestuurd. Wanneer deze

154

Figuur 2: Het 3D volume is hier opgesplitst in 8 delen. Voor het begrip
is een willekeurige kleur toegekend aan elk deel. Op de schermen achter
het 3D volume, zien we in verschillende richtingen het schaduwspel van
de opsplitsing. Waar schaduwen overlappen, zijn verschillende delen ge-
koppeld. Dit fenomeen wordt in dit proefschrift beschreven, en gebruikt
om een goede opsplitsing te vinden.

straal door verschillende delen van het 3D object gaat, die elk toegewezen
zijn aan verschillende elementen, worden elementen als het ware aan el-
kaar gekoppeld. Door deze koppeling moeten zij, tijdens de berekening,
informatie uitwisselen over de tussenresultaten. Zie ook Figuur 2.

In Hoofdstuk 2 introduceer ik een softwarebibliotheek voor het imple-
menteren van parallele algoritmes. In Hoofdstuk 3 en Hoofdstuk 4 presen-
teer ik mijn onderzoek naar het paralleliseren van reconstructie-algoritmes
in tomografie. Dit onderzoek richt zich met name op het vinden van de
beste opsplitsing van het 3D object, afhankelijk van de richtingen waarop
stralen door het object worden gestuurd. Het resultaat is een opsplitsing
die de koppeling, en dus communicatie, tussen elementen waar mogelijk
vermijdt. Gebruikmakend van deze nieuwe methodes, is tot wel 10× min-
der communicatie nodig. Dit vertaalt zich naar snellere reconstructietij-
den.

155

Snelle weergave van doorsnedes

In het tweede deel van dit proefschrift bestuderen we een andere aanpak
om de reconstructie te versnellen. Het idee achter deze aanpak is betrek-
kelijk eenvoudig. Vaak wordt de driedimensionale reconstructie weerge-
geven in de vorm van doorsnedes. Immers willen we in het binnenste van
het object kijken. Normaal wordt eerst het 3D beeld gereconstrueerd, en
vervolgens worden doorsnedes uit dit beeld berekend. Natuurlijk kan je
niet naar alle doorsnedes tegelijk kijken, dus vaak wordt gekeken naar een
selectie van bijvoorbeeld drie doorsnedes.

Wanneer we over een 3D videobeeld zouden beschikken van het bin-
nenste van een object, zou dit in eerste instantie nog steeds via doorsnedes
bestudeerd worden. Daarom draaien we in dit onderzoek de berekening
om: we laten degenen die het experiment uitvoeren kiezen welke door-
snedes zij op elk moment willen bekijken en berekenen deze direct uit de
projectiedata, in plaats van het volledige 3D volume uit te rekenen. De ge-
kozen verzameling doorsnedes kan eenvoudig worden aangepast, en het
resultaat is vervolgens direct zichtbaar. Hierdoor wekken we de illusie dat
we een volledige 3D reconstructie maken, terwijl we eigenlijk alleen maar
met doorsnedes en projectiebeelden hoeven te werken. Dit is een stuk
goedkoper om uit te rekenen, maar is alleen mogelijk met een beperkt
aantal reconstructiemethoden. Zie ook Figuur 3.

In Hoofdstuk 5 wordt deze nieuwe reconstructiemethode uitgelegd die
we quasi-3D hebben genoemd. Hier laten we zien dat zelfs met een nor-
male computer het minder dan een seconde kost om een hoge resolutie
quasi-3D reconstructie te maken. Bij het kiezen van een andere doorsnede
kunnen we zelfs in een tiende van een seconde dit nieuwe beeld laten
zien. In Hoofdstuk 6 passen we deze methode toe bij een synchrotron. We
demonstreren voor het eerst de mogelijkheid om een live 3D videobeeld
te krijgen van het binnenste van een object bij een tomografisch experi-
ment. In dit geval was het doel van het experiment om de wateropname
te bestuderen van een synthetische stof. Door de beelden te bekijken kon
bijvoorbeeld beslist worden om meer water toe te voegen aan het reservoir.

156

Figuur 3: Een illustratie van een quasi-3D reconstructie van een appel. We
zien hier drie doorsnedes, die loodrecht op elkaar staan. Met de methode
gepresenteerd in dit proefschrift kunnen deze doorsnedes eenvoudig ge-
draaid en verplaatst worden waarna de nieuwe doorsnede direct berekend
wordt.

Curriculum Vitae

Jan-Willem Buurlage was born in 1991 in Heerenveen, The Netherlands.
For his undergraduate degree at Utrecht University he was part of the TWIN
program that combines the bachelor programs Physics and Astronomy, and
Mathematics, and which he finished in 2013. He received his MSc degree
(cum laude) in Mathematical Sciences from Utrecht University in 2016,
with a specialization in scientific computing. His master’s thesis, titled
“Self-improving sparse matrix partitioning and bulk-synchronous pseudo-
streaming”, was written under the supervision of Rob Bisseling. It was
awarded the Best Master’s Thesis by the Graduate School of Natural Sci-
ences. He started his PhD research at Leiden University under supervi-
sion of Joost Batenburg in 2016. The research was carried out at Centrum
Wiskunde & Informatica (CWI) in Amsterdam. As part of his PhD research,
he was a visiting student at the DTU in Denmark, and made research visits
to PSI in Switzerland, the TU in Berlin, and EMAT in Antwerp. He atten-
ded international conferences, workshops, and summer schools in Aussois,
Bologna, Grenoble, Muenster, Turin, Tokyo, and Seattle.

157

158

Acknowledgments

First and foremost, I want to thank my advisors for all the time and energy
they have put into our research projects. Rob, thank you for introducing me
to the the world of parallel algorithms. I would not have started as a PhD
student and this dissertation would not have been written without your
incredible encouragement and support. Joost, thank you for your guidance
and trust. And, in particular, I would like to thank you for giving me the
freedom to explore my interests and to spend time abroad throughout my
PhD project.

A special thanks to my coauthors that made this research possible, both
those at CWI, as well as my external collaborators at EMAT, KTH, and PSI.

At CWI, I was lucky enough to share an office with Rien, Zhichao, and
later Allard, for the better half of my PhD. In addition to being great col-
leagues, you have also become valuable friends. Holger, Daan, Willem Jan
thank you for your role in the research presented in this dissertation. I
would also like to thank the other members of the computational imaging
group at CWI who all contributed to making it a great research environ-
ment: Nicola, Sophia, Folkert, Maureen, Dzemila, Georgios, Alex, Fran-
cien, Jordi, Richard, Mathé, Vlad, Poulami, Adriaan, Giulia, Felix, Robert,
and Tristan. I would also like to thank the support staff, and especially
Nada and Duda, for all their effort. Additionally, there are many others at
CWI that I met along the way and that I want to thank for making it such
a great institute: Isabella who convinced me to try skiing, Prashant who
helped me improve at squash, and everyone else that joined me for a game
of table tennis, or that sat across from me over a chess board.

I was also lucky enough to meet many fellow PhD students during my
trips abroad. Anders, Björn, and Nikolai: thanks for all the dinners, talks,
and board games during my two month stay in Copenhagen. Anna, Giulia,
Nurbek, Shashank and Thibault, thank you for making the summer school

159

160

in Aussois one of the highlights of my PhD, and for keeping me company
during my stays in the US.

My friends were instrumental in helping me stay sane during the in-
evitable ups and downs of a PhD project. I would like to give a heartfelt
thanks to all of them. Tom, for all the programming projects, games, and
talks we shared. Thijs, who is always there when I need a healthy outside
perspective. Abe, for never failing to trigger my competitive side. Erik, for
having been a fantastic roommate all these years. Gijs, for transmitting
your passion for cycling onto me (and thus giving my disposable income
a new destination). And everyone else who played a role during my PhD,
including Eveline, Daphne, Paul, Erik B, Peter, Anouk, Bodo, and Roeland.

Finally, I would like to thank my family who have been there for me
throughout all my studies. My brother, for the cycling trips and video
games that helped me unwind. My sister, for reminding me that there
is more to life than algorithms and software. And my parents, for their
unrelenting love and support.

