Universiteit

4 Leiden
The Netherlands

Structured parallel programming for Monte Carlo Tree Search
Mirsoleimani, S.A.

Citation
Mirsoleimani, S. A. (2020, June 17). Structured parallel programming for Monte Carlo Tree
Search. SIKS Dissertation Series. Retrieved from https://hdl.handle.net/1887/119358

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/119358

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/119358

Cover Page

The handle http://hdl.handle.net/1887/119358 holds various files of this Leiden University
dissertation.

Author: Mirsoleimani, S.A.
Title: Structured parallel programming for Monte Carlo tree search
Issue Date: 2020-06-17

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/119358
https://openaccess.leidenuniv.nl/handle/1887/1�

[ACBFO02]

[AHH10]

[ALSUO07]

[BCCt11]

[BG11]

[BJK'95]

Bibliography

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis
of the multiarmed bandit problem. Mach. Learn., 47(2-3):235-256,
2002.

Broderick Arneson, Ryan B. Hayward, and Philip Henderson. Monte
Carlo Tree Search in Hex. IEEE Transactions on Computational Intelli-
gence and Al in Games, 2(4):251-258, 2010.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, & Tools. Addison-Wesley series in
computer science. Pearson/Addison Wesley, 2007.

Amine Bourki, Guillaume Chaslot, Matthieu Coulm, Vincent Danjean,
Hassen Doghmen, Jean-Baptiste Hoock, Arpad Rimmel, Fabien Tey-
taud, Olivier Teytaud, Paul Vayssi, Thomas Hérault, Paul Vayssiere,
and Ziqin Yu. Scalability and Parallelization of Monte-Carlo Tree
Search. In Proceedings of the 7th International Conference on Com-
puters and Games, Lecture Notes in Computer Science (LNCS) 6515,
pages 48-58, 2011.

Petr Baudis and Jean-Loup Gailly. Pachi: State of the Art Open Source
Go Program. In Advances in Computer Games 13, Lecture Notes in
Computer Science (LNCS) 7168, pages 24-38, 2011.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Effi-

124

Bibliography

[BPWT12]

[CJO8]

[Cou06]

[CWvdHO08a]

[CWvdHT08b]

[EM10]

[EMAS10]

[FL11]

[GBC16]

cient Multithreaded Runtime System. In Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming - PPOPP ’95, volume 30, pages 207-216. ACM Press, 1995.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton.
A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and Al in Games, 4(1):1-43, 2012.

T. Cazenave and N. Jouandeau. A Parallel Monte-Carlo Tree Search
Algorithm. In Computers and Games, Lecture Notes in Computer Sci-
ence (LNCS) 5131, pages 60-71, 2008.

R. Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search. In Proceedings of the 5th International Conference on
Computers and Games, Lecture Notes in Computer Science (LNCS)
4630, pages 72-83, 2006.

G. M. J. B. Chaslot, M. H. M. Winands, and H. J. van den Herik.
Parallel Monte-Carlo Tree Search. In the 6th International Conference
on Computers and Games, Lecture Notes in Computer Science (LNCS)
5131, pages 60-71, 2008.

Guillaume M. J. B. Chaslot, Mark H. M. Winands, H. J. van den Herik,
Jos W. H. M. Uiterwijk, and Bruno Bouzy. Progressive Strategies for
Monte-Carlo Tree Search. New Mathematics and Natural Computa-
tion, 4(03):343-357, 2008.

M. Enzenberger and M. Miiller. A Lock-free Multithreaded Monte-
Carlo Tree Search algorithm. In Advances in Computer Games, Lecture
Notes in Computer Science (LNCS) 6048, pages 14-20, 2010.

Markus Enzenberger, Martin Muller, Broderick Arneson, and Richard
Segal. Fuego-An Open-Source Framework for Board Games and Go
Engine Based on Monte Carlo Tree Search. IEEE Transactions on Com-
putational Intelligence and Al in Games, 2(4):259-270, 2010.

Alan Fern and Paul Lewis. Ensemble Monte-Carlo Planning: An Em-
pirical Study. In International Conference on Automated Planning and
Scheduling (ICAPS), pages 58-65, 2011.

L. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive
Computation and Machine Learning Series. MIT Press, 2016.

Bibliography

125

[GI91]

[GS07]

[HeiO1]

[HLL10]

[HS17]

[HT19]

[Int13]

[JR13]

[KPVvdH13]

[KS06]

[KUV15]

[Lee06]

Zvi Galil and Giuseppe F. Italiano. Data Structures and Algorithms
for Disjoint Set Union Problems. ACM Comput. Surv., 23(3):319-344,
1991.

S. Gelly and D. Silver. Combining online and offline knowledge in
UCT. In the 24th International Conference on Machine Learning, pages
273-280. ACM Press, 2007.

E.A. Heinz. New self-play results in computer chess. In Computers
and Games, Lecture Notes in Computer Science (LNCS) 2063, pages
262-276, 2001.

Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The
Cilkview scalability analyzer. Proceedings of the 22nd ACM Symposium
on Parallelism in Algorithms and Architectures - SPAA 10, pages 145-
156, 2010.

Demis Hassabis and David Silver. Alphago’s next move.
https://deepmind.com/blog/alphagos-next-move/, 2017.

Ryan B Hayward and Bjarne Toft. Hex: The Full Story. CRC Press,
2019.

Intel. Intel Xeon Phi Processor Competitive Performance.
http://www.intel.com/content/www/us/en/benchmarks/server/
xeon-phi/xeon-phi-theoretical-maximums.html, 2013.

J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor High Performance
Programming. Elsevier Science, 2013.

J. Kuipers, A. Plaat, J. A. M. Vermaseren, and H. J. van den Herik. Im-
proving Multivariate Horner Schemes with Monte Carlo Tree Search.
Computer Physics Communications, 184(11):2391-2395, 2013.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo plan-
ning. In Machine Learning: ECML 2006, Lecture Notes in Computer
Science (LNCS) 4212, pages 282-293, 2006.

J. Kuipers, T. Ueda, and J. A. M. Vermaseren. Code optimization in
FORM. Computer Physics Communications, 189(October):1-19, 2015.

Edward A. Lee. The problem with threads. Computer, 39(5):33-42,
2006.

126

Bibliography

[Li13]

[LP98]

[MKK14]

[MPvdHV15a]

[MPvdHV15b]

[MPVvdH14]

[MRR12]

[NBF96]

[0S12]

[Rah13]

[Rei07]

Shou Li. Case Study: Achieving High Performance on Monte
Carlo European Option Using Stepwise Optimization Framework.
https://software.intel.com/en-us/articles/case-study-achieving-
high-performance-on-monte-carlo-european-option-using-stepwise,
2013.

Charles E. Leiserson and Aske Plaat. Programming Parallel Applica-
tions in Cilk. SINEWS: SIAM News, 31(4):6-7, 1998.

S. Ali Mirsoleimani, Ali Karami, and Farshad Khunjush. A Two-Tier
Design Space Exploration Algorithm to Construct a GPU Performance
Predictor. In Architecture of Computing Systems—ARCS 2014, pages
135-146. Springer, 2014.

S. Ali Mirsoleimani, Aske Plaat, Jaap van den Herik, and Jos Ver-
maseren. Parallel Monte Carlo Tree Search from Multi-core to Many-
core Processors. In ISPA 2015: The 13th IEEE International Symposium
on Parallel and Distributed Processing with Applications (ISPA), pages
77-83, 2015.

S. Ali Mirsoleimani, Aske Plaat, Jaap van den Herik, and Jos Ver-
maseren. Scaling Monte Carlo Tree Search on Intel Xeon Phi. In The
20th IEEE International Conference on Parallel and Distributed Systems
(ICPADS), pages 666-673, 2015.

S. Ali Mirsoleimani, Aske Plaat, Jos Vermaseren, and Jaap van den
Herik. Performance analysis of a 240 thread tournament level MCTS
Go program on the Intel Xeon Phi. In The 2014 European Simulation
and Modeling Conference (ESM’2014), pages 88-94. Eurosis, 2014.

M. McCool, J. Reinders, and A. Robison. Structured Parallel Program-
ming: Patterns for Efficient Computation. Elsevier, 2012.

Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell.
Pthreads programming. O’'Reilly & Associates, Inc., 1996.

D. O’Shea and R. Seroul. Programming for Mathematicians. Universi-
text. Springer Berlin Heidelberg, 2012.

Rezaur Rahman. Intel Xeon Phi Coprocessor Architecture and Tools:
The Guide for Application Developers. Apress, 2013.

J. Reinders. Intel threading building blocks: Outfitting C++ for multi-
core processor parallelism. O’Reilly Media, Inc., 2007.

Bibliography

127

[RJ14]

[RIMT15]

[Rob13]

[RomO1]

[RPBS99]

[RVPvdH14]

[RVWT13]

[SBDD*02]

[SC12]

[SCPT14]

James Reinders and James Jeffers. High Performance Parallelism
Pearls: Multicore and Many-core Programming Approaches, volume 4.
Elsevier Science, 2014.

James Reinders, Jim Jeffers, Iosif Meyerov, Alexander Sysoyev, Nikita
Astafiev, and Ilya Burylov. High Performance Parallelism Pearls. Else-
vier, 2015.

Arch D. Robison. Composable Parallel Patterns with Intel Cilk Plus.
Computing in Science & Engineering, 15(2):66-71, 2013.

John W. Romein. Multigame — An Environment for Distributed Game-
Tree Search. PhD thesis, Vrije Universiteit, 2001.

John Romein, Aske Plaat, Henri E. Bal, and Jonathan Schaeffer.
Transposition Table Driven Work Scheduling in Distributed Search.
In The 16th National Conference on Artificial Intelligence (AAAT'99),
pages 725-731, 1999.

Ben Ruijl, Jos Vermaseren, Aske Plaat, and Jaap van den Herik.
Combining Simulated Annealing and Monte Carlo Tree Search for
Expression Simplification. Proceedings of ICAART Conference 2014,
1(1):724-731, 2014.

A. Ramachandran, J. Vienne, R. V. D. Wijngaart, L. Koesterke, and
I. Sharapov. Performance Evaluation of NAS Parallel Benchmarks on
Intel Xeon Phi. In 2013 42nd International Conference on Parallel
Processing, pages 736-743, 2013.

L. Susan Blackford, James Demmel, Jack Dongarra, Iain Duff, Sven
Hammarling, Gwendolyn Henry, Michael Heroux, Linda Kaufman,
Andrew Lumsdaine, Antoine Petitet, Roldan Pozo, Karin Remington,
and R Clint Whaley. An Updated Set of Basic Linear Algebra Subpro-
grams (BLAS). ACM Trans. Math. Softw., 28(2):135-151, 2002.

Erik Saule and Umit V. Catalyiirek. An early evaluation of the scala-
bility of graph algorithms on the Intel MIC architecture. Proceedings
of the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops, IPDPSW 2012, pages 1629-1639, 2012.

N. Sephton, P. I. Cowling, E. Powley, D. Whitehouse, and N. H. Slaven.
Parallelization of Information Set Monte Carlo Tree Search. In The
2014 IEEE Congress on Evolutionary Computation (CEC), pages 2290~
2297, 2014.

128

Bibliography

[Segll]

[SHM™16]

[SKW10]

[SP14]

[SSST17]

[Suk15]

[TD15]

[TV10]

[TV15]

[vdHPKV13]

Richard B. Segal. On the Scalability of Parallel UCT. In Proceedings
of the 7th International Conference on Computers and Games, Lecture
Notes in Computer Science (LNCS) 6515, pages 36-47, 2011.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the Game of Go with Deep Neural Networks and Tree Search. Na-
ture, 529(7587):484-489, 2016.

Yusuke Soejima, Akihiro Kishimoto, and Osamu Watanabe. Evaluat-
ing Root Parallelization in Go. IEEE Transactions on Computational
Intelligence and Al in Games, 2(4):278-287, 2010.

L. Schaefers and M. Platzner. Distributed Monte-Carlo Tree Search: A
Novel Technique and its Application to Computer Go. IEEE Transac-
tions on Computational Intelligence and Al in Games, 6(3):1-15, 2014.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of Go without human knowledge. Na-
ture, 550:354, 2017.

Jim Sukha. Brief announcement: A compiler-runtime application bi-
nary interface for pipe-while loops. In Proceedings of the 27th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’15,
pages 83-85. ACM, 2015.

Fabien Teytaud and Julien Dehos. On the Tactical and Strategic Be-
haviour of MCTS When Biasing Random Simulations. ICCA Journal,
38(2):67-80, 2015.

M. Tentyukov and J. A. M. Vermaseren. The multithreaded version of
FORM. Computer Physics Communications, 181(8):1419-1427, 2010.

Ashkan Tousimojarad and Wim Vanderbauwhede. Steal locally, share
globally. Int. J. Parallel Program., 43(5):894-917, 2015.

Jaap van den Herik, Aske Plaat, Jan Kuipers, and Jos Vermaseren.
Connecting Sciences. In In 5th International Conference on Agents and
Artificial Intelligence (ICAART), volume 1, pages IS-7-1S-16, 2013.

Bibliography 129

[Verl3] J. A, M. Vermaseren. Hepgame-description of work.
https://www.nikhef.nl/ form/maindir/HEPgame/HEPgame.html,
2013.

[Weil7] Eric W. Weisstein. Game of Hex. From MathWorld—A Wolfram Web
Resource. http://mathworld.wolfram.com/GameofHex.html, 2017.

[Wil12] A. Williams. C++ Concurrency in Action: Practical Multithreading.
Manning Pubs Co Series. Manning, 2012.

[Woo14] Matthew Woodcraft. Gomill Python Library.
http://mjw.woodcraft.me.uk/gomill/, 2014.

[WZSt14] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei
Lu, Qing Wu, and Yajuan Wang. High-Performance Computing on the
Intel® Xeon Phi. Springer International Publishing, 2014.

[YKK+11] K. Yoshizoe, A. Kishimoto, T. Kaneko, H. Yoshimoto, and Y. Ishikawa.

Scalable Distributed Monte-Carlo Tree Search. In Fourth Annual Sym-
posium on Combinatorial Search, pages 180-187, 2011.

Appendices

Micro-benchmark Programs

double Performance(unsigned int const ITR) {
unsigned int const SIZE = 16;

3 double start_time , duration;

int i, j;

__declspec(aligned (64)) double a[SIZE], b[SIZE], c[SIZE];

for (i = 0; i < SIZE; i++) {

7 a[i] = b[i] = c[i] = (double) rand();
}

#pragma omp parallel for
for (i = 0; i < ITR; i++) {

11| #pragma vector aligned (a,b,c)

#pragma unroll (16)

13 for (int j = 0; j < SIZE; j++)

{ aljl =bljl = c[jl +aljl; }

15 }

start_-time = elapsedTime () ;

17| #pragma omp parallel for

for (i = 0; i < ITR; i++) {

19| #pragma vector aligned (a,b,c)

#pragma unroll (16)

21 for (int j = 0; j < SIZE; j++)
{ aljl =bljl = c[j] + aljl; }

23 }
duration = elapsedTime () — start_time;

25 double gflop = ((double) 2.0 x SIZE x ITR) / le+9;
double gflops = gflop / duration;

27 return gflops;

Listing A.1: Micro-benchmark code for measuring performance of Xeon Phi.

134

N

void Bandwidth(unsigned int const ITR) {
unsigned int const SIZE = 48 % 1000 % 1000;
double start_time , duration;
int i, j;
__declspec(aligned(64)) static double a[SIZE], b[SIZE], c[SIZE];
for (i = 0; i < SIZE; i++) {
c[i] = 0.0f;
a[i] = b[i] = (double) 1.0f;
}
for (i = 0; i< 1; i++) {
#pragma omp parallel for
for (j = 0; j < SIZE; j++)
{ cljl = alj]l = b[j] + cl[jl; }
}
start_time = elapsedTime () ;
for (i = 0; i < ITR; i+4) {
#pragma omp parallel for

for (j = 0; j < SIZE; j++4)

{ cljl =aljl = bljl + cljl; }
}
duration = elapsedTime () — start_-time;

double gb = (SIZE x sizeof (double)) / le+9;
double gbs = 4 % ITR % gb / duration;
return gbs;

}

Listing A.2: Micro-benchmark code for measuring memory bandwidth of Xeon Phi.

Statistical Analysis of Self-play
Experiments

Suppose p as true wining probability of a player [Hei01]. The value of p is estimated
by 0 < w = z/n < 1 which results from = < n wins in a match of n games. Therefore,
we may simply assume w the sample mean of a binary-valued random variable that
counts two draws as a loss plus a win.

The expected value of w is E(w) = p and the variance of w is Var(w) = p(1 — p)/n.
According to central limit theorem approximately, w =~ Normal(p, p(1 —p)n), so (w —
p)/v/p(1 —p)/n = Normal(0,1). Let zy denote the upper critical value of the stan-
dard N (0, 1) normal distribution for any desired %-level of statistical confidence(zgqy; =
1.645, zg5, = 1.96). Then, the probability of w — 1.96/p(1 —p)/n < p < w +
1.96+/p(1 — p)/n is about 95%. Therefore, the 95% confidence interval on the true
wining probability p is [w — 1.96+/p(1 — p)/n,w + 1.964/p(1 — p)/n]. There are two
ways to substitute the value of p which is unknown:

1. substitute p for w: [w — 1.96/w(1 — w)/n,w + 1.961/w(1l — w)/n]
2. substitute p for 1/2 which gives wider confidence interval: [w — 0.98y/n,w +

0.98y/7]

Implementation of GSCPM

This section will show how the GSCPM algorithm is implemented with three differ-
ent threading libraries. Furthermore, the implementations for shared search tree and
random number generation are explained.

C.1 TBB

Listing C.1 gives a TBB implementation of GSCPM. TBB has task_group class for fork-
join pattern. Method run marks where a fork occurs; method wait marks a join.

tbb:: task_group g;
for (int t = 0; t < nTasks; t++) {
g.run (UCTSearch(r,m));

}

s|g.wait();

Listing C.1: Task parallelism for GSCPM using TBB (task_group).

C.2 Cilk Plus

Two Cilk Plus implementations for GSCPM are given in Listing C.2 and C.3 . Cilk
Plus has keywords for marking fork and join points. In the first implementation, the
cilk_spawn marks the fork and the cilk_sync marks an explicitly join operation. The
spawning tasks are within a for loop. A cilk_sync waits for all spawned calls in the
loop.

5|y

B!

138 C.3. TPFIFO

for (int t = 0; t < nTasks; t++) {
cilk_spawn UCTSearch(r,m);

cilk_sync;

Listing C.2: Task parallelism for GSCPM using Cilk Plus (cilk_spawn).

In the second implementation, the cilk_for construct uses recursive forking even though
it looks like a loop. The cilk_sync (joint) at the end of the loop is implicit.

cilk_for (int t = 0; t < nTasks; t++) {
UCTSearch (r,m) ;
}

Listing C.3: Task parallelism for GSCPM using Cilk Plus (cilk_for).

C.3 TPFIFO

In TPFIFO the tasks are put in a queue. It implements work-sharing, but the order
that the tasks are executed is similar to child stealing. The first task that enters the
queue is the first task that gets executed.

In our thread pool implementation (called TPFIFO) the task functions are exe-
cuted asynchronously. A task is submitted to a FIFO task queue and will be executed
as soon as one of the pool’s threads is idle. Schedule returns immediately and there
are no guarantees about when the tasks are executed or how long the processing will
take. Therefore, the program waits for all the tasks to be completed.

for (int t = 0; t < nTasks; t++) {
TPFIFO. schedule (UCTSearch(r,m)) ;

TPFIFO . wait () ;

Listing C.4: Task parallelism for GSCPM, based on TPFIFO.

Implementation of 3PMCTS

In this section, we present the implementation of our 3PMCTS algorithm. In section
D.1 we present the concept of token (when used as type name, we write Token).
Section D.2 describes the implementation of 3PMCTS using TBB.

D.1 Definition of Token Data Type (TDT)

A token represents a path inside the search tree during the search. Algorithm D.1
presents definition for the type Token. It has four fields. (1) id represents a unique
identifier for a token, (2) v represents the current node in the tree, (3) s represents
the search state of the current node, and (4) A represents the reward value of the
state. The definition of lock-free data structure Node is given in Algorithm 5.1. In
Algorithm D.2, the serial UCT algorithm (which is already presented in Algorithm
2.2) is provided using token data type.

Algorithm D.1: Type definition for token.
1 type
2 type id : int;
3 type v : Node*;
4 type s : State*;
5
6

type A : int;
Token;

140

D.1. Definition of Token Data Type (TDT)

Algorithm D.2: The serial UCT algorithm using Token, with stages SELECT,
EXPAND, PLAYOUT, and BACKUP.

-

© ® N U A W N

11
12

13

14

15
16
17
18
19
20
21
22

23

24

25
26
27
28

29
30
31
32
33
34

35

36
37
38

39
40
41
42

Function UCTSEARCH(sg)

vp = create root node with state sg;
to.s = s0;

to.v = vo;

while within search budget do

t; = SELECT(tg);

t; = EXPAND(%;);

t; = PLAYOUT(¢;);
BACKUP(¢;);

Function SELECT(Token t) : <Token>
while ¢.v —IsFullyExpanded() do

tw:= argmax v/.UCT(Cp);
v/echildrcnofv

t.s —SetMove(t.v — move);

return t¢;

Function EXPAND (Token t) : <Token>
if I(t.s —IsTerminal()) then

moves := t.s —UntriedMoves();
shuffle moves uniformly at random;
t.v —Init(moves);

v = t.v —AddChild();
if t.ov # v’ then

!
tvi=v ;
t.s HSetMove(v/ — move);

return t;

Function PLAYOUT(Token t)
RANDOMSIMULATION(¢);
EVALUATION(%);

return ¢t

Function RANDOMSIMULATION(Token t)
moves := t.s —UntriedMoves();
shuffle moves uniformly at random;
while !(t.s —IsTerminal()) do

choose new move € moves;
t.s —SetMove(move);

return ¢

Function EVALUATION(Token t)
t.A :=t.s — Evalute();
return ¢

Function BACKUP(Token t) : void
while ¢t.v # null do

t.v — Update(t.A);
t.v:=t.v — parent;

N

Appendix D. Implementation of 3PMCTS 141

D.2 TBB Implementation Using TDD

In our implementation for 3PMCTS, each stage (task) performs its operation on a
token. We can also specify the number of in-flight tokens.

Each function constitutes a stage of the non-linear pipeline in 3PMCTS. There are
two approaches for parallel implementation of a non-linear pipeline [MRR12]:

e Bind-to-stage: A processing element (e.g., thread) is bound to a stage and pro-
cesses tokens as they arrive. If the stage is parallel, it may have multiple pro-
cessing elements bound to it.

e Bind-to-item: A processing element is bound to a token and carries the token
through the pipeline. When the processing element completes the last stage, it
goes to the first stage to select another token.

void 3PMCTS(tokenlimit){

/% The routine tbb::parallel_pipeline takes two parameters.
(1) A token limit. It is an upper bound on the number of tokens that are processed simultaneously.
(2) A pipeline. Each stage is created by function tbb:: make_filter. The template arguments to
make_filter indicate the type of input and output items for the filter. The first ordinary argument
specifies whether the stage is parallel or not and the second ordinary argument specifies a function
that maps the input item to the output item.
*/
tbb:: parallel_pipeline (tokenlimit,

/# The SELECT stage is serial and mapping a special object of type tbb::flow_control, used

to signal the end of the search, to an output token. s/

tbb:: make_filter<void, Token+>(tbb:: filter ::serial_.in_.order ,[&](tbb:: flow_control & fc)—>>Tokenx*

{
/% A circular buffer is used to minimize the overhead of allocating and freeing tokens
passed between pipeline stages (it reduces the communication overhead). =/
Token* t = tokenpool[index];
index = (index+1) % tokenlimit;
if (within the search budget) {
/* Invocation of the method stop() tells the tbb::parallel_pipeline that no more
paths will be selected and that the value returned from the function should be
ignored. =/
fe.stop();
return NULL;
} else {
t = SELECT(t);
return t
}
}
) &

// The EXPAND stage is parallel and mapping an input token to an output token.
tbb:: make_filter<Tokenx, Tokens>(tbb:: filter :: parallel ,[&](Token * t){

return EXPAND(t);
b &
// The RANDOMSIMULATION stage is parallel and mapping an input token to an output token.
tbb :: make_filter<Tokens, Tokens>(tbb:: filter :: parallel ,[&](Token = t){

return RANDOMSIMULATION(t) ;
D&
// The Evaluation stage is parallel and mapping an input token to an output token.
tbb:: make_filter<Tokens, Tokenx>(tbb:: filter :: parallel ,[&](Token * t){

retun EVALUATION(t);
b &
/+ The BACKUP stage has an output type of void since it is only consuming tokens,
not mapping them. x*/
tbb:: make_filter<Tokenx, void>(tbb:: filter ::serial_in_order ,[&](Token * t){

return BACKUP(t);
13

Listing D.1: An implementation of the 3PMCTS algorithm in TBB.

142 D.2. TBB Implementation Using TDD

Our implementation for 3PMCTS algorithm is based on a bind-to-item approach.
Figure 6.5 depicts a five-stage pipeline for 3PMCTS that can be implemented us-
ing TBB tbb::parallel pipeline template [Rei07]. The five stages run the functions SE-
LECT, EXPAND, RANDOMSIMULATION, EVALUATION, and BACKUP, in that order. The
first (SELECT) and last stage (BACKUP) are serial in-order. They process one token
at a time. The three middle stages (EXPAND, RANDOMSIMULATION, and EVALUATION)
are parallel and do the most time-consuming part of the search. The EVALUATION and
RANDOMSIMULATION functions are extracted out of the PLAYOUT function to achieve
more parallelism. The serial version uses a single token. The 3PMCTS algorithm aims
to search multiple paths in parallel. Therefore, it needs more than one in-flight token.
Listing D.1 shows the key parts of the TBB code with the syntactic details for the
3PMCTS algorithm.

