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Preface

The thesis is part of a bigger project, the HEPGAME (High Energy Physics Game). The
project started in 2011 when Jos Vermaseren developed the first ideas on improving
FORM at Nikhef, Amsterdam. In 2012 he submitted an ERC advanced research grant
together with Tilburg University. It was accepted on 12/12/2012. Half a year later in
July 2013, the program started. The main objective for HEPGAME was the utilization
of Al solutions, particularly by using MCTS for simplification of HEP calculations.
One of the issues is solving mathematical expressions of interest with millions of
terms. Up to 2011, these calculations were executed with the FORM program, which
is software for symbolic manipulation. These calculations are computationally inten-
sive and take a large amount of time. Hence, the FORM program was parallelized
to solve large equations in a reasonable amount of time. Therefore, any new algo-
rithm, for instance, the ones based on MCTS, should also be parallelized. Here our
research comes in. It is dedicated to parallelization of MCTS on multi-core and many-
core processors. The research was ambitious and challenging. Therefore, we divided
the research area into three main parts: (1) the evaluation of current methods for
parallelization of MCTS, (2) addressing the shortcomings in these methods, and (3)
providing new ways of parallelization for MCTS. In the first part, we investigated the
current methods and evaluated them in terms of performance and scalability on both
multi-core and manycore processors. In the second part, we examined how we can
solve the actual shortcomings in the existing parallelization methods for MCTS. The
third part was dedicated to finding new ideas, methods, and ways beyond the existing
ones to parallelize MCTS.

Sayyed Ali Mirsoleimani, Leiden, July 2019
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