
Structured parallel programming for Monte Carlo Tree Search
Mirsoleimani, S.A.

Citation
Mirsoleimani, S. A. (2020, June 17). Structured parallel programming for Monte Carlo Tree
Search. SIKS Dissertation Series. Retrieved from https://hdl.handle.net/1887/119358
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/119358
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/119358


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/119358 holds various files of this Leiden University 
dissertation. 
 
Author: Mirsoleimani, S.A. 
Title: Structured parallel programming for Monte Carlo tree search 
Issue Date: 2020-06-17 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/119358
https://openaccess.leidenuniv.nl/handle/1887/1�


7
Ensemble UCT Needs High

Exploitation

The last research question is RQ5 (see our research design in Section 1.7).

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

This research question is derived from the fact that the quality of search in MCTS
depends on the balance between exploitation (look in areas which appear to be
promising) and exploration (look in areas that have not been well sampled yet). The
most popular algorithm in the MCTS family which addresses this dilemma is UCT
[KS06] (see Section 2.2). Parallelization of MCTS intends to decrease the execution
time of the algorithm, but it also affects the exploitation-exploration balance. A set
of solutions has been developed to control the exploitation-exploration balance when
parallelizing MCTS to improve the quality of search [BPW+12, KPVvdH13]. We par-
tition the set of solutions into two parts, (1) adjusting the exploitation-exploration
balance with respect to the tree size, and (2) adjusting the exploitation-exploration
balance by an artificial increase in exploration, called virtual loss. We provide an an-
swer for RQ5 with respect to these two parts. This chapter 1 investigates the applica-
tion of the first solution to Root Parallelization. In Chapter 8, we analyze the use of
the second solution on the lock-free Tree Parallelization algorithm.

1 Based on:

• S. A. Mirsoleimani, A. Plaat, and H. J. van den Herik, and J. Vermaseren, Ensemble UCT Needs
High Exploitation, in Proceedings of the 8th International Conference on Agents and Artificial Intel-
ligence, 2016, pp. 370--376.



100 7.1. Ensemble UCT

Hence, we start investigating the adjustment of the exploitation-exploration bal-
ance with respect to the tree size. As with most sampling algorithms, one way to
improve the quality of the result is to increase the number of samples and thus en-
large the size of the MCTS tree. However, constructing a single large search tree with
t samples or playouts is a time-consuming process (see Subsection 2.3.2). A solution
for this problem is to create a group of n smaller trees that each has t/n playouts and
search these in parallel. This approach is used in Root Parallelization [CWvdH08a]
and in Ensemble UCT [FL11] (from now on we use these two names interchangeably).
In both Root Parallelization and Ensemble UCT, multiple independent UCT instances
are constructed. At the end of the search process, the statistics of all trees are com-
bined to yield the final result [BPW+12]. However, there is contradictory evidence
on the success of Ensemble UCT [BPW+12]. On the one hand, Chaslot et al. found
that, for Go, Ensemble UCT (with n trees of t/n playouts each) outperforms a plain
UCT (with t playouts) [CWvdH08a]. On the other hand, Fern and Lewis were not
able to reproduce this result in other domains [FL11]. They found situations where a
plain UCT outperformed Ensemble UCT given the same total number of playouts. We
aim to shed light on this controversy using an idea from [KPVvdH13]. Kuipers et al.
argued that when the tree size in MCTS is small, more exploitation should be chosen,
and with larger tree sizes, high exploration is suitable [KPVvdH13]. Therefore, the
main contribution of this chapter is to show that this idea can be used in Ensemble
UCT to improve its search quality by adjusting the Cp parameter depending on the
ensemble size.

The remainder of the chapter is organized as follows. Section 7.1 describes En-
semble UCT. Section 7.2 discusses related work. Section 7.3 gives the experimental
setup, Section 7.4 describes the experimental design, and Section 7.5 provides the
experimental results for this study.

7.1 Ensemble UCT

Ensemble UCT or the Root Parallelization algorithm belongs to the category of parallel
algorithms with more than one data structure (see Subsection 2.3.2). It creates an
ensemble of search trees (i.e., one for each thread). The trees are independent of
each other. When the search is over, they are merged, and the action of the best child
of the root is selected to be performed.

Ensemble UCT is given its place in the overview article by [BPW+12]. Table 7.1
shows different possible configurations for Ensemble UCT. Each configuration has its
benefits. The total number of playouts is t, and the size of the ensemble (number of
trees inside the ensemble) is n. It is assumed that n processors are available with n



Chapter 7. Ensemble UCT Needs High Exploitation 101

Table 7.1: Different possible configurations for Ensemble UCT. Ensemble size is n.

Number of playouts playout speedup playing strength

UCT
Ensemble UCT

n cores 1 core
Each tree Total

t t n · t 1 1
n Yes, known

t t
n t n 1 ?

equal to the ensemble size.
The third line of Table 7.1 shows the situation where Ensemble UCT has n · t

playouts in total, while plain UCT has only t playouts. In this case, there would be no
speedup in a parallel execution of the ensemble approach on n cores, but the larger
search effort would presumably result in a better search result. We call this use of
parallelism playing strength (see Subsection 2.5.2). The fourth line of Table 7.1 shows
a different possible configuration for Ensemble UCT. In this case, the total number of
playouts for both UCT and Ensemble UCT is equal to t. Thus, each core searches a
smaller tree of size t/n. The search will be n times faster (the ideal case). We call this
use of parallelism Playout speedup (see Subsection 2.5.1). It is important to note that
in this configuration both approaches take the same amount of time on a single core.
However, there is still the question whether we can reach any playing strength. This
question will be answered in Section 7.5 as the first part of RQ5.

7.2 Related Work

From the introduction of this chapter we know that [CWvdH08a] provided evidence
that, for Go, Root Parallelization with n instances of t/n iterations each outperforms
plain UCT with t iterations, i.e., Root Parallelization (being a form of Ensemble UCT)
outperforms plain UCT given the same total number of iterations. However, in other
domains, [FL11] did not find this result. [SKW10] also analyzed the performance of
root parallelization in detail. They found that a majority voting scheme gives better
performance than the conventional approach of playing the move with the greatest to-
tal number of visits across all trees. They suggested that the findings in [CWvdH08a]
are explained by the fact that Root Parallelization performs a shallower search, mak-
ing it easier for UCT to escape from local optima than the deeper search performed
by plain UCT (see also Section 8.2, in relation with part two).

In Root Parallelization each process does not build a search tree larger than the
sequential UCT. Moreover, each process has a local tree, which contains character-
istics that differ from tree to tree. Rather recently, [TD15] proposed a new idea by



102 7.3. Experimental Setup

distinguishing between tactical behavior and strategic behavior. They transferred the
RAVE (Rapid Action Value Estimate) ideas as developed by [GS07], from the selection
phase to the simulation phase. This implies that influencing the tree policy is changed
into also influencing the Monte-Carlo policy.

Fern and Lewis thoroughly investigated an Ensemble UCT approach in which mul-
tiple instances of UCT were run independently. Their root statistics were combined to
yield the final result [FL11]. So, our task is to explain the differences in their work
and that by [CWvdH08a].

7.3 Experimental Setup

Section 7.3.1 discusses our case study and Section 7.3.2 provides the details of hard-
ware.

7.3.1 The Game of Hex

The game of Hex is described in Subsection 2.4.1. Below follows complementary
information needed for this chapter. The 11×11 Hex board is represented by a disjoint-
set. This data structure has three operations MakeSet, Find and Union. In the best
case, the amortized time per operation is O (α (n)), where α (n) denotes the inverse
Ackermann function. The value of α (n) is less than 5 for all remotely practical values
of n [GI91].

In Ensemble UCT, each tree performs a completely independent UCT search with
a different random seed. To determine the next move to play, the number of wins and
visits of the root’s children of all trees are collected. For each child the total sum of
wins and the total sum of visits are computed. The child with the largest number of
wins/visits is selected.

The plain UCT algorithm and Ensemble UCT are implemented in the ParalellUCT
package. In order to make our experiments as realistic as possible, we use the Par-
allelUCT program for the game of Hex [MPVvdH14, MPvdHV15a]. This program is
highly optimized, and reaches a speed of more than 40,000 playouts per second per
core on a 2,4 GHz Intel Xeon processor (see Section 2.6).

7.3.2 Hardware

The results were measured on a dual socket machine with 2 Intel Xeon E5-2596v2
processors running at 2.40GHz. Each processor has 12 cores, 24 hyperthreads and 30
MB L3 cache. Each physical core has 256KB L2 cache. The pack TurboBoost frequency



Chapter 7. Ensemble UCT Needs High Exploitation 103

Table 7.2: The performance of Ensemble UCT vs. plain UCT based on win rate.

Approach Win (%)
Performance vs.

plain UCT
Playing
Strength

Ensemble UCT
< 50 Worse than No
= 50 As good as No
> 50 Better than Yes

is 3.2 GHz. The machine has 192GB physical memory. Intel’s icc 14.0.1 compiler is
used to compile the program.

7.4 Experimental Design

As Hex is a 2-player game, the playing strength of Ensemble UCT is measured by
playing versus a plain UCT with the same number of playouts. We expect to see an im-
provement for the Ensemble UCT playing strength against plain UCT by choosing 0.1
as the value of Cp (high exploitation) when the number of playouts is small. We start
our experiments by setting the value of Cp to 1.0 for plain UCT (high exploration).
Note that for the purpose of this research, it is not essential to find the optimal value
of Cp, but to show the difference in effect on the performance when Cp is varying.

The board size for Hex is 11×11. In our experiments, the maximum ensemble size
is 28 = 256. Thus, for 217 playouts, when the ensemble size is 1, there are 217 playouts
per tree and when the ensemble size is 26 = 64 the number of playouts per tree is 211.
Throughout the experiments, the ensemble size is multiplied by a factor of two.

7.5 Experimental Results

Our experimental results show the percentage of wins for Ensemble UCT with a par-
ticular ensemble size and a particular Cp value. In Figure 7.1 results are shown, with
Cp =0 (only exploitation) and ensemble size equals 8. Each data point represents the
average of 200 games with a corresponding 99% confidence interval. Table 7.2 sum-
marizes how the performance of Ensemble UCT versus plain UCT is evaluated. The
concept of high exploitation for small UCT tree is significant if Ensemble UCT reaches
a win rate of more than 50%. (Section 7.5 will show that this is indeed the case.)

Below we provide our experimental results. We distinguish them into (A) hidden
exploration in Ensemble UCT and (B) exploitation-exploration trade-off for Ensemble
UCT.



104 7.5. Experimental Results

0 20 40 60 80 100 120
Moves(Children)

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r 
o
f 
V
is

it
s

Ensemble UCT
Plain UCT

Figure 7.1: The number of visits for root’s children in Ensemble UCT and plain UCT.
Each child represents an available move on the empty Hex board with size 11 × 11.
Both Ensemble UCT and plain UCT have 80,000 playouts and Cp = 0. In Ensemble
UCT, the size of the ensemble is 8.

A: Hidden Exploration in Ensemble UCT

It is important to understand that Ensemble UCT has a hidden exploration factor by
nature. Two reasons are: (1) each tree in Ensemble UCT is independent, and (2)
an ensemble of trees contains more exploration than a single UCT search with the
same number of playouts would have. The hidden exploration is because each tree in
Ensemble UCT searches in different areas of the search space.

In Figure 7.1 the difference in exploitation-exploration behavior of the Ensemble
UCT and plain UCT is shown in the number of visits that one of the root’s children
counts when using one of the algorithmic approaches with Cp = 0. Both Ensemble
UCT [BPW+12] and plain UCT [BPW+12] have 80,000 of playouts. In each exper-
iment, a search tree for selecting the first move on an empty board is constructed.
Each of the children corresponds to a possible move of an empty Hex board (i.e.,
121 moves). Ensemble UCT is more explorative compared to plain UCT if it generates
more data points with more distance from the x-axis than plain UCT. In Ensemble
UCT the number of playouts is distributed among 8 separate smaller trees. Each of
the trees has 10,000 playouts and for each child the number of visits is collected.
When the value of Cp is 0, which means the exploration part of the UCT formula is
turned off, all possible moves in the Ensemble UCT receive at least a few visits. While
for plain UCT with 80,000 playouts and Cp = 0 there are many of the moves with



Chapter 7. Ensemble UCT Needs High Exploitation 105

20 21 22 23 24 25 26 27 28

Ensemble Size

0

10

20

30

40

50

60

Pe
rc

e
n
ta

g
e
 W

in
s

cp=0.1

cp=1.0

(a) The total number of playouts is 217 =

131072

20 21 22 23 24 25 26 27 28

Ensemble Size

0

10

20

30

40

50

60

Pe
rc

e
n
ta

g
e
 W

in
s

cp=0.1

cp=1.0

(b) The total number of playouts is 218 =

262144

Figure 7.2: The percentage of wins for ensemble UCT is reported. The value of Cp for
plain UCT is always 1.0 when playing against Ensemble UCT. To the left few large
UCT trees, to the right many small UCT trees.

no visits. The data points when using plain UCT are closer to the x-axis compared to
Ensemble UCT. However, for Ensemble UCT the peak is 2400, while it is 4000 visits
for plain UCT. It means that plain UCT is more exploitative.

B: Exploitation-Exploration trade-off for Ensemble UCT

Below we discuss two experiments: (B1) an experiment with 217 playouts and (B2)
an experiment with 218 playouts. In Figures 7.2a and 7.2b, from the left side to the
right side of the graph, the ensemble size (the number of search trees per ensemble)
increases by a factor of two, and the number of playouts per tree (tree size) decreases
by the same factor. Thus, at the right-hand side of the graph, we have the largest
ensemble with the smallest trees. The total number of playouts always remains the
same throughout an experiment for both Ensemble UCT and plain UCT. The value of
Cp for plain UCT is always 1.0, which means high exploration.

B1: Experiment with 217 playouts

Figure 7.2a shows the relations between the value of Cp and the ensemble size, when
both plain UCT and Ensemble UCT have the same number of total playouts. More-
over, Figure 7.2a shows the performance of Ensemble UCT for different values of Cp.
It shows that when Cp = 1.0 (highly explorative) Ensemble UCT performs as good
as (or mostly worse than) plain UCT. When Ensemble UCT uses Cp = 0.1 (highly
exploitative) then for small ensemble sizes (large sub-trees) the performance of En-



106 7.6. Answer to the First Part of RQ5

semble UCT sharply drops down. By increasing the ensemble size (smaller sub-trees),
the performance of Ensemble UCT keeps improving until it becomes as good as or
even better than plain UCT.

B2: Experiment with 218 playouts

A second experiment is conducted using 218 playouts to investigate the effect of en-
larging the number of playouts on the performance of Ensemble UCT. Figure 7.2b
shows that when for this large number of playouts the value of Cp = 1.0 is high (i.e.,
highly explorative) the performance of Ensemble UCT cannot be better than plain
UCT, while for a small value of Cp = 0.1 (i.e., highly exploitative) the performance of
Ensemble UCT is almost always better than plain UCT when the ensemble size is 25

or larger. Hence, our conclusion is that there exists a marginal playing strength. The
potential playout speedup could be up to the ensemble size if a sufficient number of
processing cores is available.

7.6 Answer to the First Part of RQ5

This chapter aims at answering the first part of RQ5 (i.e., adjusting the exploitation-
exploration balance with respect to the tree size) of the following question.

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

The chapter described an empirical study on Ensemble UCT with different sets of
configurations for the ensemble size, the tree size, and the exploitation-exploration
trade-off. Previous studies on Ensemble UCT/Root Parallelization provided inconclu-
sive evidence on the effectiveness of Ensemble UCT (see the beginning of the chapter).

Our results suggest that the reason for uncertainty (concerning the controversy in
the previous studies) lies in the exploitation-exploration trade-off in relation to the
size of the sub-trees. With this knowledge, it is explainable that [CWvdH08a] found
an improvement in their Root Parallelization for Go (which has big search trees for
small ensemble sizes where exploration can open new perspectives). For [FL11], it is
also explainable that they did not arrive at the same success in other domains (which
have small search trees for large ensemble sizes). Our experiments for Ensemble UCT
now confirm earlier ideas as provided by [KPVvdH13] on this topic. In summary, our
results provide clear evidence that the performance of Ensemble UCT is improved by
selecting higher exploitation for smaller search trees given a fixed time-bound or fixed
number of simulations.



Chapter 7. Ensemble UCT Needs High Exploitation 107

Our work is particularly motivated, in part, by the observation in [CWvdH08a]
of super-linear speedup in Root Parallelization. Finding super-linear speedup in two-
agent games occurs infrequently. Most studies in parallel game-tree search report
a battle against search overhead, communication overhead (e.g., [Rom01]), syn-
chronization overhead, and deployment overhead (see, Chapter 1). For super-linear
speedup to occur, the parallel search must search fewer nodes than the sequential
search.




