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Micro-benchmark Programs

double Performance(unsigned int const ITR) {
unsigned int const SIZE = 16;

3 double start_time , duration;

int i, j;

__declspec(aligned (64)) double a[SIZE], b[SIZE], c[SIZE];

for (i = 0; i < SIZE; i++) {

7 a[i] = b[i] = c[i] = (double) rand();
}

#pragma omp parallel for
for (i = 0; i < ITR; i++) {

11| #pragma vector aligned (a,b,c)

#pragma unroll (16)

13 for (int j = 0; j < SIZE; j++)

{ aljl =bljl = c[jl +aljl; }

15 }

start_-time = elapsedTime () ;

17| #pragma omp parallel for

for (i = 0; i < ITR; i++) {

19| #pragma vector aligned (a,b,c)

#pragma unroll (16)

21 for (int j = 0; j < SIZE; j++)
{ aljl =bljl = c[j] + aljl; }

23 }
duration = elapsedTime () — start_time;

25 double gflop = ((double) 2.0 x SIZE x ITR) / le+9;
double gflops = gflop / duration;

27 return gflops;

Listing A.1: Micro-benchmark code for measuring performance of Xeon Phi.
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void Bandwidth(unsigned int const ITR) {
unsigned int const SIZE = 48 % 1000 % 1000;
double start_time , duration;
int i, j;
__declspec(aligned(64)) static double a[SIZE], b[SIZE], c[SIZE];
for (i = 0; i < SIZE; i++) {
c[i] = 0.0f;
a[i] = b[i] = (double) 1.0f;
}
for (i = 0; i< 1; i++) {
#pragma omp parallel for
for (j = 0; j < SIZE; j++)
{ cljl = alj]l = b[j] + cl[jl; }
}
start_time = elapsedTime () ;
for (i = 0; i < ITR; i+4) {
#pragma omp parallel for

for (j = 0; j < SIZE; j++4)

{ cljl =aljl = bljl + cljl; }
}
duration = elapsedTime () — start_-time;

double gb = (SIZE x sizeof (double)) / le+9;
double gbs = 4 % ITR % gb / duration;
return gbs;

}

Listing A.2: Micro-benchmark code for measuring memory bandwidth of Xeon Phi.




Statistical Analysis of Self-play
Experiments

Suppose p as true wining probability of a player [Hei01]. The value of p is estimated
by 0 < w = z/n < 1 which results from = < n wins in a match of n games. Therefore,
we may simply assume w the sample mean of a binary-valued random variable that
counts two draws as a loss plus a win.

The expected value of w is E(w) = p and the variance of w is Var(w) = p(1 — p)/n.
According to central limit theorem approximately, w =~ Normal(p, p(1 —p)n), so (w —
p)/v/p(1 —p)/n = Normal(0,1). Let zy denote the upper critical value of the stan-
dard N (0, 1) normal distribution for any desired %-level of statistical confidence(zgqy; =
1.645, zg5, = 1.96). Then, the probability of w — 1.96/p(1 —p)/n < p < w +
1.96+/p(1 — p)/n is about 95%. Therefore, the 95% confidence interval on the true
wining probability p is [w — 1.96+/p(1 — p)/n,w + 1.964/p(1 — p)/n]. There are two
ways to substitute the value of p which is unknown:

1. substitute p for w: [w — 1.96/w(1 — w)/n,w + 1.961/w(1l — w)/n]
2. substitute p for 1/2 which gives wider confidence interval: [w — 0.98y/n,w +

0.98y/7]






Implementation of GSCPM

This section will show how the GSCPM algorithm is implemented with three differ-
ent threading libraries. Furthermore, the implementations for shared search tree and
random number generation are explained.

C.1 TBB

Listing C.1 gives a TBB implementation of GSCPM. TBB has task_group class for fork-
join pattern. Method run marks where a fork occurs; method wait marks a join.

tbb:: task_group g;
for (int t = 0; t < nTasks; t++) {
g.run (UCTSearch(r,m));

}

s|g.wait();

Listing C.1: Task parallelism for GSCPM using TBB (task_group).

C.2 Cilk Plus

Two Cilk Plus implementations for GSCPM are given in Listing C.2 and C.3 . Cilk
Plus has keywords for marking fork and join points. In the first implementation, the
cilk_spawn marks the fork and the cilk_sync marks an explicitly join operation. The
spawning tasks are within a for loop. A cilk_sync waits for all spawned calls in the
loop.
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138 C.3. TPFIFO

for (int t = 0; t < nTasks; t++) {
cilk_spawn UCTSearch(r,m);

cilk_sync;

Listing C.2: Task parallelism for GSCPM using Cilk Plus (cilk_spawn).

In the second implementation, the cilk_for construct uses recursive forking even though
it looks like a loop. The cilk_sync (joint) at the end of the loop is implicit.

cilk_for (int t = 0; t < nTasks; t++) {
UCTSearch (r,m) ;
}

Listing C.3: Task parallelism for GSCPM using Cilk Plus (cilk_for).

C.3 TPFIFO

In TPFIFO the tasks are put in a queue. It implements work-sharing, but the order
that the tasks are executed is similar to child stealing. The first task that enters the
queue is the first task that gets executed.

In our thread pool implementation (called TPFIFO) the task functions are exe-
cuted asynchronously. A task is submitted to a FIFO task queue and will be executed
as soon as one of the pool’s threads is idle. Schedule returns immediately and there
are no guarantees about when the tasks are executed or how long the processing will
take. Therefore, the program waits for all the tasks to be completed.

for (int t = 0; t < nTasks; t++) {
TPFIFO. schedule (UCTSearch(r,m)) ;

TPFIFO . wait () ;

Listing C.4: Task parallelism for GSCPM, based on TPFIFO.




Implementation of 3PMCTS

In this section, we present the implementation of our 3PMCTS algorithm. In section
D.1 we present the concept of token (when used as type name, we write Token).
Section D.2 describes the implementation of 3PMCTS using TBB.

D.1 Definition of Token Data Type (TDT)

A token represents a path inside the search tree during the search. Algorithm D.1
presents definition for the type Token. It has four fields. (1) id represents a unique
identifier for a token, (2) v represents the current node in the tree, (3) s represents
the search state of the current node, and (4) A represents the reward value of the
state. The definition of lock-free data structure Node is given in Algorithm 5.1. In
Algorithm D.2, the serial UCT algorithm (which is already presented in Algorithm
2.2) is provided using token data type.

Algorithm D.1: Type definition for token.
1 type
2 type id : int;
3 type v : Node*;
4 type s : State*;
5
6

type A : int;
Token;
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D.1. Definition of Token Data Type (TDT)

Algorithm D.2: The serial UCT algorithm using Token, with stages SELECT,
EXPAND, PLAYOUT, and BACKUP.

-
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Function UCTSEARCH(sg)

vp = create root node with state sg;
to.s = s0;

to.v = vo;

while within search budget do

t; = SELECT(tg);

t; = EXPAND(%;);

t; = PLAYOUT(¢;);
BACKUP(¢;);

Function SELECT(Token t) : <Token>
while ¢.v —IsFullyExpanded() do

tw:=  argmax v/.UCT(Cp);
v/echildrcnofv

t.s —SetMove(t.v — move);

return t¢;

Function EXPAND (Token t) : <Token>
if I(t.s —IsTerminal()) then

moves := t.s —UntriedMoves();
shuffle moves uniformly at random;
t.v —Init(moves);

v = t.v —AddChild();
if t.ov # v’ then

!
tvi=v ;
t.s HSetMove(v/ — move);

return t;

Function PLAYOUT(Token t)
RANDOMSIMULATION(¢);
EVALUATION(%);

return ¢t

Function RANDOMSIMULATION(Token t)
moves := t.s —UntriedMoves();
shuffle moves uniformly at random;
while !(t.s —IsTerminal()) do

choose new move € moves;
t.s —SetMove(move);

return ¢

Function EVALUATION(Token t)
t.A :=t.s — Evalute();
return ¢

Function BACKUP(Token t) : void
while ¢t.v # null do

t.v — Update(t.A);
t.v:=t.v — parent;
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D.2 TBB Implementation Using TDD

In our implementation for 3PMCTS, each stage (task) performs its operation on a
token. We can also specify the number of in-flight tokens.

Each function constitutes a stage of the non-linear pipeline in 3PMCTS. There are
two approaches for parallel implementation of a non-linear pipeline [MRR12]:

e Bind-to-stage: A processing element (e.g., thread) is bound to a stage and pro-
cesses tokens as they arrive. If the stage is parallel, it may have multiple pro-
cessing elements bound to it.

e Bind-to-item: A processing element is bound to a token and carries the token
through the pipeline. When the processing element completes the last stage, it
goes to the first stage to select another token.

void 3PMCTS(tokenlimit){

/% The routine tbb::parallel_pipeline takes two parameters.
(1) A token limit. It is an upper bound on the number of tokens that are processed simultaneously.
(2) A pipeline. Each stage is created by function tbb:: make_filter. The template arguments to
make_filter indicate the type of input and output items for the filter. The first ordinary argument
specifies whether the stage is parallel or not and the second ordinary argument specifies a function
that maps the input item to the output item.
*/
tbb:: parallel_pipeline (tokenlimit,

/# The SELECT stage is serial and mapping a special object of type tbb::flow_control, used

to signal the end of the search, to an output token. s/

tbb:: make_filter<void, Token+>(tbb:: filter ::serial_.in_.order ,[&](tbb:: flow_control & fc)—>>Tokenx*

{
/% A circular buffer is used to minimize the overhead of allocating and freeing tokens
passed between pipeline stages (it reduces the communication overhead). =/
Token* t = tokenpool[index];
index = (index+1) % tokenlimit;
if (within the search budget) {
/* Invocation of the method stop() tells the tbb::parallel_pipeline that no more
paths will be selected and that the value returned from the function should be
ignored. =/
fe.stop();
return NULL;
} else {
t = SELECT(t);
return t
}
}
) &

// The EXPAND stage is parallel and mapping an input token to an output token.
tbb:: make_filter<Tokenx, Tokens>(tbb:: filter :: parallel ,[&](Token * t){

return EXPAND(t);
b &
// The RANDOMSIMULATION stage is parallel and mapping an input token to an output token.
tbb :: make_filter<Tokens, Tokens>(tbb:: filter :: parallel ,[&](Token = t){

return RANDOMSIMULATION(t) ;
D&
// The Evaluation stage is parallel and mapping an input token to an output token.
tbb:: make_filter<Tokens, Tokenx>(tbb:: filter :: parallel ,[&](Token * t){

retun EVALUATION(t);
b &
/+ The BACKUP stage has an output type of void since it is only consuming tokens,
not mapping them. x*/
tbb:: make_filter<Tokenx, void>(tbb:: filter ::serial_in_order ,[&](Token * t){

return BACKUP(t);
13

Listing D.1: An implementation of the 3PMCTS algorithm in TBB.
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Our implementation for 3PMCTS algorithm is based on a bind-to-item approach.
Figure 6.5 depicts a five-stage pipeline for 3PMCTS that can be implemented us-
ing TBB tbb::parallel pipeline template [Rei07]. The five stages run the functions SE-
LECT, EXPAND, RANDOMSIMULATION, EVALUATION, and BACKUP, in that order. The
first (SELECT) and last stage (BACKUP) are serial in-order. They process one token
at a time. The three middle stages (EXPAND, RANDOMSIMULATION, and EVALUATION)
are parallel and do the most time-consuming part of the search. The EVALUATION and
RANDOMSIMULATION functions are extracted out of the PLAYOUT function to achieve
more parallelism. The serial version uses a single token. The 3PMCTS algorithm aims
to search multiple paths in parallel. Therefore, it needs more than one in-flight token.
Listing D.1 shows the key parts of the TBB code with the syntactic details for the
3PMCTS algorithm.



