
Structured parallel programming for Monte Carlo Tree Search
Mirsoleimani, S.A.

Citation
Mirsoleimani, S. A. (2020, June 17). Structured parallel programming for Monte Carlo Tree
Search. SIKS Dissertation Series. Retrieved from https://hdl.handle.net/1887/119358
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/119358
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/119358


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/119358 holds various files of this Leiden University 
dissertation. 
 
Author: Mirsoleimani, S.A. 
Title: Structured parallel programming for Monte Carlo tree search 
Issue Date: 2020-06-17 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/119358
https://openaccess.leidenuniv.nl/handle/1887/1�


2
Background

The MCTS algorithm iteratively repeats four steps or operations to construct a search
tree until a predefined computational budget (i.e., time or iteration constraint) is
reached [CWvdH+08b]. Algorithm 2.1 shows the general MCTS algorithm (see Sec-
tion 1.2 and Algorithm 2.2).

Algorithm 2.1: The general MCTS algorithm.
1 Function MCTS(s0)
2 v0 := create root node with state s0;
3 while within search budget do
4 〈vl, sl〉 := SELECT(v0, s0);
5 〈vl, sl〉 := EXPAND(vl, sl);
6 ∆ := PLAYOUT(vl, sl);
7 BACKUP(vl,∆);

The purpose of MCTS is to approximate the domain-dependent theoretic value
of the actions that may be selected from the current state by iteratively creating a
partial search tree [BPW+12]. How the search tree is built depends on how nodes in
the tree are selected (i.e., tree selection policy). For instance, nodes in the tree are
selected according to the estimated probability that they are better than the current
best action. It is essential to reduce the estimation error of the nodes’ values as quickly
as possible. The current chapter provides a more detailed overview of MCTS. Section
2.1 describes the UCB selection policy. In Section 2.2, we provide the UCT formula
and the UCT algorithm. Section 2.3 discusses the parallelization methods for MCTS.
Section 2.4 presents the benchmarks for experimental studies. Section 2.5 explains
the performance metrics. Finally, Section 2.6 briefly describes our software tool.



16 2.1. Upper Confidence Bound (UCB)

2.1 Upper Confidence Bound (UCB)

The tree selection policy in the MCTS algorithm is based on two fundamentally dif-
ferent concepts, viz. exploitation and exploration. Hence, the selection is a search
process and the aim of the search is to reduce the error as soon as possible [KS06].

Definition 2.1 (Exploitation) Exploitation looks in areas which appear to be promis-
ing [BPW+12].

Definition 2.2 (Exploration) Exploration looks in areas that so far have not been sam-
pled well [BPW+12].

Kocsis and Szepesvári [KS06] aimed to design a Monte Carlo search algorithm
that had a small error probability if stopped prematurely and that converged to the
domain-dependent theoretic optimum given sufficient time [KS06]. They proposed
the use of the simplest Upper Confidence Bound (UCB) policy (i.e., UCB1) as a tree
selection policy for MCTS. UCB1 is an obvious choice for node selection given its
application in multi-armed bandit problems for balancing between exploitation and
exploration of actions. Bandit problems are a well-known class of sequential decision
problems, in which one needs to choose among K actions (e.g., the K arms of a multi-
armed bandit slot machine) to maximize the cumulative reward by consistently taking
the optimal action [BPW+12, ACBF02].

Auer et al. [ACBF02] proposed UCB1 for bandit problems. The UCB1 policy selects
the arm j that maximizes:

UCB1 (j) = Xj +

√
2 ln(n)

nj
(2.1)

where Xj is the average reward from arm j; nj is the number of times arm j was
played, and n is the overall number of plays so far. The first term at the right-hand
side Xj encourages the exploitation of higher-reward arms, while the second term at

the right-hand side
√

2 ln(n)
nj

promotes the exploration of less played arms.

2.2 Upper Confidence Bounds for Trees (UCT)

This section explains the most common algorithm in the MCTS family, the Upper
Confidence Bounds for Trees (UCT) algorithm. The formulas are given in Subsection
2.2.1 and the algorithm in Subsection 2.2.2



Chapter 2. Background 17

2.2.1 UCT Formula

The UCT algorithm addresses the exploitation-exploration dilemma in the selection
step of the MCTS algorithm using the UCB1 policy [KS06]. A child node j is selected
to maximize:

UCT (j) = Xj + 2Cp

√
2 ln(N(v))

N(vj)
(2.2)

where Xj =
Q(vj)
N(vj) is an approximation of the node j domain-dependent theoretic

value. Q(vj) is the total reward of all playouts that passed through node j, N(vj) is
the number of times node j has been visited, N(v) is the number of times the parent
of node j has been visited, and Cp ≥ 0 is a constant. The first term at the right-hand
side is for exploitation and the second term is for exploration [KS06]. The decrease or
increase in the amount of exploration can be adjusted by Cp in the exploration term.

2.2.2 UCT Algorithm

The UCT algorithm is given in Algorithm 2.2. Each node v stores four pieces of data:
the action to be taken a(v), p(v) the current player at node v, the total simulation
reward Q(v) (a real number), and the visit count N(v) (a non-negative integer). Each
node v is also associated with a state s. The state s is recalculated as the SELECT and
EXPAND steps descends the tree. The term ∆〈p(v)〉 denotes the reward after simulation
for each player.

2.3 Parallelization Methods for MCTS

In this section, two categories for parallelization of MCTS are presented. Traditionally,
parallelization methods for MCTS are classified based on the parallelism technique.
Currently, we believe that we should classify them into two categories solely based
on the way that the search tree is used. We introduce parallel methods with a shared
tree in Subsection 2.3.1 and with an ensemble of search trees in Subsection 2.3.2.

2.3.1 Parallel Methods with a Shared Data Structure

The first category is for the parallel methods with a shared search tree. The tree is
shared among parallel threads or processes which means data is accessible globally.
The methods that belong to this category can be implemented on both shared-memory
and distributed-memory systems. In both environments, a synchronization method
should create constraints threads from accessing the tree simultaneously. The most
well-known method in this category is Tree Parallelization.



18 2.3. Parallelization Methods for MCTS

Algorithm 2.2: The UCT algorithm.
1 Function UCTSEARCH(s0)
2 v0 := create root node with state s0;
3 while within search budget do
4 〈vl, sl〉 := SELECT(v0, s0);
5 〈vl, sl〉 := EXPAND(vl, sl);
6 ∆ := PLAYOUT(vl, sl);
7 BACKUP(vl,∆);

8 return a(best child of v0)

9 Function SELECT(Node v,State s) : <Node,State>
10 while v is fully expanded do

11 vl := arg max
vj∈children of v

Q(vj)

N(vj)
+ 2Cp

√
2 ln(N(v))

N(vj)
;

12 sl := p(v) takes action a(vl) from state s;
13 v := vl;
14 s := sl;

15 return 〈v, s〉;

16 Function EXPAND(Node v,State s) : <Node,State>
17 if s is non-terminal then
18 choose a ∈ set of untried actions from state s;

19 add a new child v
′

with a as its action to v;

20 s
′

:= p(v) takes action a from state s;

21 return 〈v
′
, s
′
〉;

22 Function PLAYOUT(Node v,State s)
23 while s is non-terminal do
24 choose a ∈ set of untried actions from state s uniformly at random;
25 s := p(v) takes action a from state s;

26 ∆〈p(v)〉 := reward for state s for each player p;
27 return ∆

28 Function BACKUP(Node v,∆) : void
29 while v is not null do
30 N(v) := N(v) + 1;
31 Q(v) := Q(v) + ∆〈p(v)〉;
32 v := parent of v;

Definition 2.3 (Tree Parallelization) In Tree Parallelization, the tree is shared among
parallel threads, tasks, or processes which means data is accessible globally.

2.3.2 Parallel Methods with More than one Data Structure

The second category is for the parallel methods where several search trees or an en-
semble of search trees are used. Each parallel thread has its own search tree which
means the information is local to that thread. The methods that belong to this cate-
gory can also be implemented on both shared-memory and distributed-memory envi-
ronments. The most well-known method in this category is Root Parallelization.



Chapter 2. Background 19

Figure 2.1: A sample board for the game of Hex

Definition 2.4 (Root Parallelization) In Root Parallelization, each parallel thread, task,
or process has its own search tree which means the information is local to that thread.

2.4 Case Studies

In this section, we present two case studies for MCTS. In Subsection 2.4.1 we present
the game of Hex, a strategy board game for two players. In Subsection 2.4.2 we de-
scribe the method for approximating the roots of a polynomial called Horner scheme.

2.4.1 Case 1: The Game of Hex

Hex is a board game with a diamond-shaped board of hexagonal cells [AHH10,
HT19]. The game is usually played on a board of size 11 on a side, for a total of 121
hexagons, as illustrated in Figure 2.1 [Wei17]. Each player is represented by a color
(Black or White). Players take turns placing a stone of their color on a cell on the
board. The goal for each player is to create a connected chain of stones between the
opposing sides of the board marked by their colors. The first player to complete this
path wins the game. The game cannot end in a draw since no path can be completely
blocked except by a complete path of the opposite color. Since the first player to move
in Hex has a distinct advantage, the swap rule is generally implemented for fairness.
This rule allows the second player to choose whether to switch positions with the first
player after the first player has made a move.

Evaluation Function

In our implementation of Hex, a disjoint-set data structure is used to determine the
connected stones. A disjoint-set data structure maintains a collection of disjoint (non-
overlapping) subsets of a set of elements S = {S1, S2, . . . , Sk}. A union-find algorithm



20 2.5. Performance Metrics

performs two operations on such a data structure: First, the Find operation determines
in which subset a particular element is located. This can be used for determining
whether two elements are in the same subset. Second, the Union operation joins two
subsets into a single subset. Each set is identified by a representative, which usually
is a member in the set. Using this data structure and algorithm, the evaluation of the
board position to find the player who won the game becomes very efficient [GI91].

2.4.2 Case 2: Horner Schemes

Horner’s rule is an algorithm for polynomial computation that reduces the number of
multiplications and results in a computationally efficient form [OS12]. For a polyno-
mial in one variable

p(x) = anx
n + an−1x

n−1 + · · ·+ a0, (2.3)

the rule simply factors out powers of x. Thus, the polynomial can be written in the
form

p(x) = ((anx+ an−1)x+ . . . )x+ a0. (2.4)

This representation reduces the number of multiplications to n and has n additions.
Therefore, the total evaluation cost of the polynomial is 2n. Here it is assumed that
the cost of addition and multiplication are equal.

Horner’s rule can be generalized for multivariate polynomials. Here, Eq. 2.4 ap-
plies to a polynomial for each variable, treating the other variables as constants. The
order of choosing variables may be different, each order of the variables is called a
Horner scheme.

The number of operations can be reduced even more by performing common
subexpression elimination (CSE) after transforming a polynomial with Horner’s rule
[ALSU07]. CSE creates new symbols for each subexpression that appears twice or
more and replaces them inside the polynomial. Then, the subexpression has to be
computed only once.

2.5 Performance Metrics

In our experiments, the performance is reported by two metrics: (A) playout speedup
(Subsection 2.5.1) and (B) playing strength (Subsection 2.5.2). Below, we define both
metrics.



Chapter 2. Background 21

2.5.1 Playout Speedup

The most important metric related to performance and parallelism is speedup. In the
literature, this form of speedup is called playout speedup [CWvdH08a]. We use playout
speedup to show the effect on a program’s performance in terms of speed of execution
after any resource enhancement (e.g., increasing the number of threads or cores). The
speedup can be defined for two different types of quantities: (A1) latency and (A2)
throughput.

A1: Playout speedup in latency

We measure the speedup in time, which is a latency measure. Speedup compares the
time for solving the identical computational problem on one worker versus that on P
workers

PlayoutSpeeduplatency =
T1

TP
. (2.5)

where T1 is the time of the program with one worker and TP is the time of the
program with P workers. In our results we report the scalability of our parallelization
as strong scalability which means that the problem size remains fixed as P varies. The
problem size is the number of playouts (i.e., the search budget) and P is the number
of threads or tasks.

Definition 2.5 (Strong Scalability) Strong scalability means that the problem size re-
mains fixed as the number of resources varies.

A2: Playout speedup in throughput

We measure the speedup in Playouts per Second (PPS), which is a throughput mea-
sure. First, we execute the program with one thread, which yields a PPS of n. Next,
we execute the program with P threads, which yields a PPS of m. Using the speedup
formula gives

PlayoutSpeedupthroughput =
QP

Q1
=
m PPS
n PPS

(2.6)

2.5.2 Playing Strength

The second most important metric related to the performance of parallel MCTS is
playing strength. We use playing strength to show the effect on a program’s perfor-
mance in terms of quality of search after any resource enhancement (e.g., increasing
the number of threads or cores). Playing strength can be defined for two different
types of problems: (B1) two-player game and (B2) optimization problem.



22 2.6. Our ParallelUCT Package

B1: Playing Strength in a two player game

We measure the strength of player a in Percentage of Wins (PW) per tournament
versus player b for the two-player game, such as Hex or Go, which is a win-rate

PlayingStrength(a)PW =
Wa

Wa +Wb
∗ 100. (2.7)

where Wa is the number of wins for player a and Wb is the number of wins for player
b. If there is a draw, it will be counted as a win for both players.

B2: Playing strength in an optimization problem

We measure the strength of an MCTS player a in the number of operations in the op-
timized expression, which is a solution for the Horner scheme optimization problem.
A lower value is desirable when we increase the numbers of threads or tasks.

2.6 Our ParallelUCT Package

To be able to investigate the research questions of this thesis a new software frame-
work for parallel MCTS has been developed. The tool has been designed from scratch
and is implemented in C++. Our tool is named ParallelUCT. The tool is open source,
and its source codes are accessible 1.

The ParallelUCT framework has many features that enable us to answer the re-
search questions mentioned in Section 1.7. Below we describe the three most impor-
tant elements of this package, viz. in Subsection 2.6.1 we present multiple benchmark
problems that are provided by the ParallelUCT, in Subsection 2.6.2 we describe mul-
tiple parallelization methods in ParallelUCT, and in Subsection 2.6.3 we provide the
list of parallel programming models that are used in ParallelUCT.

2.6.1 Framework of multiple benchmark problems

In our research we focus on two benchmark problems. They are our case studies (Hex
and Horner schemes). Both are implemented in the ParallelUCT framework. This soft-
ware framework is extensible. It means that new problems such as other games or
optimization problems can be added to it quickly. A developer should solely imple-
ment the original problem and provide it to the framework. The only requirement is
to follow the standard of implementation which is provided by the software frame-
work. The standard is available in the documentation of the ParallelUCT package
[MPvdHV15a].

1 http://github.com/mirsoleimani/paralleluct

http://github.com/mirsoleimani/paralleluct


Chapter 2. Background 23

2.6.2 Framework of multiple parallelization methods

We focus on two parallelization methods. They are methods with a shared data struc-
ture and with more than one data structure which are implemented in the framework.
Examples of such methods are Tree Parallelization and Root Parallelization. A user
can run the ParallelUCT executable program using one of these methods via com-
mand line options. The complete list of command line options is accessible via the
help option of the program (see http://github.com/mirsoleimani/paralleluct).

2.6.3 Framework of multiple programming models

Finally, we focus on programming models. The parallelization methods are imple-
mented in the framework using modern threading libraries such as Cilk [LP98], TBB
[Rei07], and C++11. A user can run the ParallelUCT executable program with one
of these threading libraries also via command line options. The complete list of com-
mand line options is accessible via the help option of the ParallelUCT executable
program (see http://github.com/mirsoleimani/paralleluct).

http://github.com/mirsoleimani/paralleluct
http://github.com/mirsoleimani/paralleluct



