
Structured parallel programming for Monte Carlo Tree Search
Mirsoleimani, S.A.

Citation
Mirsoleimani, S. A. (2020, June 17). Structured parallel programming for Monte Carlo Tree
Search. SIKS Dissertation Series. Retrieved from https://hdl.handle.net/1887/119358
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/119358
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/119358


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/119358 holds various files of this Leiden University 
dissertation. 
 
Author: Mirsoleimani, S.A. 
Title: Structured parallel programming for Monte Carlo tree search 
Issue Date: 2020-06-17 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/119358
https://openaccess.leidenuniv.nl/handle/1887/1�


6
Pipeline Pattern for Parallel MCTS

This chapter1 addresses RQ4 which is mentioned in Section 1.7.

• RQ4: What are the possible patterns for task-level parallelization in MCTS, and
how do we use them?

In recent years there has been much interest in the Monte Carlo Tree Search
(MCTS) algorithm. In 2006 it was a new, adaptive, randomized optimization algo-
rithm [Cou06, KS06]. In fields as diverse as Artificial Intelligence, Operations Re-
search, and High Energy Physics, research has established that MCTS can find valu-
able approximate answers without domain-dependent heuristics [KPVvdH13]. The
strength of the MCTS algorithm is that it provides answers with a random amount
of error for any fixed computational budget [GBC16]. Much effort has been put into
the development of parallel algorithms for MCTS to reduce the running time. The ef-
forts are applied to a broad spectrum of parallel systems; ranging from small shared-
memory multi-core machines to large distributed-memory clusters. In the last years,
parallel MCTS played a major role in the success of AI by defeating humans in the
game of Go [SHM+16, HS17].

The general MCTS algorithm has four operations inside its main loop (see Al-
gorithm 2.1). This loop is a good candidate for parallelization. Hence, a signifi-
cant effort has been put into the development of parallelization methods for MCTS

1 Based on:

• S. A. Mirsoleimani S., H. J. van den Herik, A. Plaat and J. Vermaseren, Pipeline Pattern for Parallel
MCTS, in Proceedings of the 10th International Conference on Agents and Artificial Intelligence -
Volume 2, 2018, pp. 614--621.



86 6.1. Data Dependencies Challenges

[CWvdH08a, YKK+11, FL11, SP14, MPvdHV15b]. In Chapter 4, we defined Iteration-
Level Parallelism (ILP) to reach task-level parallelization for MCTS [MPvdHV15a].
In ILP the computation associated with each iteration is assumed to be independent.
Therefore, we can assign a chunk of iterations as a separate task to each parallel
thread for execution on separate processors (see Section 4.4). Close analysis has
learned that each iteration in the chunk can also be decomposed into separate opera-
tions for parallelization. Based on this idea, we introduce Operation-Level Parallelism
(OLP). The main point is to assign each operation of MCTS to a separate task for exe-
cution by separate processors. This type of task is called Operation-Level Task (OLT).
This leads to flexibility in managing the control flow of the operations in the MCTS al-
gorithm. The main contribution of this chapter is introducing a new algorithm based
on the Pipeline Pattern for Parallel MCTS (3PMCTS) and showing its benefits.

Definition 6.1 (Operation-Level Task) The operation-level task is a type of task that
contains one of the MCTS operations.

Definition 6.2 (Operation-Level Parallelism) Operation-level parallelism is a type of
parallelism that enables task-level parallelization to assign each of the MCTS operations
inside an iteration as a separate task for execution on separate processors.

The remainder of the chapter is organized as follows. In Section 6.1 the data
dependencies challenges are described. Section 6.2 provides necessary definitions and
explanations for the design of 3PMCTS. Section 6.3 gives the explanations for the
implementation the 3PMCTS algorithm, Section 6.4 shows the experimental setup,
Section 6.5 describes the experimental design, and Section 6.6 gives the experimental
results.

6.1 Data Dependencies Challenges

One of the obstacles for parallelizing MCTS is the two types of data dependencies that
exist among the steps in the MCTS algorithm. Parallel execution of the steps without
considering related data dependencies may cause danger of getting wrong results. In
the following, we explain these two types of data dependencies formally based on
two control flow patterns: sequence and iteration.

6.1.1 Loop Independent Data Dependency

Each iteration of the MCTS algorithm has a sequence pattern. As it is shown in Figure
1.2, function SELECT will execute before function EXPAND, which will execute before
function PLAYOUT. In the sequence pattern for MCTS the algorithm text ordering will



Chapter 6. Pipeline Pattern for Parallel MCTS 87

be followed, because there are data dependencies between the operations. We define
this type of data dependency as Operation-Level Dependency (OLD).

Definition 6.3 (Sequence Pattern) A sequence pattern is an ordered list of tasks that
are executed in a specific order [MRR12]. Each task is finished before the one after it
starts.

The result of violating the operation-level dependencies would be an incorrect al-
gorithm. Therefore, all the approaches for parallelizing MCTS should not break this
type of dependency. The consequence of accepting this limitation is that the opportu-
nities for parallelization are restricted only to the iterations of the main loop. There
is also a second type of data dependencies among the iterations that we will address
in the next subsection.

6.1.2 Loop Carried Data Dependency

The main loop of the MCTS algorithm has an iteration pattern. The body of the loop
depends on previous invocations of itself because the algorithm needs the past up-
dates to make an optimal selection in the future. We define this type of data depen-
dency as Iteration-Level Dependency (ILD).

Definition 6.4 (Iteration Pattern) In an iteration pattern, a condition is evaluated. If
it is true, a task is executed, then the condition is re-evaluated, and the process repeats
until the condition becomes false.

The result of violating the iteration-level dependencies would be the search over-
head in parallelized MCTS because a new selection in one thread may not have ac-
cess to the updates from other threads. Therefore, the parallel algorithm conducts
repeated or unnecessary searches. All the approaches for parallelizing MCTS should
break this type of dependency, otherwise parallelization is not possible [KUV15]. The
ideal scenario is to achieve parallelism while minimizing the search overhead. In the
next subsection, we introduce our solution to reach this goal.

6.1.3 Why a Pipeline Pattern?

In the previous chapter, we have introduced the fork-join pattern for parallel MCTS.
This parallel pattern provides structured parallelism for MCTS. However, we disrupt
the decision making process in the MCTS algorithm by using the fork-join pattern. The
key element of the MCTS algorithm is the UCT formula which controls the level of
exploitation versus exploration to make the best decision in each iteration of the al-
gorithm. The UCT formula requires updates from the previous iterations; however,



88 6.2. Design of 3PMCTS

SelectBuffer

Expand Buffer

PlayoutBuffer

Backup

(a)

SelectBuffer

Expand

BufferPlayout Playout

Buffer

Backup

(b)

Figure 6.1: (6.1a) Flowchart of a pipeline with sequential stages for MCTS. (6.1b)
Flowchart of a pipeline with parallel stages for MCTS.

parallelization based on the fork-join pattern cannot fulfill this requirement. The
pipeline pattern is the only parallel pattern that allows us to handle the challenge
of data dependencies and to avoid the problem of search overhead to some extent.
In the next section, we provide the details of the proposed algorithm for parallelizing
MCTS based on the pipeline pattern.

Definition 6.5 (Pipeline Pattern) A pipeline pattern is a pattern of computation in
which a set of processing elements is connected in series, generally so that the output of
one element is the input of the next one. The elements of a pipeline are often executed
concurrently.

6.2 Design of 3PMCTS

In this section, we describe our proposed method for parallelizing MCTS. Section
6.2.1 describes how the pipeline pattern is applied in MCTS. Section 6.2.2 provides
the 3PMCTS algorithm.

6.2.1 A Pipeline Pattern for MCTS

Below we describe how the pipeline pattern is used as a building block in the design
of 3PMCTS. Figure 6.1 shows two types of pipelines for MCTS. The inter-stage buffers
are used to pass information between the stages. When a stage of the pipeline com-
pletes its computation, it sends a path of nodes from the search to the next buffer.



Chapter 6. Pipeline Pattern for Parallel MCTS 89

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t0

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t1

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t2

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t3

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t4

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t5

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t6

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t7

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t8 [T]

C1(S) C2(S) C3(S) C4(S)

C1(E) C2(E) C3(E) C4(E)

C1(P ) C2(P ) C3(P ) C4(P )

C1(B) C2(B) C3(B) C4(B)

Figure 6.2: Scheduling diagram of a pipeline with sequential stages for MCTS. The
computations for stages are equal.

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t0

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t1

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t2

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t3

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t4

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t5

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t6

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t7

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t8

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t9

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t10

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t11 [T]

C1(S) C2(S) C3(S) C4(S)

C1(E) C2(E) C3(E) C4(E)

C1(P ) C2(P ) C3(P ) C4(P )

C1(B) C2(B) C3(B) C4(B)

Figure 6.3: Scheduling diagram of a pipeline with sequential stages for MCTS. The
computations for stages are not equal.

The subsequent stage picks a path from the buffer and starts its computation. Here
we introduce two possible types of pipelines for MCTS.

1. Pipeline with sequential stages: Figure 6.1a shows a pipeline with sequential
stages for MCTS. The idea is to map each MCTS operation to pipeline stages
such that each stage of the pipeline computes one operation. Figure 6.2 illus-
trates how the pipeline executes the MCTS operations over time. Let Ci repre-
sent a multiple-step computation on path i. Ci(j) is the jth step of the compu-
tation in MCTS (i.e., j ∈ O = {S, E, P, B} and the elements of the set O are
the first letters of the MCTS operations). Initially, the first stage of the pipeline
performs C1(S). After the step has been completed, the second stage of the
pipeline receives the first path and computes C1(E) while the first stage com-
putes the first step of the second path, C2(S). Next, the third stage computes
C1(P ), while the second stage computes C2(E) and the first stage C3(S). Each



90 6.2. Design of 3PMCTS

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t0

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t1

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t2

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t3

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t4

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t5

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t6

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t7

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t8 [T]

C1(S) C2(S) C3(S) C4(S)

C1(E) C2(E) C3(E) C4(E)

C1(P ) C3(P )

C2(P ) C4(P )

C1(B) C2(B) C3(B) C4(B)

Figure 6.4: Scheduling diagram of a pipeline with parallel stages for MCTS. Using
parallel stages create load balancing.

stage of the pipeline takes the same amount of time to do its work, say T . Fig-
ure 6.2 shows that the expected execution time for 4 paths in an MCTS pipeline
with four stages is approximately 7×T . In contrast, the sequential version takes
approximately 16 × T because each of the 4 paths must be processed one af-
ter another. The pipeline pattern works best if the operations performed by the
various stages of the pipeline are all about equally computationally intensive. If
the stages in the pipeline vary in computational effort, the slowest stage creates
a bottleneck for the aggregate throughput. In other words, when there are a
sufficient number of processors for each pipeline stage, the speed of a pipeline
is approximately equal to the speed of its slowest stage. For example, Figure
6.3 shows the scheduling diagram that occurs when the PLAYOUT stage takes
2× T units of time while others take T units of time. Figure 6.3 shows that the
expected execution time for 4 paths is approximately 11× T .

2. Pipeline with parallel stages: Figure 6.1b shows a pipeline for MCTS with two
parallel PLAYOUT stages. Using two PLAYOUT stages in the pipeline results in
an overall speed of approximately T units of time per path as the number of
paths grows. Figure 6.4 shows that the MCTS pipeline is perfectly balanced by
using two PLAYOUT stages. The expected execution time for 4 paths is approxi-
mately 8 × T . Therefore, introducing parallel stages improves the scalability of
the MCTS pipeline.



Chapter 6. Pipeline Pattern for Parallel MCTS 91

Figure 6.5: The 3PMCTS algorithm with a pipeline that has three parallel stages (i.e.,
EXPAND, RANDOMSIMULATION, and EVALUATION).

6.2.2 Pipeline Construction

The pseudocode of MCTS is shown in Algorithm 2.1. Each operation in MCTS consti-
tutes a stage of the pipeline in 3PMCTS. In contrast to the existing methods, 3PMCTS
is based on OLP for parallelizing MCTS. The pipeline pattern can satisfy the operation-
level dependencies among the OLTs.

The potential concurrency is also exploited by assigning each stage of the pipeline
to a separate processing element for execution on separate processors. If the pipeline
has only sequential stages then the speedup is limited to the number of stages.2 How-
ever, in MCTS, the operations are not equally computationally intensive, e.g., the
PLAYOUT operation (random simulations plus evaluation of a terminal state) could
be more computationally expensive than other operations. Therefore, 3PMCTS uses
a pipeline with parallel stages. Introducing parallel stages makes 3PMCTS more scal-
able.

Figure 6.5 depicts one of the possible pipeline constructions for 3PMCTS. We split
the PLAYOUT operation into two stages to achieve more parallelism (See Section
1.2). The five stages run the MCTS operations SELECT, EXPAND, RANDOMSIMULA-
TION, EVALUATION, and BACKUP, in that order. The SELECT stage and BACKUP stage
are serial. The three middle stages (EXPAND, RANDOMSIMULATION, and EVALUATION)
are parallel and do the most time-consuming part of the search. A serial stage does
process one token at a time. A parallel stage is able to process more than one token.
Therefore, it needs more than one in-flight token. A token represents a path of nodes
inside the search tree during the search.

2This holds when the operations performed by the various stages are all about equally computationally
intensive.



92 6.3. Implementation Considerations

The pipeline depicted in Figure 6.5 is one of the possible constructions for the
3PMCTS algorithm. Each of the five stages could be either serial or parallel. Therefore,
3PMCTS provides a great level of flexibility. For example, a pipeline could have a serial
stage for the SELECT operation and a parallel stage for the BACKUP operation. In our
experiments we use this construction (see Section 6.6).

6.3 Implementation Considerations

We have implemented the proposed 3PMCTS algorithm in the ParallelUCT package
[MPvdHV15a]. The ParallelUCT package is an open source library for parallelization
of the UCT algorithm (see Section 2.6). It uses task-level parallelism to implement
different parallelization methods for MCTS. We have also used an algorithm called
grain-sized control parallel MCTS (GSCPM) to measure the performance of ILP for
MCTS. The GSCPM algorithm creates tasks based on the fork-join pattern [MRR12].
More details about this algorithm can be found in [MPvdHV15a]. Both 3PMCTS and
GSCPM are implemented by the TBB parallel programming library [Rei07] and they
are available online as part of the ParallelUCT package. In our implementation for
the 3PMCTS algorithm, we can specify the number of in-flight tokens. This is equal to
the number of tasks for the GSCPM algorithm. The details of the implementation are
provided in Appendix B.

6.4 Experimental Setup

The performance of 3PMCTS is measured by using a High Energy Physics (HEP) ex-
pression simplification problem [KPVvdH13, RVPvdH14]. Our setup follows closely
[KPVvdH13]. We discuss the case study in Subsection 6.4.1, the hardware in Subsec-
tion 6.4.3, and the performance metrics in Subsection 6.4.2.

6.4.1 Horner Scheme

Our case study is in the field of Horner’s rule, which is an algorithm for polynomial
computation that reduces the number of multiplications and results in a computation-
ally efficient form. For a polynomial in one variable

p(x) = anx
n + an−1x

n−1 + · · ·+ a0, (6.1)

the rule simply factors out powers of x. Thus, the polynomial can be written in the
form

p(x) = ((anx+ an−1)x+ . . . )x+ a0. (6.2)



Chapter 6. Pipeline Pattern for Parallel MCTS 93

This representation reduces the number of multiplications to n and has n additions.
Therefore, the total evaluation cost of the polynomial is 2n. Horner’s rule can be
generalized for multivariate polynomials. The order of choosing variables may be
different, each order of the variables is called a Horner scheme, see Section 2.4.2.

We are using a polynomial from HEP domain, namely HEP(σ) expression with
15 variables to study the results of 3PMCTS [Ver13, KPVvdH13]. The MCTS is used
to find an order of the variables that gives efficient Horner schemes [RVPvdH14].
The root node has n children, with n the number of variables. The children of other
nodes represent the remaining unchosen variables in order. Starting at the root node,
a path of nodes (variables) inside the search tree is selected. The incomplete order is
completed with the remaining variables added randomly (i.e., RANDOMSIMULATION).
The complete order is then used for Horners method followed by CSE to optimize the
expression. The number of operations (i.e., ∆) in this optimized expression is counted
(i.e., EVALUATION).

6.4.2 Performance Metrics

In our experiments, the performance is reported by (A) playout speedup or speedup
(see Eq. 2.5) and (B) playing strength or the number of operations in the optimized
expression (see Paragraph B2 of Subsection 2.5.2). A lower value is desirable for the
second metric when we compare higher numbers of tasks. We defined both metrics in
Section 2.5. Here we operationalize the definitions. The scalability is the trend that
we observe for these metrics when the number of resources (threads) is increasing.

6.4.3 Hardware

Our experiments were performed on a dual socket Intel machine with 2 Intel Xeon
E5-2596v2 CPUs running at 2.4 GHz. Each CPU has 12 cores, 24 hyperthreads, and 30
MB L3 cache. Each physical core has 256KB L2 cache. The peak TurboBoost frequency
is 3.2 GHz. The machine has 192GB physical memory. We compiled the code using
the Intel C++ compiler with a -O3 flag.

6.5 Experimental Design

In our experiments, the maximum number of playouts is 8192. Throughout the ex-
periments, the number of threads is multiplied by a factor of two. Each data point
represents the average of 21 runs.



94 6.6. Experimental Results

Table 6.1: Sequential time in seconds when Cp = 0.5.

Processor Num. Playouts Time (s)
CPU 8192 215.72± 4.12

1 2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96

Number of Tasks

2

4

6

8

10

12

14

16

18

20

22

24
S
p
e
e
d
u
p

GSCPM

3PMCTS

Figure 6.6: Playout-speedup as function of the number of tasks (tokens). Each data
point is an average of 21 runs for a search budget of 8192 playouts. The constant Cp

is 0.5. Here a higher value is better.

6.6 Experimental Results

In this section, we first provide the experimental results on the performance and
the scalability of 3PMCTS in Subsection 6.6.1. In Subsection 6.6.2, the experimental
results on the flexibility of task decomposition in 3PMCTS are shown and discussed.

6.6.1 Performance and Scalability of 3PMCTS

In this section, the performance of 3PMCTS is measured. Table 6.1 shows the sequen-
tial time to execute the specified number of playouts.

Figure 6.6 shows the playout-speedup for both 3PMCTS and GSCPM, as a function
of the number of tasks (from 1 to 4096). The search budget for both algorithms is
8192 playouts. The 3PMCTS algorithm uses a pipeline with five stages for MCTS
operations. Four stages are parallel; the SELECT stage is chosen to be serial (see the
end of Section 6.2.2). A playout-speedup close to 21 on a 24-core machine is observed
for both algorithms. From our results, we may provisionally conclude that 3PMCTS
(a) for 4 to 32 parallel tasks, shows a speedup less than GSCPM and (b) for 64 to
512 parallel tasks, shows a better speedup than the GSCPM algorithm (see Figure
6.6). At the same time, 3PMCTS also allows flexible control of the parallel or serial



Chapter 6. Pipeline Pattern for Parallel MCTS 95

1 2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96

Number of Tasks

4100

4150

4200

4250

4300

4350

N
u
m
b
e
r 
o
f 
O
p
e
ra
ti
o
n
s

Cp=0.01

Cp=0.1

Cp=0.5

Cp=1

(a) 3PMCTS

1 2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96

Number of Tasks

4100

4150

4200

4250

4300

4350

N
u
m
b
e
r 
o
f 
O
p
e
ra
ti
o
n
s

Cp=0.01

Cp=0.1

Cp=0.5

Cp=1

(b) GSCPM

1 2 4 8 16 32 64 12
8
25
6

51
2
10
24

20
48

40
96

Number of Tasks

4100

4150

4200

4250

4300

4350

4400

4450

N
u
m
b
e
r 
o
f 
O
p
e
ra
ti
o
n
s

GSCPM,Cp=0.5

3PMCTS,Cp=0.5

Root Par.,Cp=0.01

(c) Root Parallelization

Figure 6.7: Number of operations as function of the number of tasks (tokens). Each
data point is an average of 21 runs for a search budget of 8192 playouts. Here a lower
value is better.

execution of MCTS operations (e.g., the SELECT stage is sequential and the BACKUP

stage is parallel in our case), something that GSCPM cannot provide.
Figure 6.7a and 6.7b show the results of the optimization in the number of opera-

tions in the final expression for both algorithms. These results show consistency with
the findings in [KPVvdH13, RVPvdH14]. From our results, we may arrive at three con-
clusions. (1) When MCTS is sequential (i.e., the number of tasks is 1), for small values
of Cp, such that MCTS behaves exploitively, the method gets trapped in local minima,
and the number of operations is high. For larger values of Cp, such that MCTS be-
haves exploratively, lower values for the number of operations are found. (2) When
MCTS is parallel, for small numbers of tasks (from 2 to 8), it turns out to be good to
choose a high value for the constant Cp (e.g., 1) for both 3PMCTS and GSCPM. With
higher numbers of tasks, a lower value for Cp in the range [0.5; 1) seems suitable
for both algorithms. Figure 6.7 also shows that 3PMCTS can find a lower number of
operations for 8, 16, and 32 tasks when Cp = 0.5. (3) When both algorithms find the
same number of operations, the one with higher speedup is better. For instance, the
3PMCTS algorithm finds the same number of operations compared to GSCPM for 64
tasks, but it has higher speedup when Cp = 0.5. Note that these values hold for a
particular polynomial and that different polynomials give different optimal values for
Cp and number of tasks.

A comparison to Root Parallelization is illustrated in Figure 6.7c. Both 3PMCTS
and GSCPM belong to the category of Tree Parallelization. For Cp = 0.01, Root Par-
allelization finds a lower number of operations for both 16 and 32 tasks compared
to the two other methods. However, increasing the number of tasks causes Root Par-
allelization to provide a much higher number of operations. From these results, we
may conclude that Root Parallelization could also be a feasible choice in this domain.



96 6.6. Experimental Results

Table 6.2: Definition of layouts for 3PMCTS.

Layout Name Num. Parallel Stage Seq. Stage
3PMCTS(5-4-S) 4 SELECT

3PMCTS(5-4-B) 4 BACKUP

Table 6.3: Details of experiment to show the flexibility of 3PMCTS.

Cp Player a Player b

0.01
GSCPM

GSCPM with 8 tasks3PMCTS(5-4-S)
3PMCTS(5-4-B)

1
GSCPM

GSCPM with 8 tasks3PMCTS(5-4-S)
3PMCTS(5-4-B)

Kuipers et al. remarked that Tree Parallelization would give a result that is sta-
tistically a little bit inferior to a run with sequential MCTS with the same number
of playouts due to the violation of iteration-level dependency that produces search
overhead [KUV15]. It is clear from our results that the effectiveness of any paral-
lelization method for MCTS depends heavily on the choice of three parameters: (1)
the Cp constant, (2) the number of playouts, and (3) the number of tasks. If we select
these parameters carefully, it is possible to overcome the search overhead to some
extent. Furthermore, the 3PMCTS algorithm provides the flexibility of managing the
execution (serial or parallel) of different MCTS operations that helps us even more to
achieve this goal.

6.6.2 Flexibility of Task Decomposition in 3PMCTS

The most important feature of 3PMCTS is the flexibility in alternating each of its
stages from being parallel to be serial and vice versa. Table 6.2 shows two of the
possible layouts for 3PMCTS. In each layout, the first number inside the parentheses
shows the total number of stages in the pipeline. The second number is the number
of parallel stages, and the last letter identifies which one of the stages is serial. For ex-
ample, one of the layouts for 3PMCTS is 3PMCTS(5-4-S). This layout has five stages,
four of which are parallel and the serial stage is SELECT.

An Experiment is designed to present the effect of flexibility on the behavior of
3PMCTS. Table 6.3 gives the details of the experiment with the game Hex (11 × 11

board). Both players use the same Cp value. In all test cases, the opponent player is



Chapter 6. Pipeline Pattern for Parallel MCTS 97

16 32 64 12
8

25
6

51
2

10
24

Number of Tasks

0
10
20
30
40
50
60
70
80
90

W
in
(%

)

GSCPM
3PMCTS(5-4-S)
3PMCTS(5-4-B)

(a) Cp=0.01

16 32 64 12
8

25
6

51
2

10
24

Number of Tasks

0
10
20
30
40
50
60
70
80
90

W
in
(%

)

GSCPM
3PMCTS(5-4-S)
3PMCTS(5-4-B)

(b) Cp=1

Figure 6.8: Percentage of win as function of the number of tasks (tokens). Each data
point is the outcome of 100 rounds of playing between the two opponent players.
Each player has a search budget of 220 = 1, 048, 576 playouts in each round. Here a
higher value is better.

GSCPM with eight tasks.
Figure 6.8 illustrates the results of the experiment. 3PMCTS(5-4-S) strongly de-

feats GSCPM for Cp = 0.01 while 3PMCTS(5-4-B) does not show such a behavior.
From the experiment we may conclude that when the selection step is sequential,
flexibility can solve search overhead to a large extent.

6.7 Answer to RQ4

This chapter proposes solutions for the following question.

• RQ4: What are the possible patterns for task-level parallelization in MCTS, and
how do we use them?

Our research in the previous chapter showed that the task-level parallelization
method combined with lock-free data structure for the GSCPM algorithm achieved a
very good performance and scalability on multi-core and many-core processors (see
Section 5.7).

The GSCPM algorithm was design-based on the iteration-level parallelism. Hence,
it relies on the iteration pattern (see Section 4.4) that violates the iteration-level data
dependencies (see Subsection 6.1.2). The result of this violation is search overhead.
Therefore, scalability is only one issue, although it is an important one.



98 6.7. Answer to RQ4

The second issue is to handle the search overhead. Thus, we designed the 3PMCTS
algorithm based on operation-level parallelism which relies on the pipeline pattern
with the aim to avoid violating the iteration-level data dependencies (see Section
6.2). Hence, we managed to control the search overhead using the flexibility of task
decomposition.

Based on our findings in this chapter we may conclude that different pipeline
constructions are able to provide higher levels of flexibility that allow fine-grained
managing of the execution of operations in MCTS (see Subsection 6.6.2). This is the
answer to RQ4.


