
Structured parallel programming for Monte Carlo Tree Search
Mirsoleimani, S.A.

Citation
Mirsoleimani, S. A. (2020, June 17). Structured parallel programming for Monte Carlo Tree
Search. SIKS Dissertation Series. Retrieved from https://hdl.handle.net/1887/119358
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/119358
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/119358


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/119358 holds various files of this Leiden University 
dissertation. 
 
Author: Mirsoleimani, S.A. 
Title: Structured parallel programming for Monte Carlo tree search 
Issue Date: 2020-06-17 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/119358
https://openaccess.leidenuniv.nl/handle/1887/1�


9
Conclusions and Future Research

This chapter is built up as follows. Section 9.1 provides a summary of all answers
to the five research research questions posed in Chapter 1. Moreover, a definitive
answer to the Problem Statement (PS) is formulated in Section 9.2. After that, two
limitations concerning the research are discussed in Section 9.3. They are considered
as directions along which we will suggest future research. Finally, two additional
directions for future research are suggested in Section 9.4.

9.1 Answers to the RQs

Below we answer five RQs in the Subsections 9.1.1 to 9.1.5. We start by repeating the
RQ, then we provide the answer in brief, and meanwhile references to the relevant
sections are given.

9.1.1 Answer to RQ1

• RQ1: What is the performance and scalability of thread-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

For thread-level parallelization, our study shows that the performance of MCTS
on the many-core Xeon Phi co-processor with its MIC architecture is less than its
performance on the NUMA-based multi-core processor (see Subsections 3.2.3 and
3.3.3). The results show that current Xeon CPUs at 24 cores substantially outper-
form the Xeon Phi co-processor on 61 cores. Our study also shows that the scalability
of thread-level parallelization for MCTS on the many-core Xeon Phi co-processor is
limited.



118 9.1. Answers to the RQs

9.1.2 Answer to RQ2

• RQ2: What is the performance and scalability of task-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

The performance of task-level parallelization to implement the GSCPM algorithm
on a multi-core machine with 24 cores was adequate (see Paragraph B of Section 4.9).
It reached a speedup of 19, and the FIFO scheduling method showed good scalability
for up to 4096 tasks. The performance of task-level parallelization on a many-core co-
processor, with the high level of optimization of our sequential code-base, was also
good; a speedup of 47 on the 61 cores of the Xeon Phi was reached (see Paragraph C
of Section 4.9). Moreover, the FIFO and task group methods showed good scalability
for up to 4096 tasks on the Xeon Phi (see Section 4.10). However, our scalability
study showed that there is still potential for improving performance and scalability
by removing synchronization overhead.

9.1.3 Answer to RQ3

• RQ3: How can we design a correct lock-free tree data structure for parallelizing
MCTS?

To answer RQ3 we have found our way step by step. We did so in three steps.
First, we remark that the existing Tree Parallelization algorithm for MCTS uses a
shared search tree to run the iterations in parallel (see Subsection 5.1.1). Here we
face that the shared search tree has potential race conditions (see Subsection 5.1.2).
Our second step is to overcome this obstacle (see Section 5.3). In this section, we
have shown that having a correct lock-free data structure is possible. To achieve this
goal, we have used methods from modern memory models and atomic operations
(see Section 5.3). Using these methods allows removing of synchronization overhead.
Hence, we have implemented the new lock-free algorithm that has no race conditions
(see Section 5.4). The third step was to evaluate the lock-free algorithm. Therefore
we performed an extensive experiment in a small area (Hex on an 11 × 11 board),
see Sections 5.5 and 5.6. The experiment showed that the lock-free algorithm had a
better performance and a better scalability when compared to other synchronization
methods (see Section 5.7). The performance of task-level parallelization to implement
the lock-free GSCPM algorithm on a multi-core machine with 24 cores was very good.
It reached a speedup of 23 and showed very good scalability for up to 4096 tasks. The
performance on a many-core co-processor was also very good; a speedup of 83 on the
61 cores of the Xeon Phi was reached. It showed very good scalability for up to 4096
tasks.



Chapter 9. Conclusions and Future Research 119

9.1.4 Answer to RQ4

• RQ4: What are the possible patterns for task-level parallelization in MCTS, and
how do we use them?

Our research showed that the task-level parallelization method combined with
a lock-free data structure for the GSCPM algorithm achieved very good performance
and scalability on multi-core and many-core processors (see Section 5.7). The GSCPM
algorithm was design based on the iteration-level parallelism which relies on the iter-
ation pattern (see Section 4.4) that violates the iteration-level data dependencies (see
Subsection 6.1.2). The result of this violation is search overhead. Therefore, scalabil-
ity is only one issue, although it is an important one. The second issue is to handle the
search overhead. Thus, we designed the 3PMCTS algorithm based on operation-level
parallelism which relies on the pipeline pattern (the answer to the first part of RQ4)
to avoid violating the iteration-level data dependencies (see Section 6.2). Hence, we
managed to control the search overhead using the flexibility of task decomposition
(the answer to the second part of RQ4). Different pipeline constructions provided
the higher levels of flexibility that allow fine-grained managing of the execution of
operations in MCTS (see Subsection 6.6.2).

9.1.5 Answer to RQ5

In Chapter 7 and Chapter 8, we answered RQ5 in two parts. Here we provide a com-
plete answer for RQ5 which is a summary of both answers.

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

Chapter 7 investigated a solution (i.e., adjusting the exploitation-exploration bal-
ance with respect to the tree size) for improving the quality of search in Ensemble
UCT or Root Parallelization. Previous studies on Ensemble UCT provided inconclu-
sive evidence on the effectiveness of Ensemble UCT. Our results suggest that the
reason for uncertainty (concerning the controversy in the previous studies) lies in the
exploitation-exploration trade-off in relation to the size of the sub-trees (or ensemble
size). Our results provide clear evidence that the performance of Ensemble UCT is im-
proved by selecting higher exploitation for smaller search trees given a fixed number
of playouts or a fixed search budget.

Chapter 8 analyzed a solution (i.e., adjusting the exploitation-exploration balance
by an artificial increase in exploration called virtual loss) for the lock-free Tree Par-
allelization algorithm (see Section 8.1). Our preliminary results using an application



120 9.2. Answer to the PS

from the HEP domain shows when a virtual loss is used for lock-free Tree Paralleliza-
tion, there is almost no improvement in performance. We showed that the virtual
loss method suffered from a high search overhead and showed a low time efficiency
(see Section 8.5). We recommend not to use virtual loss along with the task-level
parallelization of the lock-free Tree Parallelization algorithm to achieve higher per-
formance.

9.2 Answer to the PS

• PS: How do we design a structured pattern-based parallel programming ap-
proach for efficient parallelism of MCTS for both multi-core and many-core
shared-memory machines?

We can design a structured parallel programming approach for MCTS in three
levels: (1) implementation level, (2) data structure level, and (3) algorithm level.
In the implementation level, we proposed task-level parallelization over thread-level
parallelization (see Chapters 3 and 4). Task-level parallelization provides us with ef-
ficient parallelism for MCTS to utilize cores on both multi-core and many-core ma-
chines.
In the data structure level, we presented a lock-free data structure that guarantees
the correctness (see Chapters 5). A lock-free data structure removes the overhead of
using data locks when a parallel program needs a lot of tasks to utilized cores.
In the algorithm level, we explained how to use patterns (e.g., pipeline) for paral-
lelization of MCTS to overcome search overhead (see Chapter 6).

Hence the answer to the PS is provided through a step by step approach.

9.3 Limitations

There are two limitations in this study, viz. hardware and case studies. We address
them below and consider them as topics of future research. In Subsection 9.3.1 we
consider the hardware limitations and in Subsection 9.3.2 we briefly discuss the lim-
itations of the case studies.

9.3.1 Maximizing Hardware Usage

The first limitation is that the current study used the native mode of the program-
ming paradigm for the execution of the parallel MCTS on the many-core co-processor
(i.e., the Xeon Phi). The native mode is the natural first step because it is a fast way
to get the existing parallel code running on the Xeon Phi with a minimum of code



Chapter 9. Conclusions and Future Research 121

changes. However, approaching the co-processor in native mode limits access to only
on the Xeon Phi and ignores the resources available on the CPU host or possibly other
computing resources. Overcoming this limitation is possible by using offline mode.
With offline mode, the parallel program is launched on the CPU side and there data
initialization also takes place. The program subsequently pushes (offloads) data and
specialized code to the co-processor for executing. After execution, results are pulled
back to the CPU. The offload mode allows parallel code to exploit both the CPU and
the co-processor. It prepares the application for any foreseeable developments of prod-
ucts.

The future of parallel computing are machines with Systems on Chips (SoC). An
SoC is specially designed to incorporate the required electronic circuits of numer-
ous computer components, such as CPU, GPU, or Field-Programmable Gate Array
(FPGA), onto a single integrated chip. Therefore, future parallel code for artificial
intelligence applications should consider it. For example, an artificial intelligence ap-
plication based on the MCTS algorithm and deep neural networks has three phases:
(1) perception, (2) decision making, and (3) execution. The perception phase can be
carried out by a deep neural network. A suitable hardware choice could be a GPU. The
decision making phase is handled by MCTS which is running on a CPU. Finally, the
execution phase that may need a real-time action can be run on an FPGA co-processor.

9.3.2 Using More Case Studies

The second limitation is that the current study used two case studies (i.e., Hex and
Horner Scheme). We consider it a limitation for our research, especially for making a
definitive conclusion about the performance of the 3PMCTS algorithm. Therefore, a
future study should consider using more case studies.

9.4 Future Research

Below we give two additional suggestions for future studies.

• From our results, we may conclude the following. Our new method is highly
suitable for heterogeneous computing because it is possible that some of the
MCTS operations might not be suitable for running on a target processor, though
others are. Our 3PMCTS algorithm gives us full flexibility for offloading a variety
of different operations of MCTS to a target processor. Therefore, it is suggested
to adapt 3PMCTS for heterogeneous computing.

• For future work, we also suggest exploring other parts of the parameter space,
to find optimal Cp settings for different combinations of tree size and ensemble



122 9.4. Future Research

size. Moreover, we suggest to study the effect in different domains. Even more
important will be the study on the effect of Cp in Tree Parallelization.


