
Structured parallel programming for Monte Carlo Tree Search
Mirsoleimani, S.A.

Citation
Mirsoleimani, S. A. (2020, June 17). Structured parallel programming for Monte Carlo Tree
Search. SIKS Dissertation Series. Retrieved from https://hdl.handle.net/1887/119358
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/119358
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/119358


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/119358 holds various files of this Leiden University 
dissertation. 
 
Author: Mirsoleimani, S.A. 
Title: Structured parallel programming for Monte Carlo tree search 
Issue Date: 2020-06-17 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/119358
https://openaccess.leidenuniv.nl/handle/1887/1�


8
An Analysis of Virtual Loss in Parallel

MCTS

We reiterate the last research question, RQ5, and continue the research work started
in Chapter 7.

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

In part one of RQ5 (see Chapter 7) we investigated to what extent the successes of
MCTS depend on the balance between exploitation and exploration (see also Section
2.2). The parallelization of MCTS intends to decrease the execution time of the algo-
rithm, but it also affects this trade-off. Therefore, solutions are developed to control
the exploitation-exploration balance when parallelizing MCTS to improve the quality
of search [CWvdH08a, BPW+12, KPVvdH13]. We have partitioned the set of solutions
into two parts, (1) adjusting exploitation-exploration balance with respect to the tree
size, and (2) adjusting the exploitation-exploration balance by an artificial increase in
exploration called virtual loss. We provided an answer for RQ5 (part one) in Chapter
7. This chapter1 addresses the second part of RQ5.

Each iteration of the MCTS algorithm adds a new node to a tree by first selecting
a path inside the tree and then using Monte Carlo simulations. This iterative process
is path-dependent, which means that the outcomes of previous iterations guide the

1 Based on:

• S. A. Mirsoleimani, A. Plaat, and H. J. van den Herik, and J. Vermaseren, An Analysis of Virtual
Loss in Parallel MCTS, in Proceedings of the 9th International Conference on Agents and Artificial
Intelligence, 2017, pp 648--652.



110 8.1. Virtual Loss

future selections. Rather recently, several studies have addressed the topic of mak-
ing parallel methods for MCTS, such as Tree Parallelization and Root Parallelization
[BG11, BPW+12, SHM+16, SSS+17]. Here we focus on Tree Parallelization that dis-
tributes different iterations of MCTS among parallel workers. Therefore, it has to
violate the path dependency feature of sequential MCTS to make the algorithm faster.

In Tree Parallelization, the performance is decreasing when increasing the num-
ber of parallel workers. It is widely believed that part of the performance loss is due
to a redundant search being done by separate parallel workers (i.e., Search Over-
head). However, if the parallel algorithm is using a lock to guarantee synchroniza-
tion, the contention among parallel workers also contributes to the performance loss.
Therefore, a method called virtual loss is proposed for lock-based Tree Parallelization
[CWvdH08a]. It forces parallel workers to traverse different paths inside the MCTS
tree to avoid contention around a particular node. However, virtual loss then affects
the balance between exploitation and exploration in the UCT algorithm by increasing
the exploration level irrespective of the value of the Cp parameter.

In this chapter, we evaluate the benefit of using the virtual loss (i.e., an artificial
increase in exploration against exploitation) for lock-free (instead of locked-based)
Tree Parallelization. We carry out our experiments for a full range of exploitation-
exploration in UCT (i.e., the Cp parameter) and a varying number of parallel workers.
The result is reported concerning Search Overhead (SO) and Time Efficiency (Eff).
The case studies are problems from the High Energy Physics domain.

The remainder of the chapter is organized as follows. The virtual loss method is
explained in Section 8.1, the related work is presented in Section 8.2, the experimen-
tal setup is described in Section 8.3, followed by the experimental design in Section
8.4, and the experimental results in Section 8.5. Finally, the answer to the second part
of RQ5 is given in Section 8.6, with the complete answer to RQ5 in Section 8.7.

8.1 Virtual Loss

In Tree Parallelization one MCTS tree is shared among several threads that are per-
forming simultaneous searches [CWvdH08a]. The main challenge in this method is
using data locks to prevent data corruption. A lock-free implementation of this algo-
rithm addresses the problem as mentioned earlier with better scaling than a locked
approach [EM10]. Therefore, in our implementation of Tree Parallelization, locks are
removed.

Definition 8.1 (Virtual Loss) Virtual loss is a method to make a node in the tree less
favorable to be selected and therefore force parallel workers to traverse different paths
inside the MCTS tree.



Chapter 8. An Analysis of Virtual Loss in Parallel MCTS 111

Here we note that in Tree Parallelization with fine-grained locks (see Subsection
5.2.1), it is still possible that different threads traverse the tree in mostly the same
way. This phenomenon causes thread contention when two different threads visit the
same node concurrently, and one thread is waiting for a lock that is currently being
held by another thread. Increasing the number of threads exacerbates this problem.
[CWvdH08a] suggested a solution to assign a temporary virtual loss (a marker) to a
node when a thread selects it. Without the marker, there is a higher chance for thread
contention.

Implementing the virtual loss is straightforward. A thread is selecting a path inside
the tree to find a leaf node. It is reducing the UCT value of all the nodes that belong to
the path, assuming that the playout from the leaf node results in a loss. Therefore, the
virtual loss will inspire other threads to traverse different paths and avoid contention.
A thread removes the assigned virtual loss immediately before the backup step when
updating the nodes with the real playout result. It is worth mentioning that Tree Par-
allelization with virtual loss is more explorative compared to plain Tree Parallelization
because the virtual loss encourages different threads to explore different parts of the
tree regardless of the value of Cp. Regarding the virtual loss, UCT (j) decreases as
more threads select node j, which encourages other threads to favor other nodes.
Algorithm 8.1 gives the pseudocode for the virtual loss technique.

Algorithm 8.1: The lock-free UCT algorithm with virtual loss.
1 Function UCTSEARCH(Node* v0, State s0, budget)
2 while within search budget do
3 〈vl, sl〉 := SELECT(v0, s0);
4 〈vl, sl〉 := EXPAND(vl, sl);
5 ∆ := PLAYOUT(vl, sl);
6 BACKUP(vl,∆);

7 Function SELECT(Node* v, s) : <Node*,State>
8 while v.ISFULLYEXPANDED() do
9 〈w, n〉 := v.GET();

10 vl := arg max
vj∈children of v

vj .UCT(n);

11 s := v.p takes action vl.a from state s;
12 vl.SET(+LOSS(vl.p));
13 v := vl;

14 return 〈v, s〉;

15 Function BACKUP(Node* v,∆) : void
16 while v is not null do
17 v.SET(−LOSS(v.p));
18 v.SET(∆〈v.p〉);
19 v := v.parent;



112 8.2. Related Work

8.2 Related Work

[CWvdH08a] reported that Tree Parallelization with local locks and virtual loss per-
forms as well as Root Parallelization in the game of Go. However, [SCP+14] suggested
that adding a virtual loss to Tree Parallelization with local locks has almost no effect
on the performance for the game of Lords of War. [Seg11] showed that MCTS could
scale nearly perfectly to at least 64 threads when combined with virtual loss, but
without virtual loss scaling is limited to just eight threads. [EMAS10] showed that the
virtual loss technique is very effective for Go in FUEGO. However, [BG11] found that
increasing exploration by multiple virtual losses slightly improves Tree Parallelization
with lock-free updates for Go in Pachi.

8.3 Experimental Setup

We perform a sensitivity analysis of Cp on the number of iterations for different thread
configurations for one expression, namely HEP(σ) which is a polynomial from the
HEP domain with 15 variables [Ver13, KPVvdH13, RVPvdH14]. The plain UCT algo-
rithm and parallel methods are implemented in the ParallelUCT package.

The results are measured on a dual socket machine with 2 Intel Xeon E5-2596v2
processors running at 2.40GHz. Each processor has 12 cores, 24 hyper-threads and 30
MB L3 cache. Each physical core has 256KB L2 cache. The pack TurboBoost frequency
is 3.2 GHz. The machine has 192GB physical memory. Intel’s icc 14.0.1 compiler is
used to compile the program.

8.4 Experimental Design

In our case study, we investigate Horner schemes. We consider a Horner Scheme as an
optimization problem (see Subsection 2.4.2). The playing strength of Tree Paralleliza-
tion for the Horner scheme is measured by the number of operations that are found
for a number of playouts (see Subsection 2.5.2). Here, we define search overhead
((SO)) and time efficiency (Eff ) based on the number of playouts.

SO =
number of playoutsparallel

number of playoutssequential
− 1. (8.1)

Eff =
timesequential

number of parallel workers · timeparallel
. (8.2)

In our experiments, the algorithm stops when it found 4,150 operations, or the
limit of 10,240 playouts is reached. The numbers are set at 4,150 and 10,240 as



Chapter 8. An Analysis of Virtual Loss in Parallel MCTS 113

0

2

4

S
O

Cp=0.0 Cp=0.1 Cp=0.2

0

2

4

S
O

Cp=0.3 Cp=0.4 Cp=0.5

0

2

4

S
O

Cp=0.6 Cp=0.7 Cp=0.8

2 4 8 16 32 64

0

2

4

S
O

Cp=0.9

2 4 8 16 32 64

Number of Tokens

Cp=1.0

Figure 8.1: Search overhead (SO) for Horner (average of 20 instances for each data
point). Tree parallelization is the green line which is indicated by circles, and Tree
Parallelization with virtual loss is the blue line which is indicated by triangles. Note
that the higher SO of Tree Parallelization with virtual loss means lower performance.

“relaxed” upper bound above 4,000 and 10,000 which are found by [KPVvdH13] for
the HEP(σ) polynomial. Throughout the experiments, the number of tokens or tasks
is multiplied by a factor of two. Each data point represents the average of 20 runs.

8.5 Experimental Results

Below we provide our experimental results. The first factor is Search Overhead (SO).
We hope for the reduction of SO by using virtual loss. Figure 8.1 shows the SO of
plain Tree Parallelization and Tree Parallelization with virtual loss for different values



114 8.5. Experimental Results

0

100

200

E
ff
(%

)

Cp=0.0 Cp=0.1 Cp=0.2

0

50

100

E
ff
(%

)

Cp=0.3 Cp=0.4 Cp=0.5

0

50

100

E
ff
(%

)

Cp=0.6 Cp=0.7 Cp=0.8

2 4 8 16 32 64
0

50

100

E
ff
(%

)

Cp=0.9

2 4 8 16 32 64

Number of Tokens

Cp=1.0

Figure 8.2: Efficiency (Eff ) for Horner (average of 20 instances for each data point).
Tree parallelization is the green line which is indicated by circles and Tree Paralleliza-
tion with virtual loss is the blue line which is indicated by triangles. Note that Tree
Parallelization with virtual loss has a lower efficiency meaning lower performance.

of Cp. With four tokens (a parallel thread can run each token/task) we see that both
methods have similar SO for all values for Cp. However, plain Tree Parallelization
has smaller SO than Tree Parallelization with the virtual loss on all points, which is
opposite to our expectation. The second factor is Time Efficiency (Eff). We hope for
the increase of Eff by using virtual loss. Figure 8.2 shows the Eff of each method.
We see that plain Tree Parallelization outperforms Tree Parallelization with the virtual
loss in almost all tokens for all values of Cp, which is opposite to our expectation. The
only exception is when the number of tokens is 4 and Cp is 0 and 0.3.

Interestingly, adding virtual loss degrades the performance of lock-free Tree Par-



Chapter 8. An Analysis of Virtual Loss in Parallel MCTS 115

allelization in the selected problems. This outcome may be due to several factors. We
mention two of them. (1) Virtual loss enables parallel threads to search different parts
of the shared tree, thus reducing the synchronization overhead caused by using the
locks [SKW10]. However, when the algorithm is lock-free, there is no such overhead.
(2) Virtual loss disturbs the exploitation-exploration balance of the UCT algorithm.

8.6 Answer to the Second Part of RQ5

In this chapter, we addressed part two of RQ5.

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

We investigated the virtual loss method (i.e., an artificial increase in exploration)
for task-level parallelization of the lock-free Tree Parallelization algorithm (see Sec-
tion 8.1). Our preliminary results using an application from the High Energy Physic
domain shows that when a virtual loss is used for lock-free Tree Parallelization, there
is almost no improvement in performance. That is our provisional conclusion of part
two of RQ5. We showed that (1) the virtual loss method suffered from a high search
overhead and that (2) it suffered from a low time efficiency (see Section 8.5).

Originally virtual loss was designed to improve the performance of lock-based
Tree Parallelization for the game of Go and not for lock-free Tree Parallelization. If
this trend continues, then the new setting (without virtual loss) is (according to our
findings) to be preferred. Therefore, we recommend not to use virtual loss along with
the task-level parallelization of the lock-free Tree Parallelization algorithm to achieve
higher performance.

8.7 A Complete answer to RQ5

In Chapter 7 and Chapter 8, we answered RQ5 in two parts. Here we provide a com-
plete answer for RQ5.

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

Chapter 7 provided an answer for part one of RQ5. We investigated to what extent
a solution (i.e., adjusting the exploitation-exploration balance with respect to the tree
size) is for improving the quality of search in Ensemble UCT/Root Parallelization. Pre-
vious studies on Ensemble UCT provided inconclusive evidence on the effectiveness



116 8.7. A Complete answer to RQ5

of Ensemble UCT. Our results suggest that the reason for uncertainty (concerning the
controversy in the previous studies) lies in the exploitation-exploration trade-off in
relation to the size of the sub-trees (or ensemble size). Our results provide clear ev-
idence that the performance of Ensemble UCT will be improved by selecting higher
exploitation for smaller search trees given a fixed number of playouts or a fixed search
budget.

Chapter 8 presented an answer for part two of RQ5. We analyzed a solution (i.e.,
an artificial increase in exploration called virtual loss) for the lock-free Tree Paral-
lelization algorithm (see Section 8.1). Our preliminary results using an application
from the HEP domain showed that when a virtual loss is used for lock-free Tree Paral-
lelization, there is almost no improvement in performance. Moreover, we showed that
the virtual loss method suffered from (1) a high search overhead and (2) a low time
efficiency (see Section 8.5). As stated in Section 8.6, we recommend not to use vir-
tual loss along with the task-level parallelization of the lock-free Tree Parallelization
algorithm to achieve higher performance.


