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3
Thread-level Parallelization for MCTS

This chapter 1 addresses RQ1 which is mentioned in Section 1.7.

• RQ1: What is the performance and scalability of thread-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

The recent successes of MCTS has led to even more investigations in closely re-
lated areas. Among them, considerable research has been put into improving the per-
formance of parallel MCTS algorithms. Obviously, a high-performance parallelization
in combination with additional computing power means that MCTS can investigate
a larger part of the search space. As a direct consequence, MCTS performance studies
(see Section 1.5) have become important in their own right [CWvdH08a, YKK+11,
BCC+11, Seg11, SP14, SHM+16, SSS+17]. Besides the performance studies, there
also exist scalability studies (see Section 1.5). A scalable parallelization means that
performance of the algorithm scales on future architectures (e.g., a transition from
multi-core to many-core). With respect to thread-level parallelization for MCTS we
focus on both performance and scalability.

We do so on shared-memory machines for multi-core and many-core architectures.
So far, only multi-core types of studies have been performed, and all of them were in

1 Based on:

• S. A. Mirsoleimani, A. Plaat, J. Vermaseren, and H. J. van den Herik, Performance analysis of a
240 thread tournament level MCTS Go program on the Intel Xeon Phi, in Proceedings of the 2014
European Simulation and Modeling Conference (ESM 2014), 2014, pp. 88--94.

• S. A. Mirsoleimani, A. Plaat, H. J. van den Herik, and J. Vermaseren, Parallel Monte Carlo Tree
Search from Multi-core to Many-core Processors, in Proceedings of the 2015 IEEE Trustcom/Big-
DataSE/ISPA, 2015, vol. 3, pp. 77--83.
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some sense limited. The two most important limitations were: (1) a limited number
of cores on multi-core machines; and as a result of the first limitation, (2) the studies
had to simulate a large number of the cores on a simulated environment instead of
real hardware [Seg11]. In the first decade of this century, typically 8-24 core machines
were used [CWvdH08a]. Recently, a scalability study of MCTS in AlphaGo has been
performed with 40 threads on a 48 cores shared-memory machine [SHM+16]. The
advent of the Intel R© Xeon Phi

TM
in 2013 did allow to abandon both (a) a limited

number of cores and the simulated environment and start (b) executing experiments
in a real environment with a large number of cores. Indeed, the new development
enabled us for the first time to study performance and scalability of the parallel MCTS
algorithms on actual hardware, up to 244 parallel threads and 61 cores on shared-
memory many-core machines. Hence, we designed an experimental setup with the
above hardware and three benchmark programs.

In the first experiment (see Section 3.1), we executed operations related to matrix
calculations using a micro-benchmark program on the Xeon Phi. The purpose of the
first experiment was to measure the actual performance of the Xeon Phi and to under-
stand the characteristics of its memory architecture. The results from this experiment
were used as the input to execute the next two experiments.

In the second experiment (see Section 3.2), we ran the game of Go using the
FUEGO program [EM10] that was also used in other studies [Seg11, SHM+16], on
the Xeon CPU and for the first time on the Xeon Phi. FUEGO was one of the strongest
open source programs in that time (2016--2017). It was based on a high performance
C++ implementation of MCTS algorithms [SHM+16]. The purpose of the second
experiment was to measure performance and scalability of FUEGO on both the Xeon
CPU and the Xeon Phi. In this way, a direct comparison between our study on actual
hardware with 244 parallel threads and other studies was possible.

In the third experiment (see Section 3.3), we carried out the game of Hex using
our ParallelUCT program on both the Xeon CPU and the Xeon Phi. ParallelUCT is our
highly optimized C++ library for parallel MCTS (see Section 2.6). The purpose of
the third experiment was to measure performance and scalability of ParallelUCT on
both the Xeon CPU and the Xeon Phi. In this way a direct comparison between our
implementation of parallel MCTS and the FUEGO program was possible.

In the experiments, both FUEGO and ParallelUCT use thread-level parallelization
for parallelizing MCTS. It is worth to mention that, even in all of the current par-
allelization approaches, the parallelism technique for implementing a parallel MCTS
algorithm is thread-level parallelization [CWvdH08a, EM10, SKW10, SHM+16]. It
means that multiple threads of execution which are equal to the number of available
cores, are used. The advent of many-core machines, such as the Xeon Phi with many
cores that are communicating through a complex interconnect network, did raise an
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important question called RQ1a.

• RQ1a: Can thread-level parallelization deliver a comparable performance and
scalability for many-core machines compared to multi-core machines for parallel
MCTS?

The research goals of this chapter are twofold: (1) to investigate the performance
and scalability of parallel MCTS algorithms on the Xeon CPU and the Xeon Phi (i.e.,
RQ1) and (2) to understand whether a comparable high-performance parallelization
of the MCTS algorithm can be achieved on Xeon Phi using thread-level paralleliza-
tion(i.e., RQ1a). We present and compare the results of the three experiments in the
Section 3.1 to 3.3 to answer both research questions, RQ1a and RQ1. In Subsection
3.2.5 we answer RQ1a for FUEGO. In Subsection 3.3.5 we answer RQ1a for Paral-
lelUCT. In Section 3.5 we answer RQ1. Our performance measures on which we will
report are (A) the playout speedup and (B) the improvement of playing strength.

In summary, the chapter is organized as follows. In three sections, we provide
answers to the research questions. Section 3.1 provides the performance of a micro-
benchmark code for matrix calculations on the Xeon Phi. A study for the performance
of FUEGO for the game of Go on a 9× 9 board is presented in Section 3.2. Section 3.3
provides the performance of ParallelUCT for the game of Hex on an 11 × 11 board.
Section 3.4 discusses related work. Finally, Section 3.5 contains our answer to RQ1.

3.1 Micro-benchmark Code Performance

The first experiment is about using a micro-benchmark code to measure the actual
performance of Xeon Phi and to understand the characteristics of its memory archi-
tecture. We first provide an overview of Xeon Phi co-processor architecture in Sub-
section 3.1.1. Then, the experimental setup is discussed in Subsection 3.1.2, and it
is followed by experiments in Subsection 3.1.3. We provide the results in Subsection
3.1.4 and conclude by presenting our findings in Subsection 3.1.5.

3.1.1 Xeon Phi Micro-architecture

A Xeon Phi co-processor board consists of up to 61 cores (of which 8 are shown in
Figure 3.1a) based on the Intel 64-bit Instruction Set Architecture (ISA). Each of these
cores contains Vector Processing Units (VPUs) to execute 512 bits. This means eight
double-precision or 16 single-precision floating-point elements or 32-bit integers at
the same time. The core also contains 4-way Simultaneous Multithreading (SMT), a
dedicated L1 (it is not shown in the figure) and fully coherent L2 caches [Rah13]. The
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Vector Processing Units (VPUs) are used to look up cache data distributed among the
cores. The theoretical performance of the Xeon Phi card for double-precision floating-
point operations is 1208 Giga Floating Point Operations per Second (GFLOPS). This
is equal to 2416 GFLOPS for single-precision floating-point operations.

The connection between cores and other functional units such as a Memory Con-
troller (MC) is through a bidirectional ring interconnect. There are eight distributed
MCs as an interface between the ring burst and main memory (four MCs are shown
in the figure). The main memory is up to 16 GB. To reduce hot-spot contention for
data among the cores, a distributed Tag Directories (TD) is implemented so that ev-
ery physical address that the co-processor can reach, is uniquely mapped through a
reversible one-to-one address hashing function. This memory architecture provides a
maximum transfer rate of 352 GB/s.

Thread affinity policies: On Xeon Phi, there are three predefined thread affinity
policies for assigning threads to a core for obtaining improved or predictable perfor-
mance [RVW+13]. These three policies are given in Table 3.1. A user can select one of
the three policies for assigning threads or even none for assigning threads randomly.
Figure 3.1b shows how each of the three thread affinity policies works for an exem-
plary case of eight threads and four cores. Thread affinity binds each thread to run
on a specific subset of cores, to take advantage of memory locality. In the compact
policy, the eight threads are bound to the first two cores, which means they are as
close together as possible. The scatter policy distributes the eight threads as evenly as
possible across the entire series of cores. Scatter is the opposite of compact. The bal-
anced policy is between compact and scatter. The same set of rules applies when the
number of threads is 244, and the number of cores is 61. However, we remark that
when using the maximum number of threads (244 threads for 61 cores), the compact
policy is equivalent to the balanced policy.

Definition 3.1 (Thread Affinity Policy) A thread affinity policy is a bit vector mask in
which each bit represents a logical processor that a thread is allowed to run on.

3.1.2 Experimental Setup

Below, we are using two micro-benchmark programs of two nested loops for doing
Fused Multiply Add (FMA) operations to measure the maximum performance and
memory bandwidth on the Xeon Phi. The primary target use for FMA is matrix oper-
ations [SBDD+02, JR13].

The first micro-benchmark code is the computation of 16 FMA vector operations
(constitutes the inner loop) for ITR times (constitutes the outer loop). Listing A.1
shows the micro-benchmark program for measuring performance. The key line of the
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(b) Thread-to-core assignment with three
different thread affinity policies when
mapping 8 threads to 4 cores.

Figure 3.1: Intel Xeon Phi Architecture.

Compact It uses all four threads of a core before it begins using the threads
of subsequent cores.

Balanced It maps threads on different cores until all the cores have at least
one thread, as done in the scatter policy. However, when multiple
threads need to use the same core, the balanced policy ensures
that threads with consecutive IDs are close to each other, in con-
trast to what is done by the scatter policy.

Scatter It allocates the threads as evenly as possible over the whole pro-
cessor such that consecutive threads are executed in different
cores.

Table 3.1: Thread affinity policies

code in the inner loop is c[j] = a[j]∗b[j]+c[j]. The outer loop is distributed among the
available threads using OpenMP. For example, having 48 threads and ITR = 48 ∗ 106

each of them executes 106 ∗ 16 operations. The inner loop is unrolled to optimize the
program execution speed.

The second micro-benchmark code is performing 48 ∗ 106 three reads, and one
write memory access pattern (constitutes the inner loop) for ITR times (constitutes
the outer loop). Listing A.2 shows the micro-benchmark program for measuring band-
width. The key line of the code in the inner loop is c[j] = a[j] ∗ b[j] + c[j]. The inner
loop is distributed among the available threads using OpenMP.

We measure the computation cost of arithmetic operations on different data for-
mats (i.e., double-precision floating-point and integer) and provide the performances
of the micro-benchmark code.
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Definition 3.2 (Double-Precision Floating-Point Format) The double-precision float-
ing-point format is a computer number format, usually occupying 64 bits in computer
memory.

Definition 3.3 (Integer Format) The integer format is a computer number format,
consisting of 4 bytes.

Henceforth, we will call the operations calculated on the double-precision floating-
point format double-precision operations; likewise, we speak of integer operations.

3.1.3 Experimental Design

In our experiments, the benchmark code is compiled with the highest level of opti-
mization (i.e., level three). The turbo mode is also on for the Xeon Phi. First, we set
the thread affinity policy via the KMP AFFINITY environment variable. Second,
we set the number of threads via the OMP NUM THREADS environment variable.
Finally, we run the micro-benchmark code. We rerun the code while increasing the
number of threads methodically from one to 244 for each of the three thread affinity
policies (i.e., compact, balanced, and scatter).

3.1.4 Experimental Results

Figure 3.2, 3.3, and 3.4 show the results of our experiment. We will discuss the results
for (A) double-precision operations and (B) integer operations.

A: Double-precision operations

Below we discuss three issues: performance, scalability, and bandwidth.

Performance Figure 3.2 (a and b) shows the effect of three different thread affinity
policies (compact, balanced, and scatter)2 on the performance of the Xeon Phi for
double-precision arithmetic operations for 244 data points, grouped into intervals of
27 data points. From the experiments we may provisionally conclude that using the
compact policy, the maximum performance of ∼1200 GFLOPS is reached with 244
threads (see the blue line). Both the balanced (see the purple line) and scatter (see the
gray line that is intermingled with the purple line) policies can reach the maximum
performance of ∼1200 GFLOPS at 183 threads.

2In Figure 3.2 and the subsequent similar figures of this chapter, caption none (see the red line) means
none of the three thread affinity policies is used.
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(b) Number of iterations 48 ∗ 106.

Figure 3.2: Performance and scalability of double-precision operations for different
numbers of iterations.

Scalability Figure 3.2b again shows the effect of three different thread affinity poli-
cies on the scalability of double-precision arithmetic operations on the Xeon Phi. We
split 244 threads into four regions: (1) from 1 to 61 threads, (2) from 62 to 122
threads, (3) from 123 to 183 threads, and (4) from 184 to 244 threads. In the com-
pact policy (see the blue line) the performance was steadily scaled until it reaches the
maximum performance of ∼1200 GFLOPS at the end of the fourth region. The per-
formance for both the balanced policy (see the purple line) and the scatter policy (see
the gray line that is intermingled with the purple line) scales up to more than ∼600
GFLOPS at the end of the first region. By entering the second region, the performance
suddenly drops to around 500 GFLOPS and starts increasing until it reaches ∼1000
GFLOPS at the end of the second region (i.e., 122 threads or 2 threads per core). The
beginning of the third region (i.e., 123 threads) shows a drop in performance again,
resulting in ∼800 GFLOPS. The third region is completed by a performance of ∼1200
GFLOPS. The very same pattern occurs in the fourth region, starting from ∼1000
GFLOPS for 184 threads and ending in more than ∼1200 GFLOPS for 244 threads.

Bandwidth Figure 3.3 shows the effect of thread affinity policies on the bandwidth
of the Xeon Phi for executing the benchmark program in double-precision data types
for 244 data points, grouped into intervals of 27 data points. In the compact policy
(see the red line) the memory bandwidth is continuously increased until it reaches a
plateau. The memory bandwidth graph has four regions in the balanced policy (see
the blue line): (1) from 1 to 61 threads, (2) from 62 to 122 threads, (3) from 123 to
183 threads, and (4) from 184 to 244 threads. The maximum bandwidth of ∼180 GB
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Figure 3.3: Memory bandwidth of double-precision operations on the Xeon Phi for
increasing numbers of threads. Each interval contains 27 points.

per second (GB/sec) is reached for 61 threads. By using more threads, the bandwidth
continuously decreased and never reached the same level as in the previous region.
Therefore we may conclude that the memory bandwidth measurement shows that the
maximum bandwidth is available for small numbers of threads (i.e., around 55) for
the balanced policy.

B: Integer Operations

Below we discuss two issues: performance and scalability. We do not have a band-
width graph for integer operations.

Performance Figure 3.4 shows the effect of four different thread affinity policies
on the performance of the Xeon Phi for integer arithmetic operations. The first policy
is compact. In the compact policy (see the blue line), the maximum performance of
∼1500 Giga Integers per Second (GIPS) is reached for around 244 threads. In the
balanced and scatter policies depending on how many threads are assigned to each
core, three different maxima for integer performances exist. As shown in Figure 3.4,
for the both balanced and scatter policies, between 122 threads and 244 threads three
peak points exist (i.e., 122, 183, and 244). At each of the peak points, a maximum
performance of around 1500 GIPS is reached.

Scalability Figure 3.4 shows the effect of four different thread affinity policies on
the scalability of the Xeon Phi for integer arithmetic operations. The first policy is
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Figure 3.4: Performance and scalability of integer operations of the Xeon Phi for dif-
ferent numbers of threads.

compact. In the compact policy the performance was steadily increased (see the blue
line). In the balanced and scatter policies depending on how many threads are as-
signed to each core, three different regions for integer performance exist. For exam-
ple, as shown in Figure 3.4 between 122 threads and 183 threads some cores have
two threads and some others have three threads in the balanced policy. The asymmetry
in assigning threads to cores degraded the performance drastically at the beginning
of the region (i.e., 123 threads) and later at the end of the region (i.e., 183), when
thread assignment becomes more symmetric, performance started to increase.

3.1.5 Section Conclusion

We have performed micro-benchmarking on the Xeon Phi and found unexpected sen-
sitivity of performance to thread affinity policies, which we attribute to a complex
interconnect architecture. Although the theoretical performance for the Xeon Phi is
reached, from the results of experiments we may conclude that the performance of
a parallel program on the Xeon Phi is susceptible to the number of threads and the
thread affinity policy.

3.2 FUEGO Performance and Scalability

The second experiment measures the performance and scalability of an open source
library for parallel MCTS which is based on thread-level parallelization. FUEGO is an
open source, tournament level Go-playing program, developed by a team at the Uni-
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versity of Alberta [EM10]. It is a collection of C++ libraries for developing software
for the game of Go and includes a Go player using MCTS. Using FUEGO would be a
good benchmark for measuring the performance of the Xeon Phi because it has been
used for similar scalability studies on CPUs [CWvdH08a, EM10, SHM+16]. It is essen-
tial to know what settings of the number of threads and the thread affinity policy will
bring the best performance that an algorithm such as MCTS can reach when taking
both computation time (i.e., for doing simulations) and memory bandwidth (i.e., for
updating the search tree) into account.

Below we provide the experimental setup in Subsection 3.2.1. In Subsection 3.2.2
we explain the experiment. Then, the experimental results are discussed in Subsection
3.2.3. Subsection 3.2.4 provides our findings in this experiment.

3.2.1 Experimental Setup

To determine the performance and scalability of FUEGO on the Xeon Phi, we have
performed a set of self-play experiments. The program with N threads plays as the
first player against another instance of the same program but now withN/2 threads. It
is a type of experiment that has been widely adopted for performance and scalability
studies of MCTS [CWvdH08a, BG11]. We carry out the experiments on both the Xeon
Phi co-processor and the Xeon CPU. Our results will allow a comparison between the
two.

Performance Metrics

In our experiments, the performance of FUEGO is reported by (A) playout speedup (see
Eq. 2.6) and (B) playing strength (see Eq. 2.7). We defined both metrics in Section 2.5.
Here we operationalize the definitions. The scalability is the trend that we observe for
these metrics when the number of resources (threads) is increasing.

3.2.2 Experimental Design

To generate statistically significant results in a reasonable amount of time most setups
use the setting of 1 second per move, and so did we, initially. Appendix B provides
details of the statistical analysis method which we used to analyze the result of a self-
play tournament. The experiments were conducted with FUEGO SVN revision 1900,
on a 9 × 9 board, with komi 6, Chinese rules, the alternating player color was en-
abled, the opening book was disabled. The win-rate of two opponents is measured
by running at least a 100-game match. A single game of Go typically lasts around
81 moves. The games were played using the Gomill Python library for tournament
play [Woo14]. Intel’s icc 14 .1 compiler is used to compile FUEGO in native mode. A
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Figure 3.5: Performance and scalability of FUEGO in terms of PPS when it makes the
second move. Average of 100 games for each data point. The board size is 9× 9.

native application runs directly on the Xeon Phi and its embedded Linux operating
system.

3.2.3 Experimental Results

This subsection reports on the performance of FUEGO by using two metrics: (A) play-
out speedup and (B) playing strength. The first metric corresponds to the improve-
ment in the number of playouts or simulations per second (excluding search over-
head), and the second metric corresponds to the improvement in the PW (including
search overhead).

A: Playout Speedup

Figure 3.5 shows the performance and scalability of FUEGO on both the Xeon CPU (see
the blue line) and the Xeon Phi (see the red line) in terms of PPS versus the number
of threads. In the following, the results for the experiments on (A1) the multi-core
Xeon CPU and (A2) the many-core Xeon Phi are discussed.

A1: Experiment on multi-core

Table 3.2 describes details of Figure 3.5 for the performance of FUEGO on the multi-
core Xeon CPU. Although FUEGO does not show a linear speedup on the Xeon CPU it
scales up to 48 threads. It reaches a speedup of 23 times for 48 threads on a 24 core
machine.
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# threads 1 8 16 32 48
count 100 100 100 100 100
mean 5788 37723 70286 106912 131378
std 241 2552 6078 9137 6008
min 4154 28246 40966 69129 97085
max 5979 40480 77210 121989 143630
speedup 1 7 12 18 23

Table 3.2: Performance of FUEGO on the Xeon CPU. Each column shows data for N
threads. The board size is 9× 9.

A2: Experiment on many-core

Figure 3.5 shows the PPS versus the number of threads for FUEGO for 12 data points
where for each data point the number of threads is a power of 2 except for 24 and 48
threads that are selected to compare the Xeon Phi performance with the Xeon CPU.
Moreover, 120 and 240 threads are chosen to find behavior of the curve around 128
threads. Figure 3.5 shows that even using 128 or more threads of the Xeon Phi cannot
reach the performance of 16 threads on the Xeon CPU.

Table 3.3 describes details of Figure 3.5 for the performance of FUEGO on the
Xeon Phi. The maximum speedup versus one core of the Xeon Phi is 74 times for 128
threads. The slow down from 128 threads to 240 threads shows that FUEGO cannot
scale beyond 128 threads. The table also shows that FUEGO achieves only nine times
speedup for 128 threads versus one core of the Xeon CPU. It should be noted that the
number of PPS for eight threads on the Xeon Phi is equal to one thread on the Xeon
CPU (see Table 3.3 where speedup versus CPU equals one for eight threads).

A3: Conclusion

In Paragraph A of Subsection 3.2.3, we reported on the performance and the scala-
bility of FUEGO in terms of playout speedup. The maximum relative speedup on the
multi-core Xeon CPU is 23, and on the many-core Xeon Phi it is 74. The thread-level
parallelization method used by FUEGO scales up to 48 threads on the multi-core Xeon
CPU and up to 128 threads on the many-core Xeon Phi. Due to the higher clock speed,
the amount of work by each core of the Xeon CPU is much more than that by the Xeon
Phi core. However, the difference in clock speed is only a factor of two, whereas the
results show that the difference is more than a factor of 5 for 32 threads and more
than 8 for one thread.
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# threads 1 8 16 32 48 128 240
count 100 100 100 100 100 100 100
mean 694 5236 10112 19482 28251 51169 43149
std 14 67 128 255 387 810 2513
min 650 5055 9780 18721 27028 48930 39810
max 723 5361 10428 19976 29162 52957 64959
speedup 1 8 15 28 41 74 62
speedup vs CPU - 1 2 3 5 9 7

Table 3.3: Performance of FUEGO on the Xeon Phi. Each column shows data for N
threads. The board size is 9× 9.

B: Playing Strength

Figure 3.6 shows the scalability of FUEGO on both the Xeon CPU and the Xeon Phi in
terms of the PW versus the number of threads. The graph shows the win-rate of the
program with N threads as the first player. A straight line means that the program is
scalable in terms of PW. In the following, the results for the experiments on (B1) the
multi-core Xeon CPU and (B2) the many-core Xeon Phi are discussed.

B1: Experiment on multi-core

Figure 3.6a shows the results of the self-play experiments for FUEGO on the Xeon
CPU. For the 9 × 9 board, the win-rate of the program with double the number of
threads is better than the base program, starting at 70%, decreasing to 58% at 32
threads and then becomes flat. These results are entirely in line with results reported
in [EMAS10] for 16 vs. eight threads. The phenomenon of search overhead explains
the slightly decreasing lines.

B2: Experiment on many-core

Figure 3.6b shows the performance and scalability of FUEGO in terms of PW on the
many-core Xeon Phi. The scalability for the playing strength of FUEGO on the Xeon
Phi differs notably from the Xeon CPU in Figure 3.6a. The Xeon CPU shows a smooth,
slightly decreasing line. The Xeon Phi shows a more ragged line that first slopes up,
and then slopes down. The maximum win-rate on the Xeon Phi is for eight threads
(i.e., 72), while on the Xeon CPU it is for two threads (i.e., 70). The playing strength
remains above the break-even point of 50% for the first player until 48 threads and
then sharply decreases until 128 threads and becomes 50% for 240 threads. Up to
64 threads, these results confirm the simulation study by Segal [Seg11]. However,
beyond 64 threads the performance drop is unexpectedly large. In the following two
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Xeon Phi, with 100 games for each data
point.
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(d) 10 second per move on the Xeon Phi,
with 100 games for each data point.

Figure 3.6: Scalability of FUEGO in terms of PW with N threads against FUEGO with
N/2 threads. The board size is 9× 9.

paragraphs we report the results of our experiment on many cores (B2a) using differ-
ent thread affinity policies and (B2b) increasing the time limit for making a move.

B2a: Different thread affinity policies

Figure 3.6c shows the effect of different thread affinity policies on the performance of
FUEGO. For the FUEGO self-play experiments the compact affinity policy has been used.
To show the effect of different thread affinity policies on FUEGO, the three different
policies have been run. The PW for balanced policy shows more stability compared to
the two other thread affinity policies. The best win-rate is for 4 threads (1 core) in
the compact policy and for 16 threads (16 cores) in the scatter policy.
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B2b: Increasing time limit

Figure 3.6d shows the results when FUEGO can make a move with 10 seconds for do-
ing a simulation on the Xeon Phi. The low PPS numbers of the Xeon Phi suggest ineffi-
ciencies due to the small problem size. Closer inspection of the results on which Figure
3.5 is based suggests that FUEGO is not able to perform sufficient simulations on the
Xeon Phi for a small number of threads in just 1 second. Therefore, we increased the
time limit per move to 10 seconds. We see that now the graph is approaching that
of the Xeon CPU. The win-rate behavior for the low number of threads is now much
closer to that of the CPU (Figure 3.6b), and the counter-intuitive hump-shape has
changed to the familiar down-sloping trend. However, we still see a fluctuation in the
balanced policy. Up to 32 threads, the performance is still reasonable (close to 70%
win-rate for the 2× thread program), but up to 240 threads the performance deterio-
rates. The maximum win-rate is for eight threads, and there is still a marginal benefit
for using 128 threads.

B3: Conclusion

In Paragraph B of the Subsection 3.2.3, we reported the performance of FUEGO in
terms of PW. The maximum PW on the multi-core Xeon CPU is around 70 for two
threads and on the many-core Xeon Phi it is around 72 for eight threads. The thread-
level parallelization method used by FUEGO does not scale very well on both the
multi-core Xeon CPU and on the many-core Xeon Phi. For a time limit equal to 10
seconds per move, FUEGO scales only up to 32 threads on the many-core Xeon Phi.

3.2.4 Section Conclusion

We have carried out, to the best of our knowledge, the first performance and scalabil-
ity study of a strong open source program for playing Go using MCTS called FUEGO

on the Xeon Phi. Previous work only targeted scalability on a CPU [SKW10, BG11,
SHM+16] or used simulation [Seg11]. Our experiments showed the difference in per-
formance of an identical program in an identical setup on the Xeon CPU versus the
Xeon Phi using the standard experimental settings of the 9 × 9 board and 1 second
per move. We found (1) a good performance up to 32 threads, confirming a previous
simulation study and (2) a deteriorating performance from 32 to 240 threads (see
Figure 3.6).

3.2.5 Answer to RQ1a for FUEGO

In this subsection we answer RQ1a for FUEGO. We repeat RQ1a below.



40 3.3. ParallelUCT Performance and Scalability

• RQ1a: Can thread-level parallelization deliver a comparable performance and
scalability for many-core machines compared to multi-core machines for parallel
MCTS?

Using FUEGO, which uses thread-level parallelization for implementing the Tree
Parallelization algorithm, we have found in Subsection 3.1.3 that we cannot reach the
same performance on the Xeon Phi as on the Xeon CPU. The maximum performance
in terms of PPS for Tree Parallelization on the Xeon CPU is around three times more
than the one on the Xeon Phi (see Figure 3.5). Moreover, the scalability of the Tree
Parallelization algorithm in terms of PPS is better on the Xeon CPU (for up to 32
threads) than the Xeon Phi (for up to 240 threads). Our experiments show that the
performance of the algorithm drops after 128 threads on the Xeon Phi (see Figure
3.5). For the performance in terms of PW, the Xeon CPU shows a steadily decreasing
PW (see Figure 3.6a), as expected, where the Xeon Phi shows a hump-like shape (see
Figure 3.6b). Hence, our answer to RQ1a reads: with thread-level parallelization we
cannot reach the same performance of a multi-core machine on a many-core machine.

3.3 ParallelUCT Performance and Scalability

The third experiment is using the ParallelUCT library (see Section 2.6). The open
source MCTS libraries of FUEGO add additional ideas to the simple MCTS algorithm to
improve gameplay. In contrast, the ParallelUCT is solely developed to focus on MCTS
as a general algorithm not only for games but for general optimization problems.
ParallelUCT is our highly optimized parallel C++ library for MCTS. It is developed
to use thread-level parallelization to parallelize MCTS. Therefore, it is chosen for this
study. We provide the experimental setup in Subsection 3.3.1. Then, in Subsection
3.3.2 we explain the experiment. The experimental results are discussed in Subsection
3.3.3. Finally, Subsection 3.3.4 provides our findings of this experiment.

3.3.1 Experimental Setup

In order to generate statistically significant results for the game of Hex (board size
11 × 11) in a reasonable amount of time, both players do playouts of 1 second for
choosing a move. To calculate the playing strength for the first player, we perform
matches of two players against each other. Each match consists of 200 games, 100
with White and 100 with Black for each player. A statistical method based on [Hei01]
and similar to [MKK14] is used to calculate 95%-level confidence lower and upper
bounds on the real winning rate of a player, indicated by error bars in the graphs.
The parameter Cp is set at 1 in all our experiments. To calculate the playout speedup
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for the first player when considering the second move of the game, the average of
the number of PPS over 200 games is measured. Taking the average removes: (1) the
randomized feature of MCTS in game playing and (2) the so-called warm-up phase
on the Xeon Phi [RJM+15].

The results were measured on a dual socket Intel machine with 2 Intel Xeon E5-
2596v2 CPUs running at 2.40GHz. Each CPU has 12 cores, 24 hyperthreads, and
30 MB L3 cache. Each physical core has 256KB L2 cache. The peak TurboBoost fre-
quency is 3.2 GHz. The machine has 192GB physical memory. Intel’s icc 14.1 com-
piler is used to compile the program. The machine is equipped with an Intel Xeon
Phi 7120P 1.238GHz which has 61 cores and 244 hardware threads. Each core has
512KB L2 cache. The co-processor has 16GB GDDR5 memory on board with an aggre-
gate theoretical bandwidth of 352 GB/s. The peak turbo frequency is 1.33GHz. The
theoretical performance of the 7120P is 2.416 TFLOPS or TIPS and 1.208 TFLOPS for
single-precision or integer and double-precision floating-point arithmetic operations,
respectively [Int13]. Intel’s icc 14.1 compiler is used to compile the program in na-
tive mode. A native application runs directly on the Xeon Phi and its embedded Linux
operating system.

Performance Metrics

In our experiments, the performance of ParallelUCT is reported by (A) playout speedup
(see Eq. 2.6) and (B) playing strength (see Eq. 2.7). We defined both metrics in Sec-
tion 2.5. Here we operationalize the definitions. The scalability is the trend that we
observe for these metrics when the number of resources (threads) is increasing.

3.3.2 Experimental Design

In all of our experiments, we perform self-play Hex games in a tournament to measure
performance and scalability. Each tournament consists of 200 head-to-head matches
between the first player with N threads and the second player with N/2 threads. Both
players are given 1 second to make a move.

3.3.3 Experimental Results

The performance of the algorithms is reported by (A) playout speedup and (B) playing
strength.
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A: Playout Speedup

Figure 3.7 shows the performance and scalability of (A1) Tree Parallelization and
(A2) Root Parallelization on both the multi-core Xeon CPU and the many-core Xeon
Phi in terms of PPS versus the number of threads.

A1: Tree Parallelization

In Figure 3.7 the scalability of Tree Parallelization on the Xeon CPU and the Xeon Phi
are compared. In the following the results for the experiments on (A1a) the multi-core
Xeon CPU and (A1b) the many-core Xeon Phi are discussed.

A1a: Experiment on multi-core

Figure 3.7a shows playout speedup on the Xeon CPU. We see a perfect playout speedup
up to 4 threads and a near perfect speedup up to 16 threads. The increase in the num-
ber of playouts continues up to 32 threads, although the increase is no longer perfect.
There is a sharp decrease in the number of playouts for 48 threads. The available
number of cores on the Xeon CPU is 24 cores, with two hyperthreads per core avail-
able, for a total of 48 hyperthreads. Thus, we see the benefit of hyperthreading up
to 32 threads. We surmise that using a lock in the expansion phase of the MCTS al-
gorithm is visible in playout speedup after four threads, but the effect is not severe.
The conclusion here is that our results are different from the results in [CWvdH08a]
and [AHH10] where the authors reported no speedup beyond four threads for locked
Tree Parallelization.

A1b: Experiment on many-core

In Figure 3.7b the playout speedup on the Xeon Phi is shown. A perfect playout
speedup is observed up to 64 threads. We see that using a lock does not affect the per-
formance of the algorithm up to this point. After 64 threads the performance drops,
although the number of PPS still increases up to 240 threads. It should be noted that
even with playout speedup increasing up to 240 threads, we see that at 240 threads
on the Xeon Phi still, the number of PPS is less than on eight threads on the Xeon
CPU. Our provisional conclusion here is that the performance for Tree Parallelization
on the Xeon Phi is almost 30% of the peak performance on the Xeon CPU.

A2: Root Parallelization

Next, we will discuss the Root Parallelization, where threads are running indepen-
dently and where no locking mechanism exists. Root Parallelization is well suited to
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Figure 3.7: Performance and scalability of ParallelUCT in terms of PPS for both Tree
and Root Parallelization.

see whether the decrease in playout speedup in Tree Parallelization is due to locks
or not. In Figure 3.7 the scalability of Root Parallelization on the Xeon CPU and the
Xeon Phi are compared. In the following the results for the experiments on (A2a) the
multi-core Xeon CPU and (A2b) the many-core Xeon Phi are discussed.

A2a: Experiment on multi-core

As is shown in Figure 3.7a for the Xeon CPU, the playout speedup is perfect for up to
16 threads (while in Tree Parallelization it is for up to 4 threads). The second differ-
ence between these two algorithms is revealed at 48 threads where Root Paralleliza-
tion still shows improvement in playout speedup. We may conclude that removing the
lock in the expansion phase of Tree Parallelization improves performance for a high
number of threads on the Xeon CPU.

A2b: Experiment on many-core

The performance of Root Parallelization on the Xeon Phi is shown in Figure 3.7b.
Here, we require at least eight threads on the Xeon Phi to reach almost the same num-
ber of PPS as one thread on the Xeon CPU. On the Xeon Phi, with Root Parallelization,
perfect playout speedup is achieved for up to 64 threads, which implies that the drops
on 64 threads in Tree Parallelization performance are likely not due to locking. How-
ever, for 240 threads the number of playouts increases by a higher rate compared
to Tree Parallelization. Overall, the peak performance for Root Parallelization on the
Xeon Phi is almost 30% of its counterpart on the Xeon CPU. To understand the reason
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Figure 3.8: Scalability of ParallelUCT in terms of PW for Tree Parallelization.

for this low performance we did a detailed timing analysis to find out where most
of the time of the algorithm has been spent in the selection, expansion, playout, or
backup phase. For the Hex board size of 11 × 11, MCTS spends most of its time in
the playout phase. This phase of the algorithm is problem dependent, for example,
it is different for Go (9 × 9) and Hex (9 × 9) because they have different rules; the
difference is even different for distinct board sizes. In our program, around 80% of
the total execution time for performing a move is spent in the playout phase.

A3: Conclusion

In both Tree and Root Parallelization algorithms, the performance of the parallel al-
gorithm is less on the Xeon Phi compared to the Xeon CPU. Comparing the differ-
ences between scalability graphs of both algorithms in terms of PPS on both the Xeon
CPU and the Xeon Phi shows the limited scalability of Tree Parallelization when us-
ing more threads compared to Root Parallelization. Here we may conclude that the
performance of thread-level parallelization for both Tree and Root Parallelization al-
gorithms on the Xeon CPU is better than the one on the Xeon Phi (see RQ1a). In
terms of scalability, the thread-level parallelization for the Root Parallelization algo-
rithm shows better scalability comparing to the Tree Parallelization algorithm on both
the Xeon CPU and the Xeon Phi.

B: Playing Strength

Figure 3.8 shows the performance and scalability of Tree Parallelization on both the
Xeon CPU and the Xeon Phi in terms of the PW versus the number of threads. Figure
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3.9 shows the scalability of Root Parallelization on both the Xeon CPU and the Xeon
Phi in terms of the PW versus the number of threads. The graph shows the win-rate of
the program with N threads as the first player. A straight line means that the program
is scalable in terms of the playing strength.

B1: Tree Parallelization

As already mentioned, it is also essential to evaluate the playing strength of the MCTS
player for a game such as Hex. The goal is to see how the increase in the number of
PPS reflects in a more dominant player. In the following the results for the exper-
iments on (B1a) the multi-core Xeon CPU and (B1b) the many-core Xeon Phi are
discussed.

B1a: Experiment on multi-core

In Figure 3.8a playing strength for Tree Parallelization on the Xeon CPU is shown.
Note that, since we compare the performance of N threads against N/2 threads,
an ideal perfect playing strength would give a straight, horizontal line of, say, 60%
win rate for the player with more threads. We see good playing strength up to 32
threads. The win rate drops to 50 percent for 48 threads. This decrease in win rate
is consistent with the drop in the number of PPS for 48 threads in Figure 3.7a. Our
provisional conclusion here is that on the Xeon CPU, the playing strength follows
playout speedup closely.

B1b: Experiment on many-core

Interestingly, the playing strength on the Xeon Phi is entirely different from that on
the Xeon CPU. The win rate for eight threads is more than 80%. This is due to an
insufficient number of PPS for four threads (the opponent player of the player with
eight threads), caused by the slow computing performance of the Xeon Phi as de-
scribed above. Our provisional conclusion is that for 16 and 32 threads the win rate is
consistent with perfect playout speedup (Figure 3.8b). After 32 threads the decrease
in strength speedup starts and continues to 240 threads.

B2: Root Parallelization

In Figure 3.9 the scalability in terms of PW for Root Parallelization on the Xeon CPU
and the Xeon Phi are shown. In the following the results for the experiments on (B2a)
the multi-core Xeon CPU and (B2b) the many-core Xeon Phi are discussed.
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Figure 3.9: Scalability of ParallelUCT in terms of PW for Root Parallelization.

B2a: Experiment on multi-core

In Figure 3.9a the scalability in terms of PW for Root Parallelization on the multi-core
Xeon CPU is shown. The shape of the scalability graph shows that Root Parallelization
does not scale beyond 8 threads in spite of good scalability in terms of the number of
PPS on the Xeon CPU (see Figure 3.7a).

B2b: Experiment on many-core

In Figure 3.9a the scalability in terms of PW for Root Parallelization on the many-core
Xeon Phi is shown. The shape of the scalability graph shows that Root Parallelization
scales up to 32 threads no beyond that in spite of good scalability in terms of the
number of PPS on the Xeon Phi (see Figure 3.7b).

B3: Conclusion

In both Tree and Root Parallelization algorithms, the differences between scalability
graphs in terms of PW on the Xeon CPU and the Xeon Phi is due to an insufficient
number of PPS on the Xeon Phi compared to the Xeon CPU.

3.3.4 Section Conclusions

We have performed an in-depth scalability study of both Tree and Root Parallelizations
of the MCTS algorithm on the Xeon CPU and the Xeon Phi for the game of Hex. It is
the first large-scale (up to 240 threads and 61 cores) study of Tree Parallelization on
a real shared-memory many-core machine. Contrary to previous results [EM10], we
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show that the effect of using data locks is not a limiting factor on the performance
of a Tree Parallelization for 16 threads on the Xeon CPU and 64 threads on the Xeon
Phi.

To understand the reason for this low performance we performed a detailed tim-
ing analysis to find out where the most time of the algorithm has been spent in the
selection step, expansion step, playout step, or update step. For the Hex board size
of 11 × 11, MCTS spends most of its time in the playout phase. This phase of the
algorithm is problem dependent, for example, it is different for Go and Hex; the dif-
ference is even different for distinct board sizes. In our program, around 80% of the
total execution time for performing a move is spent in the playout phase.

Since the playout phase dominates execution time of each thread, the Xeon CPU
outperforms the Xeon Phi significantly because of more powerful cores. No method
for vectorization has been devised for the playout phase. Therefore, for the current
ratio of Xeon CPU cores versus Xeon Phi cores (24 versus 61), it is not possible to
reach the same performance on the Xeon Phi because each core of the Xeon CPU is
more powerful than each core of the Xeon Phi for sequential execution. From these
results, we may conclude that for the current ratio of Xeon CPU cores versus Xeon
Phi cores, the parallel MCTS algorithms for games such as Hex or Go on the Xeon
Phi have a limitation. Therefore, it is interesting to investigate the limitation problem
in the other domains in which MCTS has been successful such as those mentioned
in [vdHPKV13].

3.3.5 Answer to RQ1a for ParallelUCT

Using our ParallelUCT package, which uses thread-level parallelization for imple-
menting two parallel MCTS algorithms (i.e., Root Parallelization and Tree Paralleliza-
tion), we cannot reach the same performance on the Xeon Phi as on the Xeon CPU
(see Figure 3.7). The maximum performance in terms of PPS for both Root Paral-
lelization and Tree Parallelization on the Xeon CPU is around three times more than
the one on the Xeon Phi. The Root Parallelization algorithm scalability in terms of PPS
on both the Xeon Phi and the Xeon CPU are similar. The Tree Parallelization algorithm
scalability in terms of PPS is better on the Xeon Phi than on the Xeon CPU, since the
performance of the algorithm is dropped after 32 threads on the Xeon CPU. We find
that three obstacles limit performance and scalability on both the Xeon CPU and the
Xeon Phi: (1) the time spent in the sequential part of the algorithm, (2) the thread
management overhead, and (3) the synchronization overhead due to using locks to
protect the shared search tree.
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3.4 Related Work

Below we review related work on MCTS parallelizations. The two major paralleliza-
tion methods for MCTS are Tree Parallelization and Root parallelization [CWvdH08a].
There are also other techniques such as leaf parallelization [CWvdH08a] and ap-
proaches based on transposition table driven work scheduling [YKK+11, RPBS99].

• Tree Parallelization: For shared-memory machines, Tree Parallelization is a suit-
able method. It is used in FUEGO, an open source Go program. It is shown
in [CWvdH08a] that the playout speedup of Tree Parallelization with virtual
loss cannot scale perfectly for up to 16 threads. The main challenge is the use
of the data locks to prevent data corruption. Moreover, it is shown in [EM10]
that a lock-free implementation of this algorithm provides better scaling than
a locked approach. In [EM10] such a lock-free Tree Parallelization for MCTS is
proposed. The authors intentionally ignored rare faulty updates inside the tree
and studied the scalability of the algorithm for up to 8 threads. In [BG11], the
performance of a lock-free Tree Parallelization for up to 22 threads is reported.
The playing strength is perfect for 16 threads, but the improvement drops for
22 threads. There is also a case study that shows good performance of a (no-
MCTS) Monte Carlo simulation on the Xeon Phi co-processor [Li13]. Segal’s
[Seg11] simulation study of Tree Parallelization on an ideal shared-memory
system suggested that perfect playing strength beyond 64 threads may not be
possible, presumably due to increased search overhead. Baudǐs et al. reported
almost near perfect playing strength up to 22 threads for a lock-free tree paral-
lelization [BG11].

• Root Parallelization: Chaslot et al. [CWvdH08a] reported results that Root Par-
allelization shows perfect playout speedup for up to 16 threads. Soejima et
al. [SKW10] analyzed the performance of Root Parallelization in detail. They
showed that a Go player that uses lock-free Tree Parallelization with 4 to 8
threads outperformed the same program with Root Parallelization which uti-
lizes 64 distributed CPU cores. This result suggests the superiority of Tree Par-
allelization over Root Parallelization in shared-memory machines.

3.5 Answer to RQ1

In this chapter we presented the thread-level parallelization for parallelization of
MCTS. We have already answered RQ1a in Subsection 3.2.5 and Subsection 3.3.5.
This section proposes an answer for RQ1.
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• RQ1:What is the performance and scalability of thread-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

For thread-level parallelization, our study shows that the performance of MCTS
on the many-core Xeon Phi co-processor with its MIC architecture is less than its
performance on the NUMA-based multi-core processor (see Subsections 3.2.3 and
3.3.3). The results show that current Xeon CPUs at 24 cores substantially outper-
form the Xeon Phi co-processor on 61 cores. Our study also shows that the scalability
of thread-level parallelization for MCTS on the many-core Xeon Phi co-processor is
limited.




