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5
A Lock-free Algorithm for Parallel

MCTS

This chapter1 addresses RQ3 which is mentioned in Section 1.7.

• RQ3: How can we design a correct lock-free tree data structure for parallelizing
MCTS?

One of the approaches for parallelizing MCTS for shared-memory systems is Tree
Parallelization. The method is called so because a search tree is shared among multi-
ple parallel threads. Each iteration of the MCTS has four operations (SELECT, EXPAND,
PLAYOUT, and BACKUP). They are executed on the shared tree simultaneously. The
MCTS algorithm uses the tree for storing the states of the domain and guiding the
search process. The basic premise of the tree in MCTS is relatively straightforward:
(a) nodes are added to the tree in the same order as they were expanded and (b)
nodes are updated in the tree in the same order as they were selected. Therefore the
following holds, if two parallel threads are performing the task of adding (EXPAND)
or updating (BACKUP) the same node, there are potentially race conditions. Thus, one
of the main challenges in Tree Parallelization is the prevention of race conditions.

In a parallel program a race condition shows a non-deterministic behavior that is
generally considered to be a programming error [Wil12]. This behavior occurs when

1 Based on:

• S. A. Mirsoleimani, H. J. van den Herik, A. Plaat and J. Vermaseren, A Lock-free Algorithm for Paral-
lel MCTS, in Proceedings of the 10th International Conference on Agents and Artificial Intelligence
- Volume 2, 2018, pp. 589--598.
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parallel threads perform operations on the same memory location without proper
synchronization and one of the memory operations is a write. A program with a race
condition may operate correctly sometimes and fail other times. Therefore, proper
synchronization helps to coordinate threads to obtain the desired runtime order and
avoid a race condition.

There are two lock-based methods to create synchronization in Tree Paralleliza-
tion: (1) a coarse-grained lock, (2) a fine-grained lock [CWvdH08a].

Both methods are straightforward to design and to implement. However, locks are
notoriously bad for parallel performance, because other threads have to wait until the
lock is released. This is called synchronization overhead. The fine-grained lock has less
synchronization overhead than the coarse-grained lock [CWvdH08a]. Yet, even fine-
grained locks are often a bottleneck when many threads try to acquire the same lock.
Hence, a lock-free tree data structure for parallelized MCTS is desirable and has the
potential for maximal concurrency. A tree data structure is lock-free when more than
one thread must be able to access its nodes concurrently. Here, the problem is that
the development of a lock-free tree for parallelized MCTS is shown to be non-trivial.
The difficulty of designing an adequate data structure stimulated the researchers in
the community to come up with a spectrum of ideas [EM10, BG11]. As a case in
point, Enzenberger et al. compromised over the correctness of computation. They
accepted faulty results to have a lock-free search tree [EM10]. Below, we propose a
new lock-free tree data structure without compromises together with a corresponding
algorithm that uses the tree for parallel MCTS.

The remainder of this chapter is organized as follows. Section 5.1 describes the
shared data structure challenge. Section 5.2 discusses related work. Section 5.3 gives
the proposed lock-free algorithm. Section 5.4 shows implementation considerations.
Section 5.5 presents the experimental setup, Section 5.6 describes experimental de-
sign, Section 5.7 provides the experimental results, and Section 5.8 provides an an-
swer to RQ3.

5.1 Shared Data Structure Challenge

One of the difficulties for parallelizing MCTS is protecting a shared search tree with-
out using locks to avoid synchronization overhead. The difficulty of this process
caused the researchers in the MCTS community to even compromise over correctness
of computation to have a lock-free search tree [EM10]. Below we discuss paralleliza-
tion with a single shared tree in Subsection 5.1.1 and race conditions in Subsection
5.1.2. Subsection 5.1.3 provides the data protection methods for a shared tree.
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Figure 5.1: (5.1a) The initial search tree. The internal and non-terminal leaf nodes
are circles. The terminal leaf nodes are squares. The curly arrows represent threads.
(5.1b) Thread 1 and 2 are expanding node v6. (5.1c) Thread 1 and 2 are updating
node v3. (5.1d) Thread 1 is selecting node v3 while thread 2 is updating this node.

5.1.1 Parallelization with a Single Shared Tree

There are three parallelization methods for MCTS (i.e., Root Parallelization, Leaf Par-
allelization, and Tree Parallelization) that belong to two main categories: (A) paral-
lelization with an ensemble of trees, and (B) parallelization with a single shared tree.
The parallelization methods that belong to the former category (i.e., Root and Leaf
Parallelization) do not need a shared search tree. But the methods that belong to the
latter category use a shared search tree such as Tree Parallelization. In Tree Paral-
lelization, parallel threads are potentially able to perform different MCTS operations
on a same node of the shared tree [CWvdH08a]. These shared accesses are the source
of the potential race conditions.

5.1.2 The Race Conditions

In parallel MCTS, parallel threads are manipulating a shared search tree concurrently.
If two threads are performing the task of adding or updating the same node, there is
a race condition.

Definition 5.1 (Race Condition) A race condition occurs when concurrent tasks per-
form operations on the same memory location without proper synchronization and one
of the memory operations is a write [MRR12].

Consider the example search tree in Figure 5.1. Three parallel threads (1, 2 and 3
from v0 to v3) attempt to perform MCTS operations on the shared search tree. There
are three race condition scenarios.

• Shared Expansion (SE): Figure 5.1b shows two threads (1 and 2) concurrently
performing EXPAND(v6). In this SE scenario, synchronization is required. Obvi-
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ously, a race condition exists if two parallel threads intend to add node v9 to v6

simultaneously. In such an SE race, the child node should be created and added
to its parent only once.

• Shared Backup (SB): Figure 5.1c shows two threads (1 and 3) concurrently
performing BACKUP(v3). In the SB scenario, synchronization is required because
there are two data race conditions when parallel threads update the value of
Q(v3) and N(v3) simultaneously. There are two dangers: (a) the value of either
Q(v3) or N(v3) could be corrupted due to concurrently writing them, and (b)
the variable Q(v3) and N(v3) could be in an inconsistent state when the writing
of their values does not happen together at the same time (i.e., the state of one
variable is ahead of the other one).

• Shared Backup and Selection (SBS): Figure 5.1d shows thread 2 performing
BACKUP(v3) and thread 3 performing SELECT(v3). In the SBS scenario, synchro-
nization is required. Otherwise, a race condition may occur between (i) thread
3 reading the value of Q(v3), and (ii) before thread 3 can read the value of
N(v3), thread 2 updates the value of Q(v3) and N(v3). Thus what happens is
that when thread 3 reads the value of N(v3), the variables Q(v3) and N(v3) are
not in the same state anymore and therefore thread 3 reads an inconsistent set
of values (Q(v3) and N(v3)).

Code with race conditions may operate correctly sometimes and fail other times.
We have tp protect the shared data to avoid uncertainty in the execution.

5.1.3 Protecting Shared Data Structure

There are two groups of methods to protect a shared data structure, lock-based meth-
ods and lock-free methods.

Lock-based Methods use mutexes and locks to create synchronization and pro-
tect the shared data. The first obvious design used one mutex to protect the entire
search tree, but later ones used more than one mutex to protect smaller parts of
the search tree and allow a greater level of concurrency in accesses to the search
tree [CWvdH08a]. Locks are notoriously bad for parallel performance, because other
threads have to wait until the lock is released, and locks are often a bottleneck when
many threads try to acquire the same lock. If we can write a search tree data structure
that is safe for concurrent accesses without locks, there is the potential for maximum
concurrency.

Definition 5.2 (Lock-based) A data structure is lock-based when it uses mutexes and
locks to create synchronization to protect the shared data.
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Lock-free Methods use a lock-free data structure. Such a data structure often uses
the compare/exchange operation to make progress in an algorithm, rather than pro-
tecting a part that makes progress. For example, when modifying a shared variable,
an approach using locks would first acquire the lock, then modify the variable, and
finally release the lock. A lock-free approach would use compare/exchange to modify
the variable directly. This requires only one memory operation rather than three, but
designing a lock-free data structure is hard and needs extreme care.

Definition 5.3 (Lock-free) A data structure is lock-free when more than one thread
must be able to access it concurrently.

5.2 Related Work

In this section, we present the related work for two categories of synchronization
methods for Tree Parallelization: (1) lock-based methods and (2) lock-free methods.

5.2.1 Lock-based Methods

As already mentioned, one of the main challenges in Tree Parallelization is to prevent
date race conditions using synchronization. Figure 5.2 shows the Tree Parallelization
where two threads (1 and 2) simultaneously perform the EXPAND operation on a
node (v6) of the tree. There are two methods to create synchronization in this case
for Tree Parallelization: (1) coarse-grained lock [CWvdH08a], (2) fine-grained lock
[CWvdH08a]:

1. The coarse-grained lock method uses one lock to protect the entire search tree
[CWvdH08a]. For example, in Figure 5.2a, both thread 1 and 2 want to expand
node v6, then thread 1 first acquires a lock; subsequently, it performs the EXPAND

operation and finally releases the lock. During this process thread 2 also wanting
to perform the EXPAND operation on node v6 should wait for the release of the
lock (see Figure 5.2b). This method is called coarse-grained because the access
to the tree for performing the EXPAND operation will be given to one and only
one thread, even if multiple threads want to expand different nodes inside the
tree. For example, in Figure 5.2a, thread 3 also wants to perform the EXPAND

operation, but on node v7. However, the lock is already acquired by thread 1.
Therefore, thread 3 should wait until the lock is released (see Figure 5.2b).

2. The fine-grained lock method uses one lock for each node of the tree to protect
a smaller part of the search tree and to allow a greater level of concurrency in
accesses to the search tree [CWvdH08a]. For example, in Figure 5.3a, thread 3
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Figure 5.2: Tree parallelization with coarse-grained lock.
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Figure 5.3: Tree parallelization with fine-grained lock.

also wants to perform the EXPAND operation, but on node v7. It can acquire the
lock in v7 and should not wait (see Figure 5.2b).

Both lock-based methods use locks to protect shared data. However, these ap-
proaches suffer from synchronization overhead due to thread contentions and do not
scale well [CWvdH08a]. A lock-free method can remove these problems.

5.2.2 Lock-free Methods

A lock-free implementation exists in the FUEGO package [EM10]. However, the method
in [EM10] does not guarantee the computational consistency of the multithreaded
program with the single-threaded program. To address the SE race condition, En-
zenberger et al. assign to each thread an own memory array for creating nodes
[EMAS10]. Only after the children are fully created and initialized, they are linked to
the parent node. Of course, this causes memory overhead. What usually happens is
the following. If several threads expand the same node, only the children created by
the last thread will be used in future simulations. It can also happen that some of the
children that are lost in this way already received some updates; these updates will
also be lost. It means that Enzenberger et al. ignore the SB and SBS race conditions.
They accept the possible faulty updates and the inconsistency of parallel computation.

In the PACHI package [BG11], the method in [EM10] is used for performing lock-
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free tree updates. Again, it means that both SB and SBS race conditions are neglected.
However, to allocate children of a given node, PACHI does not use a per-thread mem-
ory pool as FUEGO does, but uses instead a pre-allocated global node pool and a
single atomic increment instruction updating the pointer to the next free node. This
addresses the memory overhead problem in FUEGO. However, there are still two other
issues with this method: (1) the number of required nodes should be known in ad-
vance, and (2) the children of a node may not be assigned in consecutive memory
locations which results in poor spatial locality (i.e., if a particular memory location
is referenced at a particular time, then it is likely that nearby memory locations will
be referenced in the near future). The spatial locality is specifically important for the
SELECT operation.

5.3 A New Lock-free Tree Data Structure and Algorithm

We show our new lock-free tree data structure in Algorithm 5.1. The type name is
Node. The UCT algorithm that uses the proposed data structure is given in Algorithm
5.2 (for the difference, see the end of this section).

Algorithm 5.1 uses the new multithreading-aware memory model of the C++11
Standard [Wil12]. To avoid the race conditions, the ordering of memory accesses
by the threads has to be enforced [Wil12]. In our lock-free approach, we use the
synchronization properties of the atomic operations to enforce an ordering between
the accesses. We have used the atomic variants of the built-in types (i.e., atomic int
and atomic bool); they are lock-free on the most popular platforms. The standard
atomic types have different member functions such as load(), store(), exchange(),
fetch add(), and fetch sub(). The differences are subtle. The member function load()
is a load operation, whereas the store() is a store operation. The exchange() mem-
ber function is special. It replaces the stored value in the atomic variable by a new
value and automatically retrieves the original value. Therefore, we use two memory
models for the memory-ordering option for all operations on atomic types: (1) se-
quentially consistent ordering (memory order seq cst) and (2) acquire release ordering
(memory order acquire and memory order release). The default behavior of all atomic
operations provides for sequentially consistent ordering. This implies that the behav-
ior of a multithreaded program is consistent with a single threaded program. In the
acquire release ordering model, load() is an acquire operation, store() is a release op-
eration, exchange() or fetch add() or fetch sub() are either acquire, release or both
(memory order acq rel).

In Algorithm 5.1 each node v stores nine different pieces of data: (1) a the action
to be taken, (2) p, the current player at node v, (3) w n (a 64-bit atomic integer)
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Algorithm 5.1: The new lock-free tree data structure.
1 type
2 type a : int;
3 type p : int;
4 type w n : atomic int 64;
5 type children : Node*[];
6 type is parent := false : atomic bool;
7 type n nonexpanded children := -1 : atomic int;
8 type is expandable := false : atomic bool;
9 type is fully expanded := false : atomic bool;

10 type parent : Node*;
11 Function CREATECHILDREN(actions) : <void>
12 if is parent.exchange(true) is false then
13 j := 0;
14 while actions is not empty do

15 choose a
′
∈ actions;

16 add a new child v
′

with a
′

as its action and p
′

as its player to the list of children;
17 j := j+1;

18 n nonexpanded children.store(j);
19 is expandable.store(
20 true,memory order release);

21 Function ADDCHILD() : <Node*>
22 index := -1;
23 if is expandable.load(memory order acquire) is true then
24 if (index := n nonexpanded children.fetch sub(1)) is 0 then
25 is fully expanded.store(true);

26 if index < 0 then
27 return current node;
28 else
29 return children[index];

30 else
31 return current node;

32 Function ISFULLYEXPANDED() : <bool>
33 return is fully expanded.load();

34 Function GET() : <int,int>
35 w n

′
:= w n.load();

36 w := high 32 bits of w n
′
;

37 n := low 32 bits of w n
′
;

38 return 〈w, n〉;

39 Function SET(int ∆)
40 w n

′
:= 0;;

41 high 32 bits of w n
′

:= ∆;

42 low 32 bits of w n
′

:= 1;

43 w n.fetch add(w n
′
);

44 Function UCT(int n) : <float>

45 〈w
′
, n
′
〉 := GET();

46 return w
′

n
′ + 2Cp

√
2 ln(n)

n
′

47 Node;
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Algorithm 5.2: The Lock-free UCT algorithm.
1 Function UCTSEARCH(Node* v0, State s0, budget)
2 while within search budget do
3 〈vl, sl〉 := SELECT(v0, s0);
4 〈vl, sl〉 := EXPAND(vl, sl);
5 ∆ := PLAYOUT(vl, sl);
6 BACKUP(vl,∆);

7 Function SELECT(Node* v,State s) : <Node*,State>
8 while v.ISFULLYEXPANDED() do
9 〈w, n〉 := v.GET();

10 vl := arg max
vj∈children of v

vj .UCT(n);

11 s := v.p takes action vl.a from state s;
12 v := vl;

13 return 〈v, s〉;

14 Function EXPAND(Node* v,State s) : <Node*,State>
15 if s is non-terminal then
16 actions := set of untried actions from state s;
17 v.CREATECHILDREN(actions);

18 v
′

:= v.ADDCHILD();

19 if v
′

is not v then
20 v := v

′
;

21 s := v.p takes action v.a from state s;

22 return 〈v, s〉;

23 Function PLAYOUT(Node* v,State s)
24 while s is non-terminal do
25 choose a ∈ set of untried actions from state s uniformly at random;
26 s := the current player p takes action a from state s;

27 ∆〈v.p〉 := reward for state s for each player p;
28 return ∆

29 Function BACKUP(Node* v,∆) : void
30 while v is not null do
31 v.SET(∆〈v.p〉);
32 v := v.parent;
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that stores both the total simulation reward Q(v) and the visit count N(v), (4) the
list of children, (5) the is parent flag (an atomic boolean) that shows whether the
list of children is already created, (6) n nonexpanded children the number of children
that are not expanded yet, (7) the is expandable flag (an atomic Boolean) that shows
whether v is ready to be expanded, (8) the is fully expanded flag (an atomic Boolean)
that shows whether all children of v are already expanded and (9) parent that points
to the parent of v. By using (a) the atomic variables, (b) the atomic operations, and
(c) the associated memory models, we can solve all the three above cases of race
conditions (SE, SB, and SBS).

• SE: To solve the SE race condition, the EXPAND operation in Algorithm 5.2 con-
sists of two separate sub-operations: (A) the CREATECHILDREN operation and
(B) the ADDCHILD operation. The first operation has four key steps (A-1, A-
2, A-3, A-4) which are given in Algorithm 5.1. (A-1): Exchanging the value of
is parent from false to true prevents the other threads to create the list of chil-
dren (Line 12). Thus, the problem that the list of children is created by two
threads at the same time is solved. (A-2): Creating the list of children (Line
14--18). (A-3): Set the value of n nonexpanded children to counter j (Line 19),
(A-4): Set the value of is expandable to true (Line 20). After a node successfully
has become a parent, one of the non-expanded children in its list of children can
be added using the ADDCHILD operation. The ADDCHILD operation in Algorithm
5.1 has three key steps (B-1, B-2, B-3). (B-1): Read the value of is expandable

(Line 24), if it is true, try to expand a new child (Line 25--32). Otherwise, re-
turn the current node (Line 34). (B-2): The value of index is calculated (Line
25), if it is zero, then node v is fully expanded (Line 26). (B-3): index shows
the next child to be expanded (Line 31), if index becomes negative, the current
node is returned (Line 29).

• SB: To solve the SB race condition, Algorithm 5.1 uses a single 64-bit atomic
integer w n for storing both variables Q(v) and N(v). The value of Q(v) is
stored in the high 32 bits of w n, while the value of N(v) is stored in the low
32 bits. This compression technique preserves the correct state of the variables
Q(v) and N(v) in all threads because they should always be written together
using a SET operation. Therefore, we have no faulty updates and guarantee
consistency of computation.

• SBS: To solve the SBS race condition, Algorithm 5.2 always reads variable w n

by a GET operation in the SELECT operation. The GET operation always reads
the value of Q(v) and N(v) together. If a BACKUP operation wants to update
the variable w n at the same time, it happens through a SET operation which
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Algorithm 5.3: The pseudo-code of the GSCPM algorithm.
1 Function GSCPM(State s0,nP layouts,nTasks)
2 v0 := create a shared root node with state s0;
3 grain size := nP layouts/nTasks;
4 t := 1;
5 for t ≤ nTasks do
6 st := s0;
7 fork UCTSEARCH(v0,st,grain size) as task t;
8 t := t+1;

9 wait for all tasks to be completed;
10 return action a of best child of v0;

writes the value of Q(v) and N(v) together. Therefore, the values of Q(v) and
N(v) are always correct, in the same state, and consistency of computation is
guaranteed.

In Algorithm 5.2, each node v is also associated with a state s. The state s is
recalculated as the SELECT and EXPAND steps descend the tree. The term ∆〈p(v)〉
denotes the reward after simulation for each player.

5.4 Implementation Considerations

We have implemented the proposed lock-free data structure and algorithm in the Par-
allelUCT package [MPvdHV15a]. The implementation is available online as part of
the package. The ParallelUCT package is an open source tool for parallelization of
the UCT algorithm (see Section 2.6). It uses task-level parallelization to implement
different parallelization methods for MCTS. We have used an algorithm called grain-
sized control parallel MCTS (GSCPM) to implement and measure the performance
of the proposed lock-free UCT algorithm. The pseudo-code for GSCPM is given in
Algorithm 5.3. The GSCPM algorithm is implemented by multiple methods from dif-
ferent parallel programming libraries such as C++11 STL, thread pool (TPFIFO),
TBB (task group) [Rei07], and Cilk Plus (cilk for and cilk spwan) [Rob13] in the
ParallelUCT package. More details about each of these methods can be found in
[MPvdHV15a].

5.5 Experimental Setup

Section 5.5.1 discusses our case study, Section 5.5.2 explains the performance metrics,
and Section 5.5.3 provides the details of hardware.
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5.5.1 The Game of Hex

The performance of the lock-free algorithm is measured by using the game of Hex.
The game of Hex is described in Subsection 2.4.1. Below follows complementary
information needed for this chapter. Hex is a board game with a diamond-shaped
board of hexagonal cells [AHH10]. In our experiments, the game is played on a board
of size 11 on a side, for a total of 121 hexagons [Wei17].

In our implementation of Hex, a disjoint-set data structure is used to determine
the connected stones. Using this data structure the evaluation of the board position
to find the player who won the game becomes very efficient [GI91].

5.5.2 Performance Metrics

In our experiments, the performance is reported by (A) playout speedup (or speedup)
and (B) playing strength (or percentage of win). We defined both metrics in Section
2.5. Here we operationalize the definitions. The scalability is the trend that we ob-
serve for these metrics when the number of resources (threads) are increasing.

5.5.3 Hardware

Our experiments were performed on a dual socket Intel machine with 2 Intel Xeon
E5-2596v2 CPUs running at 2.4 GHz. Each CPU has 12 cores, 24 hyperthreads, and 30
MB L3 cache. Each physical core has 256KB L2 cache. The peak TurboBoost frequency
is 3.2 GHz. The machine has 192GB physical memory. We compiled the code using
the Intel C++ compiler with a -O3 flag.

5.6 Experimental Design

The goal of this experiment is to measure the performance and scalability of a lock-
free algorithm for parallel MCTS on both multi-core and many-core shared-memory
machines. We do so using the ParallelUCT packages. The package implements, highly
optimized, Hex playing program, in order to generate realistic real-world search
spaces.

To generate statistically significant results in a reasonable amount of time, 220

playouts are executed to choose a move. The board size is 11× 11. The UCT constant
Cp is either 0, 0.1, or 1 in all of our experiments. To calculate the playout speedup the
average of time over ten games is measured for making the first move of the game
when the board is empty. The empty board is used because it has the biggest playout
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time; it is the most time-consuming position (since the whole board should be filled
randomly). The results are within less than 3% standard deviation.

5.7 Experimental Results

In Subsection 5.7.1 we discuss two topics. (A) the scalability is studied and the
achieved playout speedup is reported, and (B) the effect of differences in values of Cp

parameters on the speedup of the parallel algorithm is measured. The performance of
the proposed lock-free algorithm for Tree Parallelization when playing against Root
Parallelization is reported in Subsection 5.7.2.

5.7.1 Scalability and Cp parameters

As mentioned before, we are interested in strong scalability. Therefore, the search
budget is fixed to 220 = 1, 048, 576 playouts as the number of tasks is increasing.
Figure 5.4 shows the scalability of the algorithm for different parallel programming
libraries on a CPU when the first move on the empty board is made. Each data point is
the average of 21 games. Figure 5.4a illustrates the scalability when a coarse-grained
lock is used (the graph is taken from [MPvdHV15a]) and Figure 5.4b demonstrates
the scalability when the proposed lock-free method is used.

A: Playout Speedup

There are three main improvements when the lock-free tree is used (see A1 to A3).

• A1: the maximum speedup increases from 18 to 23.

• A2: the scalability of all methods is improved (it shows the notoriously bad
effect of locks on the scalability for Cilk Plus, TBB, and C++11).

• A3: 32 tasks are sufficient to reach near 17 times speedup, while for the lock-
based method at least 64 tasks are required.

Figure 5.5 shows the scalability on the Xeon Phi. There are three main improve-
ments when the lock-free tree is used (see A4 to A6).

• A4: the maximum speedup increases from 47 to 83.

• A5: the scalability of all methods is improved (it shows the notoriously bad
effect of locks on the scalability for Cilk Plus, TBB, and C++11).

• A6: 64 tasks are sufficient to reach near 46 times speedup, while for the lock-
based method at least 2048 tasks are required.
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Figure 5.4: The scalability of Tree Parallelization for different parallel programming
libraries when Cp = 1. (5.4a) Coarse-grained lock. (5.4b) Lock-free.
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Figure 5.5: The scalability of Tree Parallelization for different parallel programming
libraries when Cp = 1 on the Xeon Phi. (5.5a) Coarse-grained lock. (5.5b) Lock-free.

B: The Effect of Cp on Playout Speedup

Table 5.1 shows the execution time of the sequential UCT algorithm for three different
Cp values. It is observed that the execution time is decreasing as the value of Cp is
increasing. There is an obvious explanation for this behavior. When the algorithm uses
high exploitation (i.e., low value for Cp), it constructs a search tree that is deeper and
more asymmetric. In Figure 5.6b, the depth of the tree is 56 when the number of tasks
is 1 and Cp = 0. When the shape of the tree is more asymmetric, each iteration of
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Table 5.1: Sequential execution time in seconds.

Cp Time (s) Depth of Tree (Avg.)

0 59.97± 10.93 56.66± 12.16

0.1 26.66± 0.81 11.52± 0.98

1 20.7± 0.3 5
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Figure 5.6: (5.6a) The scalability of the algorithm for different Cp values. (5.6b)
Changes in the depth of tree when the number of tasks are increasing.

the algorithm must traverse a deeper path of nodes inside the tree using the SELECT

operation until it can perform a PLAYOUT operation. The SELECT operation consists
of a while loop which for a tree with a depth of 56 has to perform 56 iterations in the
worst case (see Algorithm 5.2). The BACKUP operation also consists of a while loop
which for a deeper tree has more iterations. These two operations are also memory
intensive ones (i.e., accessing the nodes of the tree which reside in memory). The
results are that the execution time of the sequential algorithm becomes higher for
high exploitation. Increasing the value of Cp means more exploration and thus a
more symmetric tree with a lower depth. In Figure 5.6b, the depth of the tree is 5
when the number of tasks is 1 and Cp = 1. In this case, the while loop in the SELECT

operation has to perform only 5 iterations in the worst case.

We have measured the scalability of the proposed lock-free algorithm for different
Cp values (see Figure 5.6a). The sequential time for each Cp in Table 5.1 is used
as the baseline. The maximum speedup for Cp = 0 is around 34. It is much higher
than 23 times, the speedup when Cp = 1. There is a possible explanation for the
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Figure 5.7: The playing results for lock-free Tree Parallelization versus Root Paral-
lelization. The first value for Cp is used for Tree Parallelization and the second value
is used for Root Parallelization.

higher speedup. The parallel algorithm may be more efficient than the equivalent
serial algorithm, since the parallel algorithm may be able to avoid work that in every
serialization would be forced to be performed [MRR12]. For example, Figure 5.6b
shows the changes in the depth of the constructed tree with regards to the number
of tasks for three different values for Cp. Increasing the number of tasks reduces the
depth of the tree from 56, when the serial execution is exploitative (i.e., Cp = 0), to
around 25. It means that, in parallel execution (a) threads explore different branches
of the tree and (b) the tree is more symmetric compared to the serial execution.
Hence, the number of iterations in both SELECT and BACKUP operations reduces in
parallel execution and therefore causes a higher speedup. When the serial execution
has high exploration (i.e., Cp = 1), increasing the number of tasks does not change
the depth of the tree.

5.7.2 GSCPM vs. Root Parallelization

Figure 5.7 presents the result of playing Hex between the proposed lock-free Tree Par-
allelization against Root Parallelization. Root parallelization is also a parallelization
method that does not use locks because it uses an ensemble of independent search
trees. Therefore, it is interesting to see the performance of the proposed lock-free
algorithm versus Root Parallelization. Figure 5.7 reports the percentage of wins for
lock-free Tree Parallelization for five different combinations of Cp. Both methods use
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the same number of tasks. For each data point, 100 games are played.
When Cp = 0 for both algorithms, Tree Parallelization cannot win against Root

Parallelization. It shows that the high speedup for Cp = 0 (see Figure 5.6a) is not
useful. However, when the value of Cp is selected to be more exploratory, the lock-
free Tree Parallelization is superior to Root Parallelization, specifically for a higher
number of tasks.

5.8 Answer to RQ3

In this chapter we presented the lock-free tree data structure for parallelization of
MCTS. As such, this chapter proposes solutions for the following question.

• RQ3: How can we design a correct lock-free tree data structure for parallelizing
MCTS?

To answer RQ3 we have found our way step by step. We did so in three steps.
First, we remark that the existing Tree Parallelization algorithm for MCTS uses

a shared search tree to run the iterations in parallel (see Subsection 5.1.1). Here
we observe that the shared search tree has potential race conditions (see Subsection
5.1.2).

Our second step is to overcome this obstacle (see Section 5.3). In this section,
we have shown that having a correct lock-free data structure is possible. To achieve
this goal we have used methods from modern memory models and atomic operations
(see Section 5.3). Using these methods allows removing of synchronization overhead.
Hence, we have implemented the new lock-free algorithm that has no race conditions
(see Section 5.4).

The third step was to evaluate the lock-free algorithm. Therefore we performed
an extensive experiment in a small area (Hex on a 11 × 11 board), see Sections 5.5
and 5.6.

To conclude, the experiment showed that the lock-free algorithm had a better
performance and scalability when compared to other synchronization methods (see
Section 5.7). The performance of task-level parallelization to implement the lock-free
GSCPM algorithm on a multi-core machine with 24 cores was very good. It reached a
speedup of 23 and showed very good scalability for up to 4096 tasks. The performance
on a many-core co-processor was also very good; a speedup of 83 on the 61 cores of
the Xeon Phi was reached. In summary, the Xeon Phi showed very good scalability for
up to 4096 tasks.




