Universiteit

4 Leiden
The Netherlands

Structured parallel programming for Monte Carlo Tree Search
Mirsoleimani, S.A.

Citation
Mirsoleimani, S. A. (2020, June 17). Structured parallel programming for Monte Carlo Tree
Search. SIKS Dissertation Series. Retrieved from https://hdl.handle.net/1887/119358

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/119358

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/119358

Cover Page

The handle http://hdl.handle.net/1887/119358 holds various files of this Leiden University
dissertation.

Author: Mirsoleimani, S.A.
Title: Structured parallel programming for Monte Carlo tree search
Issue Date: 2020-06-17

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/119358
https://openaccess.leidenuniv.nl/handle/1887/1�

Structured Parallel Programming

FOR
Monte Carlo Tree Search

S. Ali Mirsoleimani

Structured Parallel Programming

FOR
Monte Carlo Tree Search

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 17 juni 2020
klokke 11.15 uur

door

Sayyed Ali Mirsoleimani
geboren te Abadeh, Iran
in 1986

Promotoren:
Prof. dr. H. J. van den Herik
Prof. dr. A. Plaat

Copromotor:

Dr. J. A. M. Vermaseren Nikhef
Promotiecommissie:

Prof. dr. P. J. G. Mulders Vrije Universiteit Amsterdam

Prof. dr. F. J. Verbeek
Prof. dr. H. A. G. Wijshoff

Dr. F. Khunjush Shiraz University, Shiraz, Iran
Dr. W. A. Kosters
Dr. ir. A. L. Varbanescu Universiteit van Amsterdam

HEPGAME, ERC Advanced Grant No. 320651
Nik|/hef The research reported in this thesis has been additionally funded by Nikhef,
the Nationaal instituut voor subatomaire fysica.

TILBURG
UN'ViRS'TY In the first year, the research reported in this thesis has been performed at
"0 Tilburg center for Cognition and Communication (TiCC) at
¢ %;%i ¢ Tilburg University, the Netherlands.
LI |
L 4

The research reported in this thesis has been completed at

Leiden Centre of Data Science (LCDS) hosted by

Leiden Institute of Advanced Computer Science (LIACS) at the Faculty of Science,
Universiteit Leiden, the Netherlands.

SIKS Dissertation Series No. 2020-08

@ The research reported in this thesis has been carried out under
the auspices of SIKS, the Dutch Research School for Information and
Knowledge Systems.

Copyright (© 2020 by S.A. Mirsoleimani

An electronic version of this dissertation is available at

http://openaccess.leidenuniv.nl/.

http://openaccess.leidenuniv.nl/

I would like to dedicate this thesis to my wife Elahe and to my parents,
for all of their love and support.

In loving memory of my grandfathers,
Bahram and Abolghasem

Preface

The thesis is part of a bigger project, the HEPGAME (High Energy Physics Game). The
project started in 2011 when Jos Vermaseren developed the first ideas on improving
FORM at Nikhef, Amsterdam. In 2012 he submitted an ERC advanced research grant
together with Tilburg University. It was accepted on 12/12/2012. Half a year later in
July 2013, the program started. The main objective for HEPGAME was the utilization
of Al solutions, particularly by using MCTS for simplification of HEP calculations.
One of the issues is solving mathematical expressions of interest with millions of
terms. Up to 2011, these calculations were executed with the FORM program, which
is software for symbolic manipulation. These calculations are computationally inten-
sive and take a large amount of time. Hence, the FORM program was parallelized
to solve large equations in a reasonable amount of time. Therefore, any new algo-
rithm, for instance, the ones based on MCTS, should also be parallelized. Here our
research comes in. It is dedicated to parallelization of MCTS on multi-core and many-
core processors. The research was ambitious and challenging. Therefore, we divided
the research area into three main parts: (1) the evaluation of current methods for
parallelization of MCTS, (2) addressing the shortcomings in these methods, and (3)
providing new ways of parallelization for MCTS. In the first part, we investigated the
current methods and evaluated them in terms of performance and scalability on both
multi-core and manycore processors. In the second part, we examined how we can
solve the actual shortcomings in the existing parallelization methods for MCTS. The
third part was dedicated to finding new ideas, methods, and ways beyond the existing
ones to parallelize MCTS.

Sayyed Ali Mirsoleimani, Leiden, July 2019

Contents

Preface vii
Contents ix
List of Definitions XV
List of Figures xvii
List of Tables xxi
List of Listings xxiii
List of Abbreviations XXV
1 Introduction 1
1.1 HEPGAME e e e e e e e e e 2
1.2 Monte CarloTreeSearch 2
1.3 Parallelism and Parallelization 3
1.3.1 Thread-level Parallelization 4

1.3.2 Task-level Parallelization 4

1.4 General Obstacles for Parallelization of MCTS 5
1.4.1 Irregular Parallelism Causes Load Balancing Overhead 6

1.4.2 Shared Data Structure Causes Synchronization Overhead 6

1.4.3 Ignoring Data Dependencies Causes Search Overhead 7

1.4.4 Complex Interactions Leading to Deployment Overhead 8

3

1.5
1.6
1.7
1.8
1.9

Performance and Scalability Studies.
Scopeand Research Goals
Problem Statement and Research Questions
Research Methodology
Structure of the thesis
1.10 Contributions i i e e e e e

Background
2.1 Upper Confidence Bound (UCB)
2.2 Upper Confidence Bounds for Trees (UCT)

2.3

2.4

2.5

2.6

2.2.1
2.2.2

UCTFormula i i
UCT Algorithm i

Parallelization Methods for MCTS

2.3.1
2.3.2

Parallel Methods with a Shared Data Structure
Parallel Methods with More than one Data Structure

Case Studies v v v i e e e e e e e

2.4.1
2.4.2

Case 1: TheGameof Hex
Case 2: Horner Schemes

Performance MetricS v v i i e e e e

2.5.1
2.5.2

Playout Speedup i
Playing Strength

Our ParallelUCT Package

2.6.1
2.6.2
2.6.3

Framework of multiple benchmark problems
Framework of multiple parallelization methods
Framework of multiple programming models

Thread-level Parallelization for MCTS
3.1 Micro-benchmark Code Performance

3.2

3.1.1
3.1.2
3.1.3
3.14
3.1.5

Xeon Phi Micro-architecture
Experimental Setup,
Experimental Design
Experimental Results
Section Conclusion,

FUEGO Performance and Scalability

3.2.1
3.2.2
3.2.3
3.24
3.2.5

Experimental Setup
Experimental Design
Experimental Results
Section Conclusion,
Answer to RQlafor FUEGO

3.3 ParallelUCT Performance and Scalability

10
12
12
13

15
16
16
17
17
17
17
18
19
19
20
20
21
21
22
22
23
23

Xi

5

3.3.1 Experimental Setup,
3.3.2 Experimental Design
3.3.3 ExperimentalResults
3.3.4 Section Conclusions
3.3.5 Answer to RQ1la for ParallelUCT
3.4 Related Work e
3.5 AnswertoRQ1

Task-level Parallelization for MCTS
4.1 TIrregular Parallelism Challenge
4.2 Achieving Task-level Parallelization
4.2.1 Decomposition of Iterations into Tasks
4.2.2 Ignoring Data Dependencies among Iterations
4.3 Threading Libraries
431 CilkPlus. e
4.3.2 Threading Building Blocks
4.4 Grain Size Controlled Parallel MCTS
4.5 Implementation Considerations
4.5.1 Shared Search Tree UsingLocks
4.5.2 Random Number Generator
4.6 Performance and Scalability Study
4.7 Experimental Setup
4.8 Experimental Design
4.9 ExperimentalResults
4.10 Discussion and Analysis
411 Related Work
412 Answer toRQ2 L e

A Lock-free Algorithm for Parallel MCTS

5.1 Shared Data Structure Challenge
5.1.1 Parallelization with a Single Shared Tree
5.1.2 TheRace Conditions
5.1.3 Protecting Shared Data Structure

5.2 RelatedWork
5.2.1 Lock-based Methods
5.2.2 Lock-free Methods

5.3 A New Lock-free Tree Data Structure and Algorithm

5.4 Implementation Considerations

5.5 Experimental Setup.
551 TheGameofHex

40
41
41
46
47
48
48

51
52
52
53
53
53
54
54
54
56
56
57
57
58
58
59
60
64
64

Xii

7

5.5.2 Performance Metrics o v v v vt 78
5.5.3 Hardware i 78
5.6 Experimental Design i 78
5.7 ExperimentalResults, 79
5.7.1 Scalability and Cj, parameters 79
5.7.2 GSCPM vs. Root Parallelization 82
58 AnswertoRQ3 e 83
Pipeline Pattern for Parallel MCTS 85
6.1 Data Dependencies Challenges 86
6.1.1 Loop Independent Data Dependency 86
6.1.2 Loop Carried Data Dependency 87
6.1.3 Why a Pipeline Pattern? 87
6.2 Design of 3PMCTS e 88
6.2.1 APipeline Pattern for MCTS 88
6.2.2 Pipeline Construction 91
6.3 Implementation Considerations 92
6.4 Experimental Setup. e 92
6.4.1 HornerScheme 92
6.4.2 Performance Metrics 93
6.43 Hardware 93
6.5 Experimental Design 93
6.6 Experimental Results 94
6.6.1 Performance and Scalability of 3PMCTS 94
6.6.2 Flexibility of Task Decomposition in 3PMCTS 96
6.7 AnswertoRQ4 e 97
Ensemble UCT Needs High Exploitation 99
7.1 Ensemble UCT 100
7.2 RelatedWork 101
7.3 Experimental Setup 102
7.3.1 TheGameofHex 102
7.3.2 Hardware 102
7.4 Experimental Design 103
7.5 ExperimentalResults 103

7.6 Answerto the First Part of RQ5 106

xiii

8

An Analysis of Virtual Loss in Parallel MCTS

8.1 Virtual Loss v v v it e e e e e e e e
8.2 RelatedWork e
8.3 Experimental Setup. i
8.4 Experimental Design
8.5 ExperimentalResults
8.6 Answer to the Second Partof RQ5.
8.7 ACompleteanswertoRQ5

Conclusions and Future Research

9.1 Answerstothe RQs
9.1.1 AnswertoRQ1
9.1.2 AnswertoRQ2 e
9.1.3 AnswertoRQ3 e
9.1.4 AnswertoRQ4 e
9.1.5 AnswertoRQ5

9.2 AnswertothePS e

9.3 Limitations i e e e e e e
9.3.1 Maximizing Hardware Usage
9.3.2 Using More Case Studies

9.4 FutureResearch.

Bibliography

Appendices

A

B

Micro-benchmark Programs
Statistical Analysis of Self-play Experiments

Implementation of GSCPM

C.1 TBB . . . e e e
C2 CGilkPlus e
C.3 TPFIFO e e e e

Implementation of 3PMCTS
D.1 Definition of Token Data Type (TDT)
D.2 TBB Implementation Using TDD

Summary

109
110
112
112
112
113
115
115

117
117
117
118
118
119
119
120
120
120
121
121

123

131

133

135

137
137
137
138

139
139
141

143

Xiv

Samenvatting
Acknowledgment
Curriculum Vitae
Publications

SIKS Dissertation Series

145

147

149

151

153

List of Definitions

1.1 Parallelization 3
1.2 Thread e e e e 4
1.3 Multi-core Processoro 4
1.4 Tasko e 4
1.5 Many-core Processor Lo e 5
1.6 Parallel Pattern e 5
1.7 TIrregular Parallelism 6
1.8 LoadBalancing e 6
1.9 Shared Data Structure 7
1.10 Synchronization 7
1.11 Loop Carried Data Dependency 7
1.12 Loop Independent Data Dependency 7
1.13 Search Overhead ienee... 7
1.14 Complex Interactions v v v v v v vt e 8
1.15 Deployment Overhead 8
1.16 Performance Studyo oo e 8
1.17 Playout Speedupt e e 8
1.18 Playing Strength 8
1.19 Scalability Study 9
1.20 Memory Bandwidth, . 9
1.21 Uniform Memory ACCESS v v v v v v e e e e e e e e e 10
1.22 Many Integrated Core v i it e e e e 10

1.23 Non Uniform Memory ACCESS . . . v v v v v v v v e et e e e e 10

xvi List of Definitions
2.1 Exploitation e e e e 16
2.2 Exploration e e e e e 16
2.3 Tree Parallelization 18
2.4 Root Parallelization 19
2.5 Strong Scalability 21
3.1 Thread Affinity Policy 28
3.2 Double-Precision Floating-Point Format 29
3.3 IntegerFormat 30
4.1 TterationPattern 53
4.2 Fork-joinPattern 53
4.3 Tteration-level Task 55
4.4 Tteration-level Parallelism 55
4.5 Fork-join Parallelism 55
5.1 RaceCondition 69
5.2 Lock-based 70
5.3 Lock-free 71
6.1 Operation-Level Task 86
6.2 Operation-Level Parallelism 86
6.3 Sequence Pattern 87
6.4 IterationPattern 87
6.5 PipelinePattern e e e e 88
8.1 Virtual Loss o o e e 110

1.1
1.2
1.3

2.1

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8
3.9

List of Figures

An example of the search tree..
The mainloop of MCTS.
Oneiteration of MCTS. vttt e et

A sample board for the gameof Hex

Intel Xeon Phi Architecture. oo
Performance and scalability of double-precision operations for different
numbers of iterations. oo
Memory bandwidth of double-precision operations on the Xeon Phi for
increasing numbers of threads. Each interval contains 27 points.
Performance and scalability of integer operations of the Xeon Phi for
different numbers of threads.,
Performance and scalability of FUEGO in terms of PPS when it makes
the second move. Average of 100 games for each data point. The board
SIZEIS 9 X 0. . o L e
Scalability of FUEGO in terms of PW with N threads against FUEGO
with N/2 threads. The board sizeis 9 x 9.
Performance and scalability of ParallelUCT in terms of PPS for both
Tree and Root Parallelization.
Scalability of ParallelUCT in terms of PW for Tree Parallelization.

Scalability of ParallelUCT in terms of PW for Root Parallelization. . . .

xviii List of Figures
4.1 The scalability profile produced by Cilkview for the GSCPM algorithm.
The number of tasks is shown. Higher is more fine-grained. 57
4.2 Speedup for task-level parallelization utilizing five methods for parallel
implementation from four threading libraries. Higher is better. Left:
coarse-grained parallelism. Right: fine-grained parallelism. 61
4.3 Comparing Cilkview analysis with TPFIFO speedup on the Xeon Phi.
The dots show the number of tasks used for TPFIFO. The lines show
the number of tasks used for Cilkview. 63
5.1 (5.1a) The initial search tree. The internal and non-terminal leaf nodes
are circles. The terminal leaf nodes are squares. The curly arrows rep-
resent threads. (5.1b) Thread 1 and 2 are expanding node vg. (5.1c¢)
Thread 1 and 2 are updating node v3. (5.1d) Thread 1 is selecting node
vg while thread 2 is updating thisnode. 69
5.2 Tree parallelization with coarse-grained lock. 72
5.3 Tree parallelization with fine-grained lock. 72
5.4 The scalability of Tree Parallelization for different parallel program-
ming libraries when C), = 1. (5.4a) Coarse-grained lock. (5.4b) Lock-
free. . . . 80
5.5 The scalability of Tree Parallelization for different parallel program-
ming libraries when €}, = 1 on the Xeon Phi. (5.5a) Coarse-grained
lock. (5.5b) Lock-free. e 80
5.6 (5.6a) The scalability of the algorithm for different C, values. (5.6b)
Changes in the depth of tree when the number of tasks are increasing. 81
5.7 The playing results for lock-free Tree Parallelization versus Root Paral-
lelization. The first value for C), is used for Tree Parallelization and the
second value is used for Root Parallelization. 82
6.1 (6.1a) Flowchart of a pipeline with sequential stages for MCTS. (6.1b)
Flowchart of a pipeline with parallel stages for MCTS. 88
6.2 Scheduling diagram of a pipeline with sequential stages for MCTS. The
computations for stages areequal. 89
6.3 Scheduling diagram of a pipeline with sequential stages for MCTS. The
computations for stages are notequal. 89
6.4 Scheduling diagram of a pipeline with parallel stages for MCTS. Using
parallel stages create load balancing. 90
6.5 The 3PMCTS algorithm with a pipeline that has three parallel stages

(i.e., EXPAND, RANDOMSIMULATION, and EVALUATION). 91

List of Figures

Xix

6.6

6.7

6.8

7.1

7.2

8.1

8.2

Playout-speedup as function of the number of tasks (tokens). Each data
point is an average of 21 runs for a search budget of 8192 playouts. The
constant C, is 0.5. Here a higher valueisbetter.
Number of operations as function of the number of tasks (tokens). Each
data point is an average of 21 runs for a search budget of 8192 play-
outs. Here a lower valueisbetter.
Percentage of win as function of the number of tasks (tokens). Each
data point is the outcome of 100 rounds of playing between the two
opponent players. Each player has a search budget of 220 = 1,048, 576
playouts in each round. Here a higher value is better.

The number of visits for root’s children in Ensemble UCT and plain
UCT. Each child represents an available move on the empty Hex board
with size 11 x 11. Both Ensemble UCT and plain UCT have 80,000
playouts and C,, = 0. In Ensemble UCT, the size of the ensemble is 8. .
The percentage of wins for ensemble UCT is reported. The value of C,
for plain UCT is always 1.0 when playing against Ensemble UCT. To
the left few large UCT trees, to the right many small UCT trees.

Search overhead (SO) for Horner (average of 20 instances for each
data point). Tree parallelization is the green line which is indicated by
circles, and Tree Parallelization with virtual loss is the blue line which
is indicated by triangles. Note that the higher SO of Tree Parallelization
with virtual loss means lower performance.
Efficiency (Eff) for Horner (average of 20 instances for each data
point). Tree parallelization is the green line which is indicated by cir-
cles and Tree Parallelization with virtual loss is the blue line which is
indicated by triangles. Note that Tree Parallelization with virtual loss
has a lower efficiency meaning lower performance.

94

95

97

104

. 105

114

3.1
3.2

3.3

4.1
4.2

5.1

6.1
6.2
6.3

7.1
7.2

List of Tables

Thread affinity policies 29
Performance of FUEGO on the Xeon CPU. Each column shows data for

N threads. The board sizeis 9 x 9. 36
Performance of FUEGO on the Xeon Phi. Each column shows data for

N threads. The board sizeis9x9. 37
The conceptual effect of grainsize. 56
Sequential baseline for GSCPM algorithm. Time in seconds. 59
Sequential execution timeinseconds. 81
Sequential time in seconds when C,, =0.5. 94
Definition of layouts for 3PMCTS. 96
Details of experiment to show the flexibility of 3PMCTS. 96

Different possible configurations for Ensemble UCT. Ensemble size is n. 101
The performance of Ensemble UCT vs. plain UCT based on win rate. . 103

Al
A2
C.1
C.2
C.3
C.4
D.1

List of Listings

Micro-benchmark code for measuring performance of Xeon Phi. 133
Micro-benchmark code for measuring memory bandwidth of Xeon Phi. 134
Task parallelism for GSCPM using TBB (task_group). 137
Task parallelism for GSCPM using Cilk Plus (cilk_spawn). 138
Task parallelism for GSCPM using Cilk Plus (cilk_for). 138
Task parallelism for GSCPM, based on TPFIFO. 138
An implementation of the 3PMCTS algorithmin TBB. 141

3PMCTS

FIFO
FMA

GFLOPS
GIPS
GSCPM

HEP
HEPGAME

ILD
ILP
ILT
ISA

MC
MCTS
MIC

NUMA

List of Abbreviations

Pipeline Pattern for Parallel MCTS.

First In, First Out.
Fused Multiply Add.

Giga Floating Point Operations per Second.
Giga Integers per Second.
Grain Size Controlled Parallel MCTS.

High Energy Physics.
High Energy Physics Game.

Iteration-Level Dependency.
Iteration-Level Parallelism.
Iteration-Level Task.
Instruction Set Architecture.

Memory Controller.
Monte Carlo Tree Search.

Many Integrated Core.

Non Uniform Memory Access.

XXVi List of Abbreviations

OLD Operation-Level Dependency.
OLP Operation-Level Parallelism.
OLT Operation-Level Task.

PPS Playouts per Second.

PS Problem Statement.

PW Percentage of Wins.

RNG Random Number Generation.
RQ Research Question.

SMT Simultaneous Multithreading.
TBB Threading Building Blocks.
TD Tag Directories.

TPFIFO Thread Pool with FIFO scheduling.

UCB Upper Confidence Bound.
UCT Upper Confidence Bounds for Trees.
UMA Uniform Memory Access.

VPUs Vector Processing Units.

